1	
2	Freshwater diatom biogeography and the genus Luticola: An
3	extreme case of endemism in Antarctica
4	
5	J.P. Kociolek ^{1,2*} , K. Kopalová ³ , S.E. Hamsher ¹ , T.J. Kohler ^{3,4} , B. Van de Vijver ^{5,6} , P.
6	Convey ⁷ . D.M. McKnight ⁴
7	
8	¹ Museum of Natural History, UCB 218, University of Colorado, Boulder, CO 80309, USA
9	² Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309
10	USA
11	³ Charles University in Prague, Faculty of Science, Department of Ecology, Viničná 7, 12844
12	Prague 2, Czech Republic
13	⁴ University of Colorado, Institute of Arctic & Alpine Research, Boulder, CO 80309 USA
14	⁵ Botanic Garden Meise, Department of Bryophyta & Thallophyta, Nieuwelaan 38, B-1860
15	Belgium
16	⁶ University of Antwerp, Department of Biology, ECOBE, Universiteitsplein 1, B-2610 Wilrijk,
17	Antwerpen, Belgium
18	⁷ British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, United
19	Kingdom
20	
21	Correspondence:
22 23 24 25 26 27	Dr. J. Patrick Kociolek Museum of Natural History and Department of Ecology and Evolutionary Biology University of Colorado Boulder, CO 80309, USA Patrick.Kociolek@colorado.edu

28 Abstract Historic views on levels of endemism in the Antarctic region have 29 characterized the region as a frozen desert with little diversity and low endemism. More 30 recent studies have uncovered that endemism does exist in this region and may be much 31 greater than previously expected in several groups. For microbes, assessing levels of 32 endemism in the Antarctic region has been particularly important, especially against a 33 backdrop of debate regarding the possible cosmopolitan nature of small species. In order 34 to assess the degree of endemism of the freshwater diatom genus Luticola in the Antarctic 35 region we synthesized the results of a modern high-resolution taxonomy for species in 36 Continental Antarctica, Maritime Antarctica and islands in the sub-Antarctic, as well as 37 southern areas of South America. The diatom genus Luticola has one of the highest 38 percentages of endemism in Antarctica of any known diatom genus, in terms of total 39 number of species (treated here as taxon endemism) as well as a percentage of the entire 40 genus (phylogenetic endemism). We examined recent and historical taxonomic 41 treatments of freshwater diatoms, and compiled data for the number of endemic species 42 and their distributions. Of the over 200 species of Luticola currently known worldwide, 43 nearly 20% (43) occur in freshwater habitats in the Antarctic region. Of these 43 species, 42 are endemic to the overall Antarctic region, with Maritime Antarctic localities having 44 45 the largest number of species and sub-regional endemics (28, 23, respectively), followed 46 by Continental Antarctica (14, 9 respectively) and the sub-Antarctic islands (8, 6, 47 respectively). Thus, 38 of the 42 Antarctic endemics are found in a single sub-region 48 only. These numbers of endemics for Luticola are compared with other groups of 49 terrestrial and freshwater organisms, and the genus has one of the highest, if not the 50 highest, levels of endemicity in Antarctica. The timing of the diversification of Luticola

51	has not been established, but the oldest known fossils of the genus date only to the
52	Holocene, suggesting that diversification processes in this genus are rapid, and that single
53	or multiple invasions of the region may have occurred over a very short geologic
54	timescale. Understanding the origin and evolution of endemic species in Antarctica will
55	help us better assess and interpret the baseline and impacts during a time of large-scale
56	environmental change in southern latitudes.
57	
58	Keywords Antarctica, aquatic, Bacillariophyta, continental, diatoms, endemism,
59	Luticola, maritime, sub-Antarctic islands
60	

62 Introduction

63 Terrestrial and freshwater aquatic habitats of the Antarctic region include the sub-64 Antarctic islands, Maritime Antarctica and Continental Antarctica (Cande et al., 2000; 65 Chown & Convey, 2007; Convey, 2013). This region has been the focus of numerous 66 studies addressing the impacts of glacial geology (Ruddell, 2006; Sugden et al., 2006), 67 changes in climate (Convey 2003; Convey et al., 2009), and biogeography (Brundin, 68 1966; Mortimer et al., 2011) across the Southern Hemisphere. Convey et al. (2014) have 69 produced an excellent summary of the physical and chemical factors that play important 70 roles in structuring biological communities in the Antarctic region including light, 71 temperature, wind, and availability of water. 72 73 Antarctica has in the past been described as a biologically barren, cold desert with few 74 unique species and low overall richness (Benninghoff, 1987; Convey 2010). For some 75 groups, that statement is clearly true. However, for other groups, a variety of methods 76 including morphological and molecular analyses have begun to suggest that the Antarctic 77 region is more diverse (and, in particular, more unique) than has been widely assumed in 78 the past (Convey et al., 2008, 2009).

79

For microbes, there has been controversy over the past two decades regarding whether
they may exhibit biogeographic patterns at all (Finlay & Clarke 1999; Finlay 2002;
Finlay & Fenchel 2004), and if so, the extent to which they exist and what we can learn
from them. The controversy has included responses from those working with a variety of
groups of microbial organisms, including freshwater diatoms (Kociolek & Spaulding

2000; Vyverman et al. 2007; Vanormelingen et al. 2008). The Antarctic region along
with the resource of a high-resolution modern taxonomy of the genus *Luticola* in this area
(see Table 1) offers an unique opportunity to explore the level of endemism in this
relatively pristine habitat, and to assess this not only with regard to the species present
(taxon diversity) but also related to monophyletic groups (phylogenetic diversity).

90

91 Diatoms are a large (> 64,000 described taxa; Fourtanier & Kociolek, 2011) and diverse 92 group of photosynthetic, eukaryotic microbes, inhabiting almost every place where there 93 is or has been water (Kociolek 2007). Many published studies have supported the idea 94 that freshwater diatom species are not all cosmopolitan, and in fact many (perhaps most) 95 species have limited distributions (e.g., Kociolek & Spaulding 2000). Limitations on their 96 distributions can be seen as focused on a single place, such as individual lakes (i.e., 97 Kulikovskiy et al. 2012; Hamsher et al. 2014), areas (e.g., many of the works by Lange-98 Bertalot and colleagues in the series Iconographia Diatomologica, now up to 27 volumes, 99 fall into this category), or regions (Potapova & Charles 2002). The Antarctic region 100 demonstrates endemism for many groups of diatoms (e.g., Van de Vijver 2004, 2011; Kopalová et al. 2009, 2011), but for Luticola the case for endemism in Antarctica is even 101 102 stronger. 103

105

The diatom genus *Luticola* (Round et al. 1990) is composed of mostly small, yet easily
diagnosed, taxa. Features of the genus include a conspicuous isolated pore, canals
running longitudinally along each of the margins and distinctly punctate striae (Figs. 1,
2). The most recent monograph of the genus is that of Levkov et al. (2012), treating

almost 200 taxa from all parts of the world. Ecologically, the genus has been

109 characterized as being aerophilous, and its members have been described at the edges of

110 streams, in splash zones of waterfalls, in moist soils, and amongst mosses (Round et al.,

111 1990), though a few species are also estuarine (Hustedt, 1964).

112

113 Members of Luticola have been recognized since the first collections of microbes were 114 made from Antarctica (Van Heurck, 1909; West & West, 1911). A long history on the 115 treatment of the genus from Antarctica is provided by Kellogg & Kellogg (2002). Hustedt 116 (1964) listed four species associated with Antarctica, while Kellogg & Kellogg (2002) 117 included 14 taxa. Applying LM and SEM tools, and a high-resolution taxonomic 118 approach, a large number of new Luticola taxa have been described from this region in 119 recent years (see Figures 1a-b), making the genus one of the most species-rich in the area. 120 Images of representative endemic Luticola species described from the Antarctic region 121 are presented in Figs. 2a-i. Most *Luticola* taxa in Antarctica show a preference for 122 aquatic and limno-terrestrial environments such as soils and damp moss habitats (Van de 123 Vijver et al., 2002a; Lowe et al., 2007). No resting stages or spores are known. 124 125 Here we review the occurrence and distribution of *Luticola* species from the Antarctic 126 region, derived from samples collected in many parts of the region (Figure 3). We 127 compare the number of endemic species in the region to that characteristic of other 128 groups of organisms. The patterns present in the number and distribution of Luticola 129 species in the region lead to important questions regarding their phylogeny and

130 biogeography, possible adaptations for this region, and the fate of these endemics in

131 rapidly changing environmental conditions (Turner et al. 2009).

- 132
- 133

134 APPROACH

135 In comparing levels of endemism, we consider both specific, widely used sub-regions 136 within Antarctica (Continental, Maritime and sub-Antarctic), as well as 'Antarctica' in its 137 entirety (the sum of those three sub-regions). We also distinguish between different 'level 138 of endemism' concepts. The term, 'level of endemism', can be used to indicate the 139 number of species endemic to a specific location relative to the total number of species of 140 that taxon present there (taxon endemism). However, a second and different definition 141 can be the number of taxa endemic to a specific location relative to the total number of 142 taxa known for that group worldwide (phylogenetic endemism or phylodiversity; Laity et 143 al., 2015).

144

145 TAXON AND PHYLOGENETIC DIVERSITY OF LUTICOLA IN THE

146 ANTARCTIC REGION

On the sub-Antarctic islands, a total of eight taxa have been recognized, six of which are endemic to this region (Van de Vijver et al., 2002, 2011; Levkov et al., 2012). Taxa have been considered from Île de la Possession (Îles Crozet), as well as Îles Kerguelen, Prince Edward Islands and Heard Island. During a recent survey of the Ulu Peninsula on James Ross Island (Maritime Antarctic), 18 different *Luticola* taxa were found and, of those, six were described as new species (Kopalová et al., 2009, 2011).

154	The geographic distribution of the observed taxa indicates a highly specific Luticola flora
155	on James Ross Island (Kopalová et al., 2011). One taxon, L. austroatlantica Van de
156	Vijver et al., was previously recorded from both Continental and Maritime Antarctic,
157	whereas L. gaussii (Heiden in Heiden & Kolbe) D.G.Mann was previously only known
158	from the Continental Antarctic (Esposito et al., 2008). This is perhaps not surprising
159	considering the close vicinity of the Antarctic Continent, and the fact that James Ross
160	Island has been considered part of the transitory zone on the eastern Antarctic Peninsula
161	between the Maritime and Continental Antarctic regions (Øvstedal & Smith, 2001).
162	Outside James Ross Island, only six other taxa have been reported in the entire Maritime
163	Antarctic region. These species are, at present, only reported from the South Shetland
164	Islands north-west of the Antarctic Peninsula (Van de Vijver et al., 2006, 2011; Van de
165	Vijver & Mataloni, 2008). Six taxa have been found only on the South Shetland Islands,
166	and seem to be absent from the more southerly located James Ross Island.
167	
168	Detailed light and scanning electron microscopic observations, review of pertinent
169	literature, and examination of historical and type material led to the identification of 14
170	Luticola species in Continental Antarctica (Tables 1, 2). All but one of the Luticola
171	species considered (13) in Kohler et al. (2015) show distributions that are restricted to the
172	Antarctic region as a whole, and eight of them are limited in their distribution to
173	Continental Antarctica alone. Three species recognized from Continental Antarctica have
174	also been identified in Maritime Antarctica, one was found in all three Antarctic regions

- 175 (*L. muticopsis* (VanHeurck) D.G.Mann), and one (*L. cohnii* (Hilse) D.G.Mann) is a
 176 cosmopolitan species (Kohler et al., 2015).
- 177

178 Of the total number of Luticola taxa currently known from the entire Antarctic region 179 (43, summarized in Table 1) only one is found beyond that region (L. cohnii), one is 180 found in all three regions (L. muticopsis), and three are found in both the Maritime and 181 Continental Antarctic regions. No species are found whose distribution includes the sub-182 Antarctic islands and Continental Antarctica to the exclusion of Maritime Antarctica 183 (Table 1). Thus, 42 of the 43 species (98%) found in the region (taxon endemism) are 184 endemic to the entire Antarctic, and 40 of these are endemic to one of the three 185 recognized sub-regions. Of those species that are endemic, 60.5% are found in Maritime 186 Antarctica alone, 23.7% are found in Continental Antarctica alone, and 15.7% are 187 restricted to the sub-Antarctic. Nearly 20% of the entire genus (Levkov et al., 2012) is 188 endemic (phylodiversity) to the Antarctic region as a whole. These results are in strong 189 contrast to previous reports of the biogeographical features of the Antarctic diatom flora, 190 where a majority of the species was considered to be cosmopolitan (Jones, 1996; Van de 191 Vijver & Beyens 1999; Toro et al., 2007; Vinocur & Maidana 2010). Though members 192 of Luticola are small, it is unlikely this pattern of high endemism is due solely to intensity 193 of sampling and survey work in Antarctica (versus, say, North America, Europe and 194 Japan). 195

- 195
- 196
- 197

198 EXTREME ENDEMISM IN ANTARCTICA

199 The diversity and levels of endemism seen in Luticola, with 42 species endemic to the 200 Antarctic region, are unmatched by any other known genus of organisms in Antarctic 201 limno-terrestrial environments. Similar high levels of endemism within Antarctica are 202 known in the marine realm (Clarke & Johnston 2003; Griffiths et al. 2009). For a genus 203 of worldwide distribution (Levkov et al. 2012), that 20% of all Luticola species are found 204 only from the Antarctic region is similar to the level for Pycnogonida (sea spiders) 205 reported by Munilla & Membrives (2008). Below, we give an overview of known 206 diversity and levels of endemism in terrestrial and freshwater ecosystems across a wide 207 range of biodiversity in the Antarctic region. 208 209 **COMPARISON OF LUTICOLA ENDEMISM WITH OTHER GROUPS** 210 Flora 211 The terrestrial biota of Antarctica until recently has been described as relatively 212 depauperate, based mostly on the inspection of the macroscopic flora and fauna. In 213 addition to a reduced flora, there are few apparently endemic taxa. For photosynthetic 214 organisms, higher plants number just two species known from the maritime Antarctic and 215 ca. 200 species from the sub-Antarctic, with most of these not being endemic to 216 Antarctica as a whole (Convey 2007). Specific endemism of bryophytes is subject to 217 ongoing taxonomic uncertainty, but their taxon endemism is thought to be less than 5% 218 out of over 100 species reported from Antarctica (Ochyra et al. 2008). There are 415 219 species of lichens reported from the region, with estimates of endemism ranging from 220 24% to 50% (Øvstedal & Smith 2001, 2004). It is not clear if these endemic taxa are

grouped within monophyletic groups, hence diversity within lineages is difficult to assess(Ruprecht et al. 2012).

223

224 Invertebrates

225 Pugh & Convey (2008) surveyed the literature and analyzed distributional data for the 226 non-marine Antarctic invertebrate fauna. Out of 520 taxon records for Maritime and 227 Continental Antarctica, they recognized 175 verified, free-living invertebrate taxa, 135 of 228 which are terrestrial and 40 of which are aquatic. The taxonomic groups included 229 nematodes, rotifers, tardigrades, crustaceans, arachnids and hexapods. Several interesting 230 comparisons can be made with Luticola. First, the 175 species occur in 140 genera, 231 mirroring the pattern seen in other diatom groups (see below) that there are a few species 232 per genus that are endemic to Antarctica. Second, for a more direct comparison, we 233 should add to the 175 endemics, those that are found in the sub-Antarctic, which include 234 another 43 invertebrate species, giving a total of 218 (Pugh & Convey 2008). When the 235 non-endemic species are added (84 species), the total, free-living invertebrate fauna 236 numbers 302, of which just over 72% are taxon endemics (data from Table 1 of Pugh & 237 Convey 2008). Third, patterns described for invertebrates, wherein species are endemic to 238 a particular region within Antarctica and relatively few species occur across several of 239 these regions, are similar to Luticola. Finally, some invertebrates also show a finer scale 240 regionalism being found, for example, in certain sectors of Continental Antarctica, but 241 data are currently lacking for Luticola in this regard. Data for specific groups of 242 invertebrates are summarized below. 243

244 In earlier studies, a total of 17 springtail species (Collembola) across 13 genera were 245 recognized from the Continental and Maritime Antarctic regions (Wise 1967, 1971), and 246 nine of these were regarded as endemic. Greenslade (1995) reported 25 species of 247 Collembola described from these regions, and also highlighted that only one of these was 248 common between the two regions (Friesea grisea Schaeffer, for which subsequent 249 molecular analyses have revealed species-level divergences in the mitochondrial genome; 250 Torricelli et al. 2010). A number of the Maritime species are also known from the sub-251 Antarctic, but not more widely. Greenslade (2006) also reported 6 endemic genera and 252 that all 10 species found in Victoria Land (Continental Antarctica) are endemic there, 253 while no endemic genera and 6 endemic species are found in other Antarctic regions. 254 Similar patterns, with slightly smaller numbers were reported by Adams et al. (2006). For 255 the group as a whole, it is estimated that there are 8,000 species of springtail worldwide 256 (Bellinger et al. 1996-2015). If there are a total of 25 (9+10+6) endemic species from the 257 Antarctic region, for the group the level of Antarctic phylogenetic endemism is less than 258 1%.

259

For tardigrades, Convey & McInnes (2005) list 43 species or taxa having affinities with a named species in 19 genera for the Antarctic region (their Table 3). Another 3 species are indicated as possible new species. No single genus has more than 8 species present in the fauna. A molecular phylogenetic analysis of tardigrades in parts of the Antarctic region (mostly the Continental Antarctic) suggests the presence of 4–6 species, 2 of which may be new to science (Czechowski et al. 2012). Another new species representing a genus previously not reported from the Antarctic region was described recently (Giudetti et al. 268 physical and chemical conditions (Jönsson & Bertolani 2001) contributes to the number 269 of endemic species present. 270 271 Chironomids have been suggested to be the "...most diverse and most widely distributed 272 group of holometabolous insects" in the Antarctic and sub-Antarctic regions (Cranston 273 1985, p. 35). While 32 species in 18 genera are reported in the entire region, only 2 occur 274 in Maritime Antarctica (one of which is endemic) and none in Continental Antarctica 275 (Cranston 1996; Convey & Block 1996). Although Antarctica may have been a corridor 276 for the dispersal of Gondwandan chironomids (Brundin 1966), the present day fauna is 277 extremely limited in the Antarctic Continent and Maritime Antarctic regions. 278 279 Perhaps the group with the most species reported from Antarctica is the Acari or mites, 280 with 528 species catalogued (Pugh 1993). This number, however, includes free-living, 281 marine, and parasitic species reported from sea birds, seals and other mammals. It is not 282 clear from the work of Pugh & Convey (2008), how many of the 175 free-living, endemic 283 invertebrates, are mites. Most of the mites in the sub-Antarctic region have been reported 284 as primarily cosmopolitan, being carried by host waterfowl (Pugh 1993). 285 286 For rotifers, Dartnall (1983) reported 70 species present in the Antarctic region. The 287 group comprises two major subgroups, the Bdelloidea and the Monogononta. Of the 288 bdelloids, 36 species have been reported, 5 of which are considered endemic as

2014). The well-known ability of tardigrades to withstand a wide range of extreme

267

determined through morphological observations (Velasco-Castrillón et al. 2014).

290	However, these workers, using the COI gene, also suggest much higher levels of endemic
291	lineages in Antarctica, perhaps as high as 26 endemic taxa, a conclusion supported by the
292	recent study of Iakovenko et al. (2015). Fontaneto et al. (2015) suggest there are latitude
293	and habitat differences in the diversity of rotifers in the Antarctic region, as determined
294	by a review of over one hundred years of research on the group in Antarctica. Despite
295	this long history, more work is necessary to sort out patterns of diversity in the two major
296	subgroups in the region.
297	

298 Invertebrates are a large and disparate set of taxa and their representation in the

Antarctica fauna in terms of number of species and levels of endemism varies. The

300 invertebrates also show regionalization within Antarctica, with endemics being located in

301 either the sub-Antarctic, Maritime or Continental regions, and only small numbers of

302 species overlapping across regions. This is the same pattern found among the species of

303 *Luticola*.

304

305 Soil and Aquatic Microbes

306 Komárek (2013) has reviewed the long history of research on terrestrial and freshwater

307 Cyanobacteria from Antarctica. Though no synopsis of diversity is presented by Komárek

308 or in other overviews (e.g. Zakhia et al. 2008), summary statements suggested the

309 Cyanobacteria flora comprises a mix of cosmopolitan and endemic taxa, but detailed

310 molecular analysis is wanting. Current research does not seem to suggest that

311 Cyanobacteria, which are found in nearly every type of extreme environment on Earth

312 that receives sunlight, shows remarkable endemism in Antarctica.

314	A molecular study of freshwater coccoid green algae by De Wever et al. (2009) showed
315	that 14 distinct taxa from lacustrine environments in maritime and continental Antarctica
316	were distributed across the Chlorophyceae, Trebouxiophyceae and Ulvophyceae of the
317	Chlorophyta or Green Algae. Many of these 14 Antarctic species had sister taxa from
318	outside the region, suggesting several dispersal events to the Antarctic Continent. The
319	Antarctic representatives were highly divergent from their non-Antarctica relatives.
320	Moniz et al. (2012) suggested significant cryptic diversity in the green algal genus
321	Prasiola (Prasiolales, Trebouxiophyceae). Schmidt et al. (2010) however, found that
322	there were similar taxa in both the Dry Valleys of Antarctica and the high Himalayas, and
323	that the same taxa adapted to extreme cold and dry conditions existed in these similar, but
324	physically remote habitats. Though no estimates of diversity or endemism were
325	presented, the work of Pichrtová et al. (2013) and Thangaraj (2015) suggest members of
326	the Zygnematales can withstand high light intensity and ultraviolet radiation. Vyverman
327	et al. (2010) suggested that the number of endemics of other algal groups, namely of
328	Cyanobacteria, Chlorophyta and Bacillariophyta (diatoms), might be high.
329	
330	Analyses of the soil bacteria community suggest endemism might be high in the
331	Antarctic. For example, Lee et al. (2011) studied the heterotrophic bacteria from
332	microbial mats in wet habitats. Molecular data suggested nearly 37% of the phylotypes,
333	from 5 major phyla, determined with 16S rRNA are known only from Antarctica. These
334	authors concluded that for these organisms "in Antarctica, both cosmopolitan taxa and
335	taxa with limited dispersal and a history of long-term isolated evolution occur". Similar

337	bacterial endemism in Antarctica may be more modest (ca. 25%), but noted regional
338	distribution of genera (versus a homogenous flora). Both species and genera have been
339	thought to be endemic to Antarctica (see references in Vyverman et al. 2010).
340	
341	Other Freshwater Diatoms
342	For freshwater diatoms in the Antarctic, a number of groups have been detailed over the
343	last 25 years, and endemics have been described in several genera, including
344	Gomphonema, Stauroneis, and Orthoseira. For example, Kociolek & Jones (1995)
345	described a new Gomphonema species from Signy Island. However, the genus
346	Gomphonema contains over 800 taxa (Fourtanier & Kociolek 2011). Van de Vijver et al.
347	(2004) reported 18 endemic taxa of Stauroneis from sub-Antarctic islands, most of them
348	newly discovered. Like Gomphonema, Stauroneis is a large genus (> 500 taxa),
349	suggesting the level of Antarctic endemism of <i>Stauroneis</i> taxa to be just over 3% of the
350	global diversity. More than 47 species of Pinnularia have been described from the
351	Antarctic Region (Van de Vijver 2008; Van de Vijver et al. 2002, 2012b; Van de Vijver
352	& Zidarova 2011; Zidarova et al., 2012). However, like Gomphonema and Stauroneis,
353	Pinnularia is a very large genus (Fourtanier & Kociolek, 2011) and the overall level of
354	Antarctic endemism relative to global diversity is modest (less than 5%). Forthcoming
355	work on the genus Nitzschia (Hamsher et al. 2016) will mirror the examples of
356	Gomphonema, Stauroneis and Pinnularia. Van de Vijver & Kopalová (2008), Van de

results were recorded by Peeters et al. (2012). Chong et al. (2013) suggest the levels of

- 357 Vijver et al. (2002), Lowe et al. (2013) and Van de Vijver & Crawford (2014) each
- 358 described a new species of *Orthoseira* from sub-Antarctic islands. This genus is much

- smaller, ca. 15 species (Fourtanier & Kociolek, 2011), and correspondingly the rate of
 endemism is much higher (ca. 10%).
- 361

362 A genus that approaches the level of endemism seen in *Luticola* in Antarctica is 363 Muelleria (J. Frenguelli) J. Frenguelli. Van de Vijver et al. (2014) have summarized 364 previous work (e.g. Spaulding & Stoermer 1997; Spaulding et al. 1999; Van de Vijver et 365 al. 2010) and presented new observations and species descriptions of members of this 366 genus. Of the 35 Muelleria species currently recognized, 24 occur in Antarctica, and four 367 of those occur elsewhere; two of these four also occur in South America and two others 368 occur in South Africa. Thus the total number of Muelleria species endemic to Antarctica 369 (20) results in taxon endemism lower than *Luticola*, but the genus has a higher proportion 370 of species that are endemic to the region, and phylogenetic endemism (20/35 = 57%).

- 371
- 372

373 PHYLOGENETIC RELATIONSHIPS AND MONOPHYLY OF LUTICOLA

374 SPECIES IN THE ANTARCTIC REGION

While there is no phylogenetic analysis of the genus *Luticola* (its position in the diatom tree of life is not well understood), the number and types of features shared by members of the genus suggest the genus is a natural group. We cannot establish, however, whether the 42 endemic species of *Luticola* from the Antarctic region are monophyletic. In other groups of Antarctic diatoms, populations (= species?) from the region of taxa such as *Hantzschia amphioxys* and *Pinnularia borealis* are more closely related to each other than they are to populations outside the Antarctic region (Souffreau et al. 2013). If the *Luticola* species in the Antarctic region are monophyletic, additional questions arise about their origin, and tempo and mode of evolution in the region, such as whether they have been in Antarctica a long time, and whether the flora today is the result of an extended process, or if they are the result of a rapid, adaptive radiation associated with extreme conditions. How lineages like these might adapt to rapidly changing environmental conditions like those seen in recent decades in parts of the Antarctic region (Turner et al. 2009), is also an important area of research.

389

390 In terms of phylogenetic affinities of the Luticola species in the Antarctic region with 391 species from areas of close proximity, the many endemic species from South America, 392 (although mostly from Amazonia), and from Tierra del Fuego (Frenguelli, 1924) may be 393 key sources. Maidana et al. (2005) studied diatom communities along a transect from 394 southern Santa Cruz province and Tierra del Fuego province in Argentina to the South 395 Shetland Islands and the Antarctic Peninsula. They showed similarity in the diatom flora 396 along this transect, and suggested southern South America as a source of species for 397 Antarctica. In terms of other potential sources of species of Luticola for Antarctica, a 398 single endemic has been described from South Africa (L. kraeusellii (Cholnoky) 399 Metzeltin & Lange-Bertalot; Cholnoky, 1954), however no endemics have yet been 400 described from New Zealand (Foged, 1979; Cassie, 1989), Tasmania (Vyverman et al., 401 1995) or Australia (Foged, 1978; Vyverman et al., 1995; Hodgson et al., 1997). The only 402 species found in these regions that also occurs in Antarctica are L. cohnii, a cosmopolitan 403 taxon, and L. muticopsis, and reports of the latter require more detailed work to validate 404 its report from New Zealand (Foged, 1979).

406 **CONCLUSIONS**

In summary, while the larger-sized biota of Antarctica has are represented by few species and few endemics, in smaller animal, plant, fungal, algal and bacterial groups, as well as other genera of freshwater diatoms, there are a large number of species present in the Antarctic region and some of these are endemic. In nearly every case surveyed, however, the number of endemic species is modest in the context of being a part of relatively species-rich genera.

413

427

414 The freshwater-terrestrial diatom genus Luticola is an important exception. Luticola 415 demonstrates remarkable levels of endemism in Antarctica, with nearly 98% taxon 416 endemicity, and nearly 20% phylogenetic endemicity. Unlike most groups in Antarctica, 417 including other freshwater diatoms, where there is high number of endemics relative to 418 the number of species present (taxon endemicity) but a low percentage of endemics 419 relative to the total number of species (phylogenetic endemism) in a genus, Luticola has 420 high percentages of both types of endemism. Factors that might explain the high levels of 421 endemism in Luticola, and especially its success in harsh terrestrial environments have 422 not yet been identified. Hypotheses about the ability to produce oil as an anti-freeze, 423 withstand challenging freeze-thaw cycles and withstand high light and UV intensities for 424 these Antarctica endemic species (relative to others in the genus) await testing. 425 426 Perhaps even more remarkable is that the genus has a very short temporal span, with the

earliest known fossils coming from the Holocene in Antarctica (Björck et al., 1996).

428	Thus, its diversification and high levels of endemism in Antarctica may have occurred in
429	a very rapid time frame. While the genus appears monophyletic, it is currently unknown
430	whether the Luticola species presently found in Antarctica are descended from one or
431	multiple immigration events.
432	
433	
434	ACKNOWLEDGMENTS
435	Funding was provided by the MCMLTER (NSFOPP-9211773, OPP-9810219, OPP-
436	0096250, OPP-1115245 over the years) and by NSF Antarctic Organisms and
437	Ecosystems Program Award OPP-0839020. We acknowledge the collaboration with
438	Sarah Spaulding and Diana Nemergut. The authors acknowledge the support of the
439	McMurdo Dry Valleys LTER site. Kateřina Kopalová received financial support from
440	"Nadání Josefa, Maria a Zdeňky Hlávkových" and "Nadace Český literární fond" for her
441	travel to the University of Colorado, Boulder. Peter Convey is supported by NERC core
442	funding to the BAS 'Biodiversity, Evolution and Adaptation' Team.
443	
444	
445	REFERENCES
446	
447	Adams BJ, Bardgett RD, Ayres, E, Wall DH, Aislabie J, Bamforth S, Bargagli R, Cary C,
448	Cavacini P, Connell L, Convey P, Fell JW, Frati F, Hogg ID, Newsham KK,
449	O'Donnell A, Russell N, Seppelt RD, Stevens MI (2006) Diversity and distribution of

450 Victoria Land biota. Soil Biol Biochemi 38: 3003–3018.

452	Bellinger PF, Christiansen KA, Janssens F (1996–2015) Checklist of the Collembola of
453	the world. Accessed 16 February, 2015 at http://www.collembola.org
454	
455	Benninghoff WS (1987) The Antarctic ecosystem. Environment International 13: 9-14.
456	
457	Björck S, Olsson S, Ellis-Evans C, Håkansson H, Humlum O, Lirio JM (1996) Late
458	Holocene palaeoclimatic records from lake sediments on James Ross Island,
459	Antarctica. Palaeogeogr Palaeoecl 121: 195-220.
460	
461	Brundin L (1966) Transantarctic relationships and their significance, as evidenced by
462	chironomid midges. With a monograph of the subfamilies Podonominae and
463	Aphroteniinae and the austral Heptagyiae. Kungliga Svenska Vetenskapsakademiens
464	Handlingar, Fjärde Serien 11: 1–472.
465	
466	Cande SC, Stock JM, Müller RD, Ishihara T (2000) Cenozoic motion between East and
467	West Antarctica. Nature 404: 145–150.
468	
469	Cassie V (1989) Checklist of the freshwater diatoms of New Zealand. Bibliotheca
470	Diatomologica 4: 1–129.
471	
472	Cholnoky BJ (1954) Diatomeen und einige andere Algen aus dem "de Hoek" - Reservat
473	in Nord-Transvaal. Bot Notiser 3: 269–296.

475	Chong CW, Goh YS, Convey P, Pearce D, Tan IKP (2013) Spatial pattern in Antarctica:
476	what can we learn from Antarctic bacterial isolates? Extremophiles 17: 733-745.
477	
478	Chown SL, Convey P (2007) Spatial and temporal variability across life's hierarchies in
479	the terrestrial Antarctic. Philos T Roy Soc B 362: 2307–2331.
480	
481	Clarke A, Johnston N (2003) Antarctic marine benthic diversity. Oceanogr Mar Biol 41:
482	47–104.
483	
484	Convey P (2003) Maritime Antarctic climate change: signals from terrestrial biology. In
485	Antarctic Peninsula Climate Variability: Historical and Palaeoenvironmental
486	Perspectives. Antarctic Research Series; Domack, E., Burnett, A., Leventer, A.,
487	Convey, P., Kirby, M., Bindschadler, R., Eds.; American Geophysical Union:
488	Washington, DC, USA. 9: 145–158.
489	
490	Convey P (2007) Influences on and origins of terrestrial biodiversity of the sub-Antarctic
491	islands. Papers and Proceedings of the Royal Society of Tasmania 141: 83-93.
492	
493	Convey P (2010) Terrestrial biodiversity in Antarctica: recent advances and future
494	challenges. Polar Science 4: 135–147.
495	
496	Convey P (2013) Antarctic Ecosystems in Encyclopedia of Biodiversity. Volume 1.

497	Second edition, ed. S.A. Levin.(San Diego, California, USA: Elsevier), 179-188.
498	
499	Convey P & McInnes SJ (2005) Exceptional tardigrade-dominated ecosystems in
500	Ellsworth Land, Antarctica. Ecology 86: 519-527.
501	
502	Convey P, Block W (1996) Diptera: Ecology, physiology and distribution. Eur J Entomol
503	93: 1–13.
504	
505	Convey P, Chown SL, Clarke A, Barnes DKA, Bokhorst S et al. (2014) The spatial
506	structure of Antarctic biodiversity. Ecol Monogr 84: 203-244.
507	
508	Convey P, Gibson JAE, Hillenbrand C-D, Hodgson DA, Pugh PJA, Smellie JL, Stevens
509	MI (2008) Antarctic terrestrial life-challenging the history of the frozen continent?
510	Biol Rev 83:103–117.
511	
512	Convey P, Stevens MI, Hodgson DA, Smellie JL, Hillenbrand C-D, Barnes DKA, Clarke
513	A, Pugh PJA, Linse K, Cary SC (2009) Exploring biological constraints on the glacial
514	history of Antarctica. Quaternary Sci Rev 28: 3035-3048.
515	
516	Cranston PS (1985) Eretmoptera murphyi Schaeffer (Diptera, Chironomeidae), an
517	apparently parthogenetic Antarctic midge. Bulletin of the British Antarctic Survey 66:
518	35–45.
519	

520	Cranston PS (1996) Introduction to the Chironomidae. In, The Chrionomidae: Biology
521	and Ecology of Non-Biting Midges, eds P.D. Armitage, P. Cranston & L.C. Pinder,
522	(New York, Springer). 1–7.
523	
524	Czechowski P, Sands CJ, Adams BJ, D'Haese CA, Gibson JAE, McInnes SJ, Stevens MI
525	(2012) Antarctic Tardigrada: a first step in understanding molecular operational
526	taxonomic units (MOTUs) and biogeography of cryptic meiofauna. Invertebr Syst 26:
527	526–538.
528	
529	Dartnall HJG (1983) Rotifers of the Antarctic and Subantarctic. Hydrobiologia 104: 57-
530	60.
531	
532	De Wever A, Leliaert F, Verleyen E, Vanormelingen P, Van der Gucht K, Hodgson DA,
533	Sabbe K Vyverman W (2009) Hidden levels of phylodiversity in Antarctic green
534	algae: further evidence for the existence of glacial refugia. Proc Roy Soc B-Biol Sci
535	276: 3591–3599.
536	
537	Esposito RMM, Spaulding SA, McKnight DM, Van de Vijver B, Kopalová K, Lubinski
538	D, Hall B, Whittaker T (2008) Inland diatoms from the McMurdo Dry Valleys and
539	James Ross Island, Antarctica. Botany 86: 1378-1392.
540	
541	Findlay BJ (2002) Global dispersal of free-living microbial eukaryotic species. Science
542	296: 1061–1063.

544	Findlay BJ, Clarke KJ (1999) Ubiquitous dispersal of microbial species. Nature 400:
545	828.
546	
547	Findlay BJ, Fenchel T (2004) Cosmopolitan metapopulations of free-living microbial
548	eukaryotes. Protist 155: 237–244
549	
550	Foged N (1978) Diatoms in eastern Australia. Bibliotheca Phycologica 41: 1-243.
551	
552	Foged N (1979) Diatoms in New Zealand, the North Island. Bibliotheca Phycologica 47:
553	1–225.
554	
555	Fontaneto D, Iakovenko N, De Smet WH (2015) Diversity gradients of rotifer species
556	richness in Antarctica. Hydrobiologia. DOI 10.1007/s10750-015-2258-5.
557	
558	Fourtanier E, Kociolek JP (2011) Catalogue of diatoms names. California Academy of
559	Sciences. Available at:
560	http://research.calacademy.org/research/diatoms/names/index.asp (16 May 2011)
561	
562	Frenguelli J (1924) Resultados de la Primera Expedición a Tierra del Fuego (1921) -
563	Diatomeas de Tierra del Fuego. Anales de la Sociedad Científica Argentina 97 : 87-
564	118, 231–266.
565	

566	Greenslade P (1995) Collembola from the Scotia Arc and Antarctic Peninsula including
567	descriptions of two new species and notes on biogeography. Polskie Pismo
568	Entomologiczne 64: 305–319.
569	
570	Greenslade P (2006) 'Springtails', in, Encyclopedia of the Antarctic, ed. Beau
571	Riffenburgh, (USA, Routledge), Taylor & Francis Group, USA), 960.
572	
573	Griffiths HJ, Barnes DKA, Linse K (2009) Towards a generalised biogeography of the
574	Southern Ocean Benthos. J Biogeogr 36: 162–177.
575	
576	Guidetti R, Rebecchi L, Cesari M, McInnes SJ (2014) Mopsechiniscus franciscae, a new
577	species of a rare genus of Tardigrada from continental Antarctica. Polar Biol 37:
578	1221–1233.
579	
580	Hamsher SE, Graeff CL, Stepanek JG, Kociolek JP (2014) Variation in valve and girdle
581	band morphology in freshwater Denticula (Bacillariophyceae) species: Implications
582	for the systematic position of the genus including the description of Tetralunata gen.
583	nov. (Epithemiaceae, Rhopalodiales). Plant Ecol Evol 147: 346-365.
584	
585	Hamsher SE, Kopalová K, Kociolek JP, Zidarova R, Van de Vijver B (2016) The genus
586	Nitzschia on the South Shetland Islands and James Ross Island. Fottea 16: 79-102.
587	

588	Hodgson D, Vyverman W Tyler P (1997) Diatom of meromictic lakes adjacent to the
589	Gordon River and of the Gordon River estuary in south-west Tasmania. Bibliotheca
590	Diatomologica 35: 1–173.
591	
592	Hustedt F (1964). Die Kieselalgen Deutschlands, Österreichs und der Schweiz unter
593	Berücksichtigung der übrigen Länder Europas sowie der angrenzenden
594	Meeresgebiete. Kryptogamen Flora von Deutschland, Österreich und der Schweiz 7:
595	57–816.
596	
597	Jones VJ (1996) The diversity, distribution and ecology of diatoms from Antarctic inland
598	waters. Biodivers Conserv 5: 1433–1449
599	
600	Jönsson KI, Bertolani R (2001) Facts and fiction about long-term survival in tardigrades.
601	J Zool 255: 121–123.
602	
603	Kellogg TB, Kellog DE (2002) Non-marine and littoral diatoms from Antarctic and
604	subantarctic regions. Distribution and updated taxonomy. Diatom Monographs 1: 1-
605	795.
606	
607	Kociolek JP (2007) "Diatoms: Unique Eukaryotic Extremophiles Providing Insights into
608	Planetary Change," in Proceedings of the SPIE Optics and Photonics Conference,
609	Instruments, Methods, and Missions for Astrobiology X. Volume 6694, eds R. B.
610	Hoover, G. V. Levin, A. Y. Rozanov, P. C. W. Davies, (San Diego, SPIE), 1-15.

- Kociolek JP, Jones VJ (1995) A new *Gomphonema* species from Antarctica. Diatom Res
 10: 269–276.
- 614
- Kociolek JP, Spaulding SA (2000) Freshwater diatom biogeography. Nova Hedwigia 71:
 223–241.
- 617

Kohler TJ, Kopalová K, Van de Vijver B, Kociolek JP (2015) The genus *Luticola*D.G.Mann (Bacillariophyta) from the McMurdo Sound Region, Antarctica, with the
description of four new species. Phytotaxa 208: 103–134.

621

Kopalová K, Elster J, Nedbalová L, Van de Vijver B (2009) Three new terrestrial diatom
species from seepage areas on James Ross Island (Antarctic Peninsula Region).

- 624 Diatom Res 24: 113–122.
- 625

626 Kopalová K, Nedbalová L, De Haan M, Van de Vijver B (2011) Description of five new

627 species of the diatom genus *Luticola* (Bacillariophyta, Diadesmidaceae) found in

628 lakes of James Ross Island (Maritime Antarctic Region). Phytotaxa, 27, 44–60.

- 629
- 630 Komárek J (2013) Phenotypic and ecological diversity of freshwater coccoid
- 631 cyanobacteria from maritime Antarctica and islands of NW Weddell Sea. I.
- 632 Synechococcales. Czech Polar Reports 3: 130–143.
- 633

634	Kulikovskiy MS, Lange-Bertalot H, Metzeltin D, & Witkowski A (2012): Lake Baikal:
635	hotspot of endemic diatoms. – Iconographia Diatomologica 23: 1-686.
636	
637	Laity T, Laffan SW, González-Orozco CE, Faith DP, Rosauer DF, Byrne M, Miller JT,
638	Crayn D, Costion C, Moritz CC, Newport K (2015) Phylodiversity to inform
639	conservation policy: An Australian example. Sci Total Environ DOI:
640	10.1016/j.scitotenv.2015.04.113.
641	
642	Lee CK, Barbier BA, Bottos EM, McDonald IR, Cary SC (2011) The Inter-Valley Soil
643	Comparative Survey: the ecology of Dry Valley edaphic microbial communities.
644	Multidisciplinary Journal of Microbial Ecology 5: 1–12.
645	
646	Levkov Z, Metzeltin D Pavlov A (2012) Luticola and Luticolopsis. Diatoms of Europe 7:
647	1–654.
648	
649	Lowe RL, Furey PC, Ress JA, Johansen JR (2007) Diatom biodiversity and
650	distribution on wetwalls in Great Smoky Mountains National Park. Southeast Nat,
651	Special Issue 1: 135–152.
652	
653	Lowe RL, Kociolek JP, Van De Vijver B (2013) Two new Orthoseira species
654	(Bacillariophyceae) from lava tubes. Phytotaxa 111: 39-52.
655	

656	Maidana NI, Izaguirre I, Vincour A, Mataloni G, Pizarro H (2005) Diatomeas en una
657	transecta patagónica-antártica. Ecología Austra, 15: 159–176.
658	
659	Moniz MBJ, Rindi F, Novis PM, Broady PA Guiry MD (2012) Molecular phylogeny of
660	Antarctic Prasiola (Prasiolales, Trebouxiophyceae) reveals extensive cryptic
661	diversity. J Phycol 48: 940–955.
662	
663	Mortimer E, Jansen van Vuuren B, Lee JE, Marshall DJ, Convey P, Chown SL (2011)
664	Mite dispersal among Southern Ocean islands and Antarctica before the last glacial
665	maximum. Proc Roy Soc B-Biol Sci 278: 1247–1255.
666	
667	Munilla T, Membrives AS (2009) Check-list of the pycnogonids from Antarctic and sb-
668	Antarctic waters: zoogeographic implications. Antarctic Science 21: 99–111.
669	Ochyra R, Smith RIL, Bednarek-Ochyra H (2008) The illustrated moss flora of
670	Antarctica. Cambridge: Cambridge University Press.
671	Øvstedal DO, Smith RIL (2001) Lichens of Antarctica and South Georgia. A guide to
672	their identification and ecology. Cambridge, Cambridge University Press.
673	Øvstedal DO, Smith RI. (2004) Further additions to the lichen flora of Antarctica and
674	South Georgia. Nova Hedwigia 88: 157–168.
675	Øvstedal DO, Smith RIL (2011) Four additional lichens from the Antarctic and South
676	Georgia, including a new Leciophysma species. Folia Cryptog Estonica 48: 65-68.

.

- .

677	Peeters K, Verleyen E, Hodgson DA, Convey P, Ertz D, Vyverman W, Willems A (2012)
678	Heterotrophic bacterial diversity in aquatic microbial mat communities from
679	Antarctica. Polar Biol 35: 543–554.
680	
681	Potapova MG Charles DF (2002) Benthic diatoms in USA rivers: distributions along
682	spatial and environmental gradients. J Biogeogr 29: 167-187.
683	
684	Pichrtová M, Remias D, Lewis LA & Holzinger A (2013) Changes in phenolic
685	compounds and cellular ultrastructure of arctic and Antarctic strains of Zygnema
686	(Zygnematophyceae, Streptophyta) after exposure to experimentally enhanced UV to
687	PAR ratio. Microbial Ecol 65: 68-83.
688	
689	Pugh PJA (1993) A synonymic catalogue of the Acari from Antarctica, the sub-Antarctic
690	Islands and the Southern Ocean. J Nat Hist 27: 323–421.
691	
692	Pugh PJA & Convey P (2008) Surviving out in the cold: Antarctica endemic
693	invertebrates and their refugia. J Biogeogr 35: 2176-2186.
694	
695	Rosauer D, Laffan SW, Crisp MD, Donnellan SC, Cook LG (2009) Phylogenetic
696	endemism: a new approach for identifying geographical concentrations of
697	evolutionary history. Molec Ecol 18: 4061–4072.
698	

699	Round FE, Crawford RM Mann DG (1990) The Diatoms. Biology and morphology of the
700	genera. Cambridge, Cambridge University Press.
701	
702	Ruddell A (2006) An inventory of present glaciers on Heard Island and their historical
703	variation, in Heard Island: Southern Ocean Sentinel, ed. K. Green, E., Woehler,
704	(Chipping Norton, Australia, Surrey Beatty and Sonse), 28-51.
705	
706	Ruprecht U, Lumbsch HT, Brunauer G, Allan TG, Türk R (2012) Insights into the
707	Diversity of Lecanoraceae (Lecanorales, Ascomycota) in continental Antarctica (Ross
708	Sea region). Nova Hedwigia 94: 287–306.
709	
710	Schmidt SK, Lynch RC, King AJ, Karki D, Robeson MS, Nagy L, Williams MW, Mitter
711	MS, Freeman KR (2010) Phylogeography of microbial phototrophs in the dry valleys
712	of the high Himalayas and Antarctica. Proc Roy Soc B-Biol Sci 278: 702–708.
713	
714	Souffreau C, Vanormelingen P, Van de Vijver B, Isheva T, Verleyen E, Sabbe K,
715	Vyverman W (2013) Molecular evidence for distinct Antarctic lineages in the
716	cosmopolitan terrestrial diatoms Pinnularia borealis and Hantzschia amphioxys.
717	Protist 164: 101–115.
718	
719	Spaulding SA, Kociolek JP, Wong D (1999) A taxonomic and systematic revision of the
720	genus Muelleria (Frenguelli) Frenguelli (Bacillariophyta). Phycologia 38: 314–341.
721	

722	Spaulding SA, Stoermer EF (1997) Taxonomy and distribution of the genus Muelleria
723	Frenguelli. Diatom Res. 12: 95–115.
724	
725	Sugden DE Bentley MJ, Cofaigh CO (2006) Geological and geomorphological insights
726	into Antarctic ice sheet evolution. T Roy Soc London A 364: 1607-1625.
727	
728	Thangaraj, G (2015) Antarctic strain of filamentous alga Zygnema sp. shows a high
729	resistance to photoinhibition under simulated polar conditions. Czech Polar Reports
730	5: 176-184.
731	
732	Torricelli G, Carapelli A, Convey P, Nardi F, Boore JL, Frati F (2010) High divergence
733	across the whole mitochondrial genome in the "pan-Antarctic" springtail Friesea
734	grisea: evidence for cryptic species? Gene 449: 30-40.
735	
736	Toro M, Camacho A, Rochera C, Rico E, Bañón M, Fernández-Valiente E, Marco E,
737	Justel A, Avendaño MC, Ariosa Y, Vincent WF, Quesada A (2007) Limnological
738	characteristics of the freshwater ecosystems of Byers Peninsula, Livingston Island, in
739	Maritime Antarctica. Polar Biol 30: 635–649.
740	
741	Turner J, Bindschadler R, Convey P, di Prisco, G, Fahrbach E, Gutt, J, Hodgson, D,
742	Mayewski P, Summerhayes C [Eds] (2009) Antarctic Climate Change and the
743	Environment. Scientific Committee on Antarctic Research, Cambridge. 555 p.
744	

745	Vanormelingen P, Verleyen E Vyverman W (2008) The diversity and distribution of
746	diatoms: from cosmopolitan to narrow endemism. Biodivers Conserv 17: 393-405.
747	
748	Van de Vijver B, Beyens L (1999) Biogeography and ecology of freshwater diatoms in
749	sub-Antarctica: a review. J Biogeogr 26: 993–1000.
750	
751	Van de Vijver B, Beyens L, Lange-Bertalot H (2004) The genus Stauroneis in the Arctic
752	and Antarctic Regions. Bibliotheca Diatomologica 51: 1-317.
753	
754	Van de Vijver B, Chattová B, Metzeltin D, Lebouvier M (2012b) The genus Pinnularia
755	(Bacillariophyta) on Ile Amsterdam (TAAF, Southern Indian Ocean). Nova Hedwigia
756	Beih 141: 201–236.
757	
758	Van de Vijver B, Crawford RM (2014) Orthoseira limnopolarensis sp. nov.
759	(Bacillariophyta), a new diatom species from Livingston Island (South Shetland
760	Islands, Antarctica). Cryptogamie Algol 35: 245–257.
761	
762	Van de Vijver B, Frenot Y, Beyens, L (2002) Freshwater diatoms from Ile de la
763	Possession (Crozet Archipelago, sub-Antarctica). Bibliotheca Diatomologica 46: 1-
764	412.
765	

766	Van de Vijver B & Kopalová K (2008) Orthoseira gremmenii sp. nov., a new aerophilic
767	diatom from Gough Island (southern Atlantic Ocean). Cryptogamie Algol 29: 105-
768	118.
769	
770	Van de Vijver B, Mataloni G (2008) New and interesting species in the genus Luticola
771	D.G. Mann (Bacillariophyta) from Deception Island (South Shetland Islands).
772	Phycologia 47: 451–467.
773	
774	Van de Vijver B, Mataloni G, Stanish L, Spaulding SA (2010) New and interesting
775	species of the genus Muelleria (Bacillariophyta) from the Antarctic Region and South
776	Africa. Phycologia 49: 22–41.
777	
778	Van de Vijver B, Tavernier I, Kellogg TB, Gibson J, Verleyen E, Vyverman W, Sabbe K
779	(2012a) Revision of type materials of Antarctic diatom species (Bacillariophyta)
780	described by West & West (1911), with the description of two new species. Fottea 12:
781	149–169.
782	
783	Van de Vijver B, Van Dam H, Beyens L (2006) Luticola higleri sp. nov., a new diatom
784	species from King George Island (South Shetland Islands, Antarctica). Nova
785	Hedwigia 82: 69–79.
786	
787	Van de Vijver B, Zidarova R (2011) Five new taxa in the genus Pinnularia sectio
788	Distantes (Bacillariophyta) from Livingston Island (South Shetland Islands).

789	Phytotaxa 24: 39–50).
-----	---------------------	----

791	Van de Vijver B, Zidarova R, de Haan M (2011) Four new Luticola taxa
792	(Bacillariophyta) from the South Shetland Islands and James Ross Island (Maritime
793	Antarctic Region). Nova Hedwigia 92: 137–158.
794	
795	Van de Vijver B, Zidarova R, Kopalová K (2014) New species in the genus Muelleria
796	(Bacillariophyta) from the Maritime Antarctic Region. Fottea 14 : 77-90.
797	
798	Van Heurck H (1909) Diatomées. In: Résultats du Voyage du S.Y. Belgica en 1897-
799	1898–1899. Rapports Scientifiques. Botanique 6. Antwerpen, Imprimerie JE.
800	Bushmann.
801	
802	Velasco-Castrillón A, Page TJ, Gibson JAE, Stevens MI (2014) Surprisingly high levels
803	of biodiversity and endemism amongst Antarctic rotifers uncovered with
804	mitochondrial DNA. Biodiversity 15: 1–13.
805	
806	Vinocur A, Maidana NI (2010) Spatial and temporal variations in moss-inhabiting
807	summer diatom communities from Potter Peninsula (King George Island, Antarctica).
808	Polar Biol 33: 443–455.

810	Vyverman W, Vyverman R, Hodgson D, Tyler P (1995) Diatoms from Tasmanian
811	mountain lakes: a reference data-set (TASDIAT) for environmental reconstruction
812	and a systematic and autecological study. Bibliotheca Diatomologica 33: 1-193.
813	
814	Vyverman W, Verleyen E, Sabbe K, Vanhoutte K, Sterken M, Hodgson DA, Mann DG,
815	Sjuggins S, Van de Vijver, B, Jones V, Flower R, Roberts D, Chepurnov VA, Kilroy
816	C, Vanormelingen P, De Wever A (2007) Historical processes constrain patterns in
817	global diatom diversity. Ecology 88: 1924–1931.
818	
819	Vyverman W, Verleyen E, Wilmotte A, Hodgson DA, Willem A, Peeters, K, Van de
820	Vijver B, De Wever A, Leliaert F, Sabbe K (2010) Evidence for widespread
821	endemism among Antarctic micro-organisms. Polar Sci 4: 103-113.
822	
823	West W, West GS (1911) 'Freshwater algae.' in, Biology, vol. 1. Reports on the
824	Scientific Investigations, British Antarctic Expedition 1907(9), ed. J. Murray,
825	(London, Heinemann),263–298.
826	
827	Wise KAJ (1967) 'Collembola (Springtails)'.in Entomology of Antarctica.ed. J. L.
828	Gressitt (New York, Wiley), 123–148.
829	
830	Wise KAJ (1971) The Collembola of Antarctica. Pac Insects Monogr 25: 57–74.
831	
832	Zakhia F, Jungblut A-D, Taton A, Vincent WF, Willmotte A (2008) 'Cyanobacteria and

833	cold ecosystems. Chapter 8' in Psychrophiles: from Biodiveristy to Biotechnology,
834	Eds R. Margesin, F. Schinner, JC. Marx, and C. Gerday, (Heidelberg, Springer),
835	121–135.
836	
837	Zidarova R, Kopalová, K & Van de Vijver B (2012) The genus Pinnularia
838	(Bacillariophyta) excluding the section Distantes on Livingston Island (South
839	Shetland Islands) with the description of twelve new taxa. Phytotaxa 44: 11-37.
840	
841	Zidarova R, Levkov Z, Van de Vijver B (2014) Four new Luticola taxa (Bacillariophyta)
842	from Maritime Antarctica. Phytotaxa 170: 155–168.
843	
844	

846	
847	Table 1. Summary of the numbers of Luticola species in different Antarctic regions.
848	
849	
850	sub-Antarctic: total number of taxa: 8; number endemic to the sub-Antarctic: 6
851	Maritime Antarctic: total number of taxa: 28; number endemics to the maritime Antarctic: 23
852	Continental Antarctic: total number of taxa: 14; number endemics to the continental Antarctic: 9
853	
854	
855	

856 Table 2. Listing of *Luticola* species identified from the Antarctic region. C= Cosmopolitan, CA=continental Antarctic, MA= maritime Antarctica,

857 SA=sub-Antarctic. Adapted from Kohler et al. (2015).

TAXON	Distribution	<u>References</u>
Luticola cohnii (Hilse) D.G.Mann	С	Van de Vijver et al., 2011; Levkov et al., 2012
Luticola dolia S.A.Spaulding & Esposito	CA	Esposito et al., 2008; Kopalová et al., 2011
Luticola elegans (West & West) Kohler & Kopalová	CA	Kohler et al., 2015
Luticola laeta S.A.Spaulding & Esposito	CA	Esposito et al., 2008
Luticola macknightiae Kohler & Kopalová	CA	Kohler et al., 2015
Luticola murrayi (West & West) D.G.Mann	CA	West & West, 1911
Luticola pseudomurrayi Van de Vijver & Tavernier	CA	Van de Vijver et al., 2012
Luticola spainiae Kohler & Kopalová	CA	Kohler et al., 2015
Luticola bradyi Kohler	CA	Kohler et al., 2015
Luticola transantarctica Kohler & Kopalová	CA	Kohler et al., 2015
Luticola adelae Van de Vijver & Zidarova	MA	Van de Vijver et al., 2011
Luticola amoena Van de Vijver, Kopalová, Zidarova	МА	
& Levkov	MA	Levkov et al., 2012

Luticola australomutica Van de Vijver	MA	Van de Vijver & Mataloni, 2008
Luticola bogaertsiana Zidarova, Levkov & Van de	МА	
Vijver	MA	Zidarova et al., 2014
Luticola caubergsii Van de Vijver	MA	Van de Vijver & Mataloni, 2008
Luticola contii Zidarova, Levkov & Van de Vijver	MA	Zidarova et al., 2014
Luticola delicatula Van de Vijver, Zidarova, Kopalová	МА	
& Levkov	MA	Levkov et al., 2012
Luticola desmetii Kopalová & Van de Vijver	MA	Kopalová et al., 2011
Luticola doliiformis Kopalová & Van de Vijver	MA	Kopalová et al., 2011
Luticola evkae Kopalová	MA	Kopalová et al., 2011
Luticola gigamuticopsis Van de Vijver	MA	Van de Vijver & Mataloni, 2008
Luticola higleri Van de Vijver, Van Dam & Beyens	MA	Van de Vijver et al., 2006
Luticola katkae Van de Vijver & Zidarova	MA	Van de Vijver et al., 2011
Luticola neglecta Zidarova, Levkov & Van de Vijver	MA	Zidarova et al., 2014
Luticola nelidae Van de Vijver	MA	Van de Vijver & Mataloni, 2008
Luticola olegsakharovii Zidarova, Levkov & Van de	МА	
Vijver		Zidarova et al., 2014

Luticola pusilla Van de Vijver, Kopalová, Zidarova &

	NA	
Levkov	MA	Levkov et al., 2012
Luticola quadriscrobiculata Van de Vijver	MA	Van de Vijver & Mataloni, 2008
Luticola raynae Zidarova & Van de Vijver	MA	Van de Vijver et al., 2011
Luticola tomsui Kopalová	MA	Kopalová et al., 2011
Luticola truncata Kopalová & Van de Vijver	MA	Kopalová et al., 2009
Luticola vandevijveri Kopalová, Zidarova & Levkov	MA	Levkov et al., 2012
Luticola vermeulenii Van de Vijver	MA	Van de Vijver et al., 2011
Luticola austroatlantica Van de Vijver, Kopalová,		
S.A.Spaulding & Esposito	MA/CA	Esposito et al., 2008
Luticola gaussii (Heiden) D.G.Mann	MA/CA	Van de Vijver et al., 2012; Kopalová et al., 2013
Luticola permuticopsis Kopalová & Van de Vijver	MA/CA	Kopalová et al., 2011
Luticola muticopsis (Van Heurck) D.G.Mann	MA/CA/SA	Van de Vijver & Mataloni, 2008
Luticola beyensii Van de Vijver & Ledeganck &	S A	
Lebouvier	SA	Van de Vijver et al., 2002
Luticola crozetensis Van de Vijver, Kopalová,	S A	
Zidarova & Levkov	ЪA	Levkov et al., 2012

Luticola robusta Van de Vijver, Ledeganck & Beyens SA Van de Vijver et al., 2002	
Luticola subcrozetensis Van de Vijver, Kopalová,	
Zidarova & Levkov et al., 2012	
<i>Luticola suecorum</i> (Carlson) Van de Vijver SA Carlson, 1913; Van de Vijver et al., 2	002

860	Figure 1	Legends
	/ 1	- /]

862 Figure 1a. SEM observations of external features of *Luticola* species. The valve has distinctly 863 punctate striae (S), with a distinct raphe system (R) positioned in the middle of the valve. A small 864 isolated pore (IP) is present. Internally, the raphe (R) is central and the isolated pore opening (IP) 865 is obvious in the central area. Longitudinal canals (LC) run the length of the valve near the valve 866 face:mantle junction. Areolae have hymenate (H) occlusions over them. Scale bar represents 10 867 μm. 868 869 Figure 1b. SEM observations of internal features of Luticola species. The raphe (R) is central and 870 the isolated pore opening (IP) is obvious in the central area. Longitudinal canals (LC) run the 871 length of the valve near the valve face:mantle junction. Areolae have hymenate (H) occlusions 872 over them. Scale bar represents 10 µm. 873 874 Figures 2a-i. SEM images of some Luticola species that are endemic to the Antarctic region. Fig. 875 2a. L. permuticopsis, Fig. 2b. L. higleri, Fig. 2c. L. pusilla, Fig. 2d. L. vermeulenii, Fig. 2e. L. 876 amoena, Fig. 2f. L. quadriscrobiculata, Fig. 2g. L. ledeganckii, Fig. 2h. L. muticopsis, Fig. 2i. L. 877 desmetii. Scale bars represent 10 µm. 878 879 Figure 3. Map of the Antarctic region showing the origins of samples on which the high 880 resolution taxonomic studies are based. 881 882 883

