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Abstract 

This thesis assesses the lithic technology of the recently established Mesolithic of the Western Isles 

of Scotland, and how this technology fits into the occupation of these new sites. Moreover, it 

addresses whether the Western Isles sites are representative of the Scottish Mesolithic and how 

they fit within the Mesolithic of the north-east Atlantic façade. 

Extensive investigations into the Mesolithic of western Scotland and the Inner Hebrides have 

revealed widespread coastal occupation, however, large areas are still devoid of such evidence. 

Until recently the Western Isles were one such instance, despite long-held assertions of 

anthropogenic vegetation disturbance inferred from pollen diagrams. The lithic assemblages 

analysed in this thesis represent the first definitive evidence for Mesolithic occupation in this region. 

These are contextualised within the current understanding of the Mesolithic in Scotland and its 

closest Atlantic neighbours – Ireland and Norway. 

The assemblages demonstrate that locally available quartz was expediently worked to produce 

informal flake-based technology. Small quantities of flint were heavily curated and may have been 

imported from distant sources. This fits within a broad trend of an increased uptake in local raw 

materials and subsequent technological adjustment that occurs around the 7th millennium cal. BC, 

across the Atlantic seaboard. The import of exotic raw materials also indicates connections with 

other islands. 

The exceptional organic preservation at these sites provides a rare insight into hunter-gatherer 

economy in western Scotland. The Mesolithic inhabitants of the Western Isles appear logistically 

organised, exploiting a broad-spectrum economy. This is supported by the generalised and 

expedient lithic technology. 

The lack of microliths suggests insular technological developments in the later Mesolithic toolkit of 

the outer isles. This raises questions regarding our current understanding of the microlith as a 

symbol of Mesolithic technology and the validity of using microliths as definitive evidence for 

Mesolithic occupation. Consequently, this may aid future recognition of new Mesolithic sites where 

previously they may have been dismissed as undiagnostic scatters. 
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Chapter 1 Introduction 

1.1. Research Context 

The quote contained within the title of this thesis refers to the description of the lithic industries of 

prehistoric western Scotland by A. D. Lacaille, in his magnum opus, ‘The Stone Age in Scotland’ 

(Lacaille 1954; Morrison 1996). Within these “hybrid industries” of the “post-Mesolithic survivals” 

is a description of an undated lithic facies on the Bhaltos peninsula of Lewis, which bear the 

hallmarks of a Mesolithic industry (Lacaille 1954:288). A little under 60 years later, the Mesolithic 

was confirmed in this region. 

The Mesolithic occupation of the Western Isles was only initially identified in 2001 (Gregory et al. 

2005). Below a well-known Neolithic and Beaker settlement at Northton, Isle of Harris, Mesolithic-

age occupation deposits yielded a small quartz, flint, and hornfels lithic assemblage, with no 

diagnostic artefacts present (Nelis 2006b). It was suggested that this undiagnostic assemblage 

might indeed be representative of the Mesolithic of the Western Isles (Gregory et al. 2005:948). 

Following further excavation of the site in 2010, a pilot study was conducted on a sample of the 

lithic assemblage from Northton (Piper 2011). A small number of microliths were identified; 

however, the assemblage largely conformed to the undiagnostic flake-based industry described by 

Nelis (2006b). Since Northton was the only known Mesolithic site in the Western Isles at the time 

the pilot study was conducted, the validity of a largely non-microlithic Mesolithic industry in the 

Western Isles could not be tested. With the discovery of further Mesolithic sites from the Western 

Isles during the subsequent four years of fieldwork, this suggestion can now be revisited in addition 

to other aspects of the study. The conclusions and interpretations can therefore be tested more 

thoroughly, through comparison with other Western Isles Mesolithic assemblages on a site-by-site 

basis. 

1.2. Research Questions 

The original contribution to knowledge contained within this thesis, and the overall aim of this PhD 

research is: to contextualise the lithic assemblages from the newly established Mesolithic of the 

Western Isles of Scotland, within a holistic framework that explores the nature of hunter-gatherer 

interaction with the environment at the extreme edge of the north-east Atlantic façade. Specifically, 

this will be addressed through the analysis of six lithic assemblages from dated Mesolithic sites on 

the Isles of Harris and Lewis. These represent two different types of sites – open-air ‘camps’ and 

shell middens. Two further instances of eroding shell midden deposits were sampled during the 

investigation of the primary Mesolithic sites on Lewis. Very small lithic assemblages were recovered 

from these samples, which are as yet undated, but they contain the same material which 

characterises the Mesolithic midden deposits further along the headland. Each site is then 
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contextualised more widely in terms of how it fits within the Mesolithic of the north-east Atlantic 

seaboard, first with Scotland and the Inner Hebrides, before broadening out into the Mesolithic of 

western Europe. 

The following research questions have been formulated based on the results of a pilot study 

conducted on the lithic assemblage from the first Mesolithic site identified in the Western Isles, at 

Northton, Isle of Harris (Piper 2011). Within the first two questions, a series of sub-questions are 

set in order to focus the main question more clearly. The third question is much broader in its scope. 

QI. What is the nature of the lithic technology of the Mesolithic in the context of the Western Isles 

of Scotland? 

- What raw materials are utilised, and where are they sourced from? 

- What reduction strategies are employed, and are they material specific? 

- Are there microliths present at the midden sites and bevel ended tools at the open 

air sites? 

- Is the assemblage an expedient or curated technology? 

QII. How do the lithic assemblages fit into the occupation of the Western Isles sites? 

- What activities are being conducted at each site? 

- Are these activities reflected in the composition of the lithic assemblage? 

- How does this fit within models of Mesolithic settlement patterns? 

QIII. Are the Western Isles sites representative of the Scottish Mesolithic, and how do they fit within 

the Mesolithic of the north-east Atlantic façade? 

1.3. Thesis Structure 

Chapter Two provides a broad overview of the history of Mesolithic research in western Scotland 

and the Hebridean Islands. The purpose of this is to establish the current picture of the Mesolithic 

in western Scotland and the Hebrides, and how this came to be. Research into the Mesolithic of 

this region has changed significantly since the 19th Century, both in terms of its aims and the 

methods employed. By providing a picture of the research longue duree it is possible to observe the 

constant shifting of perceptions and ideas. From the culture-historical perspective of Lacaille 

searching for the Tardenoisians and the Maglemosians, to the multi-facetted approach of the 

Southern Hebrides Mesolithic Project, the continual discovery of new Mesolithic sites in the region 

has challenged previous ideas and reinforced others. 

The chapter is broken down on a county-level basis in order to better understand research outputs. 

The effect of large-scale projects by academic institutions is significant, but the contribution of local 

enthusiasts should not be overlooked. It is these amateur investigations that have enlarged the 
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body of Mesolithic evidence, and created a more balanced picture of hunter-gatherer occupation 

in western Scotland by exploring the interior region, away from the coast to which the academic 

gaze has been drawn. Despite the advance in interest, it is clear that some areas remain devoid of 

Mesolithic evidence, either due to the neglect of researchers or challenging preservation conditions. 

Until the turn of the millennium the Western Isles were a case in point. Mesolithic occupation was 

presumed likely, but remained unproven (Edwards & Sugden 2003:18). 

In the face of unfavourable preservation conditions for organic remains, the largest body of 

evidence are the hundreds of (frequently unstratified) Mesolithic lithic scatters. Tracing human 

movement through the distribution of the scatters and their raw materials provides further insight 

into the lives and activities of hunter-gatherers, of which well-preserved evidence is restricted to 

the shell middens of the Oban coastline and Inner Hebridean islands. 

It is only within the last decade that the Mesolithic period in Europe has been synthesised through 

a multitude of narratives and perspectives (Conneller & Warren 2006; Spikins 2008b). The 

traditional perception of this period as an “impoverished” hiatus between the Palaeolithic and 

Neolithic – simultaneously in terms of theory, evidence, culture and economy – has long been 

entrenched in the attitude of many renowned prehistorians (Childe 1935; Roe 1970:74; Wheeler 

1954); discovery of the rich Mesolithic sites in the Western Isles stand starkly against this backdrop. 

Only by understanding the basis on which the current picture of the Mesolithic in Scotland is formed 

is it possible to recognise how this influences our interpretations of new data. The exceptionally 

preserved faunal material at the ‘open air’ sites of Harris is largely unparalleled within Scotland, 

highlighting how the bias in organic preservation has so far restricted a fully holistic understanding 

of Mesolithic occupation. The presence of shell middens on Lewis is indicative of sustained later 

Mesolithic economic practices throughout the coastal chain. The significance of the similarities and 

differences between the Western Isles and western Scotland and the Inner Hebrides will be drawn 

upon again more fully in Chapter Eight. 

Chapter Three expands on the themes of colonisation, coastal occupation and raw material 

movement initially raised in Chapter Two, but on a broader geographical scale along the north-east 

Atlantic façade. Ireland and Norway were carefully selected as two regions that can be compared 

closely with Scotland as geographical neighbours to the south-west and north-east respectively, 

with similarities beyond physical geography and climate emerging in terms of Mesolithic settlement 

and subsistence. The importance of boats and specialised marine adaptation to the Mesolithic 

colonisation of Ireland and Norway is described, followed by the significance of the contribution of 

a fishing economy to the changing nature of occupation throughout the period in these two regions. 

The centuries around 7000 cal. BC signify major transitions in both Ireland and Norway. In the 

former, a significant shift in technology marked the transition between the Early and Later 
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Mesolithic. This millennium in Norway is identified as the change between the Middle and Late 

Mesolithic Chronozone. Although the chronozones are an artificial construct, there is a marked 

increase in the number of well-preserved sites indicating an increasingly sedentary hunter-

gatherer-fisher population, and large scale movement of raw materials occurring at this time. The 

occupation of Northton, the first known Mesolithic site in the Western Isles, also spans this date. 

This chapter forms the foundation for further discussion in Chapter Eight, in which the newly 

discovered sites from the Western Isles are contextualised within Mesolithic occupation of the 

Atlantic edge. It is possible to draw parallels between the similar physical geography of south-west 

Norway and western Scotland and the delayed colonisation of these areas following de-glaciation. 

The Mesolithic inhabitants of the north-east Atlantic broadly share advanced maritime adaptation 

and delayed-return marine-based economies. This is characterised by island and coastal occupation 

associated with boat technology capable of crossing open sea, shell midden formations, shared 

funerary traditions and changing raw material procurement. 

Chapter Four details the recovery and recording methods used to analyse the lithic assemblages 

excavated in the Western Isles. The formulation of the recording methodology was based on the 

methodologies used in the specialist analyses of lithic assemblages excavated from Scottish sites 

detailed in Chapter Two. However, these methodologies are largely flint-derived. In light of the 

dominance of quartz, rather than flint, at the Western Isles sites the methodology used to analyse 

the assemblages in this thesis also draws heavily on the work of Torben Ballin, who has published 

extensively on quartz assemblages in Scotland, and is therefore most familiar with Scottish quartz 

material (e.g. Ballin 2001; 2002; 2004; 2008; 2016a; 2016b). A brief summary of the debates 

surrounding quartz analysis is also included in respect of this, which particularly emphasises the 

issues of a quartz-only typology in a mixed raw material assemblage, and what constitutes the 

definition of a ‘tool’. By combining these approaches the methodology was tailored to answer the 

first of the research questions detailed above, and also to ensure the analysis was comparable with 

other sites in western Scotland and the Inner Hebrides in order to provide a holistic answer to the 

final research question. 

In Chapters Five and Six the results of the lithic analysis are presented. These results chapters are 

divided by island. Chapter Five focusses on the assemblages from the two open-air sites in Harris, 

Northton and Tràigh an Teampuill. In Chapter Six the assemblages are presented from the shell 

midden sites on Lewis, the five sites along the Cnip headland at Tràigh na Beirigh and Pabaigh Mòr 

South on the small island of Pabaigh Mòr. For each site the circumstances of discovery, site 

stratigraphy/matrix and dating evidence is outlined prior to the results of the lithic analysis. These 

chapters are purely data-oriented. The interpretations of the reduction strategies employed and 

the technology produced are presented in Chapter Eight alongside contextualisation within the 
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wider Mesolithic site assemblage. A full discussion of how these technological traditions fit within 

the Mesolithic of the Atlantic façade is presented in Chapter Nine. An executive summary of the 

main findings is therefore presented at the end of each site for reference. 

Chapter Seven departs from the main objective of the thesis but is intrinsically important. I designed 

a survey which was conducted during the 2013 field season to test some of the issues that became 

apparent during the writing of Chapter Two, and were reinforced by the discovery of the Mesolithic 

sites in the Western Isles. There is an evident bias in our understanding of Mesolithic occupation, 

which is concentrated along the coast. This may, in part, be a consequence of mid-Holocene sea 

level rise in coastal areas, but is also a direct result of research interests. As a consequence, there 

is a lack of evidence for the Mesolithic inland. To some extent this has been resolved on the 

mainland of Scotland, with the identification of Mesolithic sites in the lowland interior of the south-

west. The survey along the River Barvas was implemented to evaluate whether the same traces of 

Mesolithic occupation could be identified in the interior of Lewis. 

The chapter is a self-contained piece which describes the rationale, research questions, 

methodology and results of the survey in which a flood deposit containing Mesolithic-age 

palaeoenvironmental material was identified. Although the charred heathland material within the 

deposit is not direct evidence of Mesolithic human activity in the interior of the island, the 

importance of this cannot be overestimated. The material sheds light on the palaeoenvironment of 

Lewis, beyond the pollen and microcharcoal studies of the late 1980’s. The possibility of human 

impact on the environment is also suggested. 

Chapter Eight provides an extensive discussion of the full Western Isles Mesolithic dataset as it 

stands. In terms of the lithic assemblages, it is clear that technology and raw materials used by the 

Mesolithic inhabitants of the Western Isles are inextricably linked with subsistence and mobility. 

Each lithic assemblage is therefore placed within the wider activities conducted at each site by 

synthesising the results thus far post-excavation analysis of the floral, faunal and malacological 

assemblages. Although as yet incomplete, this provides a more holistic overview of the nature of 

Mesolithic occupation in terms of settlement and subsistence practices on the islands and affords 

the information required to address the first and second research questions of this thesis. 

A number of themes arise from this, which facilitate a more in-depth discussion in Chapter Nine 

that pertains to the nature of the chaîne opératoire within settlement and subsistence strategies. 

Significantly, by comparing and contrasting the data from the Western Isles within our current 

understanding of the Mesolithic evidence of Scotland, Norway, and Ireland (as presented in 

Chapters Two and Three) it becomes evident that several of these themes are comparable across 

the north-east Atlantic seaboard. A general trend towards the use of locally available raw materials 

is noted, alongside which is an adaptation in the employment of differing the reduction strategies 
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to suit their varying fracture mechanics. The lack of formal tool production in the Western Isles and 

Ireland appears related to this in some respects; however several other factors, such the absence 

of large terrestrial game and changing social networks, may also be connected with this. The 

mobility of groups and existing connections between islands and regions is likely to have been 

affected by increasing sedentism, which was facilitated by intensive exploitation of abundant 

coastal resources. Another significant theme is the collective evidence for the continuity of 

Mesolithic lifeways beyond the traditional start of the Neolithic in these regions. By drawing these 

parallels, a conclusion is reached by which the third research question of this thesis can be 

answered. 

Chapter Ten concludes this thesis by answering each of the research questions presented in this 

chapter with a summary of the major findings. The analysis of the lithic assemblages from the first 

sites in the Western Isles of Scotland have contributed significantly to our understanding of the 

variability in Mesolithic technology and raw material use within western Scotland. This variability is 

echoed by the activities and nature of occupation at the sites as a whole, each of which highlights 

a unique aspect of Mesolithic settlement and subsistence. The importance of these sites within the 

context of the north-east Atlantic seaboard cannot be underestimated, as the results that lie within 

have the potential to change our understanding of the Mesolithic in this region. 

1.4. A Caveat 

The lithic data, upon which the research in this thesis is based, derives from small assemblages. No 

large-scale excavations were conducted at Tràigh an Teampuill or a Tràigh na Beirigh 2, 3, 4 and 9 

due to their position under several metres of machair overburden. Tràigh na Beirigh 1 was 

excavated in its entirety, however the site has suffered from aggressive coastal erosion and is 

known to have been much larger (Armit 1994:90; Burgess & Church 1997:117). The area excavated 

at Northton was restricted in its size owing to time constraints in the field; similarly the length of 

time available to access Pabaigh Mòr contributed to the small sample size. Consequently, the lithic 

dataset has been recovered from very small areas of deposits that are much greater in extent, and 

reflects the activities conducted within those sampled areas. It is probable that further lithic 

evidence, indicative of other activities to those interpreted in this thesis, may exist beyond the 

excavated areas, or indeed have already been lost to the sea. Furthermore, the supporting 

information regarding the nature of subsistence has been obtained from sub-samples of a vast 

palaeoenvironmental and zooarchaeological assemblage that awaits full analysis. Whilst this thesis 

presents a comprehensive synthesis of the data to date, it is undoubtable that the conclusions of 

this thesis may need to be revised or rejected pending the completion of this project. 
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Chapter 2 Mesolithic Research in Western Scotland and the 

Hebrides: A Synthesis 

2.1. Introduction 

The earliest evidence for the Mesolithic in Scotland is at Cramond, Edinburgh which is dated to 

c.8500 cal. BC, around 1,100 years after the end of the Loch Lomond stadial and the beginning of 

the Holocene epoch (Ballantyne 2007:3135). In Scotland the transition to the Neolithic is 

traditionally ascribed to 3800 cal. BC, although earlier evidence in the form of Breton Middle 

Neolithic style pottery from a chambered tomb at Achnacreebeag, Argyll suggests ‘Neolithisation’ 

as early as 4300-4000 cal. BC (Ashmore 2004a:100; 2004b:92; Schulting & Richards 2002:167; 

Sheridan 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Overview map 
highlighting the regions of 
western Scotland discussed 
in the chapter 

1. - Renfrewshire and 
Inverclyde 

2. - North Ayrshire 

3. - South Ayrshire 

4. - East Ayrshire 

5. - South Lanarkshire 
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The aim of this chapter is to provide an overview of the current picture of the Mesolithic in western 

Scotland and the Hebrides (Figure 1). The most recent, historical, overview of the Mesolithic in 

Scotland was published over a decade ago (Saville 2004). During this time a substantial body of data 

has been published and significant new discoveries have been made. This chapter therefore builds 

upon the results of a pilot study on the movement of Mesolithic communities around the west coast 

of Scotland and the Inner Hebrides, which forms the basis of this PhD (Piper 2010). It is not within 

the remit of this synthesis to represent the vast volume of published and unpublished data in 

existence. As such, only a very general regional overview will be provided in this chapter. Where 

individual sites are discussed, these are instances where detailed typological and technological 

analyses have been conducted, or where exceptional remains have been preserved. Such sites are 

subsequently drawn upon in Chapter Eight for more detailed consideration in order to contextualise 

the Western Isles sites under analysis in this thesis. 

In order to fully understand the impact of the addition of the Western Isles to the body of evidence 

for Mesolithic occupation along the Atlantic edge of Europe, the changing nature of archaeological 

investigation should be acknowledged. Moreover, in light of recent methodological and theoretical 

advances, it is important to understand on what basis the current understanding of the Mesolithic 

in Scotland is formed, and how this affects our current understanding of the Mesolithic. The dataset 

contained within this chapter largely comprises hundreds of unstratified surface lithic scatters, with 

very few sites that have been excavated; the number of sites with dating evidence and other 

cultural remains that could provide a broader context for understanding and interpretation are few. 

Additionally the problems of archaeological visibility in the Western Isles (Outer Hebrides) are 

discussed. 

Significant advances in archaeological science and excavation methods have been made since the 

19th Century; furthermore, the nature of the evidence for the Mesolithic of western Scotland and 

the islands of the Inner Hebrides has grown significantly since then. As such, the most influential 

research conducted over the last 150 years in this region will be explored. During this age of 

antiquarianism, excavations were conducted on shell midden deposits found in caves around the 

Oban coastline and the island of Oronsay (Anderson 1895; 1898; Grieve 1883; Levine 1986; Saville 

2004). Anderson (1898:313) first recognised these as “a horizon which has not heretofore been 

observed in Scotland…filling up the hiatus that had been supposed to exist between the palaeolithic 

and the neolithic”. However, the term ‘Mesolithic’ was not used with regards to Scottish material 

until 1929 (Lacaille 1930:34). Lacaille’s (1954) seminal work ‘The Stone Age in Scotland’ presented 

a compendium of the Mesolithic evidence in Scotland that was known to c.1940, following on from 

an equally pivotal publication on the Irish Mesolithic (Movius 1942). Lacaille’s research, however, 

has been criticised as causing a stagnation of Scottish Mesolithic studies (Saville 2004:9). Lacaille 
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sought to identify the Larnian (Irish), Tardenoisian (French) and Maglemosean (Baltic) cultural 

origins of Scottish lithic industries, and proposed an exclusively coastal subsistence economy (1954). 

These archaic chronological ideas endured for some time (Morrison 1996:14; Saville 2004:11; 

Woodman 1989:4). It was not until the 1960’s that renewed research interests into the Mesolithic 

gathered pace, with numerous excavations conducted on the islands of the Inner Hebrides (Affleck 

et al. 1988; Bonsall et al. 1991; 1992; McCullagh et al. 1989; Russell et al. 1995; Saville 2004:5). The 

dataset contained within this chapter therefore largely consists of discoveries made within the last 

60 years. 

Finally, and most specifically to the nature of this thesis, the extent to which raw material evidence 

presented indicates Mesolithic mobility in the region is also considered. To some degree this has 

already been answered. In 2009-2010 I conducted a meta-analysis of the available Mesolithic 

evidence in western Scotland and the Inner Hebrides, in relation to the distribution of raw material 

sources (Piper 2010). The purpose of the research was to test a ‘Canoe Indian’ hypothesis of 

maritime adaptation in the region, rather than represent a complete archaeological picture, hence 

the restricted geographical range. The resulting catalogue comprised 259 published lithic 

assemblages and their raw material composition with two distinct distribution patterns in evidence. 

First, the vast majority of sites were located within c.5km of the coastline. Where sites were located 

inland (particularly in Dumfries and Galloway) they were situated beside lochs and major rivers 

(Piper 2010:57-59). These riverine locales would have enabled Mesolithic communities to easily 

travel across-country between the Ayrshire coast and the Solway Firth (Edwards et al. 1983:13). 

This is supported by recently discovered Mesolithic evidence from the Biggar Gap, South 

Lanarkshire, which connects the Clyde and Tweed Rivers as likely route-ways (Ward 2010:4). Second 

was the extensive range of mobility of Mesolithic communities, evidenced by the wide distribution 

of stone raw materials. This was particularly significant in the case of ‘exotic’ stones such as 

pitchstone or bloodstone, which have very specific sources. Remarkably, this pattern was also 

observed in flint, which is traditionally perceived as more commonly available, yet is restricted to 

the coast (Piper 2010:57-59). It is against this backdrop of evidence for ‘island hopping 

strandloopers’ that the newest, and furthest, frontier of Mesolithic occupation in Europe will be 

contextualised. 

2.2. Methodology 

2.2.1. Site Catalogue Data Collection 

This chapter presents a fully revised and updated catalogue of Mesolithic sites in western Scotland 

and the Hebridean islands, listed in full in Appendix One. The focus of this thesis is much broader 

than Piper (2010), which prescribed more stringent criteria for the inclusion of sites within the 

catalogue. Consequently, sites which were omitted from that study have now been added, with the 
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resulting number of sites in the catalogue currently standing at 391. The data has been collated by 

conducting an extensive literature review of archaeological journals such as Discovery and 

Excavation in Scotland; Glasgow Archaeological Journal – later the Scottish Archaeological Journal; 

Scottish Archaeological Review; Proceedings of the Society of Antiquaries of Scotland and 

Transactions of the Dumfries and Galloway Natural History and Antiquarian Society. Major edited 

volumes on the Mesolithic in Scotland and Europe were explored in addition to project-specific 

monographs and on-line publications through the online Scottish Archaeological Internet Reports 

where every reference was followed. 

The information required for the catalogue included: site name and location; National Grid 

Reference (NGR); raw material composition (noted if not given); nature of initial identification; 

subsequent interpretation and any further action taken; reference. The catalogue was divided into 

three sections following Hardy and Wickham-Jones (Hardy & Wickham-Jones 2009b): Mesolithic, 

‘Early Prehistoric’ (Mesolithic - Neolithic) or ‘Prehistoric’ (Mesolithic – Bronze Age). Sites were 

allocated to the latter two categories where they contained mixed assemblages and could not be 

securely categorised as Mesolithic on typological grounds. The sites under discussion in this chapter 

and detailed in Appendix One only represent the ‘Mesolithic’ category unless otherwise stated. 

2.2.2. Radiocarbon Dates 

Appendix Two details the sites from the study region that have been radiocarbon dated to the 

Mesolithic and are drawn upon throughout the thesis. These dates were compiled from the original 

publications, as detailed above, using Ashmore’s (2004a) comprehensive catalogue of dated sites 

in Scotland (to October 2002) between c.40,000-3500 cal. BC in order to trace the source material, 

and for supplementary context information. Excavated sites and dates published post- October 

2002 were also included to ensure the list was up-to-date, using recent publications on Bayesian 

modelling of Mesolithic population and settlement patterns in Western Scotland (Wicks & Mithen 

2014; Wicks et al. 2014). These dates were subjected to strict chronometric hygiene criteria to 

provide a rigorous method of identifying the most chronologically secure Mesolithic sites in the 

region (Fitzpatrick 2006; Spriggs 1989). 

All radiocarbon dates presented have been calibrated using Oxcal 4.2 and the Intcal 13 curve (Bronk 

Ramsey 2014; Reimer et al. 2013). Only Mesolithic dates are included1, although many sites contain 

dates from later phases of occupation and occasionally redeposited material. Material that is not 

directly associated with anthropogenic activity is also excluded. 

                                                           
1 Older than 4000 cal. BC, with the exception of the skeleton from Tràigh na Beirigh 9 
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2.3. The Post-Glacial Colonisation of Scotland 

The evidence for a Palaeolithic presence in Scotland is sparse. Deposits of reindeer antlers at Creag 

nan Uamh (Cave of the Crags), Inchnadamph were initially interpreted as a cache for antler working 

during the Late glacial in Scotland (Morrison & Bonsall 1989:136-137). This interpretation endured 

from the time of their initial excavation in the 1920’s (Callander et al. 1927; Cree 1927) until re-

analysis of the deposits, including radiocarbon dates, proved the material accumulated over the 

course of several millennia, with no evidence for anthropogenic activity until the Neolithic (Murray 

et al. 1993; Saville 2005a:351, 354). Lithic material with Late Upper Palaeolithic affinities has only 

recently been confirmed from western Scotland at sites such as at Sheildaig, Wester Ross; 

Ballevullin, Tiree (Ballin & Saville 2003); Kilmelfort Cave, Argyll (Saville & Ballin 2009), Howburn 

Farm, South Lanarkshire (Ballin et al. 2010) and Rubha Port an t-Seilich, Islay (Mithen et al. 2015). 

Three possible tanged points from Lussa Wood I and Lussa Bay were considered to be Upper 

Palaeolithic by Mercer (1969:21; 1980:26), however this interpretation has been rejected by 

various individuals on the basis of the poor condition of the artefacts (Ballin & Saville 2003:5; 

Edwards & Mithen 1995:351; Morrison & Bonsall 1989:137). These occasional glimpses of 

Scotland’s Palaeolithic past are likely to become clearer and more frequent with future research. In 

the interim, the archaeological evidence suggests that widespread human occupation in post-

glacial Scotland was long-delayed in the wake of the Last Glacial Maximum (referred to as LGM 

hereafter; Sturt 2015). 

It is well-established that the earliest dated evidence for Mesolithic occupation on the western 

coastline of Scotland is from the Inner Hebrides at Kinloch, Rum, c.7500 cal. BC (Wickham-Jones 

1990c). Further evidence from recent excavations at Rubha Port an t-Seilich, Islay and Fiskary Bay, 

Coll have demonstrated that Mesolithic people were frequent visitors to, or more probably 

inhabitants of, this island chain at the same time (Wicks & Mithen 2014). The Mesolithic activity on 

these islands dates to over a thousand years later than the earliest known Mesolithic sites in the 

east of Scotland, at Cramond and Daer Reservoir (Ashmore 2004a). Currently, there are no securely-

dated inland sites beyond Daer, and little evidence for over-land colonisation routes. As such, it 

would appear that the time-lag between the colonisation of the east and west of Scotland was of 

intermittent and transient occupation. It has been suggested that the most auspicious places were 

selected for habitation by small, sea-faring groups navigating north-west Britain before eventual 

population expansion led to an “extensive and intensive” settlement of the region (Finlayson 1999; 

Waddington 2015). Radiocarbon dates from the recent excavation at Creit Dhubh, Mull have now 

challenged this perception. The dates suggest two phases of occupation – the first contemporary 

with those at Cramond and Daer during the 8th millennium BC and the second occurring during the 

7th millennium BC - at the same time as sites on neighbouring islands (Mithen & Wicks 2011a; Wicks 

& Mithen 2014). This evidence therefore suggests that Mesolithic occupation in Scotland reached 
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the west coast far sooner than traditionally perceived (Finlay et al. 2002:105; Wickham-Jones & 

Woodman 1998). 

2.4. The Scottish Mainland – From Dumfries to Durness 

2.4.1. East Ayrshire and Dumfries and Galloway 

 

Figure 2. Mesolithic sites in the regions of East Ayrshire and Dumfries and Galloway. 1. Loch Doon A; 2. Loch Doon B; 
3. Loch Doon C; 4. Loch Doon D; 5. Loch Doon E; 6. Loch Doon F; 7. Loch Doon G; 8. Loch Doon S; 9. Loch Doon T; 10. 
Black Craig; 11. Donald’s Isle; 12. Loch Doon H; 13. Loch Doon I; 14. Loch Doon J; 15. Loch Doon K; 16. Loch Doon L 
(Starr); 17. Loch Doon M; 18. Loch Doon N; 19. Loch Doon O; 20. Loch Doon P; 21. Loch Doon Q; 22. Loch Doon R; 23. 
Loch Doon Starr 1a; 24. Loch Doon Starr 1b; 25. Loch Doon Starr 1c; 26. Loch Head A; 27. Loch Head B; 28. Loch Head C; 
29. Loch Head D; 30. Portmark A; 31. Portmark B; 32. Portmark C; 33. Starr A; 34. Starr B; 35. Starr C; 36. Bargrennan 
White Cairn; 37. Aird; 38. Low Balyett; 39. Mull Glen; 40. Portankill; 41. Drummore; 42. Grennan; 43. Terally A; 44. 
Terally B; 45. Balgown; 46. Kirkmabreck; 47. Luce Sands A; 48. Luce Sands B; 49. Torrs Warren Site J; 50. Barmore Moss; 
51. Kilfillian A; 52. Kilfillian C; 53. Stairhaven North; 54. Stairhaven South; 55. Auchenmalg; 56. Gillespie; 57. Sinniness; 
58. Barhobble; 59. Chippermore Fort; 60. Low Clone North; 61. Low Clone South; 62. Airlour; 63. Barsalloch; 64. North 
Barsalloch; 65. Pate's Port; 66. Bairbuy; 67. Monreith; 68. Morrach; 69. Isle Farm; 70. Portyerrock; 71. Shaddock; 72. 
Sheddock; 73. Cruggleton; 74. Kilfillan B; 75. Innerwell; 76. Bladnoch; 77. Mossyard; 78. Newton; 79. Loch Grannoch A; 
80. Loch Grannoch B; 81. Loch Grannoch C; 82. Loch Grannoch D; 83. Loch Grannoch E; 84. Loch Grannoch F; 85. 
Clatteringshaws Loch J*; 86. Clatteringshaws Loch A; 87. Clatteringshaws Loch B; 88. Clatteringshaws Loch C; 89. 
Clatteringshaws Loch D; 90. Clatteringshaws Loch E; 91. Clatteringshaws Loch F; 92. Clatteringshaws Loch G; 93. 
Clatteringshaws Loch H; 94. Clatteringshaws Loch I; 95. Moss Raploch; 96. Black Water of Dee; 97. Loch Dee; 98. Snibe 
Bog*; 99. Cooran Lane*; 100. Loch Dungeon*; 101. Smeeton; 102. Smittons; 103. Stroanpatrick; 104. Water of Ken J; 
105. Water of Ken K; 106. Water of Ken L; 107. Water of Ken M; 108. Water of Ken N; 109. Water of Ken O; 110. Water 
of Ken P; 111. Water of Ken Q; 112. Water of Ken R; 113. Water of Ken S; 114. Water of Ken T; 115. Water of Ken U; 
116. Polmaddie Farm; 117. Stroangassel; 118. Water of Ken H; 119. Water of Ken I; 120. Water of Ken D; 121. Water of 
Ken E; 122. Water of Ken F; 123. Water of Ken G; 124. Water of Ken B; 125. Water of Ken C; 126. Balmaclellan; 127. 
Water of Ken A; 128. Bogrie; 129. Lochfoot School; 130. Loch Arthur; 131. Kirkguneon Parish; 132. Motte of Ur; 133. 
Buittle Castle Bailey; 134. Mote of Mark; 135. Cowcorse Farm; 136. Gillfoot; 137. Maxwellfield; 138. McCulloch’s Castle; 
139. Stony Park; 140. Tallowquhairn; 141. Carsethorn Beach; 142. Borron Point; 143. Carsethorn A; 144. Carsethorn B; 
145. Powillimount; 146. 73-75 Irish Street; 147. Millhill. * - palaeoenvironmental cores. Ordnance Survey data © Crown 
Copyright/ database right 2014. An Ordnance Survey/EDINA supplied service 
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Understanding of the Mesolithic occupation of south-west Scotland changed significantly during 

the early 1960’s due to a plethora of new sites discovered in the East Ayrshire and Dumfries and 

Galloway region (Figure 2). Prior to this, only five Mesolithic sites had been recognised in south and 

west Scotland – the Campbeltown sites of Dalaruan, Millknowe and Albyn Distillery, and Ballantrae 

and Luce Sands on the coast (Lacaille 1954:140-154). The sites and lithic scatters from this region 

were fundamental in challenging the culture-historical dogma instituted by Lacaille. 

The number of known sites increased dramatically in the 1960’s. In Wigtownshire, 17 unstratified 

lithic scatters were identified on, or close to, the raised beach deposits. The assemblages all shared 

similar typologies and the material comprised almost entirely flint (Coles 1964:68; Cowie 1996:66; 

Truckell 1963:44-45). Detailed typological examination of the Wigtownshire material and re-

examination of the Campbeltown material was conducted following their discovery, comparing 

them with Scottish ‘Obanian’ sites (discussed in Section 2.4.4.1) and Larnian sites from Ireland 

(discussed in Chapter Three; Coles 1964). The results suggested that Scottish material was not 

sufficiently chronologically or typologically similar to the Irish Larnian that it could be labelled as 

such, and that the evidence to suggest any connection between Ireland and Scotland during the 

early Mesolithic was negligible – instead, the term “south-west Scottish Coastal Mesolithic” was 

introduced (Coles 1964:89; Morrison 1982:1; Saville 2004:10). 

One of these scatters, Low Clone, was the first Mesolithic site in the south-west of Scotland to be 

excavated, yielding the first, unequivocal evidence of Mesolithic structural remains on the Scottish 

mainland, and a predominantly flint assemblage that included microliths (Cormack & Coles 

1968:53). The assemblage challenged the perception that lithic industries in south-west Scotland 

were very different to those in England and Wales, due to the apparent “extreme rarity of 

microlithic forms” in Scottish assemblages (Cormack & Coles 1968:67). This was highlighted as an 

artefact of bias inherent in surface collection, which significantly under-represented the presence 

of chips, utilised blades, and retouched pieces – especially microliths. Consequently, comparisons 

were successfully made between Low Clone and Welsh and English assemblages resulting in a 

greater understanding of the typological nature of the site (Cormack & Coles 1968:67). Furthermore, 

the evidence bolstered Coles’ challenge against the contribution of the Northern Irish Larnian to 

the lithic industries in Scotland (Coles 1964; Cormack & Coles 1968:67-69). 

Another misconception to be challenged was that of a solely coastal Mesolithic presence. Truckell 

predicted that searching the “tops of river terraces” in the valleys of the south-flowing rivers would 

populate the regions’ “blank” inland areas (1963:46). Following this, a substantial number of 

Mesolithic flint and chert lithic scatters were identified around the loch and river systems of the 

River Doon, the Black Water of Dee and the Water of Ken as a result of peat erosion from fluctuating 

water levels (Affleck 1983:5-6; 1984a:6; 1984b:6; 1984c:34; 1984d:33-34; 1985a:11; 1985b:49; 
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Anonymous 1975:60; Ansell 1966:33; 1967:32; 1968a:24; 1968b:24; 1968c:13; 1969a:12; 1969b:31; 

1969c:31; 1971:26; Ansell & Conary 1974:42; Edwards et al. 1983:9; Finlayson 1990b; McFadzean 

et al. 1984b:28). It is pertinent to note that there are a number of chert sources in the area around 

Loch Doon, the High Bridge of Ken, and Deugh, which may have provided the raw material for lithics 

found at the sites nearby (Edwards et al. 1983:13; Wickham-Jones 1986). 

The recovery of so many Mesolithic assemblages in this area is significant. Several 

palaeoenvironmental cores have been taken in the vicinity of these sites (Birks 1972; 1975). At 

Snibe Bog there is evidence for probable human disturbance of the vegetation in pollen Zone SB3. 

Birks, however, attributed this to early Neolithic clearance as the evidence for Mesolithic 

occupation was, at the time, restricted to the coast (Birks 1972:206). The Cooran Lane site 

contained a large quantity of charcoal within pollen Zone CL-4, which was dated to 6641-6106 cal. 

BC. Again the fire was interpreted as a natural phenomenon, rather than caused by Mesolithic 

interference, based on the same reasoning that no inland evidence for Mesolithic occupation had 

been found (Birks 1975:206). Low levels of charcoal have also been detected at Loch Dungeon and 

Clatteringshaws Loch (Birks 1972; 1975). These interpretations can subsequently be revised in light 

of the evidence presented above – this area of the Galloway Hills was certainly occupied in the 

Mesolithic period, with evidence for significant episodes of burning recovered at Starr and Loch 

Dee (Affleck 1984b; 1984d; Edwards et al. 1983:14). 

Cormack noted that to the west of the Urr Estuary, the assemblages known up to that time were 

typologically very similar and the raw material was comprised exclusively of flint. This contrasted 

markedly with sites to the east around the River Nith, all of which contained a high proportion of 

non-flint, and non-local raw materials which may have been traded from neighbouring Annandale 

and Eskdale (Cormack 1970:77-78; Morrison 1982:3). Following the discovery of numerous sites 

post-1970, it is evident that Cormack’s findings still stand. All Mesolithic sites to the west of the Urr 

only contain flint. The one exception is Aird, where a single pitchstone flake was recovered 

(Edwards et al. 1983:12). With regard to the sites east of the Urr, the majority have mixed raw 

material assemblages – namely flint, chert and quartz. The few flint-only sites are un-representative 

isolated find-spots (Anonymous 1968a:25; 1968b:45; 1975:58; 1976:71; Bain 1995:22; Blackett 

1967:32; Cachart 1989:12; Coles 1964; Cormack 1963:52; 1964a:34; 1964b:53; 1965a:41; 1965b:25; 

1965d:25; 1965e:26; 1967:55; 1968a:46; 1968b:46; 1969a:51; 1969b:51; 1982a:9; 1982b:9; 

1983a:4; 1983b:4; 1984:6; 1985a:11; 1985b:11; 1995; Cormack & Coles 1968; Cowie 1996:66; 

Cullen & James 1995:22; Cunningham 1984:6; Edwards et al. 1983; Livens 1956b:31; Mackenzie 

1995:19; 2002; McCracken 1967:55; Penman 1994:14; 1995:21; Saville 2005b:38; Truckell 1955:175; 

1962:49; 1963; 1973:30; 1974:41; Williams 1966a:32; 1966b:32; 1967a:31; 1968:24). 
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2.4.2. Renfrewshire and South Lanarkshire 

 

Figure 3. Mesolithic sites in the regions of Renfrewshire and South Lanarkshire. 1. Bishopton; 2. Renfrew; 3. Midlinbank 
Farm; 4. Snabe Gravel Pit; 5. Shieloans; 6. Avondale Parish A; 7. Brown Hill; 8. Glentaggart; 9. Carmichael Church; 10. 
Charleston Farm; 11. Lanark Racecourse; 12. Hare Hill/Climpy; 13. Crookedstane Farm; 14. Coom Rig (Daer Valley) Site 
84; 15. Coom Rig (Daer Valley) Site 85; 16. Daer Reservoir 1; 17. Daer Reservoir 2; 18. Daer Reservoir 3; 19. Daer 
Reservoir O. Ordnance Survey data © Crown Copyright/ database right 2014. An Ordnance Survey/EDINA supplied 
service 

The nature of the assemblages recovered from the two inland counties of Renfrewshire and South 

Lanarkshire is comparable to the inland assemblages of East Ayrshire and Dumfries and Galloway 

discussed above, both in their location and raw material composition (Figure 3). A significant 

number of Mesolithic sites and lithic scatters were exposed due to low water levels over a number 

of years around Daer Reservoir (Ward 2001:86). Excavation of several lithic scatters recovered flint, 

chert, and siltstone artefacts, in addition to charcoal-filled pits and possible stake-holes. The 

radiocarbon-dates obtained from these sites span the early to late Mesolithic, between 8544-4052 

cal. BC (Ward 1995:87; 1997:75; 1998a; 1998b; 2001:86; 2002:91-92, 127; 2004:124; 2006c:134). 

Where details are provided for other sites identified in these regions, all of the assemblages are 

dominated by flint and chert, and occasionally agate (Archer 1985:41; 87; Ballin & Johnson 2005; 

Duncan 1997:75; Lelong et al. 1999:82; Macneill et al. 1994:75; McFadzean et al. 1984a:31-32; 

Mitchell 2002:92; 2003:111). The excavation at Glentaggart provided a much needed opportunity 

to study a Mesolithic chert assemblage from stratified contexts. There is little detailed information 

on this raw material, despite its common occurrence in Mesolithic sites in south-west Scotland, and 

this assemblage has been presented as a starting point for a future regional comparisons between 



 

 53 

the chert-dominated assemblages of the south-west interior, to the flint and flint-and-chert 

assemblages along the coast (Ballin & Johnson 2005:85). 

2.4.3. North and South Ayrshire 

2.4.3.1. North Ayrshire 

There is little information regarding the sites in North Ayrshire (Figure 4). The earliest identified 

Mesolithic site in the Ayrshire region was at Shewalton Moor where an assemblage of flint, quartz, 

jasper and chalcedony geometric microliths were recovered eroding from sand dunes, however the 

assemblage was originally interpreted as Bronze Age (Lacaille 1930). Finds of Mesolithic material 

from the dunes have also been made subsequently (Macneill 1965d; Williams 1967b:16). A barbed 

antler harpoon was found in the River Irvine, which runs through the moor. Although Lacaille 

compared it closely to a similar artefact from MacArthur’s Cave, Oban, and even suggested a 

possible association with the microlith assemblage, he dismissed it as post-Mesolithic in date 

(Lacaille 1930:49-50; 1954:288). It has subsequently been directly dated to 4901-4499 cal. BC 

(Ashmore 2004a:122) and its Mesolithic date is thus affirmed. 

The remaining sites in the north Ayrshire region are simply recorded as “Mesolithic flints”, 

presumably from surface scatters collected during the late 1960’s and 1970’s (Anonymous 1976; 

Macneill 1965c; 1973). It should be noted that the primary raw material composition of these 

assemblages is flint, however there are few flint sources recorded in this area. Lacaille stated that 

flint is not native to the region and must have been imported from elsewhere, which is attested by 

the differing colours and varieties of flint present in the Shewalton Moor assemblage (Lacaille 

1930:45). 

2.4.3.2. South Ayrshire 

Ballantrae, like Shewalton Moor to the north, was also identified early in the 20th Century as one of 

only two microlithic sites on the west coast (Figure 4; Edgar 1939; Lacaille 1954). Over 3000 tools 

and debitage fragments were recovered from the plough-soil above the raised beach, with flint the 

dominant raw material but also including quartz, chert, chalcedony and pitchstone (Lacaille 

1945:84-86). The material occurred in concentrations, suggesting disturbed working sites, and the 

assemblage comprised tools from the Mesolithic to the Bronze Age (Edgar 1939:185; Lacaille 

1945:87). Further flints have since been recovered from the area (Macneill 1965a). 

Again the records for the remainder of the flint surface scatters, or isolated finds in the region are 

sparse in detail, precluding any further comparisons (Addyman 1998; Anonymous 1976; Cameron 

2001; MacGregor 2002; Macneill 1965b; St Joseph & Maxwell 1982). 
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Figure 4. Mesolithic sites in the regions of North Ayrshire and South Ayrshire. 1. West Kilbride A; 2. West Kilbride B; 3. 
West Kilbride C; 4. West Kilbride D; 5. West Kilbride E; 6. Portencross; 7. Seamill B; 8. Seamill A; 9. Glenhead Farm; 10. 
Stevenson; 11. Kilwinning; 12. Shewalton Moor; 13. Dreghorn A; 14. Dreghorn B; 15. Monkton A; 16. Monkton B; 17. 
Prestwick A; 18. Prestwick B; 19. Greenan; 20. Bower Hill; 21. Dunure B; 22. Dunure C; 23. Dunure A; 24. Dunre D; 25. 
Culzean Bay; 26. Crossraguel Abbey; 27. Maidens; 28. Turnberry Hotel; 29. Dowhill Farm; 30. Enoch Farm; 31. Girvan A; 
32. Girvan B; 33. Girvan C; 34. Girvan D; 35. Girvan E; 36. Girvan F; 37. Girvan G; 38. Girvan H; 39. Girvan Mains; 40. 
Girvan Mains Farm A; 41. Girvan Mains Farm B; 42. Girvan Mains Farm C; 43. Knockdolian; 44. Ballantrae A; 45. 
Ballantrae B. Ordnance Survey data © Crown Copyright/ database right 2014. An Ordnance Survey/EDINA supplied 
service 
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2.4.4. Argyll and Bute 

 

Figure 5. Mesolithic sites in the regions of Argyll, Bute and Inchmarnock. 1. Carding Mill Bay; 2. Distillery Cave; 3. 
Druimvargie; 4. Lón Mór; 5. MacArthur's Cave; 6. Mackay Cave; 7. Raschoille Cave; 8. Kilmore; 9. Cave of the Crags; 10. 
Balaghoun; 11. Sron-a-Bruic; 12. Clachbreck; 13. Tiretigan Cave; 14. Rusehill; 15. Lange Links; 16. Machribeg; 17. 
Macharioch Field 1; 18. Arinarach Hill; 19. Albyn Distillery; 20. Dalaruan; 21. Millknowe; 22. Sprinkbank Distillery; 23. 
New Peninver Farm; 24. Inchmarnock; 25. St. Blane’s Church; 26. The Plan; 27. Little Kilchattan; 28. Glecknabae. 
Ordnance Survey data © Crown Copyright/ database right 2014. An Ordnance Survey/EDINA supplied service 
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The earliest investigations into the Mesolithic in Scotland were conducted in the caves and rock-

shelters of the Argyll coastline uncovered during development around Oban, and followed by 

excavations at Campbeltown, on the Mull of Kintyre (Figure 5). 

2.4.4.1. The ‘Obanian’ Cave Sites 

During the late 1800’s several archaeological deposits were found within rock-shelters and caves 

around Oban. These exceptionally preserved sites contained distinctive deposits of substantial 

‘middens’ – or refuse heaps. These largely comprised marine mollusc and crustacean remains; 

mammal bone (both land and sea); fish and bird bone; worked bone and antler tools such as points, 

mattocks and harpoon-heads, and very small chipped flint assemblages (Anderson 1895; 1898; 

Lacaille 1954; Turner 1895). The material from these sites was compared closely with shell middens 

excavated on the islands of Oronsay and Risga (Anderson 1898), which Movius termed the 

“Obanian culture”, after the area in which the sites were found (Bonsall 1997; 1942). The ‘Obanian’ 

was defined by five characteristics: 

 A limited geographical range around the Argyll coastline 

 A limited chronological range, post-c. 5500-5000 cal. BC 

 Microliths and retouched stone tools are absent 

 Bone and antler artefacts are present 

 Sites with microlithic industries are not present where Obanian sites are found (Bonsall 

1997:28).  

The concept of the ‘Obanian’ has now been all but refuted (Bonsall 1997:28). Radiocarbon dates 

from Druimvargie rock-shelter of 7569-6467 cal. BC make this one of the earliest Mesolithic sites in 

Scotland, and the earliest ‘Obanian’ site by over 1000 years. This certainly repudiates the suggestion 

that the ‘Obanian’ was a distinct, late, Mesolithic phenomenon (Bonsall 1997:29; Bonsall & Smith 

1989; Bonsall et al. 1995; Connock et al. 1992:37). In contrast to the dating evidence from 

Druimvargie, Carding Mill Bay produced terminal Mesolithic dates between 4236-3796 cal. BC2 for 

the occupation of the midden layers. This extends the occupation of Mesolithic midden sites up to, 

and possibly beyond, the earliest dates for the Neolithic in Scotland (Connock et al. 1992:36). 

More recently, two excavations near Oban have indicated that the final ‘Obanian’ assumption is no 

longer valid. Flint and quartz assemblages containing classic narrow blade microliths have been 

excavated from in situ occupation horizons at Kilmore and Lón Mór – the latter site is situated less 

than a kilometre from the ‘Obanian’ sites of Carding Mill Bay and Raschoille Cave (Bonsall et al. 

2009; Bonsall et al. 1993:76). Carbonised hazel nutshell from Lón Mór dated to 6395-6095 cal. BC 

                                                           
2 This date is obtained from OxA-3740 which has the highest integrity rating for the Mesolithic dated 
material from this site. 
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only marginally post-dates the ‘Obanian’ site at Druimvargie (Bonsall et al. 2009:71; Bonsall et al. 

1993:76). The close proximity of these two open air sites to the ‘Obanian’ caves, in both time and 

space, therefore indicates that the Mesolithic inhabitants of the Argyll region were not culturally 

separate groups. A more satisfactory suggestion is that the different site types are a result of 

different activities being conducted at each of the sites by one group. These differences are 

exacerbated by the differing preservation conditions provided by an enclosed cave versus an 

exposed site (Bonsall 1997:36). 

It is pertinent to note that the assemblage recovered from Kilmelfort Cave was noted as distinctly 

untypical of the known microlithic or west coast Scottish Mesolithic industries at the time of 

excavation, as it contained backed points (Coles 1959; 1983). The points have since been identified 

as curve-backed points of the Late Upper Palaeolithic Federmessergruppen, and as such it has been 

removed from the catalogue (Saville & Ballin 2009). 

2.4.4.2. Mull of Kintyre 

As mentioned previously (Section 2.2.1) the three sites at Dalaruan, Millknowe and Albyn Distillery 

in Campbeltown were amongst the earliest excavations of Mesolithic material on the mainland 

(Gray 1894; McCallien & Lacaille 1941). The assemblages at these sites are dominated by flint, which 

is not native to the Kintyre area. Gray (1894:272) dismissed the idea that the flint may have been 

transported by ice, as this could not account for the uniformly small nodules and an absence of 

other types of other stones. Nor could the vast quantity of flint debitage found at Dalaruan and 

Millknowe have been supplied by chance nodules washing up on the beach. Furthermore, there is 

no geological evidence supporting the movement of ice from Antrim (the nearest source of flint) to 

the Firth of Clyde, rather it was the other way around (McCallien & Lacaille 1941:60-61). The second 

suggestion was that flint had been transported by floating seaweed (Smith 1895:42). However, later 

discoveries of several large flint nodules excavated from Millknowe – one weighing in excess of 

10lbs (4.5kg) ruled this idea out “as no amount of Fucus which could find root-hold on a 10lb. nodule 

could ever possibly float it up” (Gray 1894:274). As such the early explanations for the presence of 

flint on the Kintyre beaches was that it had been imported from Antrim by the prehistoric occupants 

of the beaches (Gray 1894:274; McCallien & Lacaille 1941:61). As discussed in Section 2.4.1 

however, the evidence for any connection with Ireland remains unproven. 

The remarkable absence of flint raw material in this area is reflected in the remaining surface 

scatters identified around the Mull of Kintyre, which contain small flint assemblages supplemented, 

in some cases, by quartz (Campbell 1962:9; Cummings & Robinson 2007:45; Gladwin 1993:74; 

Lacaille 1954; Purvis 2002:20; Scott 1956:3; Siggins 1991:55; Webb 2007:35). 
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2.4.4.3. Bute and Inchmarnock 

The evidence for Mesolithic settlement on the Isle of Bute is circumstantial. Only three lithic 

scatters and a single flint core with diagnostic bladelet removals have been found there. An isolated 

Mesolithic flint core has also been recovered within re-deposited material on Inchmarnock – Bute’s 

small western satellite island (Conolly 2005:33; Cormack 1986a:26; 1986b:26; Finlay 2004:36; 

McFadzean 1987:42; McFadzean et al. 1984c:22). The presence of microliths within the 

assemblages at Little Kilchattan and St. Blane’s Church are the most tangible evidence thus far 

(Cormack 1986b:26; McFadzean 1987:42; McFadzean et al. 1984c:22). 

2.4.5. The Highlands 

The region of the Highlands covers a vast area of north-western Scotland (Figure 6). Despite this, 

there are only two areas towards the south of the Highland area where Mesolithic sites proliferate. 

2.4.5.1. The Morvern and Ardnamurchan Peninsulae 

One of the most important sites in this region is Risga, situated on a tiny island in Loch Sunart. The 

shell midden site was initially excavated in the early 1920’s, although the site was not published 

(Atkinson et al. 1993:45). A synthesis of the site is provided by Lacaille, who describes the 

archaeological material as “virtually the same as the relic-beds of the Oban caves and Oronsay shell 

mounds” (1954:229-239). Subsequent excavation at the site, however, went further in disproving 

the ‘Obanian’ misnomer. Within the previously excavated areas of the midden, basal deposits 

retaining their stratigraphic integrity were detected, and Mesolithic occupation activity was also 

identified beyond the main midden area. A lithic assemblage in excess of 5000 pieces was recovered 

with quartz the most dominant raw material but also containing flint and bloodstone. Significantly, 

microliths of various forms were also found on the site (Atkinson et al. 1993:45; Banks & Pollard 

1998:46; Pollard et al. 1994:36). This evidence has therefore provided irrefutable evidence that 

invalidates the assumption “Obanian cultures” did not produce microlithic technology (Bonsall 

1997; Mithen et al. 2007c:515). 

The ten other sites in the region are worth briefly discussing in terms of their raw material 

composition. While flint and quartz are present at most, if not all of the sites, it is interesting to 

note that bloodstone also frequently occurs in many of the assemblages. Bloodstone is a form of 

hydrothermal chalcedony that only outcrops on the island of Rum (Durant et al. 1990). Its 

occurrence on the western mainland clearly demonstrates this raw material was being exported 

from the island. Mudstone, which is largely found on Skye, was notably recovered from the inland 

site at Acharn A (Crerar 1961:12; Lacaille 1954:290-297; Mercer 1979; Pollard 1993:45; Rich Gray 

1977; Robertson 2004:90; Thornber 1974a:19; 1974b:22). 
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Figure 6. Mesolithic sites in the Highland region. 1. Baile Mhargait; 2. Smoo Cave; 3. Redpoint; 4. Fearnmore; 5. 
Shieldaig (upper); 6. Lub Dubh Aird 1; 7. Lub Dubh Aird 2; 8. Lub Dubh Aird 3; 9. Lub Dubh Aird 4; 10. Shieldaig (lower); 
11. Sand; 12. Applecross Manse; 13. Rubh’an Achaidh Moir; 14. Dahl Lay-by; 15. Loch Doilean; 16. Cul na Croise/Drynan 
Bay; 17. Brach na Maorach; 18. Kentra Bay; 19. Sanna Bay; 20. Risga; 21. Barr River; 22. Acharn Farm A; 23. Acharn 
Farm B; 24. Kinlochaline Cottages. Ordnance Survey data © Crown Copyright/ database right 2014. An Ordnance 
Survey/EDINA supplied service 

2.4.5.2. Sand and the Scotland’s First Settler’s Project 

The Scotland’s First Settler’s Project (hereafter referred to as SFSP), which ran from 1998 to 2004, 

aimed to survey the Isle of Skye and the adjacent mainland for Mesolithic occupation evidence 
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through walkover survey, test pitting and excavation. In total over 129 new archaeological sites – 

13 of which could be positively assigned to the Mesolithic – were identified including several rock-

shelters, lithic scatters, and midden deposits (Finlayson et al. 1999a:50; Hardy & Wickham-Jones 

2001:507-510; 2009c:45). 

The most significant of these finds was the Sand 1 rock-shelter. Excavation at the entrance revealed 

extensive midden deposits comprising c.90% limpet shells, bone, antler, and a narrow-blade lithic 

assemblage (Finlayson et al. 1999a:50). The deposits contained both ‘Obanian’ style bone artefacts 

and bevel ended tools as well as narrow-blade microliths, again nullifying the ‘Obanian’ argument 

(Hardy & Wickham-Jones 2001:45). The raw material composition of the flaked stone tool 

assemblage varied. Imported baked mudstone dominated the assemblage, followed closely by 

locally available quartz/quartzite. Flint and bloodstone made up the remainder of the assemblage 

(Wickham-Jones 2009b). It is notable that there is little evidence for primary knapping of 

bloodstone at Sand, and generally across the sites to the east of the Inner Sound, suggesting it has 

been imported in a semi-prepared state (Hardy & Wickham-Jones 2003:380; Hardy & Wickham-

Jones 2009a:96-97, 161-163). With the exception of Sand, quartz and quartzite are the most 

commonly used raw materials around the central islands and east coast of the Inner Sound, which 

most likely reflects the local abundance of these raw materials in contrast to the sites to the west 

(Wickham-Jones 2009c:459). Analysis of the material recovered from Redpoint during the late 

1950’s indicated that 80% of the assemblage was quartz, and further investigation of the site during 

the SFSP returned an assemblage of 95% quartz (Clarke 1990b:154; Gray 1960:236-237). A similar 

pattern was identified at Sheildaig where 88% of the assemblage excavated in 1973 was quartz 

(Clarke 1990b:154; Walker & Jardine 1974:59). 

2.4.5.3. The Northern Coast 

Beyond the sphere of investigation by the SFSP, there are no Mesolithic sites recorded along the 

north-western extent of the Scottish mainland, until the coast of the landmass faces north. Here, 

two small sites – Smoo Cave and Baile Mhargait – fall within the remit of this analysis. The former 

site is a well-known Iron Age shell midden within a cave. Possible evidence for Mesolithic 

occupation has been recovered from the lowest deposits which overlie marine sand, including 

‘Obanian’ stone and bone artefacts, quartz flakes, and “butchered bones” (Keillar 1972:41; Pollard 

1992:48). At Baile Mhargait an extensive scatter of flint and chalcedony artefacts was recovered 

from a fluvio-glacial outwash plain. The presence of blade cores, blades, and a narrow blade 

microlith indicate the presence of Mesolithic material in the scatter (Wickham-Jones & Firth 

1990:28). Given the high concentrations of Mesolithic sites identified during the course of various 

projects, this distribution ‘gap’ must be artificial. 
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2.4.6. The Inner Hebrides – Skye and the Small Isles 

2.4.6.1. Skye 

 

Figure 7. Mesolithic sites on Skye, Raasay and Scalpay. 1. An Corran A; 2. An Corran C; 3. An Corran E; 4. An Corran E; 
5. Kati’s Bay; 6. Camas Daraich; 7. Scalpay 6a; 8. Scalpay 7; 9. Scalpay 8; 10. Clachan Harbour; 11. North Bay; 12. Loch a 
Sguirr 1. Ordnance Survey data © Crown Copyright/ database right 2014. An Ordnance Survey/EDINA supplied service 

The island of Skye also fell under the remit of the SFSP, whereby several new Mesolithic sites 

dominated by locally available raw materials were identified (Hardy & Wickham-Jones 2009c:508-

509; Wickham-Jones 2009c:460). Two of the most significant sites were identified on separate 

occasions (Figure 7). 

2.4.6.1.1. An Corran 

The rock-shelter at An Corran was excavated ahead of cliff-face blasting works for road construction 

(Saville & Miket 1994a; 1994b). A multi-period shell midden containing Mesolithic organic 

‘Obanian-style’ artefacts was uncovered below more recent occupation debris. These artefacts, 

which included bone and antler points, and bevel ended tools span a date range of 6607-3807 cal. 

BC. The site comprised a large faunal assemblage in addition to “an absolutely conventional 

Mesolithic [lithic] industry”, dominated by locally available baked mudstone tools including broad-

blade microliths (Hardy et al. 2012:29; Saville & Miket 1994a:10; 1994b:41). The site was ground-

breaking, as it was the first site in which a typically ‘Obanian’ assemblage was found with a 

microlithic assemblage (Saville & Miket 1994a). Subsequent radiocarbon-dating of bones from the 

midden has yielded a very inconsistent set of dates for the occupation of the site; therefore the 

lithic data cannot be interpreted on anything more than typological grounds (Saville & Hardy 



 

 62 

2012b:76). Despite this, the broad blade nature of the assemblage conforms to an Early Mesolithic 

typology, with no evidence for later material, although this cannot be ruled out (Finlay et al. 

2002:107). The earliest deposits at An Corran have been interpreted as a palimpsest of shell 

processing and lithic working activity that accumulated over an extended period of repeated 

occupation (Hardy & Wickham-Jones 2009c:33; Saville & Hardy 2012a:81). The SFSP surveyed the 

area close to An Corran around Staffin Bay. Several lithic scatters were recovered, but only sites C, 

E and F produced diagnostic Mesolithic material, while the others could only be assigned a 

circumstantial Mesolithic date on the presence of blades within the assemblage (Hardy & Wickham-

Jones 2002a:62; 2009c:508-509). 

2.4.6.1.2. Camas Daraich 

An eroding lithic scatter was excavated at Camas Daraich in 2000. Hazel nutshell recovered from a 

hearth and scooped area above raised beach deposits returned consistent dates for occupation 

during the mid-7th millennium BC (Birch et al. 2001:57; Wickham-Jones & Hardy 2004b:58). The 

lithic assemblage highlighted interesting patterns in the distribution of raw materials. While locally 

available chalcedonic silicates dominated, supplemented to some extent by quartz, imported 

bloodstone was well represented (Birch et al. 2001:57; Wickham-Jones 2004a:19). The bloodstone 

had clearly been imported from Rum, 25km away, as un-knapped nodules that were worked at the 

site. This contrasts with the overall pattern from around the Inner Sound where bloodstone appears 

to have been imported in a pre-prepared state (Hardy & Wickham-Jones 2003:380; Wickham-Jones 

2004a:22). Mudstone, of which the only workable source lies 70km to the north, displays little 

evidence of primary working and must have been brought to the site as pre-formed tools 

(Wickham-Jones 2004a:21-23). 

2.4.6.2. Raasay and Scalpay 

Three sites have been located on the small island of Raasay (Figure 7). The first, at North Bay was 

identified during the construction of an outdoor centre and is simply noted as a probable Mesolithic 

occupation site on the platform under investigation (Wildgoose 2004). 

The second, a rock-shelter at Loch a Sguirr 1, was investigated during the SFSP. Shell midden 

deposits contained a worked stone assemblage of baked mudstone, quartz and flint. Despite the 

absence of microliths the presence of three bevel ended bone tools suggested that the site may be 

Mesolithic. Radiocarbon dates of 6640-6020 cal. BC from these bone tools indicated that activity at 

the site was indeed such (Hardy & Wickham-Jones 2009a:169-173). 

A single baked mudstone flake was found among intertidal peat deposits at Clachan Harbour, and 

the area is well known locally for stone tool finds (Hardy 2009a:64). Clachan Harbour fell under 

investigation again in 2007 (Ballin et al. 2011:94). 27 lithics were recovered from compacted silt 
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lenses and overlying inter-tidal peat deposits. The assemblage is almost exclusively Skye tuff, with 

only a single core identified as potentially of baked mudstone (Ballin et al. 2011:98-100). Due to the 

broad blade nature of the lithic assemblage, an Early Mesolithic date is postulated. This is 

corroborated by radiocarbon dates on birch wood from the overlying peat deposits which dated to 

7598-7085 cal. BC, providing a terminus ante quem for the majority of the lithic assemblage (Ballin 

et al. 2011:96, 101). 

The island of Scalpay was surveyed by a local inhabitant. Of the nine lithic scatters identified, three 

contain microliths (Scalpay 6a, 7, 8; Figure 7) indicating a Mesolithic presence on the island, the rest 

however could not be categorised any further than ‘prehistoric’. Notably, within the assemblages 

of local raw material there were also a number of Rum bloodstone pieces (Hardy 2009a:64; Hardy 

& Wickham-Jones 2009a:195-201). 

2.4.6.3. Rum 

 

Figure 8. Mesolithic sites on Rum. 1. Bealach a’Braigh Bhig; 2. Kinloch. The source of bloodstone at Bloodstone Hill is 
indicated by the red triangle. Ordnance Survey data © Crown Copyright/ database right 2014. An Ordnance 
Survey/EDINA supplied service 

Bloodstone Hill, Rum is the only known source of workable bloodstone in the Inner Hebrides and 

general consensus is that this is where bloodstone was obtained during the Mesolithic (Clarke & 

Griffiths 1990:156). Only one Mesolithic site is known from the island, beyond an isolated find of a 

flint blade recovered from Bealach a'Braigh Bhig (Saville 2008:123; Figure 8). 
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Kinloch, Rum, dated to 7608-6394 cal. BC is one of the oldest Mesolithic sites in Scotland (Ashmore 

2004a:101; 2004b:92; Wickham-Jones 1990c:163). The excavation was conducted amidst a high 

density lithic scatter which, when combined, produced an assemblage of c.140,000 pieces and 

contained a substantial proportion of local bloodstone, flint, agate, quartz, silicified limestone, and 

volcanic glass (Wickham-Jones 1990c:52; Wickham-Jones & Pollock 1985:21; 1986:14; Wickham-

Jones et al. 1984:14). Structural remains including pits, stake-holes, and hollows were also 

identified and although there were no discernible hearth features, a quantity of charred hazel 

nutshell was recovered from a pit (Wickham-Jones 1990c:157; Wickham-Jones & Pollock 1985:21). 

The dates from the nutshell indicate Kinloch was occupied from the beginning of the Late Mesolithic 

and was occupied over a significant time-frame during this period (Wickham-Jones 1990c:38). This 

is supported by the lithic technology which contains a broadly geometric microlith assemblage 

(Myers 1988:25). It should be noted that of the lithic assemblage, only the flint and bloodstone 

component was analysed. This indicated that the flint nodules were small, but of high quality. 

Although the bloodstone nodules were larger, these were of lesser quality (Zetterlund 1990:64). 

Despite this there is clear evidence for the export of this material off the island, as many 

assemblages around Skye and the Inner Sound contain bloodstone (Hardy & Wickham-Jones 

2003:380). It is also pertinent to note that alongside the excavation coring was conducted nearby, 

with the aims of reconstructing the vegetation profile of the area and to identify whether any 

evidence for human impact on the environment could be discerned (Hirons & Edwards 1990:715). 

The resulting profile indicated changes in alder, willow, grass, and hazel that corresponded to the 

time of Mesolithic occupation at Kinloch, and could not be fully explained as a natural ecological 

phenomenon. Added to this, a rise in charcoal indicated localised burning that may have derived 

from domestic fires, providing “circumstantial evidence for Mesolithic age human interference with 

the local vegetation. This is…comparable to findings from the Outer Hebrides” (Edwards & Sugden 

2003:15; Hirons & Edwards 1990:723). 

2.4.6.4. Coll 

Fiskary Bay is the only confirmed Mesolithic site on Coll, identified during the Inner Hebrides 

Archaeological Project (hereafter IHAP), following the local collection of lithics around the inter-

tidal zone (Mithen et al. 2007a; Figure 9). Excavation revealed a substantial artefact assemblage, 

charcoal, and fish bones from raised beach deposits (Mithen & Wicks 2009:36). The lithic 

assemblage comprised bladelet technology and microliths typologically diagnostic to the Scottish 

Mesolithic narrow blade tradition; however there is no detail of the raw material composition 

(Mithen et al. 2007a:28; Mithen & Wicks 2009:36). Charred hazel nutshells were dated to 7351-

6236 cal. BC, which supports the late Mesolithic occupation suggested by the artefact assemblage 

(Mithen 2008:36). 
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Figure 9. Mesolithic sites on Coll and Tiree. 1. Rubha Sgor-innis; 2. Fiskary Bay; 3. Ballevullin; 4. Balephuil Bay. Ordnance 
Survey data © Crown Copyright/ database right 2014. An Ordnance Survey/EDINA supplied service 

Possible Mesolithic remains were recovered from an old ground surface eroding from sand dunes 

at Rubha Sgor-innis, including eight elongated bevelled pebbles, flint pebbles, and flint flakes 

(Ritchie et al. 1978:85). The bevelled pebbles are comparable to the coarse stone “limpet scoops”, 

which have only been recovered from Mesolithic contexts at sites such as the Oronsay and Risga 

shell middens, and in the absence of any diagnostic pieces within the lithic assemblage this site is 

assigned a Mesolithic date by association. 

2.4.6.5. Tiree 

Further work by the IHAP on Tiree has investigated lithics collected by George Holleyman during 

the 1940’s around the Ballevullin and Balephuil Bay areas, some of which are likely to be Mesolithic 

(Mithen et al. 2007c; Figure 9). Survey work in 2005 identified several possible new Mesolithic sites, 

most notably T1 – a bipolar technology dominated lithic scatter on raised beach deposits at 

Balephuil Bay (Mithen et al. 2007c:530; Mithen et al. 2005). A single tanged point was recovered at 

Ballevullin in 1912 which has been identified as a probable Ahrensburgian-style point (Ballin & 

Saville 2003; Livens 1956a:439; Morrison & Bonsall 1989). 
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2.4.6.6. Mull 

 

Figure 10. Mesolithic sites on Mull, Iona and Ulva. 1. Croig; 2. Crait Dubh; 3. Tenga; 4. Torr Daraich; 5. Various field-
walking locations, Mull; 6. Loch an t-Suidhe*; 7. Suidhe; 8. Ulva Cave; 9. A’Chrannag 1*; 10. A’Chrannag 2*; 11. Relig 
Odhran. * - palaeoenvironmental cores. Ordnance Survey data © Crown Copyright/ database right 2014. An Ordnance 
Survey/EDINA supplied service 

The IHAP identified three Mesolithic sites on Mull: Crait Dubh (Creit Dhu), Tenga and Croig (Mithen 

2008; Mithen et al. 2007b; Mithen & Wicks 2010; Figure 10). All three were initially identified 

through the collection of lithics by local residents and further investigated through excavation. 

Unfortunately no raw material information was detailed in the publications. Although the lithic 

scatters are likely to be contaminated with later prehistoric material, there is a high component of 

bladelet technology at all of the sites, with microliths recovered from Tenga and Croig (Mithen et 

al. 2007b:28; Mithen & Wicks 2010:46). Radiocarbon dates from two phases of Mesolithic 

occupation at Crait Dubh span 8419-6481 cal. BC, which indirectly supports the interpretation of 

the above sites as Mesolithic (Mithen et al. 2007b:28; Mithen & Wicks 2010:46). The later phase of 

occupation from Crait Dubh coincides with the dates for significant vegetation disturbance obtained 

from pollen cores taken from Loch an t-Suidhe c.6900-5780 cal. BC, whereby an increase in heather 

and grass pollen, coupled with an increase in charcoal, and declining birch and hazel pollen taxa has 

been interpreted as anthropogenic in origin (Edwards & Sugden 2003:15; Sugden 1999:111-113). A 

series of small pits were excavated at Suidhe, close to the site of the coring location. Although only 

a single unstratified flint blade was recovered from the site, the charred contents of the pit certainly 

derive from human activity. Oak charcoal from one of the pits was dated to 4791-4615 cal. BC, 
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although there is no clear evidence within the pollen core to indicate significant anthropogenic 

impact on the surrounding environment at that time (Ellis 2009:40; Sugden 1999:119). 

Details of several isolated finds, including a Mesolithic flint core recovered from a ditch at Torr 

Daraich, and several Mesolithic blades with no specific provenance were also reported to National 

Museums Scotland (Anonymous 1993a; 1993b). 

2.4.6.7. Iona 

There appears to be only a single reference to Mesolithic activity on Iona (Figure 10). During the 

excavation of a Monastic enclosure at Relig Odhran, raised beach deposits containing charcoal 

spreads and Mesolithic flints were identified (Barber 1979:28). 

2.4.6.8. Ulva 

Ulva is a small island to the west of Mull (Figure 10). Excavations at Ulva Cave began in 1987, but 

ceased in 1991, and have since been resumed (Bonsall et al. 1994:20; Pickard 2013). The cave 

deposits contained a marine shell-rich midden in addition to crustacean remains, large mammal 

bones, fish bones, hazel nutshell, and seeds; artefacts include a perforated cowrie shell and an 

antler bevel ended tool (Bonsall et al. 1992:7; Bonsall et al. 1994:20). A small quantity of flint, quartz, 

pitchstone, and possible bloodstone debitage has also been recovered. The presence of pottery in 

the highest levels of the midden attests to its continued use into later prehistory, therefore some 

post-Mesolithic contamination of the lithic assemblage is likely (Bonsall et al. 1994:17). Limpet 

shells from the midden have been dated to two phases: c.6800-6460 cal. BC, which corresponds to 

the early dates from Druimvargie rock-shelter, and 4770-4400 cal. BC – contemporaneous with the 

Oronsay middens (Bonsall et al. 1992:11; Wicks & Mithen 2014). Unlike the other large ‘Obanian’ 

sites on the mainland and Oronsay, however, the small midden in Ulva Cave accumulated over the 

course of millennia (Bonsall 1997:31-33). 

A pollen core was taken 500m north of the site at A’Chrannag. There is clear evidence for the 

burning of Calluna heathland and a decrease in woodland species from Mesolithic dated levels of 

the core. Despite the suggestion that anthropogenic activities may have contributed to these 

palaeoenvironmental signatures the dates from Ulva Cave do not coincide (Edwards & Sugden 

2003:15; Sugden 1999:142, 160). 
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2.4.6.9. Colonsay 

 

Figure 11. Mesolithic sites on Colonsay and Oronsay. 1. Scalasaig 2; 2. Scalasaig Hotel; 3. Machrins A; 4. Machrins 3; 5. 
Staosnaig; 6. Baleromindubh 5; 7. Loch Cholla*; 8. Baleromindubh 4; 9; Baleromindubh 2; 10. Cnoc Sligeach; 11. Cnoc 
Coig; 12. Caisteal nan Gillean I; 13. Caisteal nan Gillean II; 14. Priory Midden. * - palaeoenvironmental core. Ordnance 
Survey data © Crown Copyright/ database right 2014. An Ordnance Survey/EDINA supplied service 

As part of the Southern Hebrides Mesolithic Project (hereafter SHMP), field-walking and test-pitting 

surveys were undertaken on the small island of Colonsay, in addition to the main work on Islay 

(Figure 11; and see Section 2.4.6.11). Three areas – Machrins 3, Scalasaig 2 and Staosnaig – 
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produced definite evidence of Mesolithic occupation with strong evidence for Mesolithic activity 

also present at Baleromindubh (Marshall 2000a:358; Mithen 1989b; 1989d; Mithen & Lake 1996). 

Flint was the primary raw material found at these sites, supplemented by a small quantity of quartz. 

Overall the assemblages were dominated by bipolar reduction techniques which enabled the small 

beach pebbles to be utilised immediately (Mithen 1989a; 1989b; 1989c). 

The site at Staosnaig is one of the most important Mesolithic sites excavated in the Inner Hebrides. 

In situ Mesolithic deposits including worked lithic debris, coarse stone artefacts and several pit-like 

features, some of which were stone-lined, have been recovered (Mithen & Lake 1996:138-139). 

The largest pit, F24, measured c.4.5m in diameter and has been interpreted as a probable hut 

structure. The fill comprised a chipped stone assemblage, coarse stone tools, and a significant 

quantity of charred hazel nutshell, which is estimated to have comprised 30,000-40,000 whole hazel 

nuts (Mithen et al. 2001:225, 227). Nut shells from the pit have indicated that episodes of 

deposition occurred between 7320-5792 cal. BC, and are representative of intensive and systematic 

exploitation over a short period of time that likely involved a degree of resource management 

(Edwards & Sugden 2003:15; Mithen et al. 2001:232-233). The lithic assemblage totals in excess of 

68,000 pieces and is dominated (98.9%) by flint; however, quartz, Arran pitchstone, and an 

unprovenanced siltstone were also recovered from the features (Mithen et al. 2000a:394). 

A palaeoenvironmental core taken from Loch Cholla, 2km to the south of the site indicates an 

extremely sudden decrease in tree pollen of Corylus and Betula c.6600-5200 cal. BC (Andrews in 

Mellars 1987:66). The original interpretation of this signature favours a statistical issue in absolute 

abundance percentages in order to explain the decrease in tree pollen i.e. that the reduction in the 

proportion of tree pollen is only perceived due to increased percentage data for grass, sedge, and 

heather pollen through the course of natural re-vegetation (Mellars 1987:66). Edwards and Sugden 

(2003:15-16), however have argued that the dates coincide with the deposition of the large charred 

hazelnut assemblage at Staosnaig, and by implication the exploitation this resource may have 

affected the pollen record. 

2.4.6.10. Oronsay 

Oronsay has a long history of archaeological investigation into the shell mounds on the island and 

the surrounding area (Anderson 1898; Bishop 1914; Grieve 1883; Mellars 1987). Three of the five 

Mesolithic middens – Caisteal nan Gillean I, Cnoc Sligeach and Cnoc Coig – have been excavated 

intermittently since 1881, with two further Mesolithic middens and subsidiary occupation identified 

during excavations in the 1970’s at Caisteal nan Gillean II and Priory Midden (Jardine 1972; 1973; 

1974; 1975; Jardine & Jardine 1976; 1978; 1983; Mellars 1971; 1987; Figure 11). 
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The Mesolithic shell middens on Oronsay are very similar in their composition. They consisted 

largely of deposits of dense occupation debris – primarily of marine molluscs, often interspersed by 

wind-blown sand (Anderson 1898; Bishop 1914; Jardine & Jardine 1983; Lacaille 1954; Mellars 

1987). The midden layers also included hearth deposits, which are present in all but Caisteal nan 

Gillean I, and structural evidence in the form of stake holes at Cnoc Sligeach and Cnoc Coig (Lacaille 

1954:213, 222; Mellars 1987:237-240). Excellent preservation conditions created by the shell matrix 

allowed for large faunal assemblages of terrestrial and marine mammal, fish and bird bones to be 

recovered (Anderson 1898; Grigson & Mellars 1987; Lacaille 1954). Tools of bone and antler 

including barbed harpoon heads/fishing spears, awls, points, and bevel-ended pieces were also 

preserved; the typology and function of which has been discussed and length (Anderson 1898:307-

313; Bishop 1914:68; Clark 1956; Jardine & Jardine 1978; Lacaille 1954:211-219). Fifty-five human 

bones, predominantly from the hands and feet were recovered from Cnoc Coig, Caisteal nan Gillean 

II and Priory midden, which has provided isotopic evidence on the diets of the individuals (Anderson 

1898:311; Meiklejohn & Denston 1987:296; Mellars 1987:119; Richards & Schulting 2003; Richards 

& Mellars 1998). 

The stone tool assemblages from the middens primarily consisted of bevel-ended stone tools made 

of elongated pebbles and small quantities of flint debitage, which attests to the working of this 

material on the sites (Anderson 1898:307-313; Lacaille 1954:220, 227). There is very little evidence 

for secondary working of the flint – less than 1% of the assemblage from Cnoc Sligeach is retouched, 

however it has been suggested that the flint chips would have been suitable for use without 

modification (Bishop 1914:91; Coles 1964:82). Flint itself is only occasionally found on Oronsay, 

with the nearest sources at Carsaig, south Mull, and the Morvern and Ardnamurchan peninsulae 

on the mainland (Lacaille 1954:216). As such the material has been intensively reduced and the 

small numbers of blades recovered suggest that the raw material was not conducive to producing 

such technology (Coles 1964:96; Lacaille 1954:218; Mithen et al. 2007c:516). This information on 

the lithic assemblages has only been gleaned from the early excavations by Grieve and Galloway, 

and Bishop and Buchanan. Regrettably, the lithic report from Mellars’ excavation still has not been 

produced (Mellars 1987). A pilot study on a small sample of material recovered from test-pits across 

Cnoc Coig has since been conducted, revealing an assemblage of flint (64%) and quartz (36%) 

artefacts, both derived from beach pebbles (Pirie et al. 2006:6). A careful reduction strategy is 

evident alongside deliberate production of narrow blades, which compares to the assemblage from 

the shell midden at Risga, and also the much earlier dated midden at Sand (Pirie et al. 2006:10). 
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2.4.6.11. Islay 

 

Figure 12. Mesolithic sites on Islay. 1. Kilellan Farm; 2. Gruinart B; 3. Kindrochid; 4. Kindrochid 4; 5. Kindrochid Ditch; 
6. Kindrochid Area 3; 7. Loch Grom 5; 8. Loch Gorm B*; 9. Kindrochid Area 2; 10. Coulererach (*); 11. Loch Gorm A*; 12. 
Loch Gorm 2; 13. Rockside; 14. Loch Gorm 10; Loch Gorm 9; 16. Loch Gorm 1; 17. Port Charlotte 3; 18. Port Charlotte; 
19. Gleann Mor Site A; 20. Kilchiarain Road Stone Quarry A; 21. Kilchiarain Road Stone Quarry B; 22. Kilchiarain Road 
Stone Quarry C; 23. Kilchiarain Road Stone Quarry D; 24. Kilchiarain Road Stone Quarry E; 25. Loch a’Bhogaidh*; 25. 
Bolsay Farm; 27. Cill Michael; 28. Low Nerabus; 29. Black Park Quarry; 30. Scarrabus; 31. Bridgend 11; 32. Bridgend 9; 
33. Bridgend 14; Bridgend 7; 35. Bridgend 1; 36. Bridgend 5; 37. Newton; 38. Sorn Valley*; 39. Bowmore 16; 40. 
Bowmore 4; 41. Bowmore 10; 42. Bowmore 9; 43. Mulindry 10; 44. Storakaig; 45. Cnoc Seanda; 46. Kiells 3; 47. Rubha 
Port an t-Seilich. * - palaeoenvironmental core. Ordnance Survey data © Crown Copyright/ database right 2014. An 
Ordnance Survey/EDINA supplied service 

Archaeological investigation into the Mesolithic of Islay has been conducted since the 1950’s, which 

resulted in a high number of Mesolithic lithic scatters being recorded (Burgess 1973:8; 1976:13; 

Caldwell 1997:19; Newall 1960:16; 1962a; Newall & Newall 1961b; Figure 12). Over the last quarter 
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of a century the approach changed to encompass large-scale projects such as the SHMP, conducted 

between 1988 and 1998 (Mithen 2000c), and the on-going IHAP and East Islay Mesolithic Project 

(Mithen & Wicks 2013; Mithen et al. 2005). 

The SHMP investigated several sites that had previously been identified through local field-walking 

activities. Bolsay Farm was known to be an extensive site of Mesolithic occupation (Newall 1962b; 

1963; Newall & Newall 1961a). Excavation recovered in excess of 300,000 lithics, in addition to in 

situ stake holes, pits, and hearth deposits. Radiocarbon dating of charcoal from the pits suggested 

the Mesolithic phase of occupation occurred between 6425-5623 cal. BC (Mithen 1990a; 1992; 

Mithen & Lake 1996:135). The relative in situ nature of the occupation deposits at Bolsay Farm has 

been interpreted as representative of a residential camp, or a palimpsest of multiple, smaller 

occupation episodes (Mithen et al. 1992; Mithen & Lake 1996:136-137; Mithen et al. 2000d:289). 

A dense concentration of Mesolithic flint artefacts had also been identified eroding from a disused 

sand quarry at Gleann Mor (Davies 1970:6; Newall 1959:12; 1960:16). Subsequent excavation by 

the SHMP revealed “a well preserved, discrete and high-density artefact scatter” totalling c.13,000 

artefacts confined to an area of only 6m² (Mithen 1989a; 1990b:32; Mithen & Lake 1996:131-132). 

Although no archaeological features were detected, a single piece of charcoal recovered from 

within the artefact scatter was radiocarbon dated to 6222-5737 cal. BC (Mithen & Lake 1996:132). 

Based on the small area of highly concentrated artefacts Gleann Mor has been interpreted as having 

been occupied on only a few, short occasions (Mithen & Finlayson 2000a:204; Mithen & Lake 

1996:134). 

At Coulererach, to the west of Loch Gorm, an assemblage of c.2500 artefacts were identified sealed 

below thick peat deposits (Mithen 1993:68). The scatter predominantly comprised primary stage 

knapping debris, with many small beach flint pebbles exhibiting single flake removals. Additionally, 

re-fitting pieces, good quality blades, and several retouched tools including tanged microliths were 

also recovered, providing a striking contrast to the other Islay assemblages. A piece of charcoal from 

within the lithic scatter was dated to 6561-6228 cal. BC (Mithen 1993:68; Mithen & Lake 1996:143). 

The site has been interpreted as an area primarily used for flint knapping, given its close proximity 

to flint-bearing beaches on the west coast. Furthermore, the position of the site beside the loch 

would also have provided access to a rich and diverse range of game, fish, and fowl for exploitation 

(Mithen & Finlay 2000:229; Mithen & Lake 1996:145). A similar interpretation has been made for 

the site excavated at Kindrochid. The site is well placed in the landscape for the observation of 

game towards Loch Gorm, and the high density of knapping debris associated with microlith 

production has led to the interpretation that this site functioned to repair and manufacture such 

tools (Marshall & Mithen 2000:249). 
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Numerous areas were field-walked during the project, which identified several areas of potential 

Mesolithic activity. Two further Mesolithic sites at Rockside and Aoradh were also excavated, 

however the deposits were high highly disturbed (Lowe & Dalland 1996; Mithen et al. 2000b; 

Mithen & Lake 1996; Mithen et al. 2000f). 

Palaeoenvironmental investigations have also been conducted close to many of the sites. Although 

cores from Loch Gorm and Coulererach produced inconclusive evidence for human impact, 

previous pollen studies can be related to Mesolithic activity within their locality (Bunting et al. 

2000:147-148; Edwards & Berridge 1994; McCullagh et al. 1989; Sugden & Edwards 2000). The core 

from Loch a’Bhogaidh indicates a high presence of hazel (Corylus) within the immediate vicinity and 

fluctuations in the pollen record for this species is interpreted as reflecting anthropogenic 

disturbance to the local vegetation, especially in the later stages of the profile, where a marked 

reduction in Corylus pollen correlates with an increase in charcoal. This phenomenon occurs in two 

stages – one between c.6300-6050 cal. BC and another c.6000-6400 cal. BC, which coincides with 

confirmed Mesolithic activity on the island at Bolsay Farm and Gleann Mor, less than kilometre 

away (Edwards & Berridge 1994:760-761, 768; Mithen et al. 1992:252; Sugden 1999:95-101; 

Sugden & Edwards 2000:135). 

A palaeoenvironmental core was also taken from the Sorn Valley, close to the excavation of a 

Mesolithic site at Newton. The site comprised pits and gullies filled with carbonised material (hazel 

nutshell, charcoal, and bone) in addition to a large flint assemblage. Radiocarbon dates indicate 

occupation occurred between 7305-6216 cal. BC (Andrews in McCullagh et al. 1989:25, 47). These 

dates do not closely correspond directly with the possible anthropogenic disturbance to local 

vegetation indicated by the Sorn Valley core (Ballantyne 2004:27-29; Conneller & Warren 2006:7; 

Andrews in McCullagh et al. 1989:49). Despite this, the number of sites identified through field-

walking activities of the SHMP along the Sorn Valley indicates a high concentration of Mesolithic 

activity in the area. 
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2.4.6.12. Jura 

 

Figure 13. Mesolithic sites on Jura. 1. Kinuachdrach; 2. Glengarrisdale; 3. North Carn; 4. Carn Southern Raised Beach; 
5. Lealt Bay; 6. Lussa River; 7. Lussa Wood; 8. Lussa Bay; 9. Glenbatrick Waterhole. Ordnance Survey data © Crown 
Copyright/ database right 2014. An Ordnance Survey/EDINA supplied service 

The first campaign investigating the Mesolithic occupation of the Inner Hebridean islands was 

conducted by John Mercer on Jura between 1966 and 1982 (Figure 13). Seven ‘transgression-time’ 

sites containing thousands of microliths were excavated during this period, and further information 
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on two of the sites was published subsequently. Unfortunately, none of the lithic assemblages can 

be confirmed as in situ, and represent material from the Mesolithic to the Bronze Age (Mercer 

1968:7; 1969; 1971; 1972; 1974; 1980; Searight 1984; 1990:7; 1993). 

A number of dates were obtained from some of the sites which reinforced Mercer’s three-phase 

microlithic chronology (Mercer 1972; 1974). However, the dates and their association with the 

microlithic forms have since been disputed (Myers 1988:25; Searight 1993:8; Woodman 1989:11-

13). The radiocarbon dates from Lussa Wood were originally interpreted as support for the 

continuation of broad-blade technology beyond c.7500 cal. BC, which has since been disproved, 

and the Neolithic dates for the microlithic assemblage at Lussa River are believed to derive from a 

later occupation phase (Woodman 1989:12, 16). Mercer’s precise system of categorising microlith 

typology, based on morphological characteristics, has been criticised as risking “a normalisation of 

the data”, which would disguise morphological variability (Finlayson et al. 1996). Microlith ‘types’ 

actually grade between forms and simplification of Mercer’s system indicated the majority of the 

Jura assemblages broadly conform to a similar typological group (Finlayson et al. 1996; Woodman 

1989:12-13). Overall it appears that the assemblages represent a mix of both earlier and later 

Mesolithic occupation due to erosion and re-deposition of deposits (Bonsall 1988:33; Saville 

2004:11). 

Flint dominates the assemblages, despite the absence of naturally occurring nodules on the island. 

The nearest sources are Mull and the Morvern and Ardnamurchan peninsulae on the mainland 

(Mercer 1968:45). Comparison with sources of corticated pieces from Glenbatrick indicated that 

the larger flints were likely to have been sourced from south Mull. However no provenance has 

been suggested for the smaller, water rolled pebbles which seem to have supplied the majority of 

the assemblages (Mercer 1974:16-18). Locally available quartz and quartzite cobbles are present in 

all assemblages, with the exception of Lussa Bay, and this is the only site that does not contain 

Arran pitchstone (Mercer 1968:20, 45; 1969). Mudstone has been recovered from Glengarrisdale 

(Mercer & Searight 1986:47) and, although not used as a tool, it is interesting to note the presence 

of red ochre at Lussa River and North Carn, which is likely to have been imported from Mull or Skye 

(Mercer 1971:28; 1972:8). 

Despite the problems inherent in the chronology of the Jura material, comparison of the bipolar 

‘chisels’ present in the microlithic assemblage at Lussa River with those from the ‘Obanian’ shell 

middens of Oronsay (which lie in close proximity; contra. Bonsall 1996:188), led Mercer  to suggest 

“…that known ‘Obanian’ material from Oronsay and, by extension, other similar Argyll ‘Obanian’ 

material, was the product of the region’s microlithic period, evidenced by the Jura excavations. In 

this case the claim of the ‘Obanian’ material to culture status in its own right would no longer be 
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supportable…” (Mercer 1971:27). This suggestion was made over a quarter of a century before it 

became fully acknowledged (Bonsall 1997). 

2.4.6.13. Arran 

 

Figure 14. Mesolithic sites on Arran. 1. Machrie North Test Pit 0610; 2. Machrie; 3. Moss Farm Site 1; 4. Moss Farm Site 
11; 5. Bridge Farm; 6. Machrie Moor*; 7. Auchareoch; 8. Kildonan; 9. Knockenkelly 12; 10. Knockenkelly 15; 11. Lamlash. 
* - palaeoenvironmental core. Ordnance Survey data © Crown Copyright/ database right 2014. An Ordnance 
Survey/EDINA supplied service 

The first indication of Mesolithic occupation on Arran was hinted at by the recovery of several ‘Late 

Larnian’ flints around the north-west coast (Lacaille 1954:154; Figure 14). Yet considering well-

documented Mesolithic presence on the mainland surrounding Arran, and the other nearby islands 

discussed above, such fleeting evidence for Mesolithic occupation appeared anomalous in light of 

the island’s topography and environment, which would certainly have appealed to hunter-gatherer 

communities (Robinson 1983a:1). 

2.4.6.13.1. West Arran - Machrie Moor  

Peat coring activity on Machrie Moor in 1980 provided circumstantial evidence that the Mesolithic 

occupation of Arran may have been more substantial than the lithic evidence suggested (Robinson 

1983a; 1983b; Robinson & Dickson 1988). Within the peat core a significant episode of coinciding 

elements was seen, which were interpreted as indicative of human vegetation disturbance. These 

elements included the presence of charcoal, a reduction in tree pollen supplemented by a rise in 

pollen of species such as hazel (Corylus) and heather (Calluna vulgaris) – which is associated with 

fire resistance and open-area habitat (Robinson 1983a:3). The first episode of this nature occurred 
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at a level dated to 8234-7482 cal. BC, which was concurrent with the earliest known Mesolithic 

occupation in Scotland at the time (Robinson 1983a:3; Robinson & Dickson 1988:229). A second 

episode of possible anthropogenic vegetation disturbance was also detected c.6800 cal. BC: 

charcoal was again present, Calluna pollen levels remained constantly high and pollen values 

representing a suite of plants suited to woodland-clearing increased (Robinson 1983a:3; Robinson 

& Dickson 1988:229). A further discussion on the debate surrounding fire ecology is contained 

within Chapter Seven. The evidence was taken to suggest that Arran must have been populated 

during the Mesolithic (Fairhurst 1982; Robinson 1983a). 

Several Mesolithic sites and lithic scatters have subsequently been identified near Machrie, Moss 

Farm and Bridge Farm that validate the above interpretations (Baker 1999:65; Ballin-Smith et al. 

1999:64; Gorman et al. 1993a:79; 1993b:80; 1995b:72; Haggarty 1991:83). 

2.4.6.13.2. East Arran - Auchareoch and Knockenkelly 

More substantive evidence was recovered from Auchareoch and Knockenkelly that supported 

Robinson’s prediction. During forestry commission quarrying works at Auchareoch flint and 

pitchstone artefacts were identified (Affleck et al. 1985:41). Ensuing excavation yielded in excess of 

4400 flint and pitchstone lithics, including microliths (Affleck et al. 1985:41; 1988:38). Significant 

quantities of charred hazel nutshell and bone fragments were excavated from fire-pits which dated 

the period of activity to between 7303-6015 cal. BC (Allen & Edwards 1987:20). The lithic 

assemblage from Auchareoch was overwhelmingly dominated by flint (90%), whereas pitchstone 

made up just under the remainder (9.4%) – both of these raw materials were derived locally from 

beach and fluvioglacial deposits within the kame terrace on which the site is located (Affleck et al. 

1988:46, 54). Overall the site is interpreted as a palimpsest of small, short, but frequently occupied 

camps which were geared towards the specialised production of blades and microliths – in 

particular scalene triangles (Affleck et al. 1988:50, 56). 

Several other flint and pitchstone lithic scatters and isolated finds have been recovered within the 

vicinity of Auchareoch and the Kilmory Water area, although none are diagnostically Mesolithic 

(Allen & Edwards 1987:20-21). 

Twelve lithic scatters were noted in the Knockenkelly area; however only two of the sites contained 

diagnostic flint microliths like the ones identified by Fairhurst (1982). The other scatters, 

predominantly of pitchstone, also include artefacts relating to post-Mesolithic occupation (Allen & 

Edwards 1987:21). Another occupation site was also excavated at Lamlash (Ballin-Smith et al. 

1999:64). 

On the south east point of Arran at Kildonan a large, concentrated Mesolithic artefact scatter was 

identified during field-walking; the main raw material in the assemblage was flint, although a small 
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number of pitchstone and quartzite tools were also recovered. The site appears to represent a 

knapping area, with a large quantity of tested flint pebbles in addition to cores, blades, burins and 

finished tools such as scrapers and microliths. Shell fragments were also identified (Gorman et al. 

1995a:72). 

2.4.7. The Western Isles – Outer Hebrides 

2.4.7.1. Palaeoenvironmental Indicators 

To suggest the Western Isles were not occupied during the Mesolithic, in the words of Woodman 

(1996:156) “is to accept a proposition that some areas of Scotland were the only regions in 

Northern Europe to remain unoccupied…”. Considering that the offshore islands in Norway and 

Scandinavia were colonised within a few hundred years of the retreat of the ice sheets (discussed 

in Chapter Three), this seems highly improbable (Bang-Andersen 2003b; Bjerck 1995; 2008b; 2009; 

Larsson 1996).  

The difficulty of finding Mesolithic sites in these islands rests on three primary issues. First is the 

post-Mesolithic development of blanket peat (sometimes several metres thick) across the majority 

of the islands’ interior (Bennett et al. 1990:281; Bishop et al. 2011a:1; Edwards 2004:61; Edwards 

& Mithen 1995:349). This has obscured early Holocene ground surfaces and the acid nature of the 

soils creates inappropriate conditions for the preservation of organic materials such as bone 

(Edwards 1996:34). Second, post-glacial sea level changes have had significant effects on the 

preservation of Mesolithic sites in this region (Bishop et al. 2011a:1; Edwards 2004:69; Edwards & 

Mithen 1995:349). In some areas of the Inner Hebrides and mainland Scotland, the land is 

‘rebounding’ from the weight of the LGM ice sheets following de-glaciation (isostasy) at a rate 

quicker than that of sea level rise (eustasy). This has formed raised beaches that have benefitted 

the preservation of early Holocene sites (Armit 1996:28; Bjerck 2009:120). In the Western Isles 

however, isostatic uplift is minimal, with the land ‘sinking’ in relation to sea level rise (Ashmore 

2003a:2). As a result of coastal inundation, possibly caused by the Storegga tsunami, the Mesolithic 

shoreline between 6398-6032 cal. BC is estimated to have been c.-2.17m OD (Mean High Water 

Springs) than at present in Harris, and perhaps as much as -5m in the Uists (Jordan et al. 2010:131; 

Ritchie 1979; 1985:174-175). A consequence of marine transgression is the third issue – the inland 

incursion of machair (calcareous shell sand), which has also buried evidence of Mesolithic 

occupation (Bishop et al. 2011a:1; Edwards 1996:34; Edwards & Mithen 1995:349; Edwards et al. 

2005:436). The machair dunes are constantly changing and burying the landscape. Coastal 

Mesolithic sites are therefore submerged under the Atlantic or covered by machair, with inland 

sites buried beneath the peat (Armit 1996:28, 34). Ironically, where sites can be found under the 

peat and machair they are well preserved and have suffered very little post-depositional 

disturbance (Edwards & Mithen 1995:349). 
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Figure 15. Palaeoenvironmental indicators of Mesolithic activity in the Western Isles. 1. Aird Callanais; 2. Callanish; 3. 
Kallin; 4. Borve; 5. Peninerine; 6. North Locheynort; 7. Loch Lang; 8. Loch Airigh na h-Aon Oidhche; 9. Loch an t-Sil. 
Ordnance Survey data © Crown Copyright/ database right 2014. An Ordnance Survey/EDINA supplied service 

There have been a number of palynological studies conducted on lake sediment cores in the 

Western Isles since the 1980’s (Figure 15). Anomalies in the representation of pollen and charcoal 

in these cores have been suggested by some as indicative of evidence for Mesolithic impact on the 

environment. This is most convincing when compared to evidence for vegetation disturbance and 
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burning close to known Inner Hebridean Mesolithic sites is identified, such as on Arran, Islay, and 

at Loch Doon in the Galloway Hills on the mainland (Affleck et al. 1988:56; Armit 1996:24; Bennett 

et al. 1990; Birks 1972; 1975; Bohncke 1988; Edwards 1990:73; 1996; 2000; 2004; Edwards & 

Berridge 1994:768; Edwards & Mithen 1995:355-357; Edwards & Sugden 2003; Andrews in 

McCullagh et al. 1989:42; Robinson 1983a). However, others have argued that the variations 

detected in vegetation patterns were ecological responses to early Holocene climate change or 

natural alterations in woodland ecosystem dynamics (Tipping 1996; 2004). 

A core taken from North Locheynort, South Uist (where there is no archaeological evidence of 

Mesolithic presence) exhibited evidence for burning and changes to the local woodland 

environment that dated to the Mesolithic period (Edwards 1990:77). The profile compared very 

closely to palynological evidence for early human interaction with the environment from the Inner 

Hebrides at Kinloch, Rum, which was taken near to a key Mesolithic site of the same name and date 

(Edwards 1990:77; Hirons & Edwards 1990:721). This close parallel in palynological and micro-

charcoal evidence between the Western Isles and the Inner Hebrides has been used “to justify the 

notion of a human presence in Mesolithic times” in the Western Isles (Edwards 1996:34). Until 2001, 

however, no archaeological sites had been found in the region that could substantiate this 

argument, and evidence for Mesolithic occupation remained contentious. 

Slightly less circumstantial evidence was identified at Aird Calanais, Lewis when a dry-stone hearth 

feature with charcoal deposits was observed eroding from the north facing coastal edge of East 

Loch Roag in 1997. The excavation aimed to investigate the deposits for their palaeoenvironmental 

and dating potential, as the site was likely to be prehistoric in nature (Flitcroft & Heald 1997; O’Brien 

et al. 2009:5). The stratigraphic position of the deposits concerned, under c.1m of peat, indicated 

they might be of a similar date to the Callanais stone circles, and associated Neolithic and Bronze 

Age landscape and field systems in the area (Ashmore 1995; O’Brien et al. 2009:5). A 100% sampling 

strategy of the deposits was employed to maximise the recovery of material, which has formed the 

basis for the sampling strategy developed in the region (Church 2002b; Jones 1991). Underlying the 

hearth feature which initiated the investigation of the site was a buried relic ground surface of 

bioturbated early to mid-Holocene organic soil, incorporating burnt material of charcoal and 

charred hazel nutshell (O’Brien et al. 2009:7-9). Two radiocarbon dates obtained from the buried 

ground surface yielded dates of between 5659-4456 cal. BC. Although it is not clear whether the 

hazel nutshells derive from ephemeral traces of Mesolithic food-gathering activities and burning, it 

is certainly possible, making Aird Calanais a likely Mesolithic site (Church pers. comm.; Bishop et al. 

2012a:7; O’Brien et al. 2009:17). 
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2.4.7.2. Coastal Erosion 

Coastal erosion is a serious issue in Scotland. Continually causing significant damage to 

archaeological sites, the Western and Northern Isles are affected the most (Armit 1994:72-73; 

Ashmore 2003a:2; 2003b:203; Burgess & Church 1997; Finlayson et al. 1999b). However, it has also 

played an important role in exposing archaeological sites that were not previously visible – 

especially after periods of extreme weather (Barrowman 2000:99-103; Bell et al. 2013:37; Fairnell 

& Barrett 2007:466; Milner 2002:226; Woodman 1989:6). Several significant Mesolithic sites in 

Britain and Ireland have been discovered as a consequence of erosion: the Mesolithic flint scatters 

at Lussa Bay and North Carn, Jura derive from eroded deposits washed downstream by river action 

(Mercer 1969:5; 1972:9); changes in upslope drainage caused an erosion scar on a cliff edge at 

Belderrig, Co. Mayo, Ireland where a Mesolithic quartz scatter was identified (Warren 2008:1); 

erosion of windblown sands revealed Mesolithic sites at the Sands of Forvie and Culbin Sands 

(Warren 2005b:9). Survey of sites around Skye, Raasay, the Crowlin Islands and the Applecross 

peninsula of the Inner Sound indicated almost all are threatened from various forms of erosion, 

which has facilitated the continual recovery of lithics at the well-known Mesolithic sites of An 

Corran and Staffin (Finlayson et al. 1999b; Hardy & Wickham-Jones 2009c:12). 

Coastal erosion has also contributed to the discovery of the first Mesolithic sites in the Western 

Isles, which are described in Chapters Five and Six. 

2.5. The Current Picture of the Mesolithic in Western Scotland 

This review has aimed to provide an overview of the current picture of the Mesolithic in western 

Scotland and the Hebrides through several key aspects. The first, and most notable, is the way in 

which investigation of the Mesolithic in western Scotland has changed. Small, isolated explorations 

of shell middens by antiquarians on the island of Oronsay, and in the caves and rock-shelters around 

the coastline at Oban, Argyll have retained their status as some of the most important sites in 

Mesolithic Scotland (Anderson 1895; 1898; Grieve 1883; Saville). However, the contribution of 

large-scale surveys such as the SHMP, and the SFSP within the last 30 years has taken an entirely 

holistic view of the archaeological record in their respective areas. Together, these intensive 

investigations of vast tracts of the Inner Hebrides have resulted in an exponential rise in the 

contribution of new information to our current understanding of Mesolithic occupation at the most 

north-western corner of Europe (Hardy & Wickham-Jones 2003; Hardy & Wickham-Jones 2009b; 

Mithen 2000c; Mithen et al. 2006). Alongside this, culture-historical perspectives of the ‘Larnian’, 

‘Tardenoisian’, and ‘Obanian’ – the latter of which endured into the mid-1990’s – have also been 

refuted (Morrison 1996:14; Saville 2004). 
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The influence of developer-funded excavation through NPPG5 and PAN42 (The Scottish 

Government 1994; 1998) legislation has also paid dividends in contributing to the archaeological 

record (Phillips & Bradley 2004; Saville 1998b:214); however, rescue excavations were being 

conducted far in advance of their implementation in 1994. This has primarily been a consequence 

of local interest and amateur collection, which has resulted in the positive identification of 

hundreds of new sites. The recovery of potential material by local inhabitants has not only ‘filled in’ 

regional gaps where academic research has not taken place, but has highlighted the potential of 

areas for future research (Barrowman 2000:36-38, 104-108). 

Despite this, there are still large areas where there is little or no evidence for Mesolithic occupation. 

The absence of evidence for the Mesolithic in the north-west Highlands, for example, contrasts 

markedly with the vast corpus of evidence recovered from the Inner Hebrides and the south-

western Scottish mainland. There are a significant number of instances discussed above where 

palaeoenvironmental data has hinted at human interference in local vegetation; however the 

physical evidence to support this has not been uncovered until sometime afterwards. 

The second aspect concerned the nature and composition of the dataset presented. Related to this 

was the issue of how archaeological methods and recovery techniques affect our understanding of 

the Mesolithic in the region. In terms of distribution, the data collected so far is an excellent 

indication of Mesolithic presence throughout the area under study, and to a certain extent the 

activities undertaken there (knapping and creating new tools, hunting etc.). However, in terms of 

securely dated contextual information, the picture is much sparser. Overall, just under 75% of the 

archaeological sites in the database were initially identified through ad hoc surface collection or 

organised field-walking activities3. Unstratified surface scatters therefore account significantly for 

the highest proportion of sites in the region under study and only 13% of these were subsequently 

excavated. As a result, 67% of the total number of identified archaeological sites4 lack any secure 

contextual information with which to interpret them, thus their use as comparative material is  

compromised. 

Only 33% of sites from the catalogue have been excavated, either by accident (i.e. though building 

works), or intentionally (i.e. through archaeological research, targeted test-pitting strategies, or 

developer funded). Only where there are exceptional preservation conditions is any cultural 

information other than lithic debris or charcoal preserved. Consequently, the greatest source of 

information relating to the subsistence of Mesolithic people in Scotland is derived from very specific 

                                                           
3 Where information regarding recovery of the material was given.  
4 Including those with no information regarding how the material was recovered. 
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site-types – shell middens and occupation deposits – which merely comprise 8% of the total dataset, 

and only appear to reflect coastally-based activities. 

Furthermore, although coastal dominance has long been known for Mesolithic sites, it has not 

readily been established whether this is genuinely reflects the preference of Mesolithic settlers or 

is the artefact of research bias (Edwards 1989:144; 1983:13; Wickham-Jones & Firth 2000:122). This 

data review suggests that it may indeed be the latter – where work has taken place to investigate 

the interior of mainland Scotland, especially in the south-west of Scotland, extensive evidence for 

Mesolithic occupation has been identified (Edwards et al. 1983:13; Mulholland 1970). This study 

was hampered by the absence of any synthetic review of Mesolithic sites in Scotland, unlike in 

England and Wales (Saville 1998b; Wymer & Bonsall 1977). However, archaeological investigation 

is hindered by the “Catch-22” situation of modern agriculture. Intensive ploughing in the lowlands 

makes the likelihood of early sites surviving minimal, whereas ‘greening’ of the highland landscape 

(leaving it to pasture) results in minimal plough soil that can be investigated through traditional 

techniques, such as field-walking, in order to find new sites (Barrowman 2000:34-35, 65-99; 

Edwards & Mithen 1995:349). The imbalance between coastal and inland representation of 

Mesolithic evidence in Scotland has been heavily criticised as insufficient in terms of pace and 

academic acknowledgement (Ward 2010:14). Recent work by the Biggar Archaeology Group has 

provided a large body of new data that would contribute significantly to readdressing the coast-

inland settlement dichotomy. However, this remains as unpublished interim reports and with the 

scant resources of the voluntary sector unlikely to be widely disseminated (Ward 2010:14). 

The final issue to be raised is how the movement of raw materials over significant distances from 

their sources attests to the mobility of Mesolithic groups (a full discussion on this is presented in 

Piper 2010). Flint is clearly the most widely used raw material overall, despite the fact it is not 

commonly available, with sources generally restricted to the western coasts of islands such as Islay 

and Mull (Marshall 2000b; 2000c; Mercer 1968). Despite the notable absence of a natural flint 

supply around the south west mainland it is often exclusively used in that region, which poses 

interesting questions regarding distribution. The assemblages in the south-west are also often 

supplemented by chert, which is readily available in that area. It is interesting to note that use of 

this raw material is restricted to the south-west, where it does not appear to be as widely exploited 

as flint, despite being commonly available and considering the absence of a flint source in the region. 

Quartz is ubiquitous in terms of both raw material sources, although it is certain not all sources 

have been catalogued, and usage. Raw materials with more restricted sources, such as bloodstone, 

baked mudstone and pitchstone are present within clearly localised areas of distribution. The 

implications for the distribution of these raw materials in terms of Mesolithic mobility is discussed 

more fully in Chapter Nine. 
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2.6. Conclusions 

To summarise, the intensive investigation into the Mesolithic of western Scotland and the Inner 

Hebrides over the last 30 years has resulted in an archaeological record that is no longer as “dull 

and impoverished” as traditionally perceived by some of our greatest archaeological forebears 

(Conneller & Warren 2006:7). The results of these projects have provided a rich volume of evidence 

for occupation in specific areas where Mesolithic people were exploiting both locally available raw 

materials, and material brought, or traded, from further afield. The picture, however, is far from 

complete, with vast tracts of Scotland entirely unrepresented. 

The following chapter follows closely on from the synthesis of Scottish Mesolithic evidence 

presented here. It considers the evidence for Mesolithic colonisation, maritime adaptation and 

regionalisation in two neighbouring regions of the north-east Atlantic façade – Ireland and Norway. 

The similarities and differences that can be illustrated between these regions will be outlined in 

detail, before being drawn upon again in Chapter Eight to provide a contextual backdrop for the 

Western Isles and Scottish Mesolithic as a whole.
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Chapter 3: Colonisation and Regionalisation: Themes in the 

Mesolithic of the Ireland and Norway 

3.1. Introduction 

Following Chapter Two, which described the background to the Mesolithic in western Scotland, this 

chapter provides an overview of the Mesolithic in Ireland and Norway. It forms a research backdrop 

to contextualise the Mesolithic in the Western Isles of Scotland. Ireland and Norway were chosen 

as they are Scotland’s nearest neighbours on the north-eastern Atlantic seaboard, bracketing the 

west coast of Scotland to the north-east and south-west. Furthermore, these regions provide 

comparable environments and coastal geographies – namely a “fiord/skerry seascape” (Bjerck 

2009:118). The modes of colonisation and occupation along the western fringes of the continent 

are also analogous, linked intrinsically with the development of a marine adapted economy. 

Although regional differences in lithic technology are evident, changes in raw material procurement 

follow a similar trend. Comparisons between Scotland, Ireland and Norway will be drawn upon and 

explored fully in Chapter Eight in order to address the third research question of this thesis. 

The chapter is divided into four sections. First, the Early Mesolithic in these regions are summarised 

with particular regard to early Holocene colonisation and the type of environment early settlers 

encountered. Technological developments pertaining to the successful colonisation of these 

regions by pioneering groups hinges on the Holocene development of “elaborate marine relations” 

(Bjerck 2009:122). Inextricably linked with the maritime adaptations that facilitated the 

colonisation of these areas is a marine-oriented mode of subsistence, which forms the second 

section of this chapter. In both Ireland and Norway, fishing contributed to a significant proportion 

of Mesolithic diet, owing to the restricted availability of terrestrial fauna. 

The third section describes trends in the regionalisation of lithic technology during the Later 

Mesolithic of Ireland and Norway. These changes are manifest through differences in lithic 

traditions in each country, however similarities are also observed. The transition from the Early to 

Later Mesolithic in Ireland, and the Middle to Late Mesolithic Chronozone in Norway occurs c.7000 

cal. BC – the date of the earliest known occupation in the Western Isles at Northton. This date is 

therefore significant when potential comparisons between the three regions are drawn in the 

fourth section of this chapter. This provides a basis for further discussion in Chapter Eight, which 

will focus in greater detail on the environment, technology and subsistence of these three key areas 

of the north-east Atlantic façade. 

The whole of Ireland, with occasional reference to the Isle of Man, will be considered (Figure 16). 

Given the vast size of Norway, which encompasses wide variation in topography and environment 
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over several degrees of latitude, and consequently a highly varied archaeological record, only the 

Mesolithic of south and west Norway between Kristiansand (Vest-Agder county) and Trondheim 

(Sør Trøndelag county) will be discussed (Figure 18). Only a brief reference to the Mesolithic-

Neolithic transition in the centuries following 4000 cal. BC will be made, as a full discussion is 

beyond the remit of this thesis. 

3.2. Boats, Colonisation and Maritime Adaptations in the Early Mesolithic 

This section considers the colonisation and specialised marine developments of the Early Mesolithic 

in Ireland, which ends c.7000 cal. BC; and the Early to Middle Mesolithic Chronozone in Norway, 

which terminates 500 years later. This marks the transition to the Irish and Norwegian Later 

Mesolithic (Bjerck 2008b; Costa et al. 2005). 

The most probable models for how these regions were colonised are presented against the early 

Holocene environmental setting. The cause and effect of these conditions are evident in Early 

Mesolithic adaptations pertaining to lithic technology and economy (Woodman 2015); the latter of 

which is discussed further in Section 3.3. 

3.2.1. Ireland 

 
Figure 16. Ireland and the Isle of Man. Ordnance Survey data © Crown Copyright/database right 2014. An Ordnance 

Survey/EDINA supplied service 

The earliest evidence for the occupation of Ireland known to date is from Mount Sandel, Co. Derry 

(Woodman 1985b). Recent re-assessment of the radiocarbon dates from the site places the 
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duration of Mesolithic activity between c.7700-c.7500 cal. BC (Bayliss & Woodman 2009). There are 

two significant lines of evidence which suggest Mount Sandel was not inhabited by the first 

Mesolithic pioneers. One is the presence of hut structures, which are traditionally perceived as 

evidence for a more settled, or permanent, occupation (Waddington 2015:226; Woodman 2012:14). 

This does not fit with what would be expected from an initial “pioneer” phase of colonisation, but 

is more in line with consolidation of an area. Housley et al. (1997:44-45) describe the presence of 

such structures as indicative of a post-colonisation “residential camp phase” and is a pattern which 

is reflected throughout the north-west European fringe (Åkerlund et al. 2003; Bjerck 2008a:38; 

Woodman 2012:13-14). The repertoire of lithic tools from Mount Sandel, appear to suggest a local, 

regional lithic tradition had already developed by people already familiar with their surroundings. 

Implements include needlepoint microliths, flake axes, and ground/polished stone axes that are 

unknown from anywhere else in Britain at this time (Bayliss & Woodman 2009:117; Woodman 

1978:49, 201-203). These insular adaptations of the Mesolithic island inhabitants to their 

environment conforms to behavioural ecology and optimization models (Phillips 2011:6, 47-48; 

Winterhalder & Smith 2000). 

These arguments are compelling. However there is, as yet, no indication for any earlier ‘pioneer’ 

stages, represented by small ephemeral sites of very brief and sporadic periods of habitation 

(Housley et al. 1997:44-45). It is likely that any early material is deeply stratified or submerged, 

precluding its recovery (Pollard 2011; Woodman 1978:150; 2004:40). The exact mode of 

colonisation has been widely debated. One favoured suggestion is a land-bridge connection to 

Britain via which early post-glacial mammal species, and eventually people, came to Ireland (Devoy 

1985; Mitchell 1976; Movius 1942; Wingfield 1995; Yalden 1981). This has been long disputed 

however; in Hodges’ (1953) review of the state of Irish Mesolithic research, a little after the tenth 

anniversary of Movius’ (1942) seminal publication, he states that in the absence of any evidence 

for “traces of early human activity in the bridgehead areas of Co. Dublin and Co. Donegal…we can, 

therefore, only assume that Ireland's earliest in habitants came by sea.” The land-bridge hypothesis 

has ultimately been overturned by more recent palaeogeographic reconstructions, which suggest 

that Ireland would have been separated from mainland Britain by c. 14,000 cal. BC (Edwards & 

Brooks 2008). That Ireland was colonised by boat is now beyond doubt, and the insular 

developments at Mount Sandel may have only taken a few generations to emerge (Hodges 1953; 

McCartan 2004; Tolan-Smith 2008; Woodman 1978:207, 203). Questions still remain, however, 

over why the colonisation of Ireland was long-delayed following deglaciation, and from where 

Mesolithic people came. 

Neither question can be answered in full. Traditionally, the perceived locus for colonisation was the 

north-east of Ireland, with its rich flint deposits and close proximity to Scotland (Movius 1942; 



 

 88 

Tolan-Smith 2008:151); however, Early Mesolithic sites have been identified along the length of the 

south and east coasts of Ireland, which suggests that this long-held view is likely a matter of 

research bias (Woodman 1978:140). Irrespective of where the first Mesolithic colonists came from, 

the presence of Early Mesolithic sites throughout Ireland shows that settlement spread quickly 

across the island (Costa et al. 2005:24; Woodman 2012:11-14). 

Several suggestions have been made as to why there was such a delay in the colonisation of Ireland 

following the late post-glacial. The persistence of the land bridge hypothesis has been criticised by 

Woodman (2003:58-59) as representing an “implicit assumption” that the Irish Sea would have 

presented an impenetrable obstruction to early Mesolithic pioneers. This sentiment is echoed by 

Warren (2015a:49) - “The evidence of human ingenuity and diversity at this time is at odds with a 

failure to colonise an island simply because it was an island.” Woodman (2012:10) suggests two 

possible scenarios regarding the cause of this delay. The first simply pertains to a slow, northward 

migration of people from the south and east of England – potentially pushed by displaced occupants 

of Doggerland retreating from rising sea levels (Woodman 2012; Warren 2015a:51). The second is 

that Mesolithic people had not yet developed the skills and technology associated with advanced 

marine relations that facilitated successful open-sea faring (Bjerck 2009; Woodman 2012:11). 

Mesolithic occupation of the Inner Hebridean islands of Islay and Rum as early as the 8th millennium 

BC does indicate that the movement of people into north-west Scotland after the LGM was certainly 

delayed, but not a slow process (Mithen et al. 2015; Tolan-Smith 2003:125). Furthermore, maritime 

technology was sufficiently developed enough at this early stage to settle these islands. From the 

evidence in western Scotland it would seem unlikely that these issues would apply to Ireland, 

especially given the presence of Early Mesolithic lithics on Inishtrahull, c.10km north of the northern 

coast of Ireland, which prove “settlement made by a people who had already become adapted to 

a water-edge way of life” (Hodges 1953; Woodman 2012:11). The absence of large terrestrial game 

on Ireland, including red deer, upon which Late Upper Palaeolithic and Early Mesolithic hunters of 

the Continent and Britain relied, may have meant that Ireland was initially out-with the conceptual 

world view of Mesolithic people (Warren 2015a:48). Importing wild boar could have been a means 

of mitigating this, facilitating successful colonisation in combination with heavy reliance on aquatic 

resources, which is discussed further in Section 3.3. 

Early Mesolithic technology in Ireland is characterised by the production of small, standardised 

narrow blades for the manufacture of geometric microliths, which were used in composite tools. 

Recent analysis of an Early Mesolithic assemblage from Eleven Ballyboes, Co. Donegal has indicated 

that the mode of reduction was through direct percussion using a soft stone hammer (Costa & 

Sternke 2009:797; Costa et al. 2001; 2005:24-25); rather than indirect punches as previously 

believed (e.g. Waddell 2000:14; Woodman 1987:138). This would seem more plausible in the 
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absence of large game that could provide the raw materials, such as antler, for these tools 

(Woodman 2009a). As mentioned above, the Early Mesolithic in Ireland has already been shown to 

have developed insular traits not seen anywhere else in the British Isles, although microlithic forms 

found in mainland Britain also occur in Ireland at similar times. The lithic repertoire of the Early 

Mesolithic inhabitants in Ireland appears to have been used as a direct means of resource 

procurement (Costa et al. 2005:30). Microwear analysis of the Mount Sandel assemblage supports 

this notion, with the needle and rod microliths bearing evidence for use as projectiles. The flakes 

and blades were used in scraping and planing of bone, meat, wood and hide, all of which attests to 

direct actions of hunting, gathering and processing (Dumont 1985; 1988). 

Flint and chert are the two primary raw materials utilised during this period, with other raw 

materials only occasionally used (Costa et al. 2005:28). The high quality flint available in the north-

east of Ireland (Figure 17) has been described as “a silicious ‘Eldorado’”, which created a flint-

centric focus for theories over how and why Ireland was colonised, as discussed above (Woodman 

1987:138). Furthermore, occupation was seen as restricted to County Antrim simply because of the 

abundant raw material availability, which resulted in a region-specific development of (or, as 

Movius saw it – degeneration to) the heavy bladed industries of the Late Larnian (Movius 1942; 

Woodman 1978:140, 203; 1987:138). The subsequent identification of Early Mesolithic sites 

throughout Ireland, however, has refuted this notion. Moreover, it appears that raw material had 

little influence on the technology produced (Little 2009b:135). Instead, it was the “standardised, 

inflexible production” of Early Mesolithic tool types that substantially limited the use of raw 

materials to a selection of high quality sources (Costa & Sternke 2009:797-798). This is exemplified 

where flint from particular sources appears to have been preferred at the expense of more local 

raw materials, including lesser-quality flint available as erratic nodules and in drift deposits on 

beaches (Woodman 2015; Woodman 1987:140). It is the mode of procurement therefore, rather 

than technological adaptation, which had to ensure this need was met. During the Early Mesolithic, 

the whole chaîne opératoire was conducted at a single location. Semi-prepared cores or raw 

nodules were transported to sites if the raw material source was some distance away, with the aim 

of producing the elements of composite tools that required repair or replacement (Costa et al. 

2005:27-28; Finlay 2003:89, 92). Furthermore, the size of artefacts within assemblages do not 

diminish with distance from the source (Woodman 1987:140-142). This is indicative of embedded 

raw material procurement, whereby resources are acquired during the execution of other 

subsistence activities (Binford 1979:259). This would have required a large and extensive social 

network that would allow groups access to raw material sources, particularly since flint is rarely 

found further than 25km inland (Costa & Sternke 2009:797-798; Woodman 2015:33; Woodman 

1987:142).  
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The presence of core and flake axes in the north east of Ireland are perhaps the only examples of 

raw material influence on technology. These tools, which are only found in the north-east region, 

have been interpreted as local adaptations to the vast supply of flint available in the area. Beyond 

the zone of flint supply, ground stone axes of other raw materials appear as probable substitutes 

(Woodman 1987:142). The flake axes are used throughout the Mesolithic period – a pattern 

reflected in the flint-rich areas of Mesolithic southern England (Woodman 1978:203; 1987:142). 

Microwear analysis of these tools have demonstrably shown flake axes were used for 

planing/adzing and core axes exclusively for chopping (Dumont 1985; 1988). It is also likely that 

these axes were an insular development in response to the absence of antler-bearing fauna, as 

these axes are not found in Scotland or England, where red deer antler was readily available to use 

for working wood (Elliott 2012; van Gijn 2007). Without this resource, other raw materials would 

have been utilised to this end (Saville 2003:20; Woodman 2012). 

 
Figure 17. Approximate distribution of flint in Ireland. Beach flint occurred in drift deposits on beaches. The 
approximate extent of outcrops of the Ulster White Limestone Formation (UWLF) are depicted. Despite the ubiquity 
of this formation, there is little evidence of quarrying for flint due to the hardness of the deposits (after Woodman 
2015:32). Ordnance Survey data © Crown Copyright/database right 2014. An Ordnance Survey/EDINA supplied service 



 

 91 

3.2.2. Norway 

 

 
Figure 18. Norway. Counties within south-west Norway that are considered within this chapter are highlighted. 

Ordnance Survey data © Crown Copyright/database right 2014. An Ordnance Survey/EDINA supplied service 

The early Mesolithic in southern Norway is characterised by the Fosna tradition, a culture-historical 

term, which refers to the settlement pattern, subsistence strategy and suite of lithic implements 

representative of early post-glacial pioneers in the region. The Fosna were traditionally seen to have 

been superseded by the Nøstvet tradition c.7000 cal. BC. However, a lack of clarity over the 

transition period (labelled by some as the ‘Early Microblade Tradition’, Figure 19) led to a critical 

re-assessment of the way Norwegian Mesolithic chronology was approached (Bjerck 1986; Bjerck 

et al. 1987; Indrelid 1975; 1978). The Early Mesolithic and Middle Mesolithic Chronozones ae dated 

to 9500-8000 cal. BC and 8000-6500 cal. BC respectively (Bjerck 2008b). Debates surrounding the 

application of these chronological units notwithstanding, this method provides coherent phasing 

based on absolute time units rather than interpretative cultural nuances that have led to multiple 

chronological sub-divisions and/or names of cultural traditions in different regions by individual 

authors (Bjerck 1986; Bjerck et al. 1987; Figure 19). These are the chronological units that will be 

used in the following outline of the Norwegian Mesolithic.  

The Norwegian coastline was de-glaciated c.12,000 cal. BC, during the Bølling interstadial and 

remained largely ice-free during the subsequent Younger Dryas glaciation. Climatic amelioration 

during the pre-Boreal, which followed the Last Glacial Maximum of the Younger Dryas, led to rapid 

deglaciation of the interior region and by c.9000 cal. BC the mountain plateaux in southern Norway 
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were almost entirely free from ice, the landscape covered by Boreal pine forests (Andersen et al. 

1995; Nesje & Dahl 1993). The nature of post-glacial colonisation by hunter-gatherers in the pre-

Boreal landscape of southern Norway has been extensively hypothesised. The tanged arrowheads 

and evidence for direct, soft hammer lithic reduction methods in the Early Mesolithic toolkit are 

widely accepted as evidence for a direct association with the Late Upper Palaeolithic Ahrensburgian 

reindeer hunters of the North European plains (Åstveit 2009; Bang-Andersen 1996a; 2003b; Bjerck 

2009; Fuglestvedt 2012; Indrelid 1975:3; 1978; Nygaard 1987:150). As such, it has been suggested 

that the Norwegian post-glacial pioneers of the ‘Fosna’ culture, along with the technologically 

similar western Swedish ‘Hensbacka’, may have been dispersed Ahrensburgian groups. These 

groups reached these regions by seasonally following reindeer herds north along their migration 

routes either from the continent to the east, or retreating from the rising sea in the North Sea basin 

to the west (Bang-Andersen 1996a; 2003b; Bjerck 2009:124; Fuglestvedt 2012; Glørstad 2013; 

Indrelid 1975:4, 15; Schmitt 2015; Schmitt et al. 2009). 

 

Figure 19. Norwegian Chronozones (after Bjerck 2008b) 

Despite the de-glaciation of the coastal fringes during the Bølling interstadial, initial settlement of 

this environment is not in evidence until the Younger Dryas/Holocene transition (Gulliksen et al. 

1998). Galta 3, Rennesøy is dated by shoreline chronology to c.9300 cal. BC and is the earliest known 

evidence for human occupation in the region (Glørstad 2015:13; Prøsch-Danielsen & Høgestøl 

1995). The c.3000 year delay in the settlement of the ice-free coasts by early pioneers is 

comparatively similar to Ireland and Scotland, albeit longer (Bang-Andersen 2003b:21; Bjerck 2009). 

The favoured interpretation regarding the delayed colonisation of south-west Norway is that during 

the Younger Dryas, this area of Scandinavia was a ‘no man’s land’ – visible and accessible from the 

North Sea Continent but remained “unexplored and unexploited” (Bang-Andersen 2003b:11). 

Bjerck (1995:141; 2009) suggests that this delay was due to cultural choices, dependent on the 
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development of “elaborate marine relations” that could facilitate successful colonisation of new 

lands beyond the barrier of the Norwegian Trench (Bang-Andersen 2003b:10). Furthermore, Bjerck 

(2009) suggests that seals may have been the ‘pull-factor’ which drove the advancement of marine 

technology, such as sea-going boats, in this period; supported by the location of Early Mesolithic 

sites on the outer coast (Bjerck 2016). He states that the characteristics of these sea mammals are 

likely to have “aroused the curiosity of people specialized in the hunting of large terrestrial 

mammals”; developing boat technology that enabled post-glacial pioneers to continue hunting 

these mammals was predicated on seals’ propensity to avoid former kill-sites (Bjerck 2009:126). 

This builds upon a suite of new economic and cultural adaptations that would have been required 

by early colonists of the Norwegian coast to enable successful colonisation and habitation of a 

newly emerged environment – the fjord-skerry seascape (Bang-Andersen 2003b; Bjerck 2008a; 

2009:127; Erlandson 2001). Another, more practical, suggestion regarding the delayed colonisation 

of Norway relates to new evidence for deglaciation of the Oslo Fjord, which occurred much later 

than previously assumed, precluding access to the ice-free coast of western Norway via the 

Bohuslän area of Sweden. It was not until after the Oslo Fjord Glacier had melted, creating “a 

sheltered passage of islands and peninsulas” could Early Mesolithic colonists expand into these new 

lands (Glørstad 2015:25). Ultimately, the archaeological evidence indicates that once pioneer 

populations were able to access and exploit the potential of this region through advanced maritime 

adaptation, colonisation occurred quickly along the Norwegian and Swedish seaboard, in perhaps 

fewer than 200-300 years (Bang-Andersen 2003b:8-9; Bjerck 1995:138; 2009:124-125; Fuglestvedt 

2012:6; Glørstad 2013). 

The Early Mesolithic occupation of Norway is not restricted to the coast, however. At the mountain 

lakeside sites of Myrvatn and Fløyrlivatn, tent-rings have been identified within a proximity of 20-

25km of the then still-retreating inland ice cap (Bang-Andersen 2003a). The lithic evidence from 

these sites attests to the movement of people between the coast and the interior. Early Mesolithic 

assemblages in Norway are characterised by an almost exclusive use of flint, which can only be 

found on the coast (Bang-Andersen 1990:225; 2003b:13; Berg-Hansen 1999; Bjerck 1986:104; 

Indrelid 1978:151). The presence of flint dominated assemblages at interior sites such as Myrvatn 

and Fløyrlivatn (Bang-Andersen 1990; 2003a); Knappskog (Nærøy 1995) and Skarvatnet, Gjvilvatnet 

and Sprikletjørnin, Sør-Trøndelag (Pettersen 1999:158) is clearly indicative of connections between 

groups, or the seasonal movement of groups between the coast and the interior (Bang-Andersen 

1990:225). In some instances, there is evidence for the use of local raw materials such as quartz or 

rock crystal; however, this is explained in terms of transport costs or a temporary unavailability of 

flint, perhaps during a marine transgression (Bang-Andersen 1996b:439). A lack of flint around the 

islands of Flora, Sogn og Fjordane and Bømlo, Hordaland has been suggested as the reason for 

quarrying of diabase from the Stakaneset quarry on Flora and greenstone from the Hespriholmen 
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quarry on Bømlo. This practice began late in the Early Mesolithic and lasted for 5000 years until the 

Middle Neolithic, with interesting implications for evidence of group mobility during the Middle 

and Late Mesolithic, discussed below (Bergsvik & Olsen 2003; Olsen & Alsaker 1984). 

The technology and typology of Early Mesolithic assemblages in western Norway is primarily 

macrolithic. Flake adzes prevail, with core adzes also present to a lesser extent. Coarse macroblades 

were manufactured from unifacial blade cores, and projectile points comprising small tanged, 

single-edged points and lanceolate ‘microliths’ are also present in abundance, although it must be 

emphasised that these are not true microliths made through the microburin technique. True 

microliths appear to be unique to eastern Norway, although the technique becomes more 

frequently used in south-west Norway during the transition from the latest Early Mesolithic to the 

Middle Mesolithic. Burins and, to some extent, scrapers were also characteristic of the Early 

Mesolithic toolkit (Bjerck 1986:104, 107; Indrelid 1978:151; Nygaard 1990:229). This suite of 

expediently produced flint implements, supplemented by non-flint raw materials such as quartz or 

rock crystal that were reduced by bipolar technology, have been recovered from the inland 

mountain sites around Rogaland (Bang-Andersen 1990:222; 2003a:200; Fuglestvedt 2012). The use 

of the bipolar reduction technique, which increases in the Middle Mesolithic, is seen as an 

adaptation to non-flint raw materials by early settlers more familiar with flint and is closely 

correlated to the scarcity or absence of this raw material in parts of Scandinavia and Britain (Ballin 

1999a). 

The archaeological evidence from the Middle Mesolithic has been severely affected by the Tapes 

Transgression, and is consequently significantly under-represented in the archaeological record 

(Ballin 1999b). This period is marked by significant regional variation in lithic assemblages, thus 

differently named phases have been attributed to different areas (Bjerck 2008b:78). As such, the 

Middle Mesolithic Chronozone spans 8000-6500 cal. BC, and broadly encompasses the Early 

Microblade Tradition (Bjerck 1986), Fosna II (Nygaard 1987; 1990) and the early part of the ‘Nøstvet’ 

tradition (Indrelid 1975; 1978; Figure 19). In south-west Norway there are gradual changes to the 

lithic repertoire, with the introduction of tools more closely associated with the later Mesolithic 

‘Nøstvet’ tradition such as conical microblade cores, and ground or pecked axes and adzes. The 

characteristic blade technology of the ‘Fosna’ tradition still endures, albeit smaller and more regular 

in form (Ballin 1999b; Bergsvik 1999; Bjerck 1986; 2008b; Nygaard 1990). These changes are 

interpreted as an increasing trend towards specialisation of the lithic toolkit, especially in terms of 

blade production (Bjerck 1986; 2008b; Nygaard 1990:232). The use of microblades and associated 

modification marks “a broadening and refinement of composite stone tools” during this period in 

south-west Norway, in line with the rest of southern Scandinavia (Bjerck 2008b:87-89). 
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Just as in the Early Mesolithic, understanding settlement and subsistence strategies for the Middle 

Mesolithic is based on conjecture due to “the general lack of sites” (Bergsvik & Storvik 2012:33). 

The continued occupation of the coastline by people during this period is certain, however (Bergsvik 

2009:602); furthermore, the sustained dominance of flint within the lithic assemblages of inland 

sites attests to the continued mobility of these people between the coast and interior during the 

Middle Mesolithic (Ballin 1999b:210; Pettersen 1999:162-163). Although flint still comprises the 

highest proportion of the lithic raw material present at sites such as Hå Old Vicarage, Rogaland, the 

use of a wider variety of raw materials, including local sources, increases in this period (Ballin 

1999b:210; Bang-Andersen 1995a:118). The intensified extraction of greenstone from the quarry 

at Hespriholmen, and diabase from Stakaneset, for the production of ground axes and adzes 

towards the end of the Middle Mesolithic is also of note. The distribution of these different raw 

materials testifies to the development of distinct social territories and regionalisation with two 

clear zones of distribution – diabase to the north and greenstone to the south, overlapping at 

Nordhordland district in Hordaland county (Figure 20; Bergsvik & Olsen 2003; Gjerland 1990; 

Nygaard 1987:150-152; Olsen & Alsaker 1984). The implications for this in terms of social territories 

is discussed in more detail in Section 

3.4. 

 

Figure 20. Greenstone and diabase 
distribution in Mesolithic Norway. The zone 
of contact in northern Hordaland is 
interpreted as evidence for overlapping social 
territories, especially in the Late Mesolithic 
(after Olsen & Alsaker 1984). Ordnance 
Survey data © Crown Copyright/database 
right 2014. An Ordnance Survey/EDINA 
supplied service
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3.3. The Importance of Marine Resources 

3.3.1. Ireland 

One consequence of Ireland’s early separation from the European continent is that only a very 

narrow range of native terrestrial fauna was available for Mesolithic colonists to exploit. The ‘big-

game’ species such as aurochs and red deer, which formed the staple of Mesolithic economy on 

the Continent, were absent from the Holocene faunal stock on this island (McCormick 2007; Warren 

et al. 2014; Woodman et al. 1997). Despite this, there is a very high presence of wild boar (Sus 

scrofa) at Mount Sandel, a species which is not native to Ireland that must have been imported. 

The deliberate introduction of boar to Ireland during the Early Mesolithic is interpreted as a 

“conscious and deliberate” effort at niche enhancement by Mesolithic inhabitants in an attempt to 

fill the ‘prey gap’ (Rowley-Conwy & Layton 2011; Sleeman 2008; Warren et al. 2014). The presence 

of boar at this site is a further indication that Mesolithic colonisation took place much earlier than 

the dates from Mount Sandel suggest. Enough time must have passed for early colonists to perceive 

the need for boar to be introduced, for the introduction to successfully take place, and for a viable 

population to become established that it could be exploited. 

The extreme importance of fishing in the Irish Mesolithic economy, which is attested throughout 

the duration of the period, is another adaptation in response to the lack of large terrestrial game 

to exploit on the island. Fish remains are the most frequently occurring bones in Irish Mesolithic 

sites (Woodman 2015:271). The importance of this resource is most clear from the position of Early 

Mesolithic sites in strategic fishing locations along low-lying riverine or lacustrine areas such as the 

Bann Valley and the Midlands, as well as along the coast, with a notable absence of Mesolithic sites 

from the uplands (Costa et al. 2005:23; Little 2009a:698,702-694; Woodman 1978:184; 2003:59). 

The range of inshore fish and shellfish species present at coastal shell midden sites compares closely 

to the ‘Obanian’ middens in Scotland (Woodman 1978:165; 1989:19; 2004:42). Inland, vast 

quantities of salmon and eel bones have been recovered, most notably from the Early Mesolithic 

sites of Mount Sandel and Lough Boora (van Wijngaarden-Bakker 1985; 1989:129-131). The large 

quantity of burnt salmon bones at Mount Sandel indicates they were being processed on a large 

scale – likely for storage of surplus for consumption at a later date. A large ash layer at Newferry, 

also on the River Bann, is interpreted as indirect evidence for storage through smoking (Movius 

1937; Rowley-Conwy & Zvelebil 1989). At Killuragh Cave, in the interior of Ireland, the isotope data 

from an Early Mesolithic individual indicates a terrestrial-based diet, however this signature is likely 

to have been caused by a diet high in freshwater fish and eels (Meiklejohn & Woodman 2012:26; 

Woodman 2004:49). This mode of subsistence was facilitated by the “extensive river and lake 

network” of early Holocene Ireland, in which the great loughs of the Shannon River basin in central 

Ireland coalesced on a seasonal basis (Mitchell & Ryan 1997; Woodman 2015:24-25, 29). 
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A significant number of preserved fish traps and weirs have also been recovered, which further 

augment the continued importance of fishing during the Later Mesolithic of Ireland. A basket trap 

and a number of stake and wattle weirs were recovered during development of Spencer 

Dock/North Wall Quay in Dublin City (McQuade et al. 2007; McQuade & O'Donnell 2007; 2009). 

These would have been strategically placed along the shoreline of the River Liffey estuary and were 

used for a substantial period of time c.6100-5720 cal. BC (McQuade & O'Donnell 2007). Several Late 

Mesolithic structural features including a fish weir were excavated at Toomebridge (Dunlop 

2010:14-21), and well preserved Late Mesolithic fish baskets and platform were identified at 

Clowanstown, Co. Meath (FitzGerald 2007; Mossop 2009). Causeways and platforms have also been 

found at Derragh, Co. Longford and Inch Island, Lough Gara (Fredengren 2002; 2003). These 

artificial platforms and lake islands are interpreted as specialised, task-specific sites associated with 

fishing activities throughout the Mesolithic (McCartan 2000:20). Access to these specialist fishing 

facilities, and general movement around the landscape may well have relied on boats. A preserved 

Later Mesolithic logboat was recovered from Brookend on the shore of Lough Neagh, Co. Tyrone 

which dates to 5490-5246 BC5 (Breen & Forsythe 2004:31). 

The North Wall Quay traps were predominantly made of hazel stakes. The size and straightness of 

these stakes suggested they were carefully selected from woodland, coppiced almost every decade 

(McQuade & O'Donnell 2007; 2009:891). A recent review of the palaeobotanical evidence has 

indicated that human impact on the woodland landscapes of Ireland during the Mesolithic was 

likely to have been far greater than previously assumed (Warren et al. 2014). Careful management 

of resources on such a long-term basis would require a significant investment of time and 

committed re-visitation. As such, this suggests the Mesolithic occupants of Ireland were more 

sedentary than often supposed (O’Sullivan 2000:155; Woodman 2009b:xliv; contra. Woodman & 

Anderson 1990:382). It is clear therefore, that the limited range of large terrestrial fauna on Ireland, 

in combination with a heavy reliance on fishing influenced settlement patterns. The resultant effect 

on lithic technology and reduction strategies during the Early Mesolithic has already been described, 

used as a direct means of resource procurement (Costa et al. 2005:23, 30). The changes in lithic 

technology during the Later Mesolithic are discussed in Section 3.4, and whilst subsistence may 

have partially influenced these changes, the importance of fishing is one factor which remains 

constant throughout this period. 

3.3.2. Norway 

The ‘marine relations’ of the Early and Middle Mesolithic in Norway are evident in the distribution 

and location of sites, which indicate a clear coastally-oriented settlement pattern. Despite the 

                                                           
5 The original radiocarbon date, including laboratory code, could not be located. It is uncertain whether this date is 
calibrated. 



 

 98 

destructive effect by the Tapes Transgression on many Early Mesolithic sites, isostatic rebound has 

also meant that some sites have been sealed and preserved by the transgressed sea, which 

occurred c.8000-5500 cal. BC (Anundsen 1996; Bang-Andersen 1995a; 1995b:108; Bjerck 1986:107). 

As such, hundreds of sites situated on the small exposed islands and skerries along the outer fringes 

of the Norwegian coast, along inlets and bays, close to the water’s edge have been identified. These 

sites are in positions that overlook large expanses of sheltered sea, which would have provided a 

stable and predictable abundance of resources, in addition to natural harbours to safely launch 

boats (Åstveit 2009:414; Bang-Andersen 1996a:429; 1996b:225-227; 2003b:11; Bergsvik 2001:13; 

Bjerck 1995:139-140; Fuglestvedt 2012:5-6; Nærøy 1995:59; Nygaard 1987:150; 1990:231). 

These coastal sites are generally small, with very low artefact density and variability (Bang-

Andersen 1996a:431; 1996b:227; Bjerck & Zangrando 2013:83; Nygaard 1987:150; 1990:231). 

Occasionally, evidence of a hearth and stones demarcating the tent area have been identified, as 

at Knappskog on Sotra Island in Hordaland, and Aukra Island in Møre og Romsdal (Åstveit 2009; 

Fuglestvedt 2012:5; Nærøy 1995). The position and artefact composition of coastal sites have led 

to the interpretation that they functioned as “sea-hunting stations”, ideally situated to exploit 

coastal resources. The presence of projectile points, with evidence they have been used and re-

tooled at Knappskog, implies that terrestrial hunting was also conducted from these sites (Bang-

Andersen 1996a:431; 1996b:228; Indrelid 1975:15-17; Nærøy 1995; Nygaard 1987:150). In the 

highland interior these small sites are echoed in size and composition. Myrvatn and Fløyrlivatn, are 

interpreted as “extraction camps”, where small task-groups may have stayed for a few days in 

pursuit of reindeer (Bang-Andersen 1990; 2003a; 2003b:14-18). Overall, the occupation evidence 

suggests that Early Mesolithic Norwegian colonists were small, highly mobile social groups with low 

population density, primarily inhabiting coastal sites, albeit for a very short period of time, with 

seasonal exploitation of the interior mountain regions (Åstveit 2009; Bang-Andersen 1996a:431; 

Bjerck 1995:138; Fuglestvedt 2012:12; Indrelid 1975:15-16; Nygaard 1987:150; 1990:232). Åstveit 

(2009:420) notes the ephemeral nature of tent rings in the interior and on the outermost skerries 

of the coast clearly highlights the importance of mobility to Early Mesolithic people. Dwellings were 

intended to be light and portable, easy to construct/dismantle, and suitable to transport in a kayak 

whether hunting reindeer in the interior or seals on the coast. 

Due to poor preservation conditions, the absence of any organic remains from Early Mesolithic sites 

unfortunately renders understanding of Early Mesolithic subsistence strategies moot (Bang-

Andersen 1996b:436; Fuglestvedt 2012:11). Some argue that the Early Mesolithic inhabitants of 

Norway practised a ‘residential’ mode of subsistence (sensu Binford 1980), with whole groups 

moving between the coast and the interior and conducting different activities within these different 

environments, and occasionally aggregating with other family groups at larger sites (Bergsvik & 
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Olsen 2003:398; Bergsvik & Storvik 2012:32; Indrelid 1975; Nygaard 1987:150). The evidence used 

to support this is that few species other than reindeer and elk would have colonised the recently 

post-glacial landscape of the pre-Boreal period. As such, the limited resources available demanded 

a generalised economy: opportunistic exploitation of unpredictable terrestrial resources, with a 

dependence on reliable coastal resources, and reflected in the generalised toolkits that have been 

recovered (Bang-Andersen 1996a; Nygaard 1990:232). 

Bang-Andersen (1990:224; 1996b:228) agrees that Early Mesolithic subsistence was opportunistic. 

However, he argues that Early Mesolithic communities practiced a seasonal ‘logistic’ subsistence 

strategy between the coast and inland (sensu Binford 1980; Woodburn 1980). From this perspective, 

task-groups occupying the specialised reindeer hunting camps in the mountains would have had 

home-bases situated on the coast (Bang-Andersen 2003a; 2003b). This interpretation has also been 

supported by the findings at Knappskog (Nærøy 1995:76). As part of a logistic subsistence strategy 

transitory sites would be expected, in addition to special purpose sites for specific activities and 

base-camps (Bang-Andersen 1996a:437). Geita in Orkdal, Sør-Trøndelag has been interpreted as a 

possible transitory site, based on its position far into the Orkdalsfjord (Pettersen 1999:156-157). As 

part of the marine adaptations that facilitated the colonisation of Norway, Bjerck (1995:139) argues 

that coastal pre-Boreal sites must represent a specialised marine economy, on which the 

colonisation of this region depended (Bjerck 1995; 2009). 

It has been suggested that the changes in the Middle Mesolithic lithic repertoire are linked to an 

increasingly selective subsistence strategy influenced by the onset of the Atlantic climatic optimum 

during this phase (Nygaard 1990:233). The absence of projectile points is proposed to indicate a 

shift away from terrestrial hunting of reindeer, and later, red deer and wild boar, focussing on more 

intensive exploitation of marine resources at coastally based sites. These sites are generally larger, 

with higher artefact densities, and interpreted as evidence for base camps occupied more 

frequently and/or for longer by larger groups of people (Nygaard 1987:150-152; 1990:232). 

Nygaard (1987:150-152; 232) suggests that groups were still mobile, but as the abundance of 

coastal resources increased with climatic amelioration there was less need to move such long 

distances between the coast and the interior. Recently, it has been proposed that communities 

during the Middle Mesolithic may have become sedentary (Bergsvik & Hufthammer 2009; Bergsvik 

& Storvik 2012). ‘Sedentary’ in this sense is defined as “allow[ing] for mobility, but requires at least 

half a year of continuous occupation at the residential sites” (Bergsvik 2001:11). Intensive 

investigation of caves and rockshelters in western Norway has revealed an apparent change in 

settlement patterns c.8000 cal. BC, when these places are used for the first time (Bergsvik & Storvik 

2012:33). This is argued as evidence for reduced whole-group residential mobility from the Early 

Mesolithic to a logistically organised settlement pattern which incorporated large coastal base-
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camps and pre-determined specialist task-sites, such as caves or rockshelters, within regionally 

identifiable territories (Bergsvik & Storvik 2012:32-33; Bjerck & Zangrando 2013:84 contra. Bang-

Andersen 1990:224; 1996b:228). 

The trend towards increasing sedentism, which begins in the Middle Mesolithic, continues during 

the Late Mesolithic (Bergsvik 2001; Bergsvik & Olsen 2003; Gundersen 2009:237; Nærøy 1995:74). 

There are a significant number of sites that date to Late Mesolithic and have well-preserved organic 

remains. As such, the economic basis can be more fully understood for this period, with clear 

evidence for continued settlement along the coastline. Semi-permanent residential base-camps 

were situated in the outer coast, and a greater number of sites were located in the inner coast at 

the mouths of fjords. In the inner coast, stronger tidal currents would favour fishing and the sites 

here are interpreted as summer extraction camps frequented by task-groups (Bergsvik & 

Hufthammer 2009:445-447; Bjerck 2007:19). 

The faunal evidence from Kotedalen, Nordhordland is often cited as evidence for overall continuity 

in general subsistence and settlement between Middle and Late Mesolithic communities in Norway 

(Bang-Andersen 1996a:433); however the radiocarbon dates from the layers which contain faunal 

material at the site fall solely into Bjerck’s (2008b) Late Mesolithic Chronozone. The evidence 

suggests that the community utilising Kotedalen frequently re-occupied the site and were resident 

there for sustained periods of time (Bergsvik 2001; Bergsvik & Hufthammer 2009; Bergsvik & Storvik 

2012; Warren 1994). This builds upon the evidence from two cave sites at Viste, Rogaland, and 

Skipshelleren, Hordaland that were excavated early in the 20th Century, and which influenced the 

understanding of Late Mesolithic economic strategy for several decades (Bergsvik & Hufthammer 

2009).  

The occupation of Viste cave spans the terminal Middle to mid-Late Mesolithic, c.7000-6000 cal. BC 

(Bergsvik & Hufthammer 2009). Skipshelleren rockshelter dates slightly later than Viste – c.5300-

4000 cal. BC (Bergsvik & Storvik 2012:27). Significant quantities of marine mollusc – primarily limpet 

(Patella sp.) and periwinkle (Littorina sp.) were recovered from these sites in addition to a range of 

fish species, mammals, and birds (Indrelid 1978:161). Both these sites are situated close to the 

shoreline, yet the economy appears dominated by forest-dwelling terrestrial mammals such as boar 

and elk, with only small contributions of fish and seal to the diet of the caves’ occupants (Bergsvik 

& Storvik 2012:27, 31). The majority of the faunal data strongly indicates that these caves were 

occupied during the summer, whilst the presence of over-wintering bird species and seal pups in 

the assemblage at Viste also indicates winter usage, potentially as a base-camp for year-round 

(re)occupation (Bang-Andersen 1996a:433; Bergsvik & Storvik 2012:24; Indrelid 1978:162). In terms 

of artefacts, the small number of projectiles present belie the apparent focus on terrestrial hunting, 

as evidenced by the faunal assemblage (Indrelid 1978:160). Furthermore, whilst terrestrial 
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resources dominate the faunal remains the organic artefact assemblage attests to the importance 

of marine resources, with a number of fish-hooks, harpoon heads, leister prongs, slotted-points, 

and needles (Bergsvik & Hufthammer 2009:436; Indrelid 1978:162). This contrast may not be so 

tangible had sieving been employed at the sites – the recovery methods implemented at the time 

of the caves’ excavation have clearly biased the faunal representation. Without sieving of the soil 

it is almost certain that a high proportion of small faunal remains, such as fish bone, were not 

recovered, thus any interpretation regarding economy from this site is heavily skewed towards the 

representation of larger, terrestrial, species (Bergsvik & Storvik 2012:436-437). 

Human remains were also recovered from the caves. At Viste, isolated hand and foot bones of an 

adult individual were identified, in addition to a skeleton of an adolescent male dated to 5725-5558 

cal. BC (Bergsvik & Storvik 2012). A δ13C value of -17.1‰ represents a diet balanced between 

terrestrial and marine resources (Hufthammer & Meiklejohn 1986). Disarticulated hand and foot 

bones were also found within the Mesolithic deposits at Skipshelleren (Bergsvik & Storvik 2012:27). 

Two sites which occupy similar geographical positions to Viste and Skipshelleren have been 

excavated very recently from Hordaland, and present a more balanced picture of Late Mesolithic 

economy in Norway. Sævarhelleren rockshelter is broadly contemporary with the occupation at 

Viste cave, dating between c.7000 cal. BC – c.5800 cal. BC. Olsteinhelleren is situated <100m from 

Sævarhelleren and dates to c.5600-4800 cal. BC, similar to Skipshelleren (Bergsvik & Storvik 2012). 

There is a very low density of lithic material from the caves, which primarily comprise microblades, 

blades, flakes, and cores. There is greater artefact diversity at Olsteinhelleren where a grinding 

stone and a soapstone net sinker were also found. Significantly, exceptional preservation conditions 

have also ensured organic components of the Mesolithic toolkit have survived, including fishhooks, 

awls, a needle, and a pendant (Bergsvik & Storvik 2012). The fishhooks from Sævarhelleren closely 

resemble those found at Viste, whereas the fishhooks and preforms for fishhook production from 

Olsteinhelleren are very similar to those recovered from Skipshelleren (Bergsvik & Hufthammer 

2009:440-443). Small fish (<500mm) overwhelmingly dominate the faunal assemblages at both 

sites with cod (Gadidae) and wrasse (Labridae) the most frequently represented, in addition to a 

high volume of marine molluscs such as common mussel (Mytilus edulis), and periwinkle (Littorina 

sp.). There is a slightly wider range of species present at Olsteinhelleren, which includes a number 

of deep-water species such as skate (Hypotremata) and ling (Molva molva). The range of terrestrial 

fauna exploited at both sites is limited, with small numbers of wild boar (Sus scrofa), elk (Alces alces), 

red deer (Cervus elaphus) otter (Lutra lutra) and red squirrel (Sciurus vulgaris) present. Wolf or dog 

(Canis sp.) was also found at Olsteinhelleren (Bergsvik & Hufthammer 2009; Bergsvik & Storvik 

2012). Overall, the Mesolithic activity at Sævarhelleren is interpreted as evidence for small, mobile 

groups occupying the rockshelter during the summer, perhaps as a specialist site for shallow-water 
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fishing during a seasonal move along the fjord (Bergsvik & Storvik 2012). It is suggested that 

Olsteinhelleren was also occupied during the summer but by larger, more stable groups over a 

longer period of time (Bergsvik & Hufthammer 2009; Bergsvik & Storvik 2012). In terms of fauna, 

the contrast with Viste and Skipshelleren must simply be a consequence of the recovery methods 

employed – the similarity between organic artefacts at these four sites indicates that fishing at Viste 

and Skipshelleren must have contributed far more economically than the faunal record 

demonstrates. A human skull fragment and finger bones were also recovered from the Mesolithic 

layers at Sævarhelleren which is also comparable with the other sites (Bergsvik & Storvik 2012:29). 

These sites clearly attest to a coastally-based, broad spectrum hunter-fisher economy, practised by 

sedentary groups occupying residential sites with little need to move far inland (Bergsvik 2001; 

Bergsvik & Hufthammer 2009; Bergsvik & Storvik 2012; Gundersen 2009:239; Indrelid 1978:166; 

Nygaard 1990:233). The importance of fish during the Later Mesolithic is interpreted as having a 

“stabilising effect” on the population of this period, as fish are a predictable and abundant resource 

that enabled groups to spend considerable lengths of time in the same place (Bergsvik 2001; Bjerck 

2007; Gundersen 2009). The investment of time and resources evident in the stone-lined post-holes, 

sunken floor, and air channel leading to the fireplace of Site 68, House 5 on Aukra, Møre og Romsdal 

further supports this (Åstveit 2009). 

In sum, marine specialisation and the role of fishing in both these regions cannot be underestimated 

in terms of its influence on settlement patterns, group mobility and the procurement of lithic 

resources. This is directly comparable with western Scotland, as will be elaborated on in Chapter 

Eight. 

3.4. Regionalisation in Lithic Traditions of the Later Mesolithic  

The Late Mesolithic in Ireland and Norway begins in the centuries following 7000 cal. BC, ending 

c.4000 cal. BC at the traditional start of the Neolithic. In neither region does this date signify the 

arrival of agriculture however, with evidence indicating that hunter-gatherer lifeways continued for 

a significant period of time, alongside communities with domesticated animals (Meiklejohn & 

Woodman 2012:28; Olsen & Alsaker 1984:92; Prescott 1996; Rowley-Conwy 1995; Whitehouse et 

al. 2014). This section details the regionally exclusive changes in technology that developed, 

following the successful colonisation of Ireland and Norway by coastally adapted pioneers. 

3.4.1. Ireland 

The form and nature of the transition between the Early and Later Mesolithic in Ireland remains an 

enigma due to the lack of sites which date to this period. A “significant chronological gap” has 

traditionally been perceived between the end of ‘Early’ microlith use and the development of ‘Later’ 

Bann flakes (Woodman 1987:142; 2004:287). More recently, Woodman (2012) has suggested that 
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the search for a ‘missing link’ is a futile endeavour and reviewed the evidence from key sites and 

assemblages as one of continuous change. 

The change in lithic technology during the Later Mesolithic is exceptional, given that there appears 

to be little change in environment or subsistence strategies at this time (Wickham-Jones & 

Woodman 1998:19; Woodman 2015:284). The same range of environments were exploited, with 

Later Mesolithic sites concentrated in the lowland flood plains, as opposed to slightly higher ground 

as in the earlier period (Costa et al. 2005:23). This is reflected in stable isotope data from coastal 

midden sites. Human remains recovered at Ferriter’s Cove, and dog remains from Dalkey Island, 

both yielded signatures which indicated a high marine contribution to their diet. The signature from 

human remains at the Rockmarshall midden indicates a more mixed diet, whilst the Later Mesolithic 

individual from the interior site at Killuragh Cave again suggests a terrestrial or freshwater diet 

(Meiklejohn & Woodman 2012; Milner & Woodman 2007:109; Woodman 2004:45; 2009b:xl). It 

should be noted however, that the nitrogen values are not reported for any of these individuals. 

The change from microlithic to macrolithic technology with the advent of the Later Mesolithic in 

Ireland is unparalleled anywhere except the neighbouring Isle of Man (McCartan 2003; 2004). Soft 

hammerstone technology was replaced by hard hammer percussion, used to detach large blades 

and blade-like flakes from uniplane, or ‘Larnian’ cores. Microliths and associated composite tools 

fell out of use, and artefacts display little secondary working. Bann flakes – large, leaf-shaped flakes 

which are characteristic of the Late Mesolithic – were modified very simply to butt-trimmed or 

tanged forms. These appear across Ireland in a variety of different raw materials. Elongated pebbles 

are found both inland and on the coast, often appearing at midden sites with a ground or chipped 

bevel at one end; the use of stone axes strongly endured (Costa & Sternke 2009:799; Woodman 

1978:82, 115; 1987:142; 2012:31; Woodman & Anderson 1990:378-379). 

There have been numerous attempts to explain why this change took place, with theories ranging 

from functionalist to social models. At a simplistic level, this “technological homogeneity” across 

Ireland may have been a response the limited range of fauna available to exploit, and therefore an 

adaptation to capitalise on the few resources which were present – namely fishing (Kimball 2000:41; 

Movius 1942:172). However, considering the Early Mesolithic spanned at least a millennium, the 

use of Bann flakes as such an adaptation seems significantly delayed (Woodman 2009b:xxxix). 

Functionalist interpretations lead on from this. It has been widely argued that the larger, broader 

blades of the Later Mesolithic were the result of a deliberate de-specialisation of lithic technology 

to create more generalised and flexible tools, which were geared towards “the production of the 

means of production” (Costa et al. 2005:30). The large assemblages of Bann flakes and polished 

stone axes recovered from river valley sites such as Newferry have been interpreted as 
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woodworking tools for the production and maintenance of traps and weirs at specific fishing sites 

(Costa et al. 2005; Finlay 2003:89; Movius 1942:172; Tolan-Smith 2008:151; Woodman 1978:93-94; 

2004:289; 2009a:210; Woodman & Anderson 1990:381, 385). 

This change in lithic technology is also intrinsically linked with a diversification in the use of local 

raw materials during the Later Mesolithic, including quartz at Belderrig, Co. Mayo; silicified 

dolomite at Lough Allen, chert at Corralanna, Co. Westmeath, and rhyolite and siltstone around the 

Midlands (Costa & Sternke 2009:799; Driscoll et al. 2013; Little 2009b; Warren et al. 2009; 

Woodman 2015:165; Woodman 1987:142; Woodman & Anderson 1990:377). The simple 

technological requirement to obtain large flakes and blades facilitated the exploitation of non-flint 

raw materials. The Late Mesolithic silicified dolomite assemblage from Lough Allen, Co. Westmeath 

consisted of the same types of cores, and consistently sized flakes and blades observed in flint and 

chert assemblages of the north-east and midlands. The silicified dolomite was reduced using the 

natural bedding planes of the raw material as guides for blade removal, which demonstrates 

undoubtedly that Mesolithic people had an intimate knowledge of the fracture mechanics of this 

raw material, and their “technical know-how was adapted to the raw material at hand” (Driscoll et 

al. 2013:25, 30). 

Social factors have also been proposed in influencing the change in technology. The Early Mesolithic 

communities of Ireland were well established, so a complete population replacement by a new, 

macrolithic using community is an unlikely explanation (Costa et al. 2005; Mitchell 1976). Instead, 

significant changes in technology came from within. The insularity of the island community 

accelerated these changes as outside influences – such as the continuation of microlith use – no 

longer influenced, or was actively discouraged from influencing, technological tradition (Costa et al. 

2005:289; Woodman 1981; 1987:142; Woodman & Anderson 1990:377). 

Changing social relationships may also have affected access to raw materials in flint-poor regions. 

The generic, non-specialised technology of the Irish Later Mesolithic did not necessitate the use of 

specific, high quality raw materials such as flint. Therefore, it has been suggested that the 

exploitation of local raw materials, and the associated change in technology, absolved the 

requirement for communities to spend time maintaining large, expensive social networks that 

facilitated access to distant flint sources through embedded procurement during the Earlier 

Mesolithic (Costa & Sternke 2009:799). Instead, embedded procurement was conducted on a much 

smaller scale, with some exchange of tools made from non-local raw materials, such as axes, 

conducted by boat (Costa & Sternke 2009:799; Little 2009b; Woodman 2015:258-259). 

Where alternative raw materials are not immediately available, such as in the Bann valley, hoards 

or caches of flint blades have been recovered from sites like Lough Beg and Newferry, Co. Antrim 
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(Woodman 1978:67, 72). Later Mesolithic industrial ‘workshop’ sites, such as Bay Farm, Co. Antrim 

have been identified close to coastal flint sources, where the raw material was reduced to pre-

prepared blanks then transported to these occupation sites inland (Costa & Sternke 2009:799; 

Costa et al. 2005:28; Woodman 2009a:209). This could reflect a shift towards increasingly more 

organised procurement strategies where required, with specific task-groups directly acquiring raw 

materials as part of a logistic subsistence strategy, in which blanks were curated and stored in 

caches for later use. The evidence above largely supports this, as significant investments in 

permanent technology such as fish traps and boats attest to a ‘delayed-return’ economy, and imply 

a degree of territoriality or ownership over such facilities (Costa et al. 2005:30; Finlay 2003:92; 

Rousseau 2006; Tolan-Smith 2003:124; 2008:152; Woodburn 1980; Woodman 1987:144; 

Woodman & Anderson 1990:383). It should be noted, however, that expedient technology was still 

present in the form of Bann flakes (Finlay 2003). Furthermore, small amounts of non-local raw 

materials found at Lough Allen, Bay Farm, and Corralanna also suggest that exchange networks may 

still have been open to an extent (Driscoll et al. 2013:30). 

The Irish Later Mesolithic is evidently a complex and unique situation, borne from insular 

developments that are rooted in the island’s early separation from the continent, and which varied 

dependent on social responses to local conditions (Woodman 2015:232). However, it should not be 

assumed that because of these local developments Ireland was cut-off from Mesolithic 

communities elsewhere. The presence of domesticated cattle bones at Ferriter’s Cove, dating to 

4450-4270 cal. BC, indicates connections with the Continent over 500 years before there is 

unequivocal evidence for the agriculture on the island, c. 3750 cal. BC (Whitehouse et al. 2014; 

Whittle 2007; Woodman et al. 1999). 

3.4.2. Norway 

The Late Mesolithic Chronozone begins at 6500 cal. BC (Bjerck 2008b). However, this section 

contains sites that date from slightly before (c. 7000 cal. BC), in line with the division of this chapter 

outlined above. Traditionally, the Late Mesolithic Chronozone ends at c. 4000 cal. BC when the 

Neolithic begins, and that is where this chapter will stop. It should be noted, however, there is a 

long continuation of hunter-gatherer practice into the Middle Neolithic. The earliest evidence for 

domesticated plants and animals is not recorded until c. 2400 cal. BC, when it appears a very rapid 

transition occurs, as in Ireland and Scotland. This is uncharacteristic of the rest of the Atlantic 

seaboard, where there is evidence for a sustained period of co-existence between hunter-gatherer 

and farming economies within close proximity of each other (cf. Arias 1999; Armit & Finlayson 1992; 

Glørstad 2009; Høgestøl & Prøsch-Danielsen 2006; Lidén et al. 2004; Olsen 2009; Prescott 1996; 

Richards et al. 2003; Rowley-Conwy 1995; Schulting & Richards 2002). 
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The ‘Nøstvet’ tradition is characteristic of the Late Mesolithic Chronozone lithic assemblage in 

southern Norway. Classic stone tools include the continued use of microblades struck from conical 

microblade cores that developed during the preceding Middle Mesolithic phase; borers or 

engravers; grinding tools; line-sinkers and, most diagnostically, ground and polished adzes made 

from basaltic rock (Bjerck 1986:104; Nygaard 1990:230-234). The decline in the use of flint 

continues as the diversity of raw materials present in Late Mesolithic assemblages becomes more 

common to include quartz, slates, and basalts (Bergsvik & Olsen 2003; Gjerland 1990; Nygaard 

1990:230; Olsen & Alsaker 1984). Bipolar reduction also increases significantly in this period. Bipolar 

cores comprise over 75% of cores in southern Norwegian assemblages, and is likely to be associated 

with raw material availability (Ballin 1999a). 

As mentioned previously, the distribution of greenstone and diabase adzes and axes further 

substantiates the evidence for increasing regionalisation between the Middle and Late Mesolithic. 

Diabase, quarried from Stakaneset, Flora accounts for over 60% of Mesolithic adzes in the northern 

zone of distribution (Romsdal, Sunnmøre, and Sogn og Fjordane). Stylistically, these adzes are 

“generally short and blunt with rounded necks” finished by grinding (Bergsvik & Olsen 2003:399; 

Olsen & Alsaker 1984:97). The Hespriholmen quarry on Bømlo is the source for 47% of Mesolithic 

greenstone adzes within the southern zone of distribution (largely within Rogaland and Hordaland 

counties). These adzes differ in form and finishing technique, being “predominantly long, narrow 

adzes with pointed necks” often finished by both pecking and grinding (Bergsvik & Olsen 2003:399; 

Gjerland 1990; Olsen & Alsaker 1984). A clear zone of overlap is evident at Nordhordland (the 

northern district of Hordaland), where adzes made from both raw materials are present (Bergsvik 

& Olsen 2003). This area is equidistant from the raw material sources and there is no gradual fall-

off up to this point, which would be expected if the overlap were coincidental. Instead, it appears 

that the exclusive use of diabase in the north, and greenstone in the south, merge in this area 

(Bergsvik & Olsen 2003:399; Olsen & Alsaker 1984:85). Artefacts made from these raw materials 

are found up to 600-650km from their respective sources, however they are most frequently 

recovered within the first 100km of the quarries. There is a clear fall-off curve towards the interior, 

which may represent an eastern border defined by the central mountain plateau. The fall-off to the 

north and south of the distribution zones, however, is unaffected by geographical or ecological 

barriers and probably represents the limits of the territories, which further emphasises the 

deliberate merge at Nordhordland (Olsen & Alsaker 1984:83, 97). 

Overall, the distribution of greenstone and diabase reflects the mobility of Late Mesolithic groups 

around the western coast of Norway, who had direct access to the raw material quarry. Finished 

artefacts were transported by these groups from the source to their place of deposition (Bergsvik 

& Olsen 2003:401; Olsen & Alsaker 1984:96). However, some small-scale exchange may have taken 
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place, especially within Nordhordland, which served as a contact zone at the territorial boundary 

between two different groups (Bergsvik & Olsen 2003:402; Olsen & Alsaker 1984:95). The use of 

these quarries and distribution of raw materials continued unchanged until the introduction of 

agriculture in the Middle Neolithic (Olsen & Alsaker 1984:92-93). 

A large number of single stone adzes and axes made from these raw materials have been found 

along fjords. Initially, this was interpreted as evidence of seasonal movement into the inland 

mountain plateaux, however there is little evidence for Late Mesolithic occupation in the interior 

or at the axe/adze find-spots (Gundersen 2009; Nygaard 1990:233). Study of the distribution of 

these isolated finds around Sogn og Fjordane, and the Sunnmøre region of Møre og Romsdal, has 

revealed deposition in unusual and often impractical places such as water (ponds, streams or fjords), 

bogs,  under boulders, and in scree slopes (Bergsvik 2009; Gundersen 2009:239-240). This has been 

interpreted as deliberate ritual activity, potentially connected to rites of passage in a liminal 

environment or in maintaining an egalitarian society within an increasingly sedentary population 

(Bergsvik 2009; Gundersen 2009:239-240).  

One final development during the Late Mesolithic, potentially connected to the ritual deposition of 

adzes/axes in terms of ideology, is the presence of the earliest rock art in Norway (Bergsvik 2009). 

Panels of motifs occur in high densities around Trøndelag, depicting boats, animals, and hunting 

activities. The appearance of rock art at this time has been attributed to socially complex groupings 

and religious ideology, associated with drastic social change surrounding the transition from mobile 

to sedentary populations, and between hunter-gatherer to agricultural modes of subsistence 

during the Neolithic. These changes heralded the arrival of new subsistence strategies, social order, 

technology, and raw material exploitation (Bergsvik 2009:607; Lødøen 2003; 2009; Nygaard 

1987:153-154; 1990:234; Olsen & Alsaker 1984:100; Sognnes 1994; 1995). 

3.5. Drawing Potential Parallels 

This chapter has described in detail the processes of colonisation, settlement, subsistence, and 

technological developments for the Mesolithic period in Ireland and Norway. Despite the differing 

models and theoretical stances that have been presented, and the independent nature of the two 

regions, there appear to be striking similarities between the Mesolithic populations occupying 

these extreme outposts of the north-east Atlantic seaboard. 

The evidence presented above suggests that colonisation of Ireland and the western coast of 

Norway directly resulted from the development of advanced maritime adaptations. Early 

Mesolithic communities could not successfully colonise these islands and archipelagos until they 

had moved beyond land-based lacustrine or littoral relations; “elaborate marine relations” such as 

boats capable of crossing open sea were key to this success (Bjerck 2009). Methodological problems 
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aside, this is seen as the primary factor in the apparent delayed colonisation of these rich biotopes 

following de-glaciation, which is also applicable to western Scotland (Bang-Andersen 2003b; Bjerck 

& Zangrando 2013; Warren 2015a; Wickham-Jones & Woodman 1998; Woodman 2012). Advanced 

marine adaptations and the importance of aquatic resources are reflected in the clear distribution 

of Mesolithic sites along coastal and riverine environments in Ireland, Norway, and Scotland. Whilst 

research bias may be a significant contributing factor in this distribution pattern, especially for 

Scotland and Ireland, the number of Mesolithic coastal sites in Norway considerably outweighs 

those identified inland despite the destructive effect of marine transgressions and intensive 

investigation of the interior (Bang-Andersen 2003b:15; Boaz 1998a:63; Wickham-Jones 1990c:168). 

This is of exceptionable note, especially given the higher faunal diversity with regard to terrestrial 

‘big game’ available to Mesolithic hunter-gatherers of Norway, in contrast to Ireland. It would 

appear that, irrespective of the breadth of resources available, marine relations endured. The 

differing availability of resources appears to have had a significant effect on the development of 

economic systems in these three areas. 

In Ireland it is clear that, once at their destination traits of a delayed-return economy developed 

rapidly, evidenced by an investment in fixed technology such as fish traps, weirs, and house building, 

and storage/caching of resources (Tolan-Smith 2008:152; Warren 2015a:51; Woodman 2004). The 

Mesolithic economy in Ireland was focussed largely on fish and shellfish exploitation, with a 

deliberate introduction of wild boar during this period to mitigate the lack of terrestrial resources. 

The evidence for specialised extraction sites suggests that Mesolithic inhabitants were well adapted 

to capitalise on resources as they became available, resulting in regionally-specific variations in 

settlement duration (Woodman 2015). 

In Norway, the dearth of organic remains makes it difficult to interpret the economic strategies of 

early settlers. Despite this, there is a strong argument for highly mobile, residential groups who 

moved seasonally between the coast and interior. This is based upon the presence of small, 

ephemeral tent structures in both the interior and outermost coastal zone, and the absence of any 

evidence for large aggregation sites (Åstveit 2009; Bang-Andersen 1996a; 1996b; 2003a; 2003b; 

Bjerck 2008b; contra. Indrelid 1975; Nærøy 1995; Nygaard 1987). In the Norwegian Early Mesolithic, 

it appears that all aspects of subsistence are immediate-return – the size and location of sites 

mentioned above, and a lack of evidence for the storage of food or investment in fixed-facilities 

that implies a degree of territoriality or ownership (Woodburn 1980). The only exception to this is 

boats, which are undeniably a delayed-return adaptation. The manufacture and maintenance of 

boats – which ethnographic evidence demonstrates must be frequently repaired and re-

waterproofed – requires a certain period of scheduled ‘down time’ in order to conduct these 

activities (Binford 1979; Bjerck 2016; Gusinde 1961; Lothrop 1932; Schmitt 2015; Speck 1911; 
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Torrence 2001). This ‘down time’ cannot be spent hunting or gathering and groups must therefore 

rely on social reciprocity or stored resources, on land, as a support mechanism (Bjerck 2016; Layton 

2005; Rousseau 2006; Sahlins 1972; Trivers 1971). Boats are therefore an extremely delayed-return 

adaptation within an otherwise immediate-return subsistence base. The two systems are not 

mutually exclusive, and it is clear that the Early Mesolithic of Norway falls within the flexible facet 

of an adaptive immediate-return strategy (Layton 2005:140). It is not until the Late Mesolithic that 

other aspects of a delayed-return system emerge – larger settlement sites suggesting long-term 

occupation, evidence for regional identity in material culture, and territoriality in the appearance 

of rock art. This has been attributed to the richness of the coastal environment, which facilitated a 

broad spectrum economy based on fishing, and where other seasonally available resources could 

also be intensively exploited (Åstveit 2009; Bergsvik 2001; Fuglestvedt 2014; Gundersen 2009; 

Nygaard 1987; 1990; Pettersen 1999). 

It is clear from the evidence outlined above that the resources available to the Early Mesolithic 

colonists differed markedly between Ireland and Norway; their economic responses equally so. In 

Ireland, the limited availability of predicable resources – namely anadromous fish – necessitated 

the rapid establishment of a delayed-return economic system through an investment in fixed 

facilities, storage of foodstuffs and caches of raw materials. Conversely in Norway, it is the 

abundance of predictable terrestrial and marine resources which enabled an immediate-return 

system to endure for so long, before eventually leading to a delayed-return system. Economic 

stability facilitated long-term settlement, an investment in more substantial house structures, and 

pronounced regional identity. Outside social factors may have also influenced this (Nygaard 

1990:234). In both regions different aspects of a delayed-return economy were adapted as 

necessary, dependent on environmental and social factors. 

Expressions of regional variations and local adaptations within these regions is also evident in lithic 

technology. In the Later Mesolithic of both Norway and Ireland there is an increase in the use of 

local raw material, with less reliance on flint that could only be obtained from restricted coastal 

sources. This is intrinsically linked with changes in both technology and social mobility. Use of local 

raw material suggests more sedentary populations, operating within smaller social territories 

(Glørstad 2013:72). This is emphasised by the distribution of axes and adzes in Norway which exhibit 

distinct stylistic differences and are made from regionally specific raw materials (Gjerland 1990; 

Olsen & Alsaker 1984). In Ireland, the diversification of raw material utilisation is closely connected 

to changes in lithic technology, which allowed these non-flint raw materials to be exploited at the 

expense of costly large-scale networks that were required to directly access flint (Costa & Sternke 

2009). This is explored further in Chapter Nine. 
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A further parallel that can be drawn is the presence of shell middens in each of these regions. Shell 

middens in Ireland, Scotland and Norway all share similar characteristics in terms of composition, 

however there are significant differences in the artefact assemblages (Bjerck 2007:25; Hardy 

2013:131; Woodman 1989:19). In Norway, the lack of shell middens indicates that shellfish 

exploitation was a marginal contribution to Mesolithic economy, whereas in Ireland the scale of 

shellfish exploitation is more pronounced, but not to the degree of Scotland (Bjerck 2007:25; Bjerck 

& Zangrando 2013:87; Woodman 2015:279). Debates surrounding the intended use of shellfish for 

bait or consumption notwithstanding (Bjerck 2007:24); it is clear that “[s]imple environmental and 

economic factors are not enough to explain this difference” (Woodman 1989:19). The social 

function of shell middens is drawn upon more fully in Chapter Nine. 

There is a close association between shell middens, caves and deposits of human remains in all 

three areas, which is also discussed in Chapter Nine. In Scotland the Oronsay middens and Oban 

caves contain Mesolithic and later burials within the midden deposits (Hardy 2013; Milner & Craig 

2009). Irish middens, rockshelters and open-air sites have yielded disarticulated and fragmentary 

Mesolithic human remains in addition to a cremation (Meiklejohn & Woodman 2012). Similarly, 

disarticulated human remains of Mesolithic and later date have also been recovered from several 

rockshelters and caves in Norway, which also contained shell deposits (Bergsvik & Storvik 2012). 

The favourable preservation conditions within sheltered caves and alkaline soils of shell middens 

may bias the archaeological record against evidence for interment of human remains at open-air 

sites (Bergsvik & Storvik 2012; Bjerck 2007). However, it is likely that these were favoured locations 

for occupation and shelter, which were also incorporated within a diverse funerary tradition 

(Bergsvik & Storvik 2012:35-36; Hardy 2013). 

One significant difference between these regions is the production of Late Mesolithic rock art in 

Norway, as well as other Scandinavia and Eastern Europe. Beyond these regions, ritual activity is 

perhaps manifest in more mundane or intangible ways, combined with daily living and only 

archaeologically visible though practices such as the disposal of the dead (Chatterton 2006; 

Woodman 2015:313-320). 

The transition to the Late Mesolithic in these regions coincides with the earliest evidence for 

Mesolithic occupation in the Western Isles. In sum, the permutations between the Early and Late 

Mesolithic in Ireland and Norway are similar in many regards: maritime adaptation to facilitate 

colonisation; a subsistence strategy reliant on fishing and marine resources; increasing 

regionalisation in lithic technology reflecting the development of social territories; the use of caves 

and midden sites to dispose of the dead. These parallels are present irrespective of the continental 

outside influences and wider range of resources exploited by Norwegian Mesolithic communities, 

and the fact that in Ireland these developments are very insular. Both regions are therefore 
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extremely well suited in providing contextualisation and comparison with the Mesolithic evidence 

from Scotland the Western Isles, which is discussed in full in Chapters Eight and Nine.
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Chapter 4 Lithic Recording Methodology 

4.1. Introduction 

This chapter outlines the recovery of the artefacts from the Mesolithic sites excavated in the 

Western Isles, and the methodology implemented in recording the lithic assemblages. The 

methodology has been developed from the detailed analysis of excavated lithic assemblages that 

were introduced in Chapter Two. It has been specifically tailored to answer the first of the three 

main research questions of this PhD: what is the nature of the lithic technology of the Mesolithic in 

the context of the Western Isles of Scotland?  

This research question is underpinned by several smaller questions, which were formulated to 

guide the analysis by addressing specific issues previously identified in the study of Mesolithic 

assemblages in the region (Piper 2011). 

QII. What raw materials are utilised, and where are they sourced from? 

QIII. What reduction strategies are employed, and are these material specific? 

QIV. Are microliths present at the midden sites and bevel ended tools at the open air sites? 

QV. Is the assemblage an expedient or curated technology? 

Each sub-question is derived from notable themes that have emerged during the study of the 

Mesolithic period in recent decades. In particular, the ‘Obanian’ debate discussed in Chapter Two 

has given rise to the assignation of a technological tradition that, despite refute, still heavily 

influences our understanding of the Mesolithic in western Scotland. This ensures the Western Isles 

assemblages can be contextualised within the broader Scottish Mesolithic and thus contribute to 

answering part of the third research question - are the Western Isles sites representative of the 

Scottish Mesolithic? 

4.2. Recovery of the Lithic Assemblage 

All artefacts exposed during the excavations were recorded in three-dimensions. However, as a 100% 

sampling strategy was implemented at each site, the majority of lithics were recovered during post-

excavation processing of the samples. The residue from each sample was fractioned through 4mm, 

2mm, and 1mm geological test sieves, with material <1mm discarded. Only >4mm and >2mm 

fractions were sorted for lithics, as there is no record of major excavations in Scotland and the north 

of England striving to recover lithic debris from anything less than 3mm (Hardy & Wickham-Jones 

2009b; Waddington 2007; Wickham-Jones 1990a:28; 2004a). The >4mm fraction was sorted by eye 

and the >2mm fraction using a low-powered binocular microscope to ensure comprehensive 

recovery. Tweezers were used in both instances to recover all artefacts and ecofacts (Bishop et al. 

2012a; Bishop et al. 2011a; Blake et al. 2012a; 2012b; Piper & Church 2014; 2015). 
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4.2.1. Cleaning and Concretion 

Prior to analysis all lithics were cleaned in water with a soft-bristled toothbrush to remove dirt.  

Some of the lithics were heavily concreted with calcium carbonate that had dissolved in 

groundwater percolating through the overlying machair, and re-mineralised in the archaeological 

layers. In some instances this significantly obscured the lithics, preventing the attributes from being 

recorded (Figure 21). The affected stones were placed in a beaker containing white vinegar (acetic 

acid) and left in a fume cupboard overnight. The weak acid of the vinegar dissolved the calcium 

carbonate without damaging the lithics, which were subsequently cleaned following the standard 

procedure to remove any remaining concretion (calcium acetate; Figure 22). The process was 

repeated if necessary to remove large deposits. The chemical reaction for this process is: 

CaCO₃ + 2CH₃COOH  Ca(CH₃COO)₂ + CO₂ + H₂O 

 

Figure 21. TNB9'13 L256 prior to treatment to remove the concreted deposits adhering to both the ventral (left) and 

dorsal (right) surfaces 
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Figure 22. TNB9'13 L256 following treatment to remove the concreted deposits adhering to both the ventral (left) 

and dorsal (right) surfaces 

4.3. Recording Methodology 

The methodology for recording the technological and morphological attributes of lithics used in this 

thesis has been adapted from Piper (2011), which was designed to analyse the material from 

Northton, the first Mesolithic lithic assemblage in the Western Isles. This was based upon 

methodologies from recent excavations in the Inner Hebrides (Finlayson et al. 1996; 2000; 

Wickham-Jones 1990c), which were adapted with typological nomenclature deriving from Tixier et 

al. (1980) and Inizan et al. (1999). Modifications and recommendations made by Andrefsky (1998) 

and Ballin (2000) – especially regarding Scottish material and the presence of quartz – have been 

followed where stated. The recording methodology was constructed in order to facilitate close 

contextualisation with the Mesolithic of the Inner Hebrides and Scotland.  

4.3.1. Debates Surrounding Quartz Analysis 

There has been a significant and on-going debate surrounding the study of quartz in archaeological 

assemblages. Scandinavian scholars have argued that this raw material should be analysed 

separately to flint, whereas others maintain the two raw materials can be studied within the same 

typology (cf. Ballin 2008; Broadbent 1979; Callahan 1987; Driscoll 2010; Lindgren 1998; Welinder 

1977). In simplified terms, the debate concerns two inter-related aspects: flaking properties or 
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fracture mechanics of the raw material itself, and the nature and definition of a ‘tool’. Consequently, 

the development of quartz analysis has been criticised as hampered by a ‘flintcentric’ viewpoint. 

Equally damaging is the a priori assumption that quartz is not a ‘valid’ raw material – it was only 

used as an inferior substitute where better-quality raw materials (i.e. flint) were unavailable 

(Driscoll 2010:59, 76; Lindgren 1998; Saville & Ballin 2000:45). Ballin’s (2008) recent publication on 

Quartz Technology in Scottish Prehistory is of central relevance to this debate, and indeed this thesis, 

due to the fact it is the only coherent study of quartz in this region. The brief discussion below 

concerning both aspects of the ‘quartz debate’ therefore centres on his conclusions. 

In terms of the raw material, quartz is not homogenous. It varies widely in composition due to the 

different environments under which it forms, and different types and textures can occur within the 

same vein. As such, the fracture mechanics of quartz are dependent on its crystalline structure 

(Jones forthcoming in Ballin 2008; Collina-Girard 1997). Flint, which is a variety of cryptocrystalline 

silica, fractures conchoidally – as do very fine-grained macrocrystalline quartzes such as rock crystal. 

Conversely, coarser grained macrocrystalline quartzes, such as quartzite, fracture following “a 

preferential breaking direction” (de Lombera Hermida 2009:7), producing “cubic fragments in an 

uncontrollable fashion” (Ballin 2008:44-46). Consequently, the reduction of quartz is seen as less 

controllable, producing irregularly shaped flakes that are “difficult or even impossible to predict” 

(Welinder 1977:29). Reduction of quartz is frequently conducted through a bipolar knapping 

strategy to afford more control over the material (Ballin 2008:3; Wickham-Jones 2004a:25). 

Accordingly, it has been argued that different reduction strategies may have been used to produce 

the same recognisable formal artefact type in flint and quartz, which may (or may not) have been 

used for the same purpose (Knutsson 1988:12). 

As a result, calls have been made for a separate typology, whereby quartz assemblages are analysed 

in isolation, and based upon experimental assemblages (Broadbent 1979; Callahan 1987; Driscoll 

2010; Lindgren 1998; Welinder 1977). Ballin strongly disagrees with this, stating “its logical 

consequence is that assemblages in flint/flint-like silica and quartz cannot be compared directly” 

(Ballin 2008:40, emphasis added). Such an approach would hinder the analysis of mixed raw-

material assemblages, like those from the Western Isles. Furthermore, both experimental and 

archaeological examples have proven that bipolar reduction is a more controlled and precise 

method than previously assumed. This technique ensures successful, utilisable flakes can be 

produced in the most efficient and economical manner – especially where there is an abundance 

of raw material (Callahan 1987:12-13, 63; Flenniken 1981:113). This is supported by linear 

regression analysis conducted on the quartz flake assemblage from Northton, where a statistically 

significant relationship between increasing flake dimensions was observed, indicating regular 

flaking (Piper 2011:165). Furthermore, finer grained quartzes may fracture conchoidally, producing 
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partial Hertzian cones, albeit not as prominent as in flint. This would blur any distinction between 

a flint-typology and a quartz-specific typology. As such, the same methodology should be employed 

irrespective of the raw material.  

Traditionally observed characteristics in flint, such as ripples, are not produced therefore 

determining the direction of force is difficult to observe (de Lombera Hermida 2009:7). Instead, 

several diagnostic features, as described by de Lombera Hermida (2009) were used to determine 

whether quartz had been worked or had naturally fractured. Knapping is indicated by the presence 

of: radial fissures; proximal fissures; striking platform fissures; steps; splintering; edge battering and 

scales (de Lombera Hermida 2009:8-9; Figure 23). 

 

Figure 23. Identifying features of a struck quartz flake - (A) edge battering and striking platform fissures, (B) scales, 
(C) steps and splintering 

With regard to the second issue, a ‘tool’ is defined as: 

“…any artefact that has indubitably been used, irrespective of its surmised function. 

This includes pieces made on knapped blanks (e.g. endscraper on blade) or on 

natural blanks (e.g. scraper on slab); unretouched pieces whose function can be 

demonstrated by microwear analysis (e.g. flakes used for cutting meat); natural 

"objects" modified by macro- or microscopic traces of wear or hafting; retouched or 

unretouched pieces bearing traces of intentional gloss; tools used for making stone 

tools (e.g. hammer, pecker, punch, etc.).” (Inizan et al. 1999:157, emphasis added). 
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The recognition of intentional modification on quartz artefacts is constrained by the inherent 

flaking properties of quartz, whereby the retouch may be (rightly or wrongly) identified on an 

uneven surface (Cornelissen 2003:11-13; Lindgren 1998:100). Additionally, the issue has been 

raised in Scandinavian research that any classification of quartz flakes as formal tools is incorrectly 

based on “ideographic” similarity to tools in flint assemblages (Knutsson 1988; Lindgren 1998). 

Ballin (2008:40) proposes a simple solution to these issues: quartz artefacts cannot be classified as 

tools unless there is clear evidence for secondary retouch. The absence of modification would 

therefore classify it as ‘debris’ (as defined by Inizan et al. 1999). This basic assumption is concerning, 

given the vast corpus of use-wear and residue analyses conducted on both archaeological and 

ethnographically derived assemblages that indicate non-retouched artefacts were used as tools 

(Beyries & Rots 2008; Dumont 1988; Finlayson & Mithen 2000; Hardy 2004; Hardy & Shiel 2007; 

Högberg et al. 2009; Rots & Williamson 2004). This would have significant ramifications for the 

presence of a largely unretouched and expediently produced flake-based industry, for example. 

In light of the above debate it is necessary to clarify my own theoretical standpoint, which agrees 

with Ballin (2008; Saville & Ballin 2000) in almost every respect. Quartz is a legitimate raw material, 

which was exploited throughout prehistory alongside other raw materials. The different flaking 

properties of this raw material required different knapping strategies, producing different end 

products that were likely used for different functions. Accordingly, quartz can be analysed within a 

flint typology providing fracture mechanics are taken into account (Ballin 2008:91; Knutsson 1988). 

Without such it would be impossible to compare the mixed raw material assemblages so 

characteristic of Mesolithic Scotland, and a separate typology would then be required for each raw 

material present (Ballin 2008:40, pers. comm.). I do not, however, agree with Ballin on the 

classification of quartz tools. Use-wear studies have clearly demonstrated that un-modified quartz 

artefacts were utilised and would therefore qualify as tools under the definition quoted above 

(Knutsson 1998:96-70; Sussman 1988). 

The high fragmentation rate of quartz during knapping, due to its macrocrystalline formation, is 

widely accepted as problematic in the analysis of lithic assemblages containing this raw material 

(Callahan et al. 1992; Driscoll 2011; Tallavaara et al. 2010). As such, it is argued that because of its 

fragmentation rate, mixed raw material assemblages containing quartz are likely to be dominated 

by this raw material (Driscoll 2010:743). The principle of fracture analysis was designed in the 

1980’s to 1990’s by archaeologists in Sweden and America using modern, experimentally produced 

quartz assemblages with which to compare the archaeological material (e.g. Knutsson 1988; 

Knutsson 1998; Lindgren 1998). In accordance with this, experimental quartz assemblages have 

often been created by archaeologists when analysing archaeological quartz assemblages, in order 

to ascertain a baseline for fragment distribution (see Tallavaara et al. 2010 for a discussion of this). 



 

 118 

One of the most interesting outcomes of two independent studies, conducted at similar times, on 

the effect of recognising characteristic debitage from experimentally produced assemblages was 

that quartz fragmentation does not solely depend upon the raw material characteristics. A correct 

reconstruction of the assemblage could only be made by the analyst with extensive or complete 

prior knowledge regarding the skill of the individual knapper; the reduction method; the reduction 

sequence, and the hammer material, all of which affected the fragmentation of the quartz (Amick 

& Mauldin 1997; Driscoll 2010; 2011; Tallavaara et al. 2010). Driscoll (2011) and Tallavaara et al. 

(2010) acknowledge that this information is not available when analysing an archaeological 

assemblage, and the issue of fragmentation is further exacerbated by post-depositional processes 

such as trampling (Nielsen 1991). It is clear that the debate surrounding quartz fragmentation and 

experimental comparative analysis has become self-perpetuating, with more issues arising than 

clear answers. Driscoll (2011:743) counteracts this to some extent by stating that the issue of quartz 

fragmentation makes analysis of assemblages difficult for archaeologists, but may have not been at 

all important to the original prehistoric communities who worked with this material. Furthermore, 

unlike an experimental assemblage, no archaeological assemblage will be complete (irrespective of 

taphonomic and recovery bias), simply due to the agency of the people who created it in the first 

place. Pieces, including fragments, would have been selected for use and removed from the 

operational schema, thus from the archaeological record (Inizan et al. 1999:16). Given the 

conflicting evidence cited above over the efficacy of using an experimental assemblage as a baseline 

in quartz analysis, one was not produced for the purpose of comparing the Western Isles quartz 

assemblages. 

One final point is the issue relating to the traditional association of bipolar reduction with quartz 

assemblages, usually due to the perceived irregular flaking properties of this raw material (Driscoll 

2010:81; Saville & Ballin 2000:48; Wickham-Jones 2004a:25). This method of reduction is 

traditionally associated with working less amenable raw materials (i.e. quartz); small nodules of raw 

materials and exhausted platform cores (defined as <50mm in maximum dimension; Barham 

1987:46). As such, this strategy is inextricably linked with connotations of ‘last-resort’ technology – 

an uncontrollable method of reduction and “a common indicator of impoverished lithic resources” 

(Nelis 2006b:71-72 cf. Ballin 1999a:18; Barham 1987; Knight 1991:57). This is despite the fact 

bipolar reduction has been shown to produce more complete flakes from quartz than platform 

reduction (Callahan et al. 1992; Driscoll 2011; Tallavaara et al. 2010). 

Whilst acknowledging that bipolar-reduced quartz flakes are often difficult to identify, and can 

often be mistaken for those produced by platform reduction, it appears that the connection 

between quartz and bipolar reduction is misrepresented (Ballin 1999a:18-19; Driscoll 2010:81;  

2011:739; Knight 1991:64-65; Knutsson 1988). This is due to a combination of factors – the neglect 
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of detailed quartz analysis and research until the 1980’s, and the fact bipolar technology was not 

fully integrated in-to mainstream lithic nomenclature until the same time (Driscoll 2010:75). Up to 

then, bipolar cores were variously described as chisels, wedges, fabricators, opposed-platform 

cores or outils éscaillèes (Ballin 1999a; Broadbent 1979; Knight 1991). A case in point is the 

Mesolithic assemblage from Lussa River, Jura which was excavated in the 1960’s by John Mercer. 

The description of the cores from the site, for example, is as follows: 

“(1) Cores (2 made into chisels, one into a scraper). Poor and unstandardised work; 

several are just battered lumps lacking recognisable platforms and scarred from all 

angles; 5 others (no. 10, one platform) use natural platforms (a few corresponding 

flakes were noted e.g. nos 162, 240, 245). Quartz not included (no. 4 is exceptional 

for its flint-like treatment).” (Mercer 1971:11). 

The original excavation report was published in 1971, prior to the recognition of bipolar cores as 

waste products rather than tools. It is interesting therefore, to note Mercer’s description of the flint 

cores as “battered lumps lacking recognisable platforms” (1971:11), which would be in accordance 

with bipolar reduction as described by Helskog et al. “[t]he ends lack platforms. Both the transverse 

section and the longitudinal section are approximately pointed oval. Both ends are crushed” 

(1976:21 in Ballin 1999b). Furthermore, a large proportion of the Lussa River assemblage are 

described as ‘chisels’ (177 flint, 157 quartz), the illustrations of which clearly depict some bipolar 

cores (Mercer 1971:19). The formation of chisel-like edges on cores is described as characteristic of 

bipolar reduction (Barham 1987:78). Re-analysis of the quartz component of the Lussa River 

assemblage demonstrated that bipolar reduction of pebble quartz overwhelmingly dominated the 

assemblage, a technique which was particularly evident from the cores (Ballin 2002; 2008:9-10). 

Unfortunately the flint assemblage has not been re-considered, thus a comparison between 

reduction techniques and raw materials at the site cannot be drawn. Due to the lack of 

understanding of bipolar technology by Mercer it is clear that the bipolar reduction of flint in this 

assemblage is entirely unrepresented, which adds to the perceived misconception described above. 

4.3.2. Generic Attributes 

The following generic attributes were recorded for each lithic assemblage: 

Catalogue Number 

Where artefacts were recovered during excavation, the prefix of ‘SF’ (Small Find) was retained as 

this relates to the spatial data contained within the excavation records. All lithics recovered during 

post-excavation processing were prefixed with ‘L’ and a number starting from 1. 
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Context Number 

This details the stratigraphic unit the artefact was recovered from and again relates to spatial 

information detailed within the excavation records. 

Raw Material 

The raw material of the artefact. The three main raw materials identified at Northton were quartz, 

flint and baked mudstone. Quartz and flint dominate in all other assemblages. 

Raw Material Variety 

This section refines the raw material category by referring to the specific type of raw material, 

which can be used to understand provenance and suitability of knapping (Driscoll 2010:56). This 

was solely applied to quartz, which comprises a wide variety of sub-types. Ballin (2008:46) 

developed a classification system for the most common types of quartz found in Scottish 

archaeological assemblages based on the geological attributes of colour and grain size (Table 1), 

and is used in this analysis. 

Table 1. Classification of quartz types (after Ballin 2008). The categories are not absolute and can grade into one 

another 

Reduction Stage/Tool Type 

This section provided a description of each piece categorising it by basic “debitage product” (i.e. 

primary or secondary technology – see below), or artefact type (after Andrefsky 1998; Ballin 2000; 

Inizan et al. 1999). 

Primary Technology 

Coarse stone tools  

These range from tools used in initiating the knapping sequence, such as hammerstones and anvils 

to finished products such as choppers and Bevel Ended Tools (if present). A simple recording 

In
cre

asin
g grain

 size 

Quartz Type Description 

Rock Crystal Colourless and transparent, homogenous with fine flaking 

properties 

Milky Quartz Massive (not grainy) and translucent, variable flaking properties 

dependent on quality and impurities. The most frequently utilised 

quartz in Scottish prehistoric assemblages 

Very fine-grained 

‘Greasy’ Quartz 

Microscopic grain size, translucent with a ‘greasy’ lustre. And a 

slightly rough surface texture. Good flaking properties 

Fine-grained 

Quartz 

Grains are visible, “in the size order of fractions of a millimetre” and 

it is relatively compact”, usually white. Good flaking properties 

Coarse-grained 

Quartz 

Grains are visible, up to 1mm in size (occasionally greater) and 

loose-textured. Comparably poor flaking properties 

Quartzite Metamorphosed sandstone 
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protocol was implemented for coarse stone tools which included maximum dimensions and a basic 

description. 

Core 

The lithic material remaining following the removal of flakes and blades until it is exhausted and 

discarded. The specific attributes recorded for cores are described in Section 4.3.3.1. 

Flakes  

Pieces removed from a core during the reduction sequence. Flakes may be used as blanks to form 

tools (which may or may not be retouched), a core for further flake removals (a flake core), or may 

simply be a by-product of the knapping strategy (waste products). The stage of the reduction 

process represented by the flake was determined according to the “triple cortex” approach 

(Andrefsky 1998:111), and used in conjunction with the dorsal scar count. Analysis of the 

correlation between these two attributes has indicated that combining both cortex percentage and 

dorsal scar counts is effective in determining early stages of core reduction (Mauldin & Amick 1989; 

Odell 1989:183).  This study is adapted from Finlayson et al. (2000:62) where primary flake removals 

are characterised by the dorsal face completely covered in cortex, with no dorsal scars. Secondary 

flake removals are identified by the presence of both cortex and flake scars on the dorsal face. 

Tertiary flake removals only exhibit dorsal flake scars with no cortex present. 

It is acknowledged that there are issues surrounding this approach. Secondary, and particularly 

tertiary, removals may have not necessarily been removed after a flake which exhibits a greater 

quantity of cortex (Andrefsky 1998:112). The percentage of cortex is therefore only indicative of 

the earliest stages of core reduction, and the ratio of cortical to non-cortical flakes may differ 

between reduction strategies (Mauldin & Amick 1989:71). Nonetheless, this method is the most 

commonly used. The attributes recorded for flakes are outlined in Section 4.3.3.2. 

Blade 

Defined as a flake where the length is twice that of the width, with roughly parallel sides and arrises. 

Blades are deliberately produced by a specific knapping strategy. In Scotland, microblades are 

defined as <8mm in width and macroblades >8mm in width (Ballin 2000). Attributes recorded for 

blades were the same as for flakes. 

Chunk 

This term has been frequently used in Scottish Mesolithic lithic analysis to denote pieces that do 

not exhibit platform or ventral surfaces, and are often the result of knapping error/shatter 

(Finlayson et al. 2000:62; Wickham-Jones 1990b:58). This is incorporated into Ballin’s (2000:10-11) 

wider sub-group of ‘indeterminate pieces’, with a maximum dimension >10mm and may not 
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necessarily be ‘chunky’ in appearance. The only attributes recorded for chunks were dimensions, 

cortex, and breakage. 

Small fraction 

This term is defined by Finlayson et al. (2000:64-67) as debris <10mm maximum dimension. 

Similarly, Ballin defines lithic material up to and including 10mm as ‘chips’, which are indicative of 

in situ knapping, and discarded as refuse (2000:10). Finlayson et al. (2000:67) recorded a restricted 

number of attributes for this category including primary blank type (flake or chunk), cortex, and 

breakage, which was applied here in addition to the dimensions. 

Fine fraction  

Fine fraction debris is defined as material <4mm, which was recovered from the Northton 

assemblage and quantified by raw material (Piper 2011). The results of this study indicated that the 

same range of debris as the small fraction was present at a microscopic level. Therefore fine fraction 

debris was not considered any further. 

Secondary Technology 

This section primarily comprises microliths and retouched pieces, which are pieces with intentional 

secondary removals that have been conducted to produce a modified flake or blank. Nomenclature 

for retouched pieces follows McCartan (1990); pieces associated with the production of microliths, 

such as truncations, are also included in this section (Finlayson et al. 2000:64). 

4.3.3. Specific Attributes 

The attributes recorded in this section are specific to the reduction stage or tool type and provide 

valuable information relating to stone tool manufacture. All measurements were taken using digital 

callipers to the nearest 0.1mm. 

4.3.3.1. Recorded Attributes for Cores 

Dimensions 

Only two dimensions were measured for cores: maximum length and weight. This is due to the 

range of morphological variability in cores, and the fact it is difficult to define a consistent point 

from which width or thickness could be measured. As such, the length was determined by the 

maximum linear dimension of the core which can be multiplied by the weight to provide “a uniform 

measure of size” (Andrefsky 1998:138-139). The weight was recorded using a digital balance to an 

accuracy of 0.01g. 
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Flake Removal Sequence 

 Bidirectional – where flake removals originate from both the proximal and distal ends of 

the core, and are indicative of bipolar reduction. 

 Multi-directional – where flake removals run in several directions, indicating frequent 

turning of the core and the use of multiple platforms. 

 Unidirectional – where flakes are removed from a single direction. The removals are often 

parallel to one another and originate from a single striking platform. 

Flake Removal Count 

The number of flakes removed from the core was recorded as a numerical value, and is based on a 

description of the number of stages visible. This refers to the fact that each stage of reduction of 

the core is representative of deliberate choices made by the knapper (Finlayson et al. 1996:256). 

Cortex 

The cortex is the natural surface, or ‘outer skin’, of a raw material that has been weathered, either 

through chemical or mechanical processes. Usually this is removed during the initial stages of 

knapping (Andrefsky 1998:103). Noting the condition of cortex is useful in determining the source 

of the material (Inizan et al. 1999:91). Cortex on flint often occurs as a distinct chalky covering, 

which is rolled and smooth on beach pebbles (Andrefsky 1998:103). The cortex on quartz is more 

difficult to distinguish. Ballin (2004:6; 2008:57) describes the cortication of quartz as “frosted” in 

appearance, occasionally with some of the parent rock adhering to the surface. Cortex on cores 

signifies the extent to which the core has been worked and was simply recorded as present (P) or 

absent (A), with a short description of the cortex type also given. 

Platform Preparation 

 Unprepared – where there has been no preparation of the platform, i.e. it is cortical. Bipolar 

platforms are also unprepared. 

 Simple preparation – where a single flake removal has been used to create the platform. 

 Complex preparation – where multiple flake removals have been used to create a platform, 

i.e. by faceting. 

 Lost – when the platform has been removed by later flake removals. 

4.3.3.2. Recorded Attributes for Flakes, Blades, Retouched Pieces, Small Fraction and Chunks 

Dimensions 

The dimensions recorded were length, width, and thickness. Length is defined as the maximum 

distance between the proximal and distal end of the flake or retouched piece, at 90° to the platform 

(Andrefsky 1998). For chunks, the length was simply determined by the maximum dimension 



 

 124 

(Finlayson et al. 2000:62). Width was measured at 90° to the length, at the maximum distance 

between the lateral edges. Thickness was in turn the maximum measurement taken at 90° to both 

length and thickness (Andrefsky 1998:97-98). 

Cortex 

For flakes the presence of cortex on the dorsal face was recorded by percentage. The degree of 

cortication, in combination with the dorsal scar count, signifies whether the flake is a primary, 

secondary or tertiary removal, as discussed above. The cortex percentage falls into four categories: 

 100% - primary removal 

 ≥50% - secondary removal 

 <50% - secondary removal 

 0% - tertiary removal 

This follows the ranking proposed by Andrefsky (1998:104). Where values fall close to 50% and 

were difficult to determine by eye, a dot-grid drawn on permatrace paper was superimposed over 

the artefact. If the greater proportion of dots covered the cortex area rather than the dorsal scars, 

the piece was categorised as ≥50%, and vice versa (Andrefsky 1998:104). Where ≥50% cortex was 

present, a short description of the cortex type (e.g. rounded and smooth, flat and frosted) was also 

provided for the flakes. 

Platform Type 

The striking platform of flakes can be used to determine a variety of reduction processes (Andrefsky 

1998:88). These are identified through various platform morphologies, listed below, that have been 

adapted from Andrefsky (1998) and Finlayson et al. (2000). 

 Absent – there is no platform present. 

 Broken/Crushed – the platform has been damaged or collapsed during the knapping 

process. This is often indicative of bipolar reduction (Finlayson et al. 2000:66). 

 Cortical – the platform is covered with cortex. 

 Facetted – a number of flakes have been removed from the platform. The number of facets 

is not recorded due to the difficulties in consistently recording their number (Andrefsky 

1998:92). 

 Plain – there has been no alteration or damage to the platform, usually smooth and flat, 

and made by a single flake removal. 

 Prepared – additional flakes have been removed from around the platform prior to striking 

in order to prepare the platform area, sometimes by reducing its size and thus increasing 

control of the flake removal. Platform preparation may also involve abrasion of the surface 

to remove surplus material. 
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Platform Dimensions 

The dimensions of a flake striking platform have been directly correlated with the reduction stage 

(Magne & Pokotylo 1981). These were only recorded if the platform was present and complete, i.e. 

it encompasses both lateral edges and the dorsal and ventral surfaces (Andrefsky 1998:89; Odell 

1989:185). The platform width was determined as the maximum distance between the lateral 

edges. The platform depth was recorded as the maximum distance between the ventral and dorsal 

sides of the flake, at 90° to the width (Andrefsky 1998:92). There may also be a relationship between 

platform dimensions, and thus flake size, and raw material availability (Dibble 1997:157). 

Dorsal Flake Scar Count 

The presence of flake ‘scars’ on the dorsal face of a flake was recorded numerically. This information, 

when used in association with cortex percentage can be extrapolated to suggest the reduction stage 

of the objective piece, as discussed above. It is acknowledged that the number of dorsal flake scars 

can vary depending on the method and stage of reduction, flake size and raw material (Andrefsky 

1998:106; Mauldin & Amick 1989:73; Odell 1989:178). This is especially pertinent regarding tertiary 

flakes, which may derive from any stage of the reduction process once the initial raw material 

nodule has been decorticated. In light of this the attribute was still recorded, but subsequent 

interpretation was of little merit. This attribute was not recorded where the dorsal surface 

exhibited 100% cortex. 

Dorsal Flake Scar Pattern 

The pattern of scars on the dorsal side of the flake suggests the manner in which previous flakes 

have been removed (Finlayson et al. 2000:66). Four categories recorded were for this: 

 Bidirectional – where dorsal scars originate from both the proximal and distal ends of the 

blank. Indicative of bipolar reduction. 

 Multi-directional – where dorsal scars run in several directions, indicating frequent turning 

of the core. 

 Unidirectional – where the dorsal scars originate from a single side or end, this may be the 

lateral edges, distal or proximal ends. 

 Indeterminate – this category was added retrospectively. In some instances it was 

impossible to identify the direction of multiple removals where the piece was broken or 

shattered. This was especially applicable to quartz flakes. 

Breakage 

The degree and type of breakage was previously recorded (Piper 2011), however there was little 

information that could be gleaned by recording different breakage patterns, beyond the overall 

greater propensity for quartz to exhibit parallel and perpendicular snaps (Piper 2011:167). The 
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latter are often associated with bipolar knapping (Finlay et al. 2000:563). However, interpreting the 

significance of breakage patterns is difficult due to the numerous ways in which an artefact may 

have been broken. Breakage may have occurred accidentally or deliberately during manufacture or 

use, or through post-depositional trampling (Cotterell & Kamminga 1987:691; Wickham-Jones 

2009b:244). Consequently, breakage is simply recorded as present (P) or absent (A), and does not 

assume the nature of the cause of the break (Inizan et al. 1999:131). 

Retouch 

The recording methodology for secondary retouch used directly follows Ballin (2000; Table 2), but 

excludes percussion angle. 

Notes 

This section recorded any additional information such as common features with other pieces. 

4.3.4. A Note on Natural Fragments 

Two of the sites from Lewis contained a large amount of ‘background quartz’ – quartz fragments 

that were present in extremely high quantities in the lower archaeological layers. This quartz was 

primarily of a milky-rock crystal variety with very frequent micaceous inclusions and is evidently a 

component of the natural background geology of the region. It is almost certain that none of these 

pieces had been worked do to the poor quality of the quartz, however this cannot be guaranteed. 

Therefore, the ‘background quartz’ was weighed and archived in case further analysis is required.
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Description Attribute Definition 

Type 

Edge 
Restricted to the outer sixth of the maximum width, along 

the edge of an artefact 

Invasive 

Extends to within four-sixths of the width of the artefact 

and is only considered completely invasive if >90% of 

either face of the artefact is retouched 

Extent of 

retouch 

Un-retouched The edge of the artefact is not retouched 

Sporadic Regular retouch along < 8mm of the edge 

Continuous Regular retouch along > 8mm of the edge 

Orientation of 

retouch 

Normal Extends into the dorsal face; initiated from the ventral side 

Inverse Extends into the ventral face; initiated from the dorsal side 

Alternating 
Alternates between normal and inverse along the same 

lateral edge 

Propeller Normal retouch on one lateral edge, inverse on the other 

Fineness of 

retouch (length 

of each 

removal) 

Very fine >0.5mm to ≤1mm 

Fine >1mm to ≤30mm 

Coarse >3mm to ≤5mm 

Very coarse >5mm 

Morphology of 

retouch 

 

Scaled 
Resemble fish scales where the removals are short and 

widest at the distal end, often with hinged terminations 

Stepped As scaled, but with stepped terminations 

Parallel 
Individual removals are elongated and separated by 

parallel arrises 

Sub-parallel 
Individual removals are elongated and separated by 

approximately parallel arrises 

Angle of 

retouch 

 

Very acute 0° to 15° 

Acute 16° to 45° 

Abrupt 46° to 75° 

Very abrupt 76° to 90° 

Obtuse >90° 

Course 

(delineation) of 

retouch 

Straight Follows a straight line 

Convex or 

concave 
Curving 

Notched 

A deliberate removal from the lateral edge which may be 

made up from a single, or multiple removals and creates 

“a small concave feature” 

Denticulated A denticulation comprises more than two notches 

Shouldered 
Found at either the proximal or distal end of an artefact 

where the retouch is concave-convex 

Nosed 
As shouldered but where the retouch is concave-convex-

concave 

Table 2. List of recorded retouch attributes (after Ballin 2008) 
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4.4. Conclusion 

This chapter has outlined the methodology used to record the lithic assemblages from the Western 

Isles sites, and is specifically designed to answer the first research question of this thesis: what is 

the nature of the lithic technology of the Mesolithic in the context of the Western Isles of Scotland? 

The recorded attributes are outlined and explained accordingly. This methodology was based upon 

those used in previous excavations of Mesolithic sites in the Inner Hebrides and the Scottish 

mainland to ensure the results are comparable. However, given the significant quantities of quartz 

recovered from each of the Western Isles sites, in contrast to the flint-dominated assemblages of 

comparable sites, these methodologies could not be strictly adhered to. 

The only synthetic review of quartz technology in Scotland has been published by Ballin (2008), 

therefore the outcomes of his study were of central importance to outlining the overall debate 

surrounding quartz analysis, and also the remit of this thesis. I concur with the majority of Ballin’s 

findings – the most significant of which is that quartz can be analysed within the same typology as 

flint, providing the differences in fracture mechanics are accounted for. Ballin’s simplistic 

classification of ‘tool’, however, is not consistent with the definition outlined by Inizan et al. (1999). 

I also agree with the view that the disregard of un-retouched pieces as tools would present a biased 

picture of the archaeological record, and contradicts over three decades of lithic and use-wear 

research (Driscoll 2010:79-80). 

The results of the assemblages analysed, and their implications for answering the research 

questions reiterated in the introductory section, are presented in the subsequent two chapters. 

The raw data are presented in Appendix Three through to Appendix Ten.  
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Chapter 5 Mesolithic ‘Open Air’ Sites on Harris 

5.1. Introduction 

This chapter introduces two Mesolithic sites on the Toe Head peninsula, South Harris – Northton 

and Tràigh an Teampuill. The nature of discovery, and subsequent excavation of the sites is outlined 

to provide background and context for the lithic assemblages. The results of the lithic analysis, 

which were analysed following the methodology in the previous chapter, are then presented. The 

full catalogue of recorded attributes can be found in Appendix Three. 

Toe Head is a prominent headland situated in the south-west of South Harris. It is dominated by 

the hill of Ceapabhal, through which runs an exposed pegmatite dyke; the surrounding landscape 

comprises a system of sand flats and saltmarsh, beaches, dunes and machair which is a designated 

SSSI (Scottish National Heritage 2011). The two sites of Northton and Tràigh an Teampuill are 

situated c.250m apart on the south-western Atlantic facing stretch of the peninsula (Figure 24). 

Both are ‘open air’ sites with exceptional organic preservation and date to the late Mesolithic 

(c.7000-5400 cal. BC). As discussed in Chapter Two, this is extremely rare in the Mesolithic 

archaeological record of Scotland. Only three other ‘open air’ sites at Rubha Port an t-Seilich and 

Storakaig on Islay, and Fiskary Bay on Coll contain comparable faunal assemblages, and have only 

recently been identified (Mithen & Wicks 2009; 2010; 2011a; 2011b; 2011c; 2012; 2013; Mithen et 

al. 2007d). Previously, Mesolithic faunal remains in western Scotland have only been recovered 

from a small number of shell midden sites on the small island of Oronsay, An Corran on Skye, and 

Sand and the ‘Obanian’ cave sites on the western mainland (Bonsall 1996; Hardy & Wickham-Jones 

2009b; Mellars 1987; Saville et al. 2012b). This makes Northton and Tràigh an Teampuill among the 

first non-shell midden Mesolithic sites to contain organic remains other than charcoal. 

The phrase ‘open air’ refers to the fact these sites are not found in caves. Such sites can thus be 

both shell midden and non-shell midden sites. It would be misleading to refer to non-shell midden 

sites as 'settlement’, ‘activity’, ‘habitation’ or ‘occupation’ sites, since it implies that the evidence 

for human presence at shell midden sites does not warrant such interpretation, or that these 

activities were not conducted there. 
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Figure 24. Location of the two sites on Harris. 1 - Northton, 2 - Tràigh an Teampuill. Ordnance Survey data © Crown 
Copyright/database right 2014. An Ordnance Survey/EDINA supplied service 
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5.2. Northton 

5.2.1. Discovery and Excavation  

5.2.1.1. Excavation 1963-1966 

Northton (NGR NF975 612) was initially identified in 1963 by Professor James McEwan when 

‘kitchen midden’ deposits containing a variety of marine molluscs, mammal bones, and pottery 

were observed eroding from machair on the headland (Murphy et al. 2001:5). McEwan conducted 

a small rescue excavation at the site in the subsequent year, as significant damage was being caused 

to the deposits by grazing animals and rabbit trappers. He identified Neolithic, Beaker, and Iron Age 

occupation levels, and recommended that further research should be conducted by professional 

archaeologists (Murphy et al. 2001:5). 

In 1965 and 1966 investigations were continued by a team under the direction of Professor Derek 

Simpson. These confirmed the findings of McEwan. However, the full importance of the site was 

not recognised as, due to a lack of funding, post-excavation analysis and full publication could not 

be completed for the excavations beyond interim statements (Murphy & Simpson 2000; Simpson 

1965; 1966; 1971; 1976; Simpson et al. 2006:15-17; Thomas 1970). The site was scheduled under 

the Ancient Monuments and Archaeological Areas Act of 1979 in 1992 (Historic Scotland 1992). 

5.2.1.2. Excavation 2001 

In 2000, a grant was awarded by Historic Scotland to conduct another season of excavation at 

Northton, and to publish in full the findings from Simpson’s excavations (Gregory et al. 2005:945; 

Simpson et al. 2006:17). The aims of this investigation were to recover data that could be integrated 

into the results of the 1960’s investigations and assess the damage being caused by coastal erosion 

through topographic survey, coring, and excavation of exposed deposits (Murphy et al. 2001:2). 

The assessment successfully identified “sections of archaeological significance” threatened by 

coastal erosion. These areas were targeted for excavation and are identified as the ‘Small Section’ 

and the ‘Large Section’ (Murphy et al. 2001:9). In the ‘Large Section’ total sampling was conducted, 

with bulk and routine soil samples taken to ensure maximum recovery of archaeological material 

(Jones 1991; Murphy et al. 2001:16). In this section two phases of potential Mesolithic activity were 

noted, in addition to the later prehistoric phases initially identified by McEwan (Simpson et al. 

2006:18). 

Phase I represented the earliest evidence of occupation at Northton. Deposits situated immediately 

above the natural boulder clay, and initially interpreted as early to mid-Holocene palaeosols 

contained burnt and unburned fish, small mammal and bird bones, charred hazel nutshell and 

charcoal (Church 2006a:36; Hamilton-Dyer 2006:33). Routine soil testing also indicated enhanced 

phosphate and magnetic susceptibility levels. Although no artefacts were present in this phase the 
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evidence strongly suggested anthropogenic activity was present in these deposits (Gregory et al. 

2005:946-948; Murphy et al. 2001:15-18). Two hazel nutshells yielded radiocarbon dates of 7051-

6657 cal. BC (2σ) for the earliest occupation levels of the site (Church pers. comm.). 

Phase II contained extensive occupation evidence in the form of two stone features and associated 

organic deposits. These deposits comprised a faunal assemblage much like that of Phase I, but with 

a greater number of taxa represented, in addition to marine molluscs. A lithic assemblage of worked 

quartz, flint and coarse stone tools was also recovered (Gregory et al. 2005:945). The hazel nutshells 

submitted for dating indicated the occupation of Phase II dated to 6559-6103 cal. BC (Church pers. 

comm.). A degraded barley grain and sheep phalanx was also found in this phase, and represent 

domesticated species that are not consistent with the Mesolithic dates. The routine soil tests 

suggested that the deposits of Phase II were heavily eroded and bioturbated, which may have 

resulted in later material becoming incorporated into the lower layers (Church pers. comm.; 

Gregory et al. 2005:946). 

The 2001 excavation at Northton, Harris identified the first unequivocal evidence for a Mesolithic 

presence in the Western Isles, and the most western extent of hunter-gatherer occupation in 

Europe (Bishop et al. 2011b). This supports the long-held claim that palaeoenvironmental 

disturbances observed in the palynological record on Lewis and South Uist were likely to be caused 

by anthropogenic activity (Gregory et al. 2005; Gregory & Simpson 2006). 

5.2.1.3. Excavation 2010 

Dr Mike Church, a member of the 2001 investigation team returned with a team from Durham 

University in 2010 to conduct an excavation of the Mesolithic deposits. Aggressive coastal erosion 

– the very reason the site was discovered in the 1960’s – continued to threaten the site, therefore 

assessing the state of erosion was the primary objective (Bishop et al. 2011a). The Mesolithic 

deposits had eroded by c.1m since 2001; the overlying later prehistoric deposits were almost 

entirely destroyed, most likely due to a violent winter storm in 2006 (Bishop et al. 2011a:4; 2011b). 

Following the methods implemented in 2001, total sampling of the site was continued to ensure 

maximum recovery of archaeobotanical and zooarchaeological remains. A 2m X 5m trench was 

situated parallel to the location of the since-eroded ‘Large section’ of the 2001 excavation, along 

the exposed section of Mesolithic deposits (Figure 26). The total area of the trench was excavated 

to reveal the Mesolithic deposits. However, due to time constraints only an area 1m X 5m 

contiguous to the eroding edge could be excavated in its entirety down to the glacial till (Bishop et 

al. 2011a:3; Figure 26). In order to establish the depth and extent of the basal midden deposit, a 

1.1m X 0.1m extension was made from the south-east edge of the trench, again along the eroding 

edge (Bishop et al. 2011a). 
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Figure 25. The Mesolithic deposits under excavation at Northton during 2010 with the later prehistoric settlement 
eroding above. Photo courtesy of Mike Church 

 

Figure 26. The trench at Northton during excavation in 2010 with the Phase 3 and Phase 4 deposits revealed. Photo 
courtesy of Mike Church 
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The phasing of the 2010 excavation at Northton is summarised in Table 3. Phase 3 was originally 

interpreted as comprising two phases: Phase 3a was thought to indicate terminal Mesolithic to Early 

Neolithic occupation at the site, whereas Phase 3b represented an intermediate phase of Mesolithic 

occupation (6559-6103 cal. BC; Bishop et al. 2011a:4-5). Following the submission of four hazel 

nutshells from Phase 3a for radiocarbon dating in 2010, this phasing has since been revised. The 

results span 6421-6117 cal. BC, making it contemporaneous with the dates from 3b and thus part 

of the same phase of later Mesolithic occupation at the site. It is subsequently referred to as Phase 

3 (Bishop et al. 2012a:10-11). 

Original 

Phasing 
Composition and Interpretation 

Subsequent 

Phasing 

1 Turf overlying eroded modern and re-deposited material, mixed with 

disturbed and bioturbated windblown sand deposits 

1 

2 2 

3a Later Mesolithic occupation phase (6421-6117 cal. BC) 

3 
3b 

Undisturbed in situ archaeological deposits from an intermediate 

phase of Mesolithic occupation (6559-6103 cal. BC) 

4 

Undisturbed in situ archaeological deposits of most substantial 

evidence Mesolithic activity and the earliest dated phase of 

occupation at Northton (7051-6657 cal. BC) 

4 

5 Natural glacial till 5 

Table 3. Revised Northton phasing (after Bishop et al.10-11; Bishop et al. 2011a:3-4) 

The main occupation phases from Northton represent a palimpsest of bioturbated occupation 

deposits. In addition to knapping debris from quartz, flint, and baked mudstone, fuel remnants and 

burnt food waste from hearths were recovered. This included charcoal, hazel nutshell, seeds, tubers, 

burnt fish, small mammal and bird bone, shell fish and crustacean (Bishop 2013; Bishop et al. 

2011a:5; 2011b; Blake 2011; Gregory et al. 2005:945; Piper 2011). 

5.2.1.4. Excavation 2011 

In 2011 an environmental sampling programme was conducted at Northton to assess the spatial 

extent of the Mesolithic deposits around the headland, in addition to sampling for pollen and land 

snails for palaeoenvironmental analysis. This was conducted by taking bulk samples at 3m intervals, 

where possible, along the eroding coastal edge to the north-east and north-west of the trench 

excavated in 2010 (Bishop et al. 2012a:9). The sampling indicated that the upper Mesolithic 

deposits were absent in the sections over 18m to the north-west of the 2010 trench, and over 25m 

to the north-east. Consequently it has been suggested that these upper Mesolithic layers were 

restricted to an area extending c.45-50m along the coast. This was supported by the borehole 

survey in 2001, which revealed the same deposits extending a minimum of 40m into the headland 

interior (Bishop et al. 2012a:12; 2012b). The lower Mesolithic deposits were identified in all of the 

sections excavated (with a single exception), and the borehole survey of 2001, therefore it appears 
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that the earlier Holocene soil horizon extends over a much greater area of the peninsula (Bishop et 

al. 2012a:13). In total over 1000 litres of soil were excavated from Northton during 2010 and 2011. 

A relic peat section had been noted during fieldwork in 2010, but due to time constraints was not 

sampled during the field season. A column sample was excavated from the section in 2011 to 

provide a palaeoenvironmental context for the archaeological remains. This has been analysed for 

pollen that could indicate the scale of human impact on the environment (Bishop et al. 2012a:8; 

Bishop et al.). An additional column sample was excavated from pre-machair deposits close to the 

2010 trench for land snail analysis and to further contextualise the environment around the site 

(Bishop et al. 2012a:8). 

The absence of any archaeological features, and minimal recovery of artefacts in the excavated 

sections around the main site, suggests that Northton and Tràigh an Teampuill (discussed below) 

are representative of distinct areas of Mesolithic occupation that occurred at different times over 

the course of almost 1700 years. It is highly probable there are other sites of similar nature in the 

area (Bishop et al. 2012a:13). 

5.2.2. Northton Lithic Assemblage Results 

The results presented in this section first comprise a summary of the lithics recovered during the 

excavations in 1965-66 and 2001. These are followed by a detailed analysis of the assemblage 

excavated in 2010. The results from the excavation in 2011 are discussed in isolation, since the 

deposits were located away from the main trench excavated in 2010; as such, the stratigraphic 

continuity cannot be guaranteed. 

5.2.2.1. Results from 1965-66 and 2001 

Eiméar Nelis of Queen’s University Belfast conducted an analysis of the chipped stone artefacts 

recovered from both the 1965-66 and 2001 excavations (Nelis 2006b:23). The original excavations 

in 1965-66 yielded an assemblage of 13 artefacts, excavated from the basal horizon below the 

Neolithic deposits. Nelis suggested that the stratigraphic position of this basal horizon 

corresponded closely with the basal horizon from Phase I of the ‘Large Section’ excavated during 

2001, and thus likely to be of Mesolithic date (Nelis 2006b:23). The assemblage is detailed in Table 

4. It comprised knapping waste from the production of flakes and blades, and only a single formal 

tool – “a barely modified piercer” – was recovered. Flint dominated this small assemblage, with 

only four pieces of quartz present – a flake, a piece of microdebitage, and two indeterminate 

shattered pieces (Nelis 2006b:23). 
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Material 

 Flint Quartz 

Technology No. Max. length (mm) No. Max. length (mm) Total 
  

Complete flakes & blades 5  1  6 

Flake - platform 1 17 1 10 2 

Flake - bipolar 1 <25   1 

Blade - bipolar 2 <25   2 

Flake - microdebitage 1 <5   1 

Shattered flakes & blades 3  1  4 

Flake - indeterminate 3 <9   3 

Microdebitage   1 <5 1 

Angular shatter   2  2 

Angular shatter   2 <25 2 

Possibly modified/utilised 1    1 

Piercer-on-flake shatter 1 <25   1 

Total 9  4  13 

Table 4. Nothton excavation 1965-66: Lithic assemblage from basal horizon (after Nelis 2006b:24) 

An assemblage of 45 lithics were recovered from the Phase II deposits of the 2001 ‘Large Section’ 

excavation, detailed in Table 5 (Nelis 2006b:24). The assemblage was overwhelmingly dominated 

by quartz, which included vein quartz, fine quartz, and orthoquartzite. A single flake of hornfels and 

only two pieces of flint microdebitage were present in the assemblage, which contrasts to the raw 

material composition of the lower deposits recovered in 1965-66. The typology comprised a large 

quantity of indeterminate shattered pieces, with a small number of flakes and blades reduced 

through both platform and bipolar technology, in addition to a single platform core. The high 

quantity of waste, and absence of formal tools, was attributed to the poor knapping quality of 

quartz (Nelis 2006b:25). Two coarse stone tools were also recovered during the 2001 excavation. 

One is a water-worn granite cobble, likely a manuport and with no apparent signs of use-wear; the 

other is a fractured gneiss pebble. Both are locally derived raw materials; it is suggested that the 

former may have been used for cracking hazel nutshells or in hide processing, and that the latter 

was probably a hammerstone used in lithic knapping (Gregory 2006). 

Given the lack of diagnostic Mesolithic artefacts from the 1965-66 and 2001 excavations, Nelis 

(2006b:25) discusses the material in very little detail. The absence of characteristic microliths is 

noted, along with a simple statement that “the assemblage is mostly comprised of flake and blade 

debitage, which indicate the application of platform and bipolar techniques…such characteristics 

are not distinct indicators of Mesolithic activity”. As such, lithic material from these early 

investigations did not fit with the current understanding of a ‘classic’ Mesolithic assemblage. 

Instead, it seemed that Northton constituted an assemblage more characteristic of the undiagnostic, 
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or amicrolithic, ‘Obanian’ sites on Oronsay. The overall interpretation of the undiagnostic material 

from Northton is that it may be “representative of a Mesolithic chipped stone assemblage in, at 

least, this area of the Western Isles”, and consequently “…suggest that the seemingly undiagnostic 

lithic scatters of the region represent the very evidence that has eluded the recognition of 

Mesolithic activity in this region for so long” (Gregory & Simpson 2006:79). This suggestion is 

discussed further in Chapter Nine. 

The range of quartz types present in the 1965-66 and 2001 assemblages from Northton vary 

between ‘vein quartz’ and ‘orthoquartzite’ (Table 5). This is likely to be a factor in Nelis’ description 

of the quartz at the site as “poor quality”, although there is no qualifying statement as to why 

(2006b:24-25). The Northton report was published prior to the publication by Ballin (2008) on 

quartz use in Scottish prehistory, therefore the categorisation of the quartz varieties do not follow 

those provided by Ballin and which have been used in this thesis. As such, close comparisons 

between the quartz assemblage recorded by Nelis and the material recovered between 2010 and 

2011 cannot be made.
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  Material  

Technology 

Vein Quartz Quartz Fine Quartz Ortho-quartzite Flint Hornfels  

No. 

Max 

length 

(mm) No. 

Max 

length 

(mm) No. 

Max 

length 

(mm) No. 

Max 

length 

(mm) No. 

Max 

length 

(mm) No. 

Max 

length 

(mm) 

 

Unworked/Angular shatter 21  6  1  3      31 

Angular chunks 13 75 2 24   3 50     18 

Micro-shatter 8 5 4 4 1 4       13 

Cores 1            1 

Single platform 1 45           1 

Complete flakes & blades   1  1    2  1  5 

Flake – platform   1 74 1 13       2 

Flake – bipolar           1 19 1 

Microdebitage         2 11   2 

Shattered flakes & blades 1  5  2        8 

Flake shatter 1 9 5 5 2 24       8 

Total 23  12  4  3  2  1  45 

Table 5. Northton excavation 2001: Lithic assemblage from Phase II deposits (after Nelis 2006b:24) 
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5.2.2.2. Northton 2010 Excavation Lithic Assemblage Results 

A pilot study was conducted on a sample of lithics recovered from the Mesolithic deposits 

excavated at Northton in 2010 for my MA dissertation (Piper 2011). Since the pilot study the 

excavated samples from the site have been fully processed, which has expanded the size of the 

assemblage. The phasing of the site has been also been revised (Bishop et al. 2012a:10-11). 

Consequently, the entire assemblage has required a complete and total re-assessment. 

This section describes the results of the complete lithic assemblage from the Mesolithic deposits at 

Northton. A general overview of the assemblage and raw materials is presented, followed by 

analyses of the lithic composition from each Mesolithic phase. A bag of unstratified material of 

mixed date, including lithics, pottery and animal bone was recovered from the beach at Northton 

during a site visit by the Historic Scotland warden in 2009. Due to the absence of stratigraphic 

information this material was not included in the main analysis but is catalogued in Appendix Three. 

It should be noted there is some concern over the identification of baked mudstone and mylonite 

in assemblages from the Western Isles. The Laxfordian shear zone runs very close to Tràigh an 

Teampuill, and banded mylonite has formed adjacent to this (Phillips 2006a). Torben Ballin (2014) 

states there is disagreement between geologists over the definition of meta-sediments from the 

Southern Hebrides and Western Isles, which have been variously described as mylonite, baked 

mudstone or hornfels. In an archaeological context these are often indistinguishable in appearance, 

due to weathering and post-depositional processes which render them “powdery and ‘blurry’ on 

the outside”. Therefore, unless thin-sectioned these raw materials are almost impossible to 

differentiate (Ballin pers. comm.). Ballin believes that the mylonite from the Western Isles is “stripy” 

– which would fit with the “finely banded” description of Phillips (2006a) – whereas baked 

mudstone from Staffin, Skye is “monochrome” (Ballin pers. comm.). This fits the description of 

indurated (hardened) baked mudstone blade fragment analysed by Phillips from the Neolithic 

layers at Northton, which is described as: 

“a fine-to very fine-grained, indurated, hard baked mudstone which possess a 

dull/matt lustre. The weathered surface of the sample is a light olive-grey (Munsell 

colour code 5 Y 5/2)…The rock is essentially massive, but a weak sedimentary 

lamination or banding has been recognised under the microscope. The most 

distinctive feature of the sample is the mould of a c. 1 cm in diameter iron concretion 

or nodule on one of its surfaces…” (Phillips 2006b). 

A late Beaker period flake from the site was thin-sectioned in 2001. This was deemed to be ‘Harris 

mylonite’ based on the hand specimen. Following thin-section analysis the ‘Harris mylonite’ was 

actually found to be an indurated, laminated baked mudstone rather than a true mylonite, and 

likely sourced from the Shiant Isles or Staffin, Skye (Phillips 2006b). 
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A raw material which closely fits the description of baked mudstone described by Phillips was 

identified in the Phase 3 deposits at Northton in 2010. Therefore, two pieces of the raw material 

suspected of being baked mudstone were selected for further assessment using thin-section 

analysis. The detail of this analysis is presented in Appendix Thirteen and based on the results, it is 

clear that the raw material within the Northton assemblage is not mylonite, and more closely 

resembles baked mudstone. Given the difficulty in distinguishing between certain raw materials, it 

may be that the hornfels piece identified in 2001 is the same raw material as this, although without 

re-analysis or thin-section of this piece, this remains purely speculative.  

5.2.2.2.1. General Character of the Assemblage 

There are a total of 785 pieces of lithic material from the Mesolithic phases of Northton. Of these, 

four were identified as natural fragments and not modified through human action (SF35, SF70a, 

SF80 and SF90). These are therefore excluded from the subsequent analysis, which comprises 781 

lithics, recovered as small finds during the excavation and from the >4mm sieved fraction of the 

bulk samples. Nine flakes and a scraper were archived for future residue analysis; these are 

therefore only included within the results for basic raw material and size data. 

Overall, flakes and small fraction flakes (<10mm) dominate the assemblage (Figure 27). Flake cores, 

core rejuvenation flakes, blades and retouched pieces are present in small numbers. The remainder 

of the assemblage comprises a quantity of cores, indeterminate chunks, several coarse stone tools, 

manuports, and a hammerstone (Table 6). 

 

Figure 27. Northton 2010 assemblage composition 
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Technology 

Raw Material   

Quartz Flint 
Baked 

mudstone 
Other Total 

Core 32 3 2 1 38 

Coarse stone tool    2 2 

Chunk 12 3 2 2 19 

Small Fraction Chunk 16 6 4  26 

Flake 260 44 35 5 344 

Blade 2  1  3 

Core rejuvenation flake 2 2   4 

Flake Core 3  1  4 

Small Fraction Flake 207 65 37 2 311 

Secondary pieces 2 10   12 

Hammerstone    1 1 

Manuport 4   13 17 

Total 540 133 82 26 781 

Table 6. Northton 2010 assemblage composition 

5.2.2.2.2. Raw Material 

In terms of the flaked lithics, the assemblage at Northton is dominated by quartz (Figure 28 and 

Table 6). Flint and baked mudstone are present in much smaller quantities, and there are small 

numbers of other raw materials such as carbonate, chalcedony, feldspar, and pegmatite. Small 

cobbles of gneiss and metabasalt, probably transported from the beach, and several igneous rocks 

of an unknown type were also present. 

 

Figure 28. Northton 2010 raw material composition 

Milky quartz is the most frequently represented variety of quartz at Northton (Figure 29). There are 

also a very high number of pieces made from mixed quartz, where one variety grades to another. 

Most often the mixed varieties are comprised of greasy to fine grained, milky to fine grained, or 
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milky to rock crystal. Feldspar is also found mixed with some of the quartz pieces. The other quartz 

varieties are only present in small quantities, with fine grained and greasy the most common of 

these. There are very few pieces of rock crystal, coarse grained quartz or quartzite. The quartz 

variety was not recorded for the eight quartz pieces archived for residue/microwear analysis. 

 

Figure 29. Northton 2010 quartz varieties 

The flint assemblage from Northton has a fresh appearance, which suggests it has not suffered from 

excessive post-depositional movement. All of the flint pieces have a creamy-white patina and ten 

pieces retain the same pink cortex, suggesting they derive from the same nodule. Six pieces have 

been burnt; these are grey in colour and display crazing on the surface. 

There are five contexts which provided material of Mesolithic date (Figure 30). Three of these are 

dated to the later Mesolithic phase of occupation, Phase 3 (C003, C009 and C014), and two are from 

the earlier phase, Phase 4 (C016 and C017). C009 is the largest excavated context and provides the 

most material. It is dominated by quartz but also contains a quantity of flint and baked mudstone. 

The largest proportion of ‘other’ raw materials also comes from this context. Quartz is the most 

frequently recovered raw material in all the other contexts, with the exception of C016. This is the 

only context that produced more flint than quartz. Flint is also present in small quantities in C003, 

C014, and C017. Baked mudstone is found only in the Phase 3 contexts. 

Overall, Phase 3 is dominated by quartz and contains a wider variety of raw materials than Phase 4. 

These include baked mudstone, carbonate, chalcedony, feldspar, gneiss, metabasalt, and 

pegmatite (Figure 31). In contrast, flint is the most common raw material in Phase 4. There is no 

baked mudstone from this phase and only a single flake of unknown raw material was identified 

alongside the small quantity of quartz. 
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Figure 30. Northton 2010 raw material by context, with phases indicated 

 

Figure 31. Northton 2010 raw material by phase 

The analysis below focusses on the primary and secondary technology from the large fraction 

(>10mm) of the Northton 2010 assemblage. In situ knapping is evidenced by the presence of small 

fraction flakes, beyond this there is little that can be deduced from such small pieces, which may 

also be from natural collision. This information is also true for chunks and small fraction chunks. 

Results of the small fraction flake, chunk, and small fraction chunk analysis is detailed in Appendix 

Eleven. 

5.2.2.2.3. Primary Technology: Coarse Stone Tools 

5.2.2.2.3.1. Anvil 

A gneiss anvil (SF22) was recovered from Phase 3 (C009; Figure 32). It measures 112.5mm at its 

maximum dimension and weighs 746.5g. One side is rounded, and the opposing side displays seven 

multidirectional removals from unprepared platforms. One of the removals forms a shallow 
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depression in the centre of the cobble that could have been used to hold material in order to 

facilitate bipolar reduction. 

 

Figure 32. Overhead view of the anvil (SF22) from C009, Northton 

5.2.2.2.3.2. Chopper  

A chopper (SF91) of gneiss was also recovered from Phase 3 (C009). The maximum dimension of 

this piece is 94.5mm and it weighs 342.9g. A total of six unidirectional removals have been made 

from an unprepared platform along one face, creating a cutting edge. Fractures are present on the 

unworked face, and likely to have been caused by two of the flake removals. 

5.2.2.2.3.3. Hammerstones and Manuports 

A single feldspar hammerstone (L517) was identified in Phase 3 (C003). It measures 44.4mm X 

57.3mm X 27.6mm in dimension, is semi-circular in shape, and has broken in two places. The 

rounded end of the piece displays some pitting which may be percussion damage ( Figure 33). 
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 Figure 33. Broken hammerstone L517  

Seventeen manuports were recovered from Phase 3 contexts. Two came from C003 – one rounded 

cobble of milky quartz, and one piece of gneiss which appears to have a natural fracture on one 

side. On the opposite side the surface is very smooth with some post-depositional concretion and 

has the appearance of being worn. The other manuports were recovered from C009 and comprise: 

ten rounded to sub-rounded cobbles of gneiss; three rounded to sub-angular cobbles of quartz-

feldspar; a single rounded cobble of metabasalt, and a smooth, rounded cobble of an indeterminate 

igneous rock which has broken in half. The largest measured dimension (length) for almost all of 

the manuports falls between 40-80mm. Only two gneiss cobbles from C009 are substantially bigger, 

in excess of 127mm (SF24) and 157mm (SF23) respectively (Appendix Three: Table 49). 

5.2.2.2.4. Primary Technology: Cores 

33 cores were recovered from the Phase 3 contexts at Northton, and five cores from Phase 4. 

5.2.2.2.4.1. Raw Material 

Most of the cores from Phase 3 are made from quartz, with two baked mudstone cores, a single 

flint core, and one chalcedony core also present (Figure 34). Flint and quartz are the only raw 

materials present in the Phase 4 core assemblage, represented by two and three cores respectively. 
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Figure 34. Northton 2010 core raw materials 

Milky quartz is the most common quartz variety in use at Northton to produce cores (Figure 35). It 

is the only variety used during Phase 4, and is represented by the highest number of cores in Phase 

3. A single core from Phase 3 is made from fine grained quartz and equal numbers of cores in this 

phase are made from quartzite and greasy quartz. Five cores are of mixed quartz varieties, which 

include greasy to fine grained quartz, milky to fine grained quartz, and milky quartz to rock crystal. 

 

Figure 35. Northton 2010 core quartz varieties 

5.2.2.2.4.2. Core Dimensions 

The majority of the cores from both phases at Northton fall between 10-60mm in their maximum 

dimension, with only three quartz cores from Phase 3 exceeding this size (Figure 36). The 

chalcedony, flint, and baked mudstone cores from Phase 3 fall at the smaller and lighter end of the 

spectrum, as do the flint cores from Phase 4. The quartz cores from Phase 3 display a high variation 

in size and weight, as evident on the graph and indicated by the large standard deviation (Table 7). 

The quartz cores from Phase 4 are on average larger than those from Phase 3, but lighter. 
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Figure 36. Northton 2010 core dimensions 

 Length (mm) Weight (g) 

Phase 3 Quartz 

Mean 35.66 36.59 

SD 18.91351 46.30178 

Phase 4 Quartz 

Mean 36.05 24.92 

SD 7.396251 12.05318 

Table 7. Northton 2010 core dimension summary statistics 

5.2.2.2.4.3. Cortex 

Almost all of the quartz cores from Phase 3 retain a proportion of cortex, as do the flint core and 

one of the baked mudstone cores from this phase. None of the cores from Phase 4, or the 

chalcedony core from Phase 3 retain any cortex (Figure 37). The other baked mudstone core from 

Phase 3 displays a small amount of weathered cortex. Twice the number of quartz cores display 

rounded cortex indicative of a water rolled pebble source than those where the cortex is flat, 

suggesting a block or plate removed from a vein.  
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Figure 37. Northton 2010 core cortex presence 

5.2.2.2.4.4. Flake Removals – Count and Sequence 

In Phase 3 the flint and baked mudstone cores are characterised by four or more flake removals. 

Only two cores from this phase have a single flake removal – the chalcedony core and one quartz 

core. The most frequent number of flake removals from quartz cores in Phase 3 is three (Figure 38). 

In Phase 4 all of the flint core display five or more flake removals. There are either four or five flake 

removals from the quartz cores in this phase. 

 

Figure 38. Northton 2010 number of flake removals from cores 

Regarding the direction of flake removals in Phase 3, the single removal from the chalcedony core 

in is obviously unidirectional (Figure 39). There are four quartz cores from this phase that also 

display unidirectional removals, and these mainly come from cores with three flake removals 

(Figure 39 and Figure 40). 
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Bidirectional removals, which indicate a bipolar reduction technique, are observed on all of the flint 

cores from both phases, in addition one of the baked mudstone cores from Phase 3. However, this 

technique is not observed on the Phase 3 quartz core with a bidirectional flake removal pattern. 

Instead, the three flakes have simply been removed from opposing platforms. A multidirectional 

flake removal pattern is observed on all the quartz cores from Phase 4, and the majority of quartz 

cores from Phase 3. 

 

Figure 39. Northton 2010 sequence of flake removals from cores 

 

Figure 40. Northton 2010 sequence of flake removals from cores in relation to the number of flakes removed 

5.2.2.2.4.5. Core Platform Preparation 

Evidence of mixed platform preparation, where more than one type of platform preparation is 

evident or has been lost, is most commonly recorded for quartz cores in Phase 3 and one in Phase 

4 (Figure 41). All of the flint cores and the chalcedony core have unprepared platforms, as does one 

of the baked mudstone cores. The platform preparation has been lost on the other baked mudstone 

core. More quartz cores display unprepared platforms than simple platforms. 
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Figure 41. Northton 2010 core platform preparation 

5.2.2.2.5. Primary Technology: Flakes  

The total flake (>10mm) assemblage from Northton comprises 344 pieces. There are 320 flakes in 

Phase 3 (C009; C014), and 24 flakes in Phase 4 (C016; C017). The results of the flake analysis are 

presented by phase, followed by a comparison between the two phases. Descriptions of the core 

rejuvenation flake, flake cores, refitting pieces and blades are described subsequently. The data 

presented here only includes material >10mm in maximum length following the suggestion that 

small fraction flakes (<10mm) and ‘chunks’ simply represent in situ knapping debris (Ballin 2000:10; 

Finlayson et al. 2000:67). The results of this data is presented in Appendix Eleven. 

5.2.2.2.5.1. Raw Material 

The overall flake assemblage is dominated by quartz, (75%; Figure 42). Flint flakes are marginally 

more common than baked mudstone flakes, and small quantities of carbonite, gneiss, pegmatite, 

and igneous raw materials make up the remainder of the assemblage.  

 

Figure 42. Northton 2010 total flake assemblage raw material composition 
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In Phase 3 the flake assemblage is dominated by quartz (Figure 43). A wide range of quartz varieties 

are present in the flake assemblage, with milky quartz the commonest (Figure 44). Mixed quartz 

varieties are the second most frequently represented, usually grading from very fine grained to fine 

grained quartz or rock crystal. Three pieces of fine grained quartz-feldspar appear to have been 

burnt (L206-208). Smaller numbers of fine grained and greasy quartz are also present, with very low 

frequencies of quartz varieties from the coarsest and finest ends of the spectrum. Baked mudstone 

is more commonly occurring than flint. Carbonate, gneiss, pegmatite, and an unknown igneous raw 

material are present in the remainder of the assemblage. 

 

Figure 43. Northton 2010 Phase 3 flake raw material composition 

 

Figure 44. Northton 2010 Phase 3 flake quartz varieties 

Flint is the dominant raw material in the Phase 4 flake assemblage, with quartz comprising a third 

of the raw material present (Figure 45). There are fewer quartz varieties present in Phase 4, of 

which milky is the most common. There are single flakes of coarse grained, fine grained and milky-

greasy quartz (Figure 46). A single flake of unknown raw material is also present. 
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Figure 45. Northton 2010 Phase 4 flake raw material composition 

 

Figure 46. Northton 2010 Phase 4 flake quartz varieties 

5.2.2.2.5.2. Flake Dimensions 

The quartz flake assemblage from Northton is very large; therefore graphical presentation of the 

quartz flake dimensions is given separately to the rest of the raw materials for the sake of clarity. A 

graph of all of the raw materials together is then presented for comparison. 

The summary statistics for Phases 3 and 4 of Northton are displayed in Table 8. In Phase 3 the quartz 

flakes are larger on average than baked mudstone flakes in all dimensions, which are in turn larger 

on average than flint flakes. In Phase 4, the quartz flakes are much larger on average than those 

made from flint. 
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Raw 

Material 

 Length (mm) Width (mm) Thickness (mm) 

 Phase 3 Phase 4 Phase 3 Phase 4 Phase 3 Phase 4 

Flint 

Min 10.10 10.04 3.50 4.60 0.90 1.54 

Max 33.20 16.80 27.20 11.36 9.70 5.04 

Mean 14.88 11.95 10.59 8.38 3.46 2.99 

SD 5.051701 1.724697 5.40194 2.367481 1.777198 1.293678 

Baked 

mudstone 

Min 10.30  5.00  1.30  
Max 27.10  36.20  9.20  

Mean 15.97  13.96  4.19  
SD 5.28592  6.380265  1.938833  

Quartz 

Min 10.00 10.00 4.50 10.30 1.50 2.00 

Max 58.40 37.10 63.90 32.97 26.30 12.70 

Mean 16.93 17.76 15.09 18.57 5.80 7.14 

SD 7.884406 8.982901 9.411335 8.590425 4.014479 3.184249 

Table 8. Northton 2010 flake dimension summary statistics for Phase 3 and 4 primary raw materials 

A MANOVA statistical test was conducted on the flake dimensions of flint and quartz from both 

phases (Field 2013). Using Wilks’s lambda, there was no significant difference between the flint 

flake dimensions of Phase 3 and Phase 4: 

Λ = .898, F(3,40) = 1.509, p = .227 

Using the same test, no significant difference was found between the quartz flake dimensions of 

Phase 3 and Phase 4: 

Λ = .933, F (3, 256) = .643, p = .588 

To test the robustness of the MANOVA results, a Mann-Whitney U test was also conducted for each 

raw material, on the ranked values of each dimension between phases (Table 9). 

Raw 

Material 

Dimensions 

(mm) 

Mean 

Rank 

Phase 3 

Mean 

Rank 

Phase 4 

U z p r 

Flint 

Length 25.43 16.83 132.5 -2.105 .035 -.317 

Width 24.14 19.33 170 -1.176 .239 n/a 

Thickness 23.59 20.40 186 -.780 .435 n/a 

Quartz 

Length 130.24 138.75 1,074.0 .315 .753 n/a 

Width 129.21 171.19 1,333.5 1.554 .120 n/a 

Thickness 129.22 170.75 1,333 1.538 .124 n/a 

Table 9. Northton 2010 Mann Whitney U test results for flint and quartz between phases. Flint Phase 3 n = 28, Phase 
4 n = 15; Quartz Phase 3 n = 252, Phase 4 n = 8 

For flint, there was a significant difference between the length of Phase 3 flakes and the length of 

Phase 4 flakes. The r value indicates a medium effect size, i.e. the difference is of medium strength. 

However, there was no significant difference between the widths or thickness of flint flakes 
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between the two phases. Overall, this supports to MANOVA and indicates there is no change in size 

of the flint flakes between the phases (Field 2013). 

For quartz, there was no significant difference between the two Phases in any of the dimensions, 

which again supports the MANOVA and shows that the size of the quartz flakes does not differ 

between the phases. 

A MANOVA test between the raw materials was also conducted using Wilks’s lambda. This shows 

that there is a significant difference between the dimensions of flint and the dimensions of quartz 

flakes from Northton.  

Λ = .937, F (3, 300) = 6.718, p = <.000 

Dimensions 

(mm) 

Mean 

Rank 

Flint 

Mean 

Rank 

Quartz 

U z p r 

Length 123.18 157.46 7,010.0 2.329 .017 .133 

Width 100.14 161.36 8,024.0 4.273 <.000 .245 

Thickness 92.26 162.69 8,370.0 4.916 <.000 .281 

Table 10. Northton 2010 Mann Whitney U test results between raw materials. Flint n = 43; quartz n = 260 

This is supported by the Mann-Whitney U test, whereby all dimensions display a statistically 

significant difference between the raw materials (Table 10; Field 2013). For length, the effect size 

is small, and for width and thickness the effect size is small-medium. On the basis of this test, in 

addition to the summary data above, it can be confidently interpreted that quartz flakes are larger 

than flint flakes. 

5.2.2.2.5.3. Flake Dimensions in Phase 3 

In Phase 3 the flint flakes are shorter than the baked mudstone flakes (Table 8), although the 

densest concentration for both these raw materials falls between 10mm-15mm in length (Figure 

47). Flint flakes do not generally exceed 22mm in length although there is one flint flake which is a 

clear outlier. Baked mudstone flakes are frequently up to 5mm longer than the flint flakes. The 

carbonate, gneiss and pegmatite flakes fall within the group of larger baked mudstone flakes. Only 

the unknown igneous raw material flake falls at the lower end of the scale. The flint and baked 

mudstone flakes rarely exceed 20mm in width, with the carbonate, gneiss and igneous raw material 

flakes consistently falling under this figure – the pegmatite flake is one of the largest flakes present 

in the assemblage. 
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Figure 47. Northton 2010 Phase 3 flake dimensions length:width, quartz excluded 

The quartz flakes from Phase 3 range widely in terms of length, although the tightest grouping falls 

between 10mm-20mm in length, similar to the other raw materials from this phase (Figure 48). 

There are also a large number of flakes grouped between 20mm-30mm in length, with a moderate 

number of quartz flakes that considerably exceed the length of the other raw materials. For 

example, the longest quartz flake is almost 60mm, over twice the length of the longest baked 

mudstone flake and almost three times that of the longest flint flake (Figure 49). The quartz flakes 

also display a high variation in width (Table 8); however, in line with the width of the other raw 

materials, the densest cluster again falls under 20mm. There is a clear, positive correlation between 

the length and width dimensions of quartz flakes. 

 

Figure 48. Northton 2010 Phase 3 quartz flake dimensions length:width 
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Figure 49. Northton 2010 Phase 3 flake dimension length:width, quartz included 

The majority of the flint flakes from Phase 3 fall under 6mm in thickness, however there is one 

outlier which is closer to 10mm (Table 8 and Figure 50). The largest cluster of flakes from this phase 

is between 1mm-6mm in thickness. This is comprised of the majority of the flint and baked 

mudstone flakes, in addition to the igneous raw material flake. As described above, the longer 

baked mudstone, flint and flakes of the other raw materials are clearly separated from this group 

by their increased length, and frequently by an increase in thickness. 

 

Figure 50. Northton 2010 Phase 3 flake dimensions length:thickness, quartz excluded 

The quartz flakes in Phase 3 range substantially in thickness, as well as length, indicated by the high 

standard deviation from the mean (Table 8 and Figure 51). There is a very compact grouping of 

quartz flakes up to 6mm in thickness, which corresponds to that of the flint flakes (Figure 51 and 

Figure 52). Most quartz flakes fall under 15mm in thickness, although a small minority exceed this 

measurement. This contrasts to the thickest of the baked mudstone, carbonate, igneous, and gneiss 
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flakes which do not exceed 10mm in thickness, in correlation with their length. The pegmatite flake 

sits clearly apart from the rest of the flake assemblage in terms of thickness. 

 

Figure 51. Northton 2010 Phase 3 quartz flake dimensions length:thickness 

 

Figure 52. Northton 2010 Phase 3 flake dimensions length:thickness, quartz included 
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Figure 53. Northton 2010 Phase 3 flake dimensions width:thickness, quartz excluded 

The large group of points in Figure 54 show that the majority of quartz flakes from Phase 3 up to 

30.5mm in width are no more than 15.5mm in thickness. Beyond this, the correlation between 

width and thickness becomes very weak, with the exception of the two largest, outlying points. The 

overall greater diversity in the size of quartz flakes when compared to the other raw materials is 

again emphasised in Figure 55, and supports the results of the statistical analysis between the raw 

materials. 

 

Figure 54. Northton 2010 quartz flake dimensions width:thickness 
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Figure 55. Northton 2010 Phase 3 flake dimensions width:thickness, quartz included 

5.2.2.2.5.4. Flake Dimensions in Phase 4 

The flint flakes from Phase 4 are small and very tightly group in terms of length and width (Figure 

56). The largest flint flake is less than 17mm long, with the widest less than 13mm in width (Table 

8). The quartz flakes from this phase are on average wider than the flint flakes, although the 

majority are of a similar length to the flint flakes. There are also some substantially longer and wider 

quartz flakes. The unknown raw material flake sits outside this main grouping. 

 

Figure 56. Northton 2010 Phase 4 flake dimensions length:width 
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Figure 57. Northton 2010 Phase 4 flake dimensions length:thickness 

There is a very clear distinction between the width and thickness of the flint and quartz flakes from 

Phase 4 in Figure 58. There is no clear correlation between these dimensions in the flint assemblage 

and these all group at the smallest end of the spectrum. The narrowest quartz flakes marginally 

overlap with the widest of the flint flakes which increase in width and thickness, showing a positive 

correlation. Overall, the again confirms the results of the statistical analysis between the raw 

materials. 

 

Figure 58. Northton 2010 Phase 4 flake dimensions width:thickness 
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majority of the Phase 3 flint flakes fall within the same width range as those from Phase 4. Although 

there are two which exceed this substantially, this has no statistically significant effect.  

 

Figure 59. Northton 2010 comparison between Phase 3 and Phase 4 flint flake dimensions length:width 

There is no observable or statistical difference between the thicknesses of the flint flakes from each 

phase, which generally fall between 1mm-6mm (Figure 60). The mean length and thickness of the 

flint flakes from both phases is very close and there is only a small standard deviation, despite the 

clear outliers from Phase 3 (Table 8). There appears to be no correlation between the increasing 

flake length of the Phase 3 flakes and their thickness. 

 

Figure 60. Northton 2010 comparison between Phase 3 and Phase 4 flint flake dimensions length:thickness 

Similarly, there is no correlation or statistical difference between the width and thickness of the 

flint flakes from these phases (Figure 61). There are three clear outliers from Phase 3 to the main 
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Figure 61. Northton 2010 comparison between Phase 3 and Phase 4 flint flake dimensions width:thickness 

5.2.2.2.5.6. Quartz Flake Dimensions from Phases 3 and 4 Compared 

It is difficult to observe any patterns between the quartz flakes from Phases 3 and 4 due to the 

overwhelming number of flakes from Phase 3 which dominate Figure 62, Figure 63 and Figure 64. 

On the whole it appears that the quartz flakes in both phases follow the same positive correlations 

between length, width and thickness. The majority of the flakes from Phase 4 fall within the main 

cluster of points from Phase 3 between 10mm-20mm in both length and width, and up to 10mm in 

thickness. As described above, there is no statistically significant difference between the 

dimensions of quartz flakes in either phase. 

 

Figure 62. Northton 2010 comparison between Phase 3 and Phase 4 quartz flake dimensions length:width 
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Figure 63. Northton 2010 comparison between Phase 3 and Phase 4 quartz flake dimensions length:thickness 

The Phase 3 quartz flakes also exhibit a wider range in terms of their maximum and minimum width 

measurements, which are respectively larger and smaller than the Phase 4 quartz flakes. Again, this 

is not statistically significant (Table 8 and Figure 64). 

 

Figure 64. Northton 2010 comparison between Phase 3 and Phase 4 quartz flake dimensions width:thickness 
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Secondary and tertiary flakes are equally represented in Phase 4. Tertiary flakes include the 

unknown raw material flake, three of the quartz flakes, and over a third of the flint flakes. A single 

flint flake retains 100% cortex, as do three of the quartz flakes. As in Phase 3, the remainder are 

secondary flakes. 

The flint in both phases appears to have derived from water rolled pebbles as the cortex is rounded 

and smooth. The ‘cortex’ on the baked mudstone flakes is dark and weathered, with a degree of 

probable iron staining present. The cortex on the quartz flakes from Phase 4 is more frequently 

frosted and flat, suggesting these pieces may have been removed from a larger block or plate 

sourced from a vein. Only a single quartz flake from this phase displays cortex which is smooth and 

rounded, suggesting a water rolled pebble as the source. In contrast, the cortex on the quartz flakes 

from Phase 3 suggests that beach pebbles were more frequently exploited as the source of the raw 

material. Substantially fewer display evidence for direct extraction from a vein. In some instances 

this is very clear as the cortex comprises mica or other raw materials, on others it is more difficult 

to determine as weathering may have also rounded exposed outcrops. 

 

Figure 65. Northton 2010 flake cortex percentage 
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Figure 66. Northton 2010 flake striking platform type 

 There is a clear linear trend between the increasing size of the plain platform dimensions in both 

flint and baked mudstone (Figure 67). The majority of the baked mudstone plain platforms are of a 

similar size, clustered between 5mm-7mm in width and 1.5mm-3mm in depth, although there are 

two significantly larger platforms in this raw material. The flint plain platforms from both phases 

are fairly evenly distributed along the range of widths and none exceed 4.5mm in depth. The 

platform on the pegmatite flake is by far the largest, which reflects the large size of the flake, 

discussed in Section 5.2.2.2.5.3. For clarity, the quartz platform dimensions are presented 

separately to the rest of the raw materials, before being combined for comparison (Figure 69). 

 

Figure 67. Northton 2010 plain striking platform dimensions for flint and baked mudstone 
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3 flakes vary more widely in their platform depth than those from Phase 4; the majority from Phase 

3 are densely clustered below 5mm in depth and there are a number which exceed 10mm. The 

cortical platforms are more frequently found between 5mm-10mm in depth. 

 

Figure 68. Northton 2010 plain and cortical striking platform dimensions for quartz 

The majority of the other raw materials with plain platforms fall within the densest cluster of those 

recorded in the quartz assemblage (Figure 69). Only two of the mudstone platforms are comparable 

with the larger quartz plain platforms. 

 

Figure 69. Northton 2010 striking platform dimensions for all raw materials 
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this phase is two or three, although a single baked mudstone flake has six dorsal flake scars. The 

pegmatite and igneous flakes from Phase 3 have single dorsal flake scars, whereas the carbonate 

flake has three dorsal flake scars and the gneiss flake has four. 

In Phase 4, all of the quartz flakes have one dorsal flake scar, with a single exception. The unknown 

raw material flake has one dorsal removal also. A single flint flake from Phase 4 has five dorsal flake 

scars, however the most commonly occurring number is one or two removals, as in Phase 3. 

 

Figure 70. Northton 2010 dorsal flake scar count 

Only a single quartz flake from Phase 3 exhibits bidirectional dorsal flake scars, which is indicative 

of a bipolar reduction technique (Figure 71). Unidirectional removals are the most commonly 

recorded in this raw material from this phase, although multidirectional removals are also well 

represented. Multidirectional removals are only marginally more common than unidirectional 

removals on flint in Phase 3, with the same pattern occurring in mudstone flakes, albeit significantly 

more pronounced. There are only a few instances where the dorsal flake scar pattern could not be 

determined in the raw materials from Phase 3. 

In Phase 4, the majority of quartz flakes display a unidirectional dorsal flake scar pattern, as does 

the unknown raw material. As in Phase 3, a marginally higher number of flint flakes exhibit 

multidirectional dorsal flake scar patterns than those with unidirectional ones. 
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Figure 71. Northton 2010 dorsal flake scar pattern 

The small number of indeterminate dorsal flake scar patterns is confined to flakes with two or three 

dorsal flake scars and is likely due to the nature of the raw material, which is predominantly quartz 

(Figure 71 and Figure 72). Flakes with single dorsal flake scars only display unidirectional removals 

as would be expected. Additionally, a unidirectional flake scar pattern is also present on flakes 

which exhibit two or three dorsal flake scars, although a multidirectional pattern is far more 

common for this number of flake removals. Flakes with four or more dorsal flake scars show that 

these have been removed exclusively following a multidirectional pattern. 

 

Figure 72. Northton 2010 dorsal flake scar count in relation to flake scar pattern 
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Figure 73. Northton 2010 flake breakage 

5.2.2.2.5.11. Flake Cores 

There are four flake cores in the assemblage at Northton which were all recovered from Phase 3. 

The dimensions are presented in Table 11. 

The baked mudstone flake core (SF25) does not exhibit any cortex and the plain platform measures 

5.7mm X 5.8mm. There are three multidirectional dorsal flake scars present on the piece, which is 

complete. A further flake removal (SF26) has been taken from the ventral face, which refits and is 

described below. Overall, this piece is slightly larger than the mean dimensions of the baked 

mudstone flakes from Phase 3 (Table 8 and Table 11). 

The three quartz flake cores (SF95m, SF95r and L501) are mixed varieties which grade between 

greasy and fine grained quartz. 

SF95m does not display any cortex and the platform is broken. There are three multidirectional 

dorsal flake scars present; two of these were formed during the initial knapping sequence, prior to 

the removal of the flake from the core. The third flake removal has been initiated from the broken 

left lateral edge, which was used as a platform to remove the third flake on the dorsal side. The 

thickness measurement for this piece conforms to the mean of the quartz flakes for this phase, 

however the length and width dimensions are much larger than the mean (Table 8 and Table 11). 

SF95r retains <50% cortex along the right lateral edge, which is smooth and rounded, suggesting 

the source is a water-rolled pebble. There are two multidirectional flake removals from the piece – 

one has been initiated from the cortical edge which removed the original platform of the piece, and 

formed a platform for the second removal on the dorsal side. There is breakage on the left lateral 

edge. The width of SF95r is slightly less than the mean for the quartz flakes from Phase 3, however 

the length and thickness are both larger than the average (Table 8 and Table 11). 
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Despite the slight breakage at one end of the platform of L501, it remains very large, which allowed 

it to be used as a platform for a further removal from the ventral face of the piece. There is only 

one dorsal flake scar present, yet it is a tertiary flake, and there is breakage to both lateral sides. 

The length of L501 fits with the mean of the quartz flakes from Phase 3, however the width and 

thickness are much larger (Table 8 and Table 11). 

Context No. Catalogue No. Raw Material Length (mm) Width (mm) Thickness (mm) 

009 SF25 
Baked 

mudstone 
16.10 15.00 5.70 

009 SF95m Quartz 31.09 11.08 5.84 

009 SF95r Quartz 22.92 14.61 8.78 

009 L501 Quartz 17.50 24.40 9.20 

Table 11. Northton 2010 flake core dimensions 

5.2.2.2.5.12. Core Rejuvenation Flakes 

Four core rejuvenation flakes were found at Northton. Two are fine grained quartz and from Phase 

3, two are flint and from Phase 4. The dimensions for the core rejuvenation flakes are presented in 

Table 12. 

L481 and L482 are the fine grained quartz core rejuvenation flakes recovered from Phase 3. Both 

have broken platforms but no other observable breakage. L481 does not display any cortex and has 

four multidirectional dorsal flake scars. L482 retains <50% cortex and has three multidirectional 

dorsal flake scars. The length and thickness of both these pieces is much larger than the mean for 

the quartz flakes from Phase 3, however the width is much narrower than the average (Table 8 and 

Table 12). 

L611 and L612 are the flint core rejuvenation flakes found in Phase 4. L611 has a broken platform, 

but no other breakage present. There is no cortex present on this piece and four multidirectional 

dorsal flake scars were recorded. L611 is exactly average in length, when compared to the mean 

lengths of the flint flakes from Phase 4, whereas the width is much narrower and the thickness 

much greater (Table 8 and Table 12). 

L612 retains <50% cortex and there are three multidirectional dorsal flake scars. One of these 

previous flake removals was used as the platform for the other two flake removals. There is fine, 

scaled, normally orientated, and sporadic secondary working on the edge of this piece which has 

been initiated from an acute angle, and used to prepare the edge of the platform along a convex 

course (Figure 74). The cortex on this piece is smooth and rounded, thus the raw material likely 

derived from a water-rolled beach pebble. This piece is very short in comparison to the average 

length of the flint flakes in this phase, however the width and thickness measurements of L612 

exceed the maximum dimensions recorded for any of the Phase 4 flint flakes (Table 8 and Table 12). 
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Figure 74. L612 core rejuvenation flake with retouch/platform preparation 

Context No. Catalogue No. Raw Material Length (mm) Width (mm) Thickness (mm) 

009 L481 Quartz 31.00 12.00 10.60 

009 L482 Quartz 33.10 9.30 9.60 

016 L611 Flint 11.94 3.01 7.73 

016 L612 Flint 3.88 15.29 7.26 

Table 12. Northton 2010 core rejuvenation flake dimensions 

5.2.2.2.5.13. Refits 

In both phases two sets of refitting pieces were identified. In Phase 3 baked mudstone flakes SF25 

and SF26 were found to refit. The former is a flake core (described in Section 5.2.2.2.5.11) and the 

refitting piece SF26 is the flake spall which was removed from the ventral face of SF25. SF26 

measures 24.20mm X 18.20mm X 2.70mm and does not exhibit any cortex. The platform is absent 

and there are three multidirectional dorsal flake scars present, with no additional breakage. 

Also from Phase 3 are milky quartz flakes L177 and L178. L177 has a plain platform that exhibits a 

small amount of knapping shatter and has therefore been recorded as broken. The piece measures 

15.40mm X 23.90mm X 3.00mm. A single unidirectional flake removal (L178) has been made from 

the dorsal side on the same platform, which refits. L178 measures 10.50mm X 15.10mm X1.80mm 

and there is no cortex present on the piece. A single unidirectional dorsal flake scar is present and 

there is breakage to the flake in addition to the absent striking platform. 

In Phase 4 a flint chunk (L157) and a flint flake (L158) refit together. L157 measures 11.70mm X 

10.10mm X 4.30mm and displays >50% cortex, with substantial breakage. L158 has clearly spalled 

off from L157 upon striking, which has broken the platform. The piece measures 11.20mm X 

5.40mm X 2.90mm and there is <50% cortex present. There is a single, unidirectional flake scar 

which is the relic surface of L157. 



  

172 

 

L153 and L167 were also recovered from Phase 4, albeit from separate contexts. Both pieces 

retain >50% cortex and there are two multidirectional dorsal flake scars on both pieces. L167 is the 

proximal end of what was a much larger flake and the platform is absent. L153 is the distal end of 

this original, larger, flake which has broken with a perpendicular snap across centre. The cortex 

present on these pieces is a pale pink colour and likely derived from the same unit as L147-L155. 

5.2.2.2.5.14. Blades 

There are three blades in the Northton assemblage, all of which come from Phase 3. The baked 

mudstone blade (SF78) retains <50% cortex on the dorsal side along with two, multidirectional, 

dorsal flake scars. The platform has broken on this piece and the end has snapped off. From the 

dimensions (Table 13), this piece does not appear to be a true blade; however when taking into 

account the breakage the piece fits with the definition. When compared to the maximum length of 

the baked mudstone flakes, the blade is very long but of average width and thickness (Table 8 and 

Table 13). 

There are two quartz blades from Northton. Both of these exceed the average length of the quartz 

flakes from this phase, but are narrower and thinner than the mean (Table 8 and Table 13). The 

blade made from milky quartz (SF103i) is also broken at the end therefore, like the baked mudstone 

blade, the dimensions do not suggest it is a true blade but would be so if it were complete. There 

is no cortex present on this piece and the plain platform is complete, measuring 7.8mm X 2.7mm. 

There are two unidirectional flake scars visible on the dorsal face of the blade. 

The fine grained quartz piece (L637) is also a broken blade – the platform is absent and a parallel 

snap runs the length of the blade. There is no cortex present on this piece and there are two 

unidirectional dorsal flake scars evident. The dimensions for this blade are presented in Table 13. 

Context 

No. 

Catalogue 

No. 

Raw 

Material 

Blade Length 

(mm) 

Blade Width 

(mm) 

Blade Thickness 

(mm) 

009 SF78 
Baked 

mudstone 
20.60 14.00 3.40 

009 SF103i Quartz 20.10 11.70 2.80 

009 L637 Quartz 20.01 7.59 3.81 

Table 13. Northton 2010 blade dimensions 

5.2.2.2.6. Secondary Technology 

Several pieces in the Northton assemblage display secondary working. Each piece is described 

individually below.  
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5.2.2.2.6.1. Burins 

Three burins were recovered from Phase 3. Two are flint and one is milky quartz that grades to rock 

crystal. The dimensions for the burins are presented in Table 14. 

SF79 is a flint burin on the proximal end of a blade, which retains <50% cortex and has a plain 

platform measuring 10.10mm X 2.20mm. The burin spall has been removed by a single, abrupt 

removal initiated from the distal end towards the right lateral edge. This was the final flake removal 

in a sequence of four multidirectional flake removals (Figure 75). The full extent of the removal is 

not evident due to a parallel snap at the distal end of the piece. This piece exceeds the maximum 

length of the largest flint flake recorded in Phase 3, and the width and thickness measurements far 

exceed the average for flint in this phase (Table 8 and Table 14). 

 

Figure 75. SF79 flint burin 

L113 also has four multidirectional dorsal flake scars. This flint burin does not display any cortex 

and there is no evidence for further breakage on the piece beyond the broken platform. The burin 

spall on this piece has also been removed from the distal end towards the right lateral edge. In 

contrast to SF79, this piece falls marginally below the mean figures in all dimensions (Table 8 and 

Table 14). 
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Figure 76. L113 flint burin 

The burin spall removed from L467 was initiated from the proximal end towards the left lateral 

edge (Figure 77). This quartz burin does not exhibit any cortex, and the platform on the piece has 

been broken by the burin spall removal. There are only two multidirectional dorsal flake scars on 

the piece and no evidence of breakage. The dimensions for this burin all fall below the average size 

for quartz flakes in Phase 3 (Table 8 and Table 14). 

 

Figure 77. L467 quartz burin 
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Context No. Catalogue No. Raw Material Length (mm) Width (mm) Thickness (mm) 

009 SF79 Flint 21.80 14.80 5.50 

009 L113 Flint 14.00 8.00 2.40 

009 L467 Quartz 11.80 8.40 4.20 

Table 14. Northton 2010 burin dimensions 

5.2.2.2.6.2. Microliths 

Five flint microliths were recovered from Phase 3 and three flint microliths were recovered from 

Phase 4. From Phase 3 are: a double backed blade (SF65); a scalene triangle/crescent (L79); a fine 

point (L90); and two truncations – a microburin (SF97), and a possible lamelles a cran (L65). From 

Phase 4 two crescents (L162; L613), an obliquely blunted blade (L609), and an indeterminate backed 

piece (L159 – described in section 5.2.2.2.6.4) were recovered. Each piece is described individually. 

The double backed blade (SF65; Figure 78) does not retain any 

cortex, and exhibits three unidirectional dorsal flake scars. Two 

of these flake scars form a central arris creating a crested blade; 

however the crest has been partially removed by a third flake 

removal along the centre of the blade. This flake scar terminates 

in a step fracture midway along the piece. There is continuous, 

fine edge retouch, which runs straight along both sides of the 

piece, removing the platform. The retouch has normal 

orientation with sub-parallel removals struck from an acute 

angle. SF65 measures 16.20mm X 13.30mm X 8.20mm. 

 

 

 

 

Figure 78. SF65 double backed blade 
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L79 (Figure 79) grades between a scalene triangle and a crescent 

in form (Finlayson et al 1996:258). There is continuous fine to 

very fine, propeller retouch along both lateral edges, creating a 

backed and obliquely blunted point. The removals are sub-

parallel and very abrupt, grading from straight to convex – 

hence the slight crescent form; on the left side a perpendicular 

snap forms the long edge of the scalene triangle. There is no 

cortex or platform present on the piece, and a single 

unidirectional dorsal flake scar was recorded. The piece 

measures 14.00mm X 4.90mm X 1.90mm. 

 

 

 

 

 

Figure 79. L79 crescent-scalene triangle microlith 

L90 is a fine point (Figure 80), which measures 14.70mm 

X 5.60mm X 1.70mm. A single, unidirectional dorsal flake 

scar was recorded, and there is no cortex present. The 

platform is absent due to a parallel snap. Backing along a 

perpendicular snap on the right lateral side, at the 

extreme distal end, has caused the edges of the blade to 

converge to a fine point, creating the piece. The backing 

is formed by sub-parallel removals of continuous, fine to 

very fine invasive edge retouch, initiated at an acute 

angle with normal orientation. At the proximal end the 

retouch becomes more acute and invasive, and the very 

tip of the point has been broken. 

 

 

 

 

Figure 80. L90 fine point microlith 
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The microburin (SF97) measures 16.20mm X 21.90mm X 4.10mm. There is <50% cortex present 

on the piece and there are three 

multidirectional dorsal flake scars. The 

second flake removal appears to have 

been a failed attempt at creating a notch 

on the left lateral side. The third flake 

removal – an invasive, scaled, very 

coarse removal initiated normally at an 

acute angle was successful in creating a 

notch at the mesial right lateral edge 

(Figure 81, arrowed). The breakage 

recorded on this piece is the 

accompanying microburin snap. 

 

 

 

 

Figure 81. SF97 microburin 

Due to the breakage present on L65, this piece cannot be confidently identified as a lamelles à cran 

truncation (Figure 82). However, a best estimate of this type of truncation has been made on the 

basis of continuous, normal edge retouch which runs along a straight to concave course, and forms 

a notch on the right lateral side of the 

proximal end. The very abrupt angle of the 

removals has created sub-parallel removals, 

which vary from fine to very coarse. The 

platform is absent and there is no cortex 

present on this piece. The retouch has 

obscured three of the four dorsal flake scars; 

therefore the dorsal flake scar pattern could 

not be determined. It measures 16.20mm X 

13.3mm X 8.2mm. 

 

 

 

 

Figure 82. L65 possible lamelles à cran truncation 
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The two crescent microliths recovered from Phase 4 are L162 

and L613. There is <50% cortex present on the dorsal face of 

L162, in addition to two multidirectional flake scars. The 

platform is absent due to the presence of microlithic edge 

retouch along a perpendicular snap. The retouch follows a 

convex course, creating the crescent shape of the microlith 

(Figure 83). The parallel removals are continuous in their 

extent, ranging from fine to coarse and initiated from a very 

abrupt angle with normal orientation. L162 measures 

13.6mm X 6.4mm X 3.9mm. 

 

 

 

 

 

Figure 83. L162 crescent microlith 

L613 is much smaller than the piece described above, with 

dimensions of 8.64mm X 3.15mm X 1.27mm. This piece is 

complete and there are two unidirectional dorsal flake 

scars present, with no cortex recorded. The absence of the 

platform is due to the presence of microlithic edge retouch 

which extends from the proximal end along the entire left 

lateral edge (Figure 84). This retouch is continuous and 

slightly convex in its course, with normal orientation. The 

removals are fine, scaled, and initiated from a very abrupt 

angle. This piece is interpreted as a very small crescent 

microlith. 

 

 

 

 

Figure 84. L613 crescent microlith 
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L609 is a very small retouched piece measuring only 8.16mm 

X 4.11mm X 0.81mm (Figure 85). There is no cortex present 

on the piece and the platform is absent. A single 

unidirectional dorsal flake scar was recorded, and there is 

breakage on all edges of the piece. At the proximal end the 

oblique snap has been blunted by edge retouch. The retouch 

extends along the full width of the piece but, due to the size 

of the piece, is recorded as sporadic according to the 

methodology. The course of the retouch is straight and it has 

normal orientation with very fine scaled removals initiated 

from an abrupt angle. The oblique blunting of the breakage 

on this piece, and the fact the length is twice that of its width 

suggests this is a very small obliquely blunted blade. 

 

 

 
Figure 85. L609 obliquely blunted microlith 

5.2.2.2.6.3. Scraper 

A single quartz scraper (SF103a) was recovered from Northton in Phase 3. The dimensions of the 

piece are 42.60mm X 23.20mm X 12.10mm and there is 100% dorsal cortex coverage. Initial 

observations indicate that up to five secondary removals have been made in order to create the 

scraper edge along the right lateral side. The piece has been archived for future analysis of potential 

microwear and residue, therefore no further analysis was undertaken. 

5.2.2.2.6.4. Miscellaneous Pieces 

There is secondary working on a single flint piece from Phase 4. However, due to its size (11.40mm 

X 6.75mm X 5.04mm), and the nature of the retouch its function cannot be determined. L159 

displays a straight course of continuous, alternating retouch along its cortical edge (Figure 86, 

arrowed). These removals have been initiated from a very abrupt angle and range from fine to 

coarse, with a scaled to stepped morphology. There are two unidirectional flake scars present on 

the dorsal face and the platform is absent. The retouch may have been an attempt to remove the 

cortex present at the proximal end of this piece. 
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Figure 86. L159 miscellaneous retouched piece 

The retouch present on the core rejuvenation flake L612 is described above in Section 5.2.2.2.6.4. 

5.2.2.3. Northton 2011 Excavation Lithic Assemblage Results 

During the fieldwork season of 2011, seventeen sections were excavated at 3m intervals around 

the eroding coastal edge of the Toe Head peninsula, close to the area targeted for excavation in 

2010. Section numbers 1-5 were situated to the north-east of the 2010 trench and sections 6-17 

were located to the north-west (Bishop et al. 2012a). The Mesolithic contexts interpreted as the 

earlier and later anthropogenic ground surface horizons, which were identified in 2010 (C009, C016 

and C017), were present in all of the sections to the north-east of the 2010 trench. To the north-

west, C009 (Phase 3) was only present in sections 7-10 and C016/C017 was identified in sections 6-

15. C009 was absent from section 15, which lay between sections 7 and 8, appearing to have eroded 

away. C018 was instead identified below the machair deposits and above the glacial till in this 

section. C018 comprised a dark brown sandy-silt of similar composition to C017, although darker in 

colour. It is interpreted as comparable to C016/C017 and likely to be part of the Phase 4 lower 

Mesolithic horizon (Bishop et al. 2012a). 

5.2.2.3.1. General Character of the Assemblage 

A total of 29 artefacts were recovered from six of the excavated sections during the 2011 excavation 

at Northton. The majority of the material was recovered following post-excavation processing of 

the bulk samples, however SF103, SF104 and SF105 were recorded in situ, eroding from C009 
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(Phase 3), immediately next to the 2010 trench. One flint flake (SF102) was unstratified and is not 

included in this analysis. All of the worked lithic material derived from the Mesolithic horizons, with 

the exception of the unstratified flake. Sixteen pieces were identified in what is believed to be the 

continuation of C009 (Phase 3), which was identified during the 2010 excavation. Twelve pieces 

derived from contexts equivalent to Phase 4 of the 2010 excavation (C016/017 and C018). 

The lithic assemblage from the >4mm sieved residue fraction is dominated by flakes and small 

fraction flakes (Figure 87 and Table 15). A single manuport was also recovered in addition to two 

cores, one of which is a broken core fragment.  

 

Figure 87. Northton 2011 assemblage composition 

Technology 
Raw Material   

Quartz Flint Other Total 

Core 2 
  

2 

Flake 13 1 2 16 

Small Fraction Flake 7 2 
 

9 

Manuport 1 
 

 1 

Total 23 3 2 28 

Table 15. Northton 2011 assemblage composition 

5.2.2.3.2. Raw Material 

Quartz is the most frequently occurring raw material in the Northton 2011 assemblage (Figure 88). 

Single flakes of feldspar and an unknown raw material represent a total of 7% of the assemblage. A 

slightly higher quantity of flint makes up the remainder. 

Core
7%

Flake*
89%

Manuport
4%

n=28 
* Includes small fraction flakes 
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Figure 88. Northton 2011 raw material composition 

The whole range of quartz varieties are represented in this small assemblage (Figure 89). The finer-

grained varieties are more frequently present, with milky quartz the most common, and small 

quantities of fine grained quartz, rock crystal and greasy quartz. Single pieces of quartzite and 

coarse grained quartz were also identified. The mixed quartz varieties predominantly range 

between milky to fine grained. 

 

Figure 89. Northton 2011 quartz varieties 

The lithics found in C009 (Phase 3) were only identified in sections 1-4, to the north-east of the 

2010 trench, and number a total of 16 pieces. These are predominantly quartz with single flakes of 

flint and an unknown raw material (Figure 90). Only two lithics were recovered from C016/C017 

(Phase 4). Both are flint, and these derived from section 12, to the north-west of the 2010 trench. 

The remaining ten lithics were recovered within section 15, from C018 (Phase 4), also to the north-

west of the 2010 trench. The majority of these are quartz, with a single flake of feldspar also present. 
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3%

Flint
11%
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Figure 90. Northton 2011 raw material by context, with phases indicated 

On the whole, the assemblage is in a fresh condition with little evidence of post-depositional 

movement. SF107 stands out as different from the rest of the assemblage as it appears to be rolled 

and abraded. Both of the flint pieces are light grey in colour. L650 does not appear to be patinated, 

whereas L663 is completely patinated and exhibits some iron pan staining. The unknown raw 

material piece is also very fresh in appearance. 

The analysis presented below is on the primary technology from Northton 2011. The small fraction 

flake assemblage is detailed in Appendix Eleven. 

5.2.2.3.3. Primary Technology: Coarse Stone 

5.2.2.3.3.1. Manuports 

A single greasy quartz manuport (L659) was recovered from C009 in section 3. The piece is a sub-

rounded, water worn pebble which does not display any visible evidence for working and measures 

49.71mm X 32.50mm X 22.56mm. 

5.2.2.3.4. Primary Technology: Cores 

Two quartz cores were recovered from the 2011 excavation at Northton, both from C009. SF105 

was recovered eroding from the later Mesolithic horizon close to the 2010 trench. It is made from 

greasy quartz and the dimensions are presented in Table 16. The cortex on the core is smooth and 

rounded, suggesting the original source of the material was a beach pebble. There are six 

multidirectional flake scars on the piece, which were removed from unprepared platforms. Some 

platform preparation has also been lost due to subsequent flake removals. 

Context 9 Context 16/17 Context 18

Flint 1 2

Quartz 14 9

Feldspar 1

Unknown 1

0

2

4

6

8

10

12

14

16

Q
ty

Phase 3            Phase 4 
Context Number

n=28 
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L660 is very small piece of fine grained quartz and better described as a core fragment. The cortex 

on the piece is also smooth and rounded, again indicating a beach pebble source. A single, 

unidirectional flake removal has been initiated from an unprepared platform. The piece has clearly 

broken during knapping. 

Catalogue No. Quartz Variety Length (mm) Weight (g) 

SF105 Greasy 29.40 8.98 

L660 Fine grained 9.15 0.24 

Table 16. Northton 2011 core dimensions 

5.2.2.3.5. Primary Technology: Flakes 

There are a total of 16 flakes (>10mm) from Northton 2011. Eight flakes each were recovered from 

Phase 3 (C009) and Phase 4 contexts (C016/017; C018). 

5.2.2.3.5.1. Raw Material 

Quartz dominates the flake assemblage from Northton 2011, with only single pieces of flint, 

feldspar and an unknown raw material represented (Figure 91). The unknown raw material flake 

was found in C009 (Figure 92). There is a slightly higher percentage of quartz in the Phase 3 

assemblage which reflects the trend identified in 2010. 

Flint and feldspar are present in the Phase 4 deposits, with a proportionally lower number of quartz 

flakes in comparison to Phase 3. Again this is consistent with the findings from 2010. 

 

Figure 91. Northton 2011 total flake assemblage raw material composition  

Unknown
6% Feldspar

6%

Flint
6%

Quartz
82%

n=16 
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Figure 92. Northton 2011 Phase 3 and Phase 4 flake raw material composition 

There is a wide range of quartz varieties present in the Northton 2011 assemblage, with milky 

quartz dominating the flake assemblage in both phases (Figure 93). In Phase 3 rock crystal and 

mixed milky to rock crystal flakes are also present. 

In Phase 4 the remainder of the flake assemblage is split equally between fine grained and mixed 

(milky to fine grained) quartz varieties. 

 

Figure 93. Northton 2011 Phase 3 and Phase 4 flake quartz varieties 

5.2.2.3.5.2. Flake Dimensions 

The summary statistics for the quartz flakes are presented in Table 17. These could not be 

conducted for the other raw materials as there are less than three in each phase. The Phase 4 flakes 

have a wider range in length than those in Phase 3, although the mean value is very similar, and is 

reflected in the higher standard deviation value for Phase 4. 
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Phase 4 Flake 1 6 1
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In contrast to the length, the Phase 4 flakes display less variation in the minimum and maximum 

dimensions for both width and thickness than those from Phase 3. Phase 3 has greater mean and 

standard deviation values for both of these dimensions than Phase 4. 

Raw Material  Length (mm) Width (mm) Thickness (mm) 

  Phase 3 Phase 4 Phase 3 Phase 4 Phase 3 Phase 4 

Quartz Flake 

Min 11.14 11.09 6.41 6.60 1.64 2.30 

Max 25.51 30.18 19.04 15.22 9.97 5.90 

Mean 15.71 15.54 12.40 9.21 5.59 4.42 

SD 4.750448 7.325852 4.947657 3.183763 3.251896 1.44352 

Table 17. Northton 2011 quartz flake dimension summary statistics for Phase 3 and 4 

The majority of the quartz flakes from both phases, in addition to the feldspar and flint flakes from 

Phase 4, cluster very closely together in terms of length and width. It is clear from Figure 94 that 

the greater mean length of the Phase 4 quartz flakes is caused by a single outlier, which exceeds 

30mm in length. The unknown raw material flake from Phase 3 is also clearly an outlier, over double 

the width of the rest of the flake assemblage and over 10mm longer. The longest quartz flakes from 

both phases are also the widest. 

 

Figure 94. Northton 2011 flake dimensions length:width 

The Phase 3 unknown raw material flake is also an outlier in terms of thickness (Figure 95). Although 

the Phase 3 and 4 quartz flakes are closely clustered in terms of length, the thickness varies widely 

(1.5-10mm). This is also the case for the feldspar and flint flakes from Phase 4. There is no 

correlation between the length and thickness of the Phase 4 quartz flakes, however there is a strong 

positive trend observed between these dimensions in the quartz flakes from Phase 3. 
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Figure 95. Northton 2011 flake dimensions length:thickness 

The two longest and widest quartz flakes from Phase 3 are also the thickest (Figure 95 and Figure 

96). The Phase 3 unknown raw material flake clearly stands apart from the rest of the assemblage 

which is loosely clustered between c.6.5-15.5mm in width and c1.5-7mm in length. The flint flake 

from Phase 4 is on the whole larger than the majority of the quartz flakes from this phase. The 

opposite is observed in Phase 3, where the quartz flakes are much larger than the flint flake. 

 

Figure 96. Northton 2011 flake dimensions width:thickness 

5.2.2.3.5.3. Cortex 

The unknown raw material flake from Phase 3 does not retain any cortex, nor do the majority of 

the quartz flakes from this phase (Figure 97). Only two of the quartz flakes have 100% cortex 

present. The cortex on one of these pieces is smooth and rounded, suggesting a beach pebble 

source whereas the other is flat and frosted, indicating it came from a block or plate. This type of 

cortex is also observed on the quartz flake from Phase 3 with <50% cortex present. 

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35 40 45

Fl
ak

e 
Th

ic
kn

es
s 

(m
m

)

Flake Length (mm)

Phase 3 Unknown Phase 3 Quartz Phase 4 Feldspar

Phase 4 Flint Phase 4 Quartz

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35 40 45

Fl
ak

e 
Th

ic
kn

es
s 

(m
m

)

Flake Width (mm)

Phase 3 Unknown Phase 3 Quartz Phase 4 Feldspar

Phase 4 Flint Phase 4 Quartz



  

188 

 

The flint flake from Phase 4 retains <50% cortex, which is smooth and rounded, again suggesting a 

beach pebble source. Both of the quartz pieces with 100% cortex, and the quartz flake 

displaying >50% cortex, were also sourced from beach pebbles as the cortex is smooth and rounded. 

The cortex on the quartz flake from Phase 4 with <50% cortex is flat and frosted, indicating it was 

removed as a block or plate from a vein. Only two quartz pieces from this phase are tertiary flakes. 

 

Figure 97. Northton 2011 flake cortex percentage 

5.2.2.3.5.4. Striking Platform Type 

There are only two types of striking platform recorded on the flake assemblage from Northton 2011: 

absent or broken (Figure 98). In Phase 3 the striking platform is absent in the majority of the quartz 

flakes. For the unknown raw material flake and the remainder of the quartz flakes the platform is 

broken. In Phase 4 the feldspar, flint and majority of the quartz flakes also have absent striking 

platforms. Only two quartz flakes have platforms which are broken. 

 

Figure 98. Northton 2011 flake striking platform type  
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5.2.2.3.5.5. Dorsal Flake Scars – Count and Pattern 

Of the six flakes from Phase 3 that have dorsal flake scars present (one unknown raw material and 

five quartz); five have single, unidirectional flake scars. A single mixed quartz flake has two dorsal 

flake scars; however the removal sequence is indeterminate due to the nature of the raw material. 

There are six flakes in Phase 4 with dorsal flake scars and all of these are single, unidirectional 

removals. 

5.2.2.3.5.6. Flake Breakage 

All of the flakes in Phase 3 are broken, and only a fine grained flake from Phase 4 is complete. 

5.2.2.4. Assemblage Summary 

A total of 810 artefacts were analysed from the 2010 and 2011 excavations at Northton. The 

assemblage, which derives from two distinctly dated phases, represents elements of the entire 

lithic reduction sequence from hammerstones; an anvil and primary working flakes, to blades and 

finished tools such as microliths and a scraper. The volume of small fraction debitage (Appendix 

Eleven) indicates that knapping occurred in situ. Only a small number of formal tools were 

recovered, which suggests that finished artefacts may have been transported away from the site 

following initial production. The lithic assemblage is comprised of three primary raw materials, 

which will be summarised in turn. 

Quartz is the most prolific raw material at Northton; however there is a clear difference in 

exploitation between the two phases of occupation. Quartz only makes up 42% of the raw material 

present in the earlier Phase 4 deposits, whereas in the later Phase 3 occupation at the site quartz 

is present in much greater quantities (73% of raw materials present). This also coincides with the 

higher proportion of quartz which comprises 93% of the assemblage in the equivalent Phase II 

deposits excavated in 2001. 

There are two distinct sources of quartz present in the assemblage: beach pebbles and quarried 

blocks or plates. A breakdown of the cortex-type is not presented for the earlier excavations, 

however when comparing between the phases from 2010, there appears to be a greater use of vein 

quartz in the earlier, Phase 4 deposits, and a preference for beach pebbles in the later Phase 3 

deposits. However, this pattern is purely speculative given the small number of pieces in Phase 4 

with enough cortex to analyse. The quartz at Northton appears to have been transported a short 

distance from these sources to the site, and reduced using a combination of bipolar and freehand, 

or platform-on-anvil, techniques. This is evident from the frequently mixed assortment of platform 

types and multidirectional removals present on the cores. Bipolar reduction may have been used 

to split large beach pebbles, that could have then been reduced using platform technology (Ballin 

2008:70). The high number of broken platforms on the quartz flakes may be linked to both the use 
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of bipolar reduction and the brittleness of the raw material – the latter is evident in the high number 

of indeterminate pieces and small fraction debitage present. Where the platforms are intact, quartz 

flakes display deep striking areas. This helps to prevent platform collapse by striking further back 

from the platform edge (Ballin 2008:70). Two core rejuvenation flakes were recovered from Phase 

3 in fine grained quartz, which has better flaking properties than the most frequently found milky 

quartz and may suggest an attempt to conserve this higher quality quartz variety. 

The quartz assemblage overall appears to have been less intensively worked than the flint or baked 

mudstone present at the site. Of main raw materials present, quartz cores have the lowest average 

number of flake removals (3.6), and there are an average of 1.3 dorsal flake scars present on the 

flakes, which are most frequently unidirectional. The flakes and cores are also much larger than the 

other raw materials. Statistically, there is no difference between the dimensions of the quartz flakes 

in either phase. The local, readily available and abundant source of this raw material is therefore 

reflected by the more profligate use at the site. 

Flint is the dominant raw material in Phase 4, the earliest phase at Northton, and makes up 56% of 

the worked material. Its dominance in the early occupation of Northton is corroborated by the 

corresponding assemblage to this phase from the basal deposits excavated in 1965-66, where flint 

represents 69% of the material. In Phase 3, flint is present but has significantly diminished in 

frequency to only 12% of the assemblage. 

Flint was intensively exploited throughout the occupation of the site. The small cores have the 

highest average number of flake removals of all the raw materials (8), and have only been discarded 

once completely exhausted. The presence of two core rejuvenation flakes from Phase 4 also 

indicates attempts to obtain the maximum use from the raw material. The flakes are small, with an 

average of two dorsal flake scars per flake. Overall, the statistical analysis did not show any 

significant difference between the flint flake dimensions. Multi- and bidirectional removals on the 

cores and flakes denote the use of bipolar reduction, as does the presence of unprepared platforms 

on the cores, and the broken or crushed striking platforms on the flakes. The cortex present on the 

flint from Northton reveals the source of the material as small beach pebbles, which are not locally 

available, but have been brought to the site to be reduced. Ten pieces, including, two refitting flakes 

all have the same pink cortex, providing an insight into the reduction of a single pebble. The 

intensive reduction of flint at Northton most likely results from the fact the raw material was hard 

to obtain. Only a small number of flint microliths were found at the site, and when considered 

alongside the lack of blades present, it suggests that microlith production was not the primary 

objective of the inhabitants at Northton, or that the raw material available precluded the 

production of such artefacts. 
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The third most common raw material utilised at Northton is baked mudstone, which was only 

recovered in the Phase 3 deposits, and is marginally less common than flint. This raw material can 

only be sourced on Skye or the Shiant Isles. Given the minimal evidence for primary working of this 

raw material on the site, it appears this raw material was imported as pre-prepared blanks. As with 

the flint assemblage, the baked mudstone has been intensively reduced. The cores and flakes are 

small with an average of 4.5 flake removals per core, and 2.4 dorsal scars per flake. Bipolar 

reduction is evident on one core, which is completely exhausted, and the dominance of 

multidirectional dorsal flake scars suggests continual reorientation of the core to access the most 

appropriate striking platform, few of which are intact. Baked mudstone is a high quality raw 

material and has suffered the least amount of breakage within the assemblage as a whole. A single 

blade suggests baked mudstone may have been intended for microlith manufacture at Northton, 

however in the absence of such evidence this is purely speculative. The presence of a flake core 

suggests that reduction of this rare raw material was extended as far as possible, in tandem with 

the flint assemblage. Another potentially imported raw material is a single flake of carbonate rock. 

It is possible that this flake may be limestone or dolomite, which is variant of limestone that has 

undergone chemical change. The nearest source of limestone/dolomite runs along the Moine 

Thrust fault from Durness in north-west Scotland to the south-east coast of Skye, and outcrops in 

many of the sea lochs along the western coast (Highley et al. 2006). 

Finally, within the Northton assemblage there are also a small number of locally derived raw 

materials, including gneiss, pegmatite, and other meta-igneous rocks. The water-worn nature of 

each indicates they have been eroded from their various parent rocks and incorporated into the 

beach deposits below, from where they have been transported to the site. These raw materials are 

primarily found within the coarse stone tool assemblage, similar to those which were recovered in 

2001 (Gregory 2006). A single core of chalcedony was recovered from Phase 3. This piece is very 

unusual in several respects. It is very rounded and worn, even where a flake has been removed, 

which contrasts markedly with the fresh condition of the assemblage as a whole, even in the earlier 

phase. Its colouring is orange-brown banding which is also very different to any other raw material 

in the assemblage or observed in the background geology of the site. It is small and there appears 

to be no clear evidence for any further use. 

Overall the lithic assemblage at Northton represents a collection of knapping waste that includes 

debitage, exhausted cores, and broken and discarded tools; some of which have been burnt. 

Knapping strategies were modified to suit the characteristics of each raw material, with the rarest 

and highest quality most heavily reduced. The exploitation of locally available quartz increases as 

the use of flint diminishes, and baked mudstone is imported during the later phase of occupation. 

Possible reasons for this, and a comparison with the neighbouring site of Tràigh an Teampuill 

(discussed in the following section), will be presented fully in Chapter Eight.
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5.3. Tràigh an Teampuill, Harris 

5.3.1. Discovery and Excavation 

5.3.1.1. Excavation 2011 

Tràigh an Teampuill (NGR NF9734 9132) was identified during a small-scale coastal erosion survey 

in September 2011 (Blake et al. 2012b; Church et al. 2012a). The survey targeted areas of accessible 

coastline within the vicinity of the Mesolithic site at Northton. It aimed to identify potential new 

sites that could date to the Mesolithic based on two criteria: the geomorphic and stratigraphic 

position of the deposit, and the archaeological composition of the deposit. 

At Northton, the early to mid-Holocene soils that contained the evidence for Mesolithic activity 

overlay sterile glacial till. Furthermore, the deposits were sealed by machair, which is believed to 

have formed after the Mesolithic (Blake et al. 2012b:5; Simpson et al. 2006:14). The organic 

deposits identified at Tràigh an Teampuill were comparably positioned: situated above the glacial 

till and bedrock, but underneath eight metres of machair. This initially indicated the site may have 

been of Mesolithic date. The nature of the artefacts and ecofacts eroding from the deposits also 

suggested hunter-gatherer activity, comprising a similar faunal, floral and artefact assemblage to 

that of Northton. Most crucially, domesticated plant or animal species and pottery, which are 

indicative of the Neolithic appeared absent, which suggested a Mesolithic date for the deposits was 

likely (Ashmore 2004b:92; Blake et al. 2012b:6; Church et al. 2012a). 

The eroding face of the cliff  was cleaned back to expose the archaeological deposits along a vertical 

section c.3.5m X c.1.2m (Figure 99), and a total sampling strategy implemented in line with the 

methodology used at Northton (Blake et al. 2012b:8; Jones 1991). A total of 41 litres of bulk samples 

were recovered for laboratory analysis in Durham (Blake et al. 2012b:7). In section, the site 

appeared to comprise buried ground surfaces that were subsequently overlain by shell and ash-rich 

midden deposits. It therefore appeared to be a type of site similar to Northton (Blake et al. 

2012b:10). 

Two carbonised hazel nutshells recovered from an old ground surface deposit, and two others from 

a discrete area of shell midden, were submitted for radiocarbon dating. The results indicate the site 

was occupied between 5715-5368 cal. BC, confirming Tràigh an Teampuill as the second Mesolithic 

site identified on Harris. The dates of occupation for this site lie between that of Northton, just 

around the peninsula, and the Tràigh na Beirigh sites on Lewis (Blake et al. 2012b:10). 
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Figure 99. Tràigh an Teampuill before excavation in 2011. Photo courtesy of Mike Church 

5.3.1.2. Excavation 2012 

In 2012 a second season of excavation was carried out at Tràigh an Teampuill, with the aim of 

conducting larger-scale sampling of the exposed Mesolithic deposits before the site was completely 

destroyed (Blake et al. 2012b:10; Piper & Church 2015). Substantial erosion had occurred at the site 

since the previous year; however the majority of the archaeological deposits remained intact under 

the protective reinstatement that was constructed following the investigation in 2011. Due to the 

erosion, it was possible to extend the section by c.1.5m to the west, exposing a total of c.5m of 

deposits (Figure 100). Total sampling continued to be employed in keeping with the previous field 

seasons and over 135 litres of bulk samples were taken. Additionally, spot and column samples 

were also excavated for routine soil tests, as well as Kubiena tin samples for thin-section analysis 

(Piper & Church 2015). 
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Figure 100. Tràigh an Teampuill following excavation in 2012. Photo courtesy of Mike Church 

The 2012 excavation was able to substantiate the initial interpretation of the site made in 2011, 

and allowed a clearer understanding of the stratigraphic matrix. Tràigh an Teampuill indeed 

comprised a buried ground surface, which was most likely part of the early to Mid-Holocene 

landscape first identified through coring and excavation on the adjacent headland at Northton 

(Bishop et al. 2012a; Bishop et al. 2011a; 2012b; Blake et al. 2012b; Church et al. 2012a; Gregory et 

al. 2005; Piper & Church 2015; Simpson et al. 2006). The ash-spread and shell-rich deposits were 

the fill of a scoop which cut into the buried ground surface (Piper & Church 2015). The artefact and 

ecofact assemblages were similar in nature to those of Northton, containing fish and animal bones, 

charred hazelnut shells and charcoal, marine molluscs, and a quartz-dominated lithic assemblage. 

A red deer antler tine pressure flaker may indicate the presence of much larger, but as yet 

unrepresented terrestrial mammalian fauna on the islands, or may simply be an imported raw 

material (Blake et al. 2012b:9; Kitchener et al. 2004; McCormick & Buckland 1997). The tips from 

two broken worked bone points also revealed rare evidence of the organic component of the 

Mesolithic toolkit (Piper & Church 2015). 
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Figure 101. Close-up view of the scoop feature at Tràigh an Teampuill. Photo courtesy of Mike Church 

5.3.2. Tràigh an Teampuill Lithic Assemblage Results 

This section describes the results of the lithic analysis from Tràigh an Teampuill, with a summary 

interpretation provided before the chapter conclusion. Unlike Northton, Tràigh an Teampuill 

cannot be discussed in terms of phases of site occupation until a more secure chronological 

sequence has been established through further radiocarbon dating. The assemblage from both the 

2011 and 2012 seasons of excavation are therefore presented as a whole. 

A single piece of material suspected of being baked mudstone was included in the thin-section 

analysis alongside the pieces selected from Northton. As with Northton, the piece does not 

resemble mylonite, but is closer to baked mudstone in composition. The detail of this analysis is 

presented in Appendix Thirteen. 

5.3.2.1. General Character of the Assemblage 

The total lithic assemblage from Tràigh an Teampuill comprises 88 pieces. A small number of the 

total assemblage (13 pieces, 15%) could not be included in the subsequent analysis as these lithics 

were recovered from cleaning contexts (C001, C010, C012). Although it is certain these derived 

from the Mesolithic deposits their exact location within the site could not be determined, therefore 

they are categorised as unstratified. The details of the unstratified assemblage, which included a 

range of debitage types in flint and quartz is listed in Appendix Four. Only the stratified material, 

which totals 75 pieces and is also detailed in Appendix Four, is discussed in the following sections. 
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The assemblage is dominated by flakes, including a flake core and small fraction flakes (<10mm; 

Figure 102). The remainder of the assemblage comprises indeterminate chunks, a small number of 

cores, two hammerstones, and two blades (Table 18). 

The assemblage derived from eight contexts at the site. These comprised a sandy-silt interface layer 

(C009) between the overlying machair, and underlying old ground surface which contained organic 

remains from anthropogenic discard (C004, C005, C011). Cut into the old ground surface of C005 

was a shallow scoop (C013) which was filled by a primary fill of wood-ash and calcined bone material 

(C006). A secondary fill of a shell-rich deposit was also identified (C007), which had formed 

alongside another old ground surface with evidence for anthropogenic activity outside the scoop 

(C008). Below the main ground surface horizon (C004; C005; C011) lay an earlier relic ground 

surface of early- to mid-Holocene soil, which also contained evidence of anthropogenic activity 

(C003). This overlay an almost sterile clay-silt deposit which graded into the underlying glacial till 

(C002). 

 

Figure 102. Tràigh an Teampuill assemblage composition 

 Technology 
Raw Material   

Quartz Flint Baked mudstone Other Total 

Core 5 
   

5 

Blade 
 

1 
 

1 2 

Chunk 1 1 
  

2 

Small fraction chunk 3 1 
 

 4 

Flake 17 15 1 1 34 

Flake core 1 
   

1 

Small fraction flake 10 15 
  

25 

Hammerstone  
  

2 2 

 Total 37 33 1 4 75 

Table 18. Tràigh an Teampuill assemblage composition 

Core
7%

Blade
2%

Chunk*
8%

Flake*†
80%

Hammerstone
3%

n=75 
* Includes small fraction 
† Includes flake core 
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5.3.2.2. Raw Material 

A number of raw materials are present at Tràigh an Teampuill. Half of the assemblage is quartz, 

with flint the second most common raw material at 44% (Figure 103 and Table 18). The remains of 

the assemblage is comprised of a single secondary flake of baked mudstone, two pieces of 

metabasalt, and two gneiss pebbles. 

 

Figure 103. Tràigh an Teampuill raw material composition 

Over half of the quartz assemblage is milky quartz (Figure 104). Greasy, or very fine grained, quartz 

is the second most common variety, followed closely by fine grained quartz. Coarse grained quartz 

and rock crystal are represented by two pieces each. 

 

Figure 104. Tràigh an Teampuill quartz varieties 

The flint component of the assemblage is fresh in appearance, indicating little post-depositional 

movement; however the majority of the pieces are stained and/or heavily patinated. Three pieces 
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of flint have a similar pink colour, suggesting they may have derived from the same nodule and 

three other flint lithics are burnt. 

Quartz is present in all of the contexts at Tràigh an Teampuill, and is the only raw material 

represented in the basal clay-silt deposit (C002), and the secondary fill of the scoop (C007; Figure 

105). C003, the early-to mid-Holocene relic ground surface has the greatest concentration of lithics, 

followed by the main ground surface horizon (C004 and C005). C003 is dominated by quartz, 

whereas in the latter contexts flint is proportionally greater in quantity. One of the gneiss 

manuports was recovered form C004, and the other was situated in C008, the late ground surface 

which formed alongside the scoop deposits. Like C003, this context has a higher number of quartz 

pieces present. Two pieces of metabasalt were recovered from C003 and a single flake of baked 

mudstone from C005. 

 

Figure 105. Tràigh an Teampuill raw material by context 

The subsequent analysis is for the primary technology (>10mm) recovered from Tràigh an Teampuill. 

The small fraction flake, chunk and small fraction chunk assemblage analysis are presented in 

Appendix Eleven. 

5.3.2.3. Primary Technology: Coarse Stone Tools 

5.3.2.3.1. Hammerstones 

As described above, two gneiss pebbles were found at Tràigh an Teampuill, one in C004, the main 

gorund surface horizon and the other in C008, the ground suface which formed alongside the scoop. 

The dimensions are presented in Table 19. It is likely that both have been used as hammerstones. 
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Catalogue No. Context No. Length (mm) Width (mm) Thickness (mm) 

L35 008 97.58 68.99 39.83 

L40 004 52.38 61.04 27.98 

Table 19. Tràigh an Teampuill hammerstone dimensions 

L35 is a smooth, sub-rounded pebble with a large number of peck-marks and depressions along two 

of the edges. This has caused cracks to radiate out from the depressions and there is active 

disintegration of the outer surface. One of these edges displays crushing and white discolouration, 

most likely a result of striking quartz. 

L40 is also a smooth, sub-rounded pebble with peck-marks along the shortest edge. It is notable 

that the piece fits comfortably in either hand. 

5.3.2.4. Primary Technology: Cores 

Five cores were present in the Tràigh an Teampuill assemblage. Four cores derive from C003, the 

early to mid-Holoecene ground surface  and the other was recovered from C008, the ground surface 

which formed alongside the scoop deposits. 

5.3.2.4.1. Raw Material 

All cores are quartz – three are milky quartz, one fine grained and the other coarse grained (Figure 

106). 

 

Figure 106. Tràigh an Teampuill core quartz varieties 

5.3.2.4.2. Core Dimensions 

There are two very large and heavy cores from C003 and two which are much smaller and lighter 

(Figure 107). The single core from C008 is very small in comparison.  
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Figure 107. Tràigh an Teampuill core dimensions 

5.3.2.4.3. Cortex 

Only a single core does not have cortex, this is a small core from C003 (Figure 108). All the others 

retain some degree of cortex, therefore the presence of cortex does not correlate with the size of 

the original piece. The cortex present indicates that both rounded beach pebbles and vein quartz 

were equally exploited. 

 

Figure 108. Tràigh an Teampuill core cortex presence 

5.3.2.4.4. Flake Removals – Count and Sequence 

Two of the cores derived from C003 have two flake removals, as does the one from C008. The 

remaining two cores from C003 have three and four flake removals respectively, which 

demonstrates evidence for minimal core reduction, and is consistent with the high proportion of 

cortex (Figure 109). 
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Figure 109. Tràigh an Teampuill number of flake removals from cores 

The two cores from C003 which have two flakes removed from them exhibit unidirectional flake 

removals (Figure 110 and Figure 111). The single core from C008 that also has two flakes removed 

displays a multidirectional pattern, as the scar from the first flake removal was used as a platform 

for the second. The flake removal sequence on the two cores from C003 that have three and four 

flake removals indicates they had been initiated from multiple directions. There is no correlation 

between the size or weight of the cores and the number of flakes removed from them (Appendix 

Four). 

 

Figure 110. Tràigh an Teampuill sequence of flake removals from cores 
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Figure 111. Tràigh an Teampuill sequence of flake removals from cores in relation to the number of flakes removed 

5.3.2.4.5. Core Platform Preparation 

Half of the cores from C003 display simple platform preparation, and both of these exhibit two, 

unidirectional flake removals (Figure 112). The core from C008 also displays simple platform 

preparation. The two cores from C003 which exhibit three and four flake removals have mixed 

platform preparation. On core L72, two flakes have been removed from a cortical, unprepared 

surface. One of these removals destroyed the plaform of a flake removal from a previous stage. For 

SF5 the flake removals were detached from a combination of unprepared and simple platforms. 

 

Figure 112. Tràigh an Teampuill platform preparation of cores 

5.3.2.5. Primary Technology: Flakes 

A total of 34 flakes (>10mm) were recovered from Tràigh an Teampuill in addition to a single flake 

core. The analysis of the flakes is presented below, with subsequent sections providing descriptions 
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of the flake core, refitting pieces, and blades. The data presented here only includes flakes >10mm 

in maximum length. The small fraction flakes (<10mm) and chunks, which are representative of in 

situ knapping debris (Ballin 2000:10; Finlayson et al. 2000:67), are presented in Appendix Eleven. 

The majority of the flakes were recovered from C004, C005, and C003. A single flake of quartz was 

recovered from the primary fill of the scoop (C007), with four flakes identified in C008. 

5.3.2.5.1. Raw Material 

The flake assemblage is dominated by quartz, with flint the second most common raw material 

utilised (Figure 113). Baked mudstone and metabasalt are represented by single flakes (3% each). 

 

Figure 113. Tràigh an Teampuill flake raw material composition 

Milky quartz dominates the flake assemblage, followed by the greasy (very fine grained) variety 

(Figure 114). Three flakes are of the fine grained variety and a single flake of coarse grained quartz 

was recovered. One flake grades from milky quartz to rock crystal. 

 

Figure 114. Tràigh an Teampuill flake quartz varieties 
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5.3.2.5.2. Flake Dimensions 

The summary statistics for the main raw materials present in the flake assemblage at Tràigh an 

Teampuill are displayed in Table 20. The maximum and minimum length for flakes in both flint and 

quartz are similar, although the quartz flakes are marginally longer on average than the flint flakes, 

and with a slightly smaller standard deviation. In terms of width, the quartz flakes are larger than 

the flint flakes in both their maximum and minimum measurements, which is reflected in the overall 

greater average width in the former raw material. The standard deviation from the mean is the 

same in both raw materials. The flint flakes range more widely in thickness than the quartz flakes, 

therefore the standard deviation for flint flakes is slightly higher than that for quartz; however, flint 

flakes are thinner on average. 

Raw Material  Length (mm) Width (mm) Thickness (mm) 

Flint 

Min 10.48 4.69 1.14 

Max 21.96 14.00 8.68 

Mean 13.56667 9.512 3.196667 

SD 3.472142 2.862524 1.81798 

Quartz 

Min 10.03 7.33 2.00 

Max 21.79 16.38 7.15 

Mean 13.95824 12.36882 4.115294 

SD 3.239892 2.821467 1.240273 

Table 20. Tràigh an Teampuill flake dimensions summary statistics for primary raw materials  

A MANOVA test was conducted to determine whether there was a statistically significant difference 

between the dimensions of the two main raw materials. Using Wilks’s lambda, there is a significant 

difference between the dimensions of flint and the dimensions of quartz flakes from Tràigh an 

Teampuill: 

Λ = .759, F (3, 28) = 2.965, p = .049 

A Mann-Whitney U test to test the robustness of the MANOVA (Table 21). There is no significant 

difference between the lengths of the flakes; however there is a significant difference between the 

width and thickness of these raw materials. The r value indicates this is a large affect size and thus 

overall the Mann Whitney test supports the MANOVA (Field 2013). Overall, the data show that the 

quartz flakes are larger than the flint flakes in this assemblage. 

Dimensions 

(mm) 

Mean 

Rank 

Flint 

Mean 

Rank 

Quartz 

U z p r 

Length 15.33 17.33 110.000 -0.661 0.526 n/a 

Width 11.33 21.06 50.000 -2.927 0.003 -0.51743 

Thickness 11.87 20.59 58.000 -2.625 0.008 -0.46404 

Table 21. Tràigh an Teampuill Mann Whitney U test results between raw materials. Flint n = 15; quartz n= 17 
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All of the raw materials fall within a loose grouping between 10-20mm in length, and 5-15mm in 

width (Figure 115). Both the flint and quartz flakes are fairly evenly distributed along this range of 

lengths, with the flint flakes generally narrower than the quartz flakes. Two quartz flakes and one 

flint flake are much larger than the majority of the assemblage. The mudstone flake is one of the 

smallest pieces recorded, and although the metabasalt flake is long, it is also quite thin. 

 

Figure 115. Tràigh an Teampuill flake dimensions length:width 

There appears to be a very weak correlation between the length and thickness of both the flint and 

quartz flakes in this assemblage (Figure 116). Flint flakes rarely exceed 4mm in thickness, 

irrespective of their length, however there is one significant outlier that is very thick. Quartz flakes 

that are of a comparable length to the flint flakes are clearly thicker than those of flint. The 

mudstone flake is very short and thin, whilst the metabasalt flake is much longer and thicker. 
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Figure 116. Tràigh an Teampuill flake dimensions length:thickness 

The difference between the widths of the flint and quartz flakes is very pronounced in Figure 117. 

It is clear that, although the range in width of flint flakes is varied, this has little effect on the 

thickness overall. The quartz flakes also follow a similar pattern, albeit generally wider and thicker 

than the flint flakes. There is a strong correlation between the width and thickness of the other two 

raw materials. 

 

Figure 117. Tràigh an Teampuill flake dimensions width:thickness 

5.3.2.5.3. Cortex 

The majority of both flint and quartz flakes have no cortex present (Figure 118). Marginally fewer 

quartz flakes exhibit <50% cortex, and three quartz flakes have complete cortical coverage on the 
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dorsal face. The baked mudstone flake shows <50% cortex, as do a small number of flint flakes. Only 

a single flint flake exhibits >50% cortex. 

Where present, the cortex on the flint flakes was smooth, hard and rounded indicating the source 

material derives from beach pebbles. The cortex present on the quartz indicates that the source 

material is most frequently rounded beach pebbles; however a vein source was also exploited, as 

denoted by the flat and frosted appearance of the cortex on a small number of pieces. The 

metabasalt flake does not have any cortex present. 

 

Figure 118. Tràigh an Teampuill flake cortex percentage 

5.3.2.5.4. Striking Platform – Type and Dimensions 

The most common flake platform type recorded from Tràigh an Teampuill is a broken or crushed 

platform (Figure 119). For quartz flakes, broken or crushed platforms are significantly more 

common in comparison to the other platform types: two are absent and another two are cortical. 

Flint flakes are almost equally represented by absent and broken/crushed platforms. The latter 

category also accounts for the platform type of the baked mudstone flake. For the metabasalt flake 

the platform is absent. 

The platform dimensions for the single quartz flake with a cortical platform measured 3.90mm X 

1.47mm. 
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Figure 119. Tràigh an Teampuill flake platform type 

5.3.2.5.5. Dorsal Flake Scars – Count and Pattern 

The majority of quartz flakes only have a single dorsal flake scar evident (Figure 120). The maximum 

number of flake scars recorded on this raw material is two, which is present on three flakes. Most 

flint flakes also exhibit a single dorsal flake scar, whilst two flake scars are the second most common 

number recorded on this raw material. On three flint flakes, between three and six dorsal flake 

scars were recorded. The baked mudstone flake only has one dorsal flake scar. The flake of 

metabasalt has seven dorsal flake scars. This may be retouch, however this is very difficult to 

identify for certain due to the nature of the raw material. 

 

Figure 120. Tràigh an Teampuill dorsal flake scar count 

An equal number of quartz and flint flakes exhibit unidirectional flake scars, which is the most 

common for these raw materials (Figure 121). The baked mudstone flake also displays a 
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unidirectional flake scar. Three flint flakes have multidirectional removals, as does the flake of 

metabasalt. A single flint flake shows bidirectional removals, suggesting bipolar reduction. The 

remaining quartz flakes are equally represented by multidirectional and indeterminate dorsal flake 

scars. 

 

Figure 121. Tràigh an Teampuill dorsal flake scar pattern 

As would be expected all of the single dorsal flakes had been removed from a single direction 

(Figure 122). Two flakes with two dorsal flake removals also show they had been removed from one 

direction, as does SF2, with six dorsal flake scars. The single flake with three dorsal flake scars shows 

that they have been removed from opposing directions (bidirectional). The dorsal flake scar pattern 

could not be determined for the two quartz flakes with two dorsal flake scars. The remainder of the 

flakes with two or more flake scars show evidence for their removal from multiple directions. 

 

Figure 122. Tràigh an Teampuill dorsal flake scar pattern in relation to the number of dorsal flake scars counted 
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5.3.2.5.6. Flake Breakage 

The vast majority of quartz and flint flakes exhibit breakage, as do the baked mudstone and 

metabasalt flakes (Figure 123). Only a small number of flint and quartz flakes are complete. 

 

Figure 123. Tràigh an Teampuill flake breakage 

5.3.2.5.7. Flake Core 

The flake core was recovered from C004 and is made from milky quartz. It measures 12.57mm X 

11.94mm X 4.91mm and retains <50% cortex. The platform of the flake core is covered by some of 

this cortex, which measures 7.12mm X 3.88mm. There is a single, unidirectional dorsal flake scar 

which has been initiated from the same platform and the flake core is complete. 

5.3.2.5.8. Refits 

Two flint pieces, SF2 and L6, refit together. The break, a perpendicular snap which originates from 

a shattered bulb of percussion at the proximal ends of the pieces, is most probably knapping shatter. 

The break happened in antiquity as L6 is more heavily patinated than SF2. 

5.3.2.5.9. Blades 

There are two blades in the Tràigh an Teampuill lithic assemblage, L11 and L14. L11 is made from 

metabasalt and was recovered from C003, the underlying early to mid-Holocene ground surface 

horizon, where a flake of the same raw material was also obtained. There is <50% of the cortex 

present and the platform is absent. A single, unidirectional, flake had been removed from the dorsal 

face and there is no breakage beyond the absence of the platform. 

L14 was recovered from C004, the main ground surface deposit, and is made from pink flint. This is 

the same pink flint as two other pieces in the assemblage – L13, a chunk which was recovered from 

the same context and L53, a flake recovered from C003. There is no cortex present on the blade 

and the platform has been crushed. There are two unidirectional dorsal flake scars on the piece and 
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despite the damage to the platform it is complete. The dimensions of the two blades are presented 

in Table 22. 

Context 

No. 

Catalogue 

No. 

Raw 

Material 

Blade Length 

(mm) 

Blade Width 

(mm) 

Blade Thickness 

(mm) 

003 L11 Metabasalt 17.61 8.84 3.02 

004 L14 Flint 11.40 5.36 1.72 

Table 22. Tràigh an Teampuill blade dimensions 

5.3.2.6. Assemblage Summary 

The assemblage from Tràigh an Teampuill is small, totalling only 75 pieces. It derives from a mixture 

of in situ deposits, such as the scoop fill, as well as bioturbated relic ground surfaces. The effect of 

mixing of these ground surfaces on preservation conditions at the site is reflected in the differential 

staining and patination on two flint pieces SF2 and L6. These pieces, which derive from an old 

ground surface (C005) refit together to form a larger flake that had broken in antiquity. 

Furthermore, three flint pieces at the site are of the same pink coloured flint, but were recovered 

from two different contexts, which also indicates post-depositional movement. It is clear from the 

flake and blade debitage present that knapping of flint and quartz was conducted at the site, using 

gneiss cobble hammerstones sourced from the beach nearby. 

The dominant raw material in the Tràigh an Teampuill assemblage is quartz, which is comparable 

to the later phase of the neighbouring site at Northton. Quartz was primarily sourced as pebbles 

from a nearby beach, with some exploitation of the local vein source also in evidence. The reduction 

of quartz at Tràigh an Teampuill also follows a similar pattern to Northton. The majority of the cores 

are large, discarded well before they were exhaused, and with an average of only 2.6 flake removals 

from simple platforms. The large size of the raw quartz facilitated the use of platform technology 

as the primary method of reduction for this material, producing flakes which are much smaller on 

average than those from Northton, and with an average of only one dorsal flake scar. The 

diminishing size of the quartz flakes on the Toe Head Peninsula is difficult to interpret. There is 

clearly an abundance of material in the area that could be exploited, therefore it does not reflect a 

strategy to conserve diminishing supplies. The broken and crushed platforms on the quartz flakes 

are a common feature, suggesting this is related to the brittleness of the raw material when 

considered alongside the high rate of flake breakage, and number of indeterminate pieces. It is 

likely that the reduction in size of the flakes reflects the poor quality of the quartz available. 

A little under half of the assemblage at Tràigh an Teampuill is made of small beach pebble flint. In 

contrast to Northton and the quartz assemblages, there is no evidence of primary reduction at the 

site. This may be due to the small size of the assemblage, or indicate that the first stages of cortex 

removal were carried out elsewhere, with pre-prepared cores being imported to the site for further 
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working. Although this is possible, the small size of the pebbles that have been utilised suggests 

that such reduction methods (usually implemented to reduce transport costs) would not have been 

necessary. The treatment of flint at Tràigh an Teampuill is similar to Northton with evidence for 

intensive reduction: flakes are much smaller in size than quartz, they display evidence for bipolar 

reduction, and where platform reduction was employed, more frequent turning of the core 

(although there are no flint cores present). The average number of dorsal flake scars per flint flake 

is two, which is also equivalent to Northton, and is most likely constrained by the small size of the 

original raw material. Some of the flint pieces are burnt, which is also seen at Northton, and 

suggests that knapping debris may have been present on the ground where a fire was built, or that 

knapping of flint occurred close to a fire with some pieces falling in during the reduction process. 

The clear evidence for human modification of these pieces precludes their use as ‘pot-boilers’. 

Of the small number of other flaked raw materials in the assemblage, the metabasalt is most likely 

local given the underlying bedrock in the area. A single small flake of baked mudstone was 

recovered from the old ground surface, which closely resembles the pieces recovered from 

Northton which were sourced from the Shiant Isles or northern Skye (Appendix Thirteen).  The size 

of the piece prevents any further interpretation, however. 

Overall, the assemblage from Tràigh an Teampuill is very small. It is likely the assemblage is only 

partly representative of the lithic knapping activities at the site. As such, it is difficult to establish 

any clear trends. From the evidence available it appears that the flint and quartz at the site were 

reduced in the same manner as at the earlier site of Northton, further along the headland. Flint, 

which does not appear to be readily available was intensively reduced using bipolar technology to 

maximise the number of flakes obtained from small pebbles. A less conservative approach was 

applied to quartz, which was local and abundant. The presence of an antler tine pressure flaker 

indicates that retouch of artefacts may have been carried out at the site, however this is not 

represented in the assemblage analysed. A single piece of baked mudstone may suggest that 

contacts with the occupants of the source area of baked mudstone, either Skye or the Shiant Isles, 

endured during the 400 year hiatus between end of occupation at Northton and first evidence for 

Mesolithic activities along the coast at Tràigh an Teampuill. 

5.4. Conclusions 

This chapter has presented the lithic data from the two Mesolithic open air sites on Harris, Northton 

and Tràigh an Teampuill. The data will be used in conjunction with the results from shell midden 

sites that are presented in the next chapter to explore the relationships between the assemblages 

of these two types of sites. The wider implications of these results will then be synthesised with 

other comparable Mesolithic sites in Scotland and the Atlantic façade, which will be discussed in 

Chapters Eight and Nine. 
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Chapter 6 Mesolithic ‘Open Air’ Midden Sites on Lewis 

6.1. Introduction 

The preceding chapter introduced and presented the results of the lithic analysis from the 

Mesolithic sites situated on Harris. Similarly, this chapter will outline the discovery, excavation, and 

results of the lithic analysis from six Mesolithic shell midden sites in Lewis. Five sites were identified 

along the Cnip headland of the Bhaltos Peninsula, Lewis and the sixth is situated on the small island 

of Pabaigh Mòr. As discussed previously, this background information provides context for each of 

the lithic assemblages, before the results of the analyses are presented. Each section is concluded 

with a summary interpretation. 

The Bhaltos Peninsula is found on the western coast of Lewis. The modern environment is 

characterised by machair dunes along the coast, and rocky, moor-covered hills in the interior. 

Several significant structures of later prehistoric date are known from the peninsula, and a 

comprehensive archaeological survey was conducted between 1989 and 1996 (Armit 1994; Burgess 

& Church 1997). The Mesolithic sites, which all date to the terminal Mesolithic (c.4600-4000 cal. 

BC), are clustered along the Cnip headland, at the westernmost point of Tràigh na Beirigh beach 

(Figure 124 and Figure 125). 

Pabaigh Mòr is a small island which lies less than 1km off the north-east coast of the Bhaltos 

Peninsula; its geography echoes that of the Cnip headland. The shell midden of Pabaigh Mòr South, 

which is of similar date to those at Tràigh na Beirigh, is situated at Briomanish on the southern point 

of the island (Church & Rowley-Conwy 2014). 

It is notable that, in contrast to the sites on Harris, these sites are all shell middens. As discussed in 

Chapter Two, numerous shell middens are known in the Inner Hebrides and the along the Oban 

coastline (Bonsall 1996; Hardy & Wickham-Jones 2009b; Mellars 1987; Saville et al. 2012b). These 

sites therefore provide the opportunity to compare shell midden composition and function 

between the Inner and Outer Hebrides.  



 

214 

 

 
Figure 124. Location of Mesolithic sites in Lewis. 1 - Tràigh na Beirigh 1, 2 - Tràigh na Beirigh 2, 3 - Tràigh na Beirigh 3, 
4 - Tràigh na Beirigh 4, 5 - Tràigh na Beirigh 9, 6 - Pabaigh Mòr South. Ordnance Survey data © Crown Copyright/ 
database right 2014. An Ordnance Survey/EDINA supplied service.
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Figure 125. The Cnip headland from the sea. Tràigh na Beirigh 1, Tràigh na Beirigh 2, Tràigh na Beirigh 3 & 4 and Tràigh na Beirigh 9 are arrowed from left to right. Photo courtesy of Peter Rowley-Conwy
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6.2. Tràigh na Beirigh 1 

6.2.1. Discovery and Excavation  

6.2.1.1. Excavation 2010 

As a consequence of coastal erosion, a shell midden was revealed at on a small rocky promontory, 

identified on the OS maps as Gridig, at the western edge of Tràigh na Beirigh beach during the 

1990’s (NGR NB1002 3628; Armit 1994:90). The aceramic midden was recorded again as part of a 

coastal erosion survey around the coastline of Lewis in 1996 (Burgess & Church 1997:117), but its 

date was unknown. 

As part of the season of fieldwork investigating the first known Mesolithic site in the Western Isles, 

at Northton in 2010, a two-litre sample was taken from an eroding section of the main body of this 

shell midden. The site was deemed likely to be Mesolithic in date, as the basal deposits of the 

midden graded into an apparent early to mid-Holocene soil, much like that at Northton, Harris 

(Blake et al. 2012a:4-5; Church et al. 2012b:194). The ecofacts recovered from the sample were 

also very similar in composition to those of Northton – containing fish bones, crustacean, and a 

hare bone, in addition to charred hazel nutshells and a piece of charcoal. The absence of pottery 

and domesticated species of plants and animals also supported the likelihood of a Mesolithic date 

(Blake 2011; Blake et al. 2012a:4-5; Church et al. 2012b:194). Hazel nutshells from the sample were 

radiocarbon dated to c.4400-c.4000 cal. BC – the very terminal Mesolithic (Ashmore 2004b:92; 

Blake et al. 2012a:5; Church et al. 2012b:195). There was no lithic material recovered from this 

excavation. 

6.2.1.2. Excavation 2011 

The team from Durham University returned in 2011 with the aim of conducting a full coastal erosion 

assessment. The extent of the midden deposits were to be defined, and sampled for artefacts and 

ecofacts (Blake et al. 2012a:5). The eroding edges of the deposits were excavated back by c.0.1m 

along five exposed sections (Figure 126). Two small test pits were excavated behind the eroding 

edge of the midden in order to establish the extent of the deposits in plan (Blake et al. 2012a:6). 

Again a 100% sampling strategy was employed for all excavated areas, recovering over 50 litres of 

bulk samples (Blake et al. 2012a:6; Church et al. 2012b:195; Jones 1991). An assemblage of ecofacts 

was recovered which were similar in composition to those identified in 2010, but in much a greater 

quantity. Worked flint and quartz was also recovered (Church et al. 2012b:195). 

Almost the entirety of the shell midden has eroded due to its exposed location. The shell midden 

deposits were absent in both test-pits, indicating only a very small proportion of the midden 

survived and it was anticipated that the site would be completely destroyed within a few years 

(Blake et al. 2012a:8). 



 

217 

 

 

Figure 126. The eroding faces of the midden at Tràigh na Beirigh 1, prior to excavation in 2011. Photo courtesy of 
Mike Church 

6.2.1.3. Excavation 2012 

In 2012 the team returned to excavate the midden in its entirety, before it was completely 

destroyed (Church et al. 2012b:195). Two small open area trenches were excavated; the first c.1.8m 

X 1.5m was situated at the northern extent of the remaining shell midden, where the midden 

deposits graded out into a rock outcrop, thereby defining the extent of the shell midden in that 

area (Figure 127). A small round feature, filled with a deposit of burnt shell, was identified in the 

basal inorganic sandy silt layer of the trench (Piper & Church 2014). 

The second trench, c.2m X 1.1m contained the greatest concentration of the midden deposits 

(Figure 128). Several negative features were identified in the buried ground surface and underlying 

basal layer of the trench, which may represent stake holes. A perforated oyster shell was recovered 

from the base of the midden deposits. The edges had been modified to make it circular in shape, 

and a circular hole made in the centre (Jones 2012; Piper & Church 2014). It is likely to be a 

decorative object as there is little apparent functional use for it. Several perforated oyster shells 

have been recovered from the shell middens on Oronsay and offer an interesting parallel (Hardy 

2010:133), which will be discussed further in Chapter Eight. 

A 100% sampling strategy was employed, in line with that adopted for the excavation of Northton 

and Tràigh an Teampuill (Bishop et al. 2011a; Church et al. 2012b; Jones 1991; Piper & Church 2015). 
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Additionally, several samples were removed using Kubiena tins for further palaeoenvironmental 

and micromorphological analysis. The bulk samples total over 500 litres of excavated material. 

Initial processing of the bulk samples has supplemented the assemblages of artefacts and ecofacts 

that were recovered from the 2011 and 2010 investigations in even greater quantity. 

 

Figure 127. Trench 1 under excavation at Tràigh na Beirigh 1, revealing the northern edge of the midden deposits. 
Photo courtesy of Mike Church 

Thus far, the Mesolithic activity at Tràigh na Beirigh 1 has been interpreted as evidence for 

numerous short-term occupations, during a slow accumulation of substantive shell deposits. These 

comprise the remnants of hearth material, food waste and lithic knapping debris. Occasionally, 

single episodes of discard were observed within the deposits, in the form of ‘tip lines’ of shells. The 

shell midden overlies a buried ground surface, which also contains artefacts and ecofacts that may 

have been deposited during earlier occupation of the site (Blake et al. 2012a:10; Church et al. 

2012b:195; Church pers. comm.).  
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Figure 128. Trench 2 under excavation at Tràigh na Beirigh 1 with the top of the shell midden exposed. Photo 
courtesy of Mike Church 

6.2.2. Tràigh na Beirigh 1 Lithic Assemblage Results 

6.2.2.1. General Character of the Assemblage 

The lithic assemblage from the in situ and >4mm sieved fraction of Tràigh na Beirigh 1 totals 334 

artefacts. The highest proportion of the assemblage was recovered from the main body of the shell 

midden (C008), with artefacts also present in most of the contexts recorded. A single piece (L236) 

was identified as a marine mollusc fragment, not flint as originally thought, and thus not recorded. 

A very small proportion of the assemblage (n=14, 4%) derived from cleaning contexts (C002, C018, 

C019) and are not included in the subsequent analysis. Although it is certain these lithics were 

recovered from the Mesolithic contexts, their precise provenance is not known. As such these lithics 

are categorised as unstratified, and listed in Appendix Five. One cleaning context (C020) has still 

been included in the analysis as this was excavated mid-way through the excavation of the main 

body of the shell midden (C008); therefore the stratigraphic integrity of this context is definite. The 

analysis that follows is only based upon the stratified material, with the inclusion of lithics from 

C020, and totals 320 pieces. 

Flakes dominate the assemblage and comprise 82% of the total artefacts recovered (Figure 129 and 

Table 23). The flake category represented in Figure 129 also includes flake cores, a core 

rejuvenation flake and small fraction flakes (<10mm). Cores make up 10% of the assemblage, and 
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a single, barely modified borer is the only formal tool that has been identified from the site. 

Indeterminate chunks, including small fraction chunks, several manuports, and a modified piece of 

gneiss make up the remainder of the assemblage. 

 

Figure 129. Tràigh na Beirigh 1 assemblage composition 

 Technology 
Raw Material  

Quartz Flint Other Total 

Core 29 2  31 

Core tool 1   1 

Chunk 9   9 

Small Fraction Chunk 11   11 

Flake 102 6 3 111 

Core rejuvenation flake 1   1 

Flake Core 7   7 

Small Fraction Flake 139 3 1 143 

Manuport 2  3 5 

Coarse stone tool   1 1 

Total 301 11 8 320 

Table 23. Tràigh na Beirigh 1 assemblage composition 

Figure 130 shows the proportion of artefacts contained within the different stratigraphic units, and 

Figure 131 the distribution by individual context. Over half of the artefacts were recovered from 

contexts in the main body of the shell midden (Figure 130; C008, C009, C011, C020). Just less than 

a quarter of the assemblage was found in the upper interface layers between the overlying turf and 

the shell midden below (C004, C005, C006), and an almost equal amount were recovered from the 

relic ground surface and soil/sand layers below the shell midden (C014, C015, C016, C017, C022, 

C032). Six artefacts were found in the fill of two small, discrete features (C026, C028). Worked 
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Flake*†
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n=320 
* includes small fraction 
† includes flake cores and core rejuvenation flake 
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quartz was found in all of the stratigraphic units, and is supplemented by small quantities of flint 

and other raw materials thoughout the archaeological sequence. 

This site cannot be discussed in terms of phases of occupation, owing to a lack of radiocarbon dates 

from the different deposits that make up the site. As a result, a defiitive interpretation cannot be 

made over the duration of the site formation. 

 

Figure 130. Tràigh na Beirigh 1 assemblage by stratigraphic sequence 
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Figure 131. Tràigh na Beirigh 1 raw material by context
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6.2.2.2. Raw Material 

Quartz overwhelmingly dominates the lithic assemblage from Tràigh na Beirigh 1, with 94% of the 

artefacts made from this raw material (Figure 132). A small proportion of flint and other raw 

materials such as feldspar, diorite, gneiss, and granite were also recovered. 

The whole assemblage is in fresh condition, suggesting limited post-depositional disturbance. All of 

the flint pieces are completely patinated, ranging in colour from white, grey, and creamy yellow. 

None of the pieces are stained or heavily scratched, however two flint flakes are burnt. 

 

Figure 132. Tràigh na Beirigh 1 raw material composition 

Greasy (very fine grained) quartz is the most frequently represented variety at Tràigh na Beirigh 1, 

with milky quartz the second most often used (Figure 133). Mixed quartz varieties predominantly 

comprise milky or greasy quartz with feldspar inclusions, or grade into coarse grained types such as 

quartzite. Milky quartz mixed with rock crystal also frequently occurs in this category. Quartzite and 

rock crystal, are only present in the assemblage in very low numbers. 
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Figure 133. Tràigh na Beirigh 1 quartz varieties 

The primary technology from Tràigh na Beirigh 1 is presented below. Details of the small fraction 

flake, chunk, and small fraction chunk assemblages can be found in Appendix Twelve. 

6.2.2.3. Primary Technology: Coarse Stone Tools 

6.2.2.3.1. Manuports 

Five manuports were recovered from Tràigh na Beirigh 1, which included pieces of gneiss (SF2, SF9), 

and quartz (L181) from the shell midden contexts (C008, C009). A single piece of diorite (SF3) was 

recovered from the old ground surface deposits (C014), and a small quartz pebble (L309) was found 

in the fill of a discrete feature (C026). The dimensions of these pieces are presented in Table 24. 

There is no evidence of working on either of the quartz pieces. L181 is a large, angular block with a 

micaceous, granitic 'cortex' on one face which suggests it was obtained from a nearby vein. In 

contrast, L309 is a smooth, sub-rounded pebble that is likely to have been acquired from the beach. 

SF2, SF3 and SF9 are of locally derived metamorphic rock. SF2 and SF9 are sub-rounded, broken, 

and actively degrading; SF3 is well worn and smooth. There is no evidence of working on these 

pieces; however it is notable that they are all quite flat and differ from the background material of 

the site. 

Catalogue No. Context No. Raw Material Length (mm) Width (mm) Thickness (mm) 

SF2 008 Gneiss 96.63 76.47 60.31 

SF3 014 Diorite 99.07 73.56 30.84 

SF9 008 Gneiss 148.77 115.02 38.00 

L181 009 Quartz 135.15 90.19 54.39 

L309 026 Quartz 43.14 33.7 31.32 

Table 24. Tràigh na Beirigh 1 manuport dimensions 
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6.2.2.3.2. Miscellaneous 

L58 is a piece of gneiss recovered from the fill of a shallow scooped feature (C022). Its maximum 

dimension is 72.61mm and it weighs 65.95g. There are up to three concave notches in the piece 

that are indicative of unidirectional flake removals, and which have created a larger concave feature 

in the piece. The piece has subsequently fractured, and its exact function cannot be determined. 

6.2.2.4. Primary Technology: Cores 

A total of 31 cores were recovered from Tràigh na Beirigh 1 (Table 23). These primarily derived from 

the main body of the shell midden (C008), with a high number also present in the interface context 

above (C005). One came from the fill of a discrete feature (C028) and a small number from the old 

ground surface and soil/sand layers below the shell midden (C014, C016, C017).  

6.2.2.4.1. Raw Material 

Over 90% of the core assemblage is quartz, and there are only two flint cores (Figure 134). 

  

Figure 134. Tràigh na Beirigh 1 core raw material 

The majority of quartz cores are made from greasy quartz, including a dark variant, with several 

also of milky quartz (Figure 135). The mixed quartz varieties most often range from milky to greasy, 

although there are two which are mixed greasy quartz and feldspar. 
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Figure 135. Tràigh na Beirigh 1 core quartz varieties 

6.2.2.4.2. Core Dimensions 

The flint and quartz cores from Tràigh na Beirigh 1 are small, generally between 10-40mm in length. 

The weight usually correlates with size, depending on the specific gravity of the raw material (Figure 

136). Two of the quartz cores are exceptionally large and heavy. 

 

Figure 136. Tràigh na Beirigh 1 core dimensions 

6.2.2.4.3. Cortex 

Neither of the flint cores at Tràigh na Beirigh 1 have cortex present on them, nor do three of the 

quartz cores; therefore the source of these materials cannot be determined (Figure 137). The cortex 

present on the remainder of the quartz cores is most frequently flat and frosted in appearance, 

with other raw materials such as feldspar mixed into the cortex. This indicates the quartz was 

sourced directly from a local outcrop. A few cores display cortex that suggests they are water-rolled 

pebbles collected from the beach. 
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Figure 137. Tràigh na Beirigh 1 core cortex presence 

6.2.2.4.4. Flake Removals – Count and Pattern 

The number of flake removals on the quartz cores ranges between one and seven (Figure 138). 

Quartz cores with four removals are marginally more frequently represented than cores with one 

or three flake removals. There are five quartz cores which have five or more removals – one has 

five, three have seven and one has six. One of the flint cores has eight removals and the other has 

six. 

 

Figure 138. Tràigh na Beirigh 1 number of flake removals for core 

The flint core with six removals is a bipolar core, represented by bidirectional removals (Figure 138 

and Figure 139). On the other flint core the flake removals have been made from multiple directions. 

Multidirectional flake removals are almost exclusively found on the quartz cores with two or more 

flake removals; there is only one quartz core with two flake removals that have been removed from 

a single direction. A unidirectional flake removal sequence is almost exclusively found on all cores 
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with a single dorsal flake scar, as would be expected, and accounts for the flake scar pattern of a 

single core with two removals (Figure 140). 

 

Figure 139. Tràigh na Beirigh 1 sequence of flake removals from core 

 

Figure 140. Tràigh na Beirigh 1 sequence of flake removals from cores in relation to the number of flakes removed 

6.2.2.4.5. Core Platform Preparation 

There is no evidence for platform preparation on the bipolar flint core. The other flint core displays 

a mixture of simple platform preparation, and platforms that have been lost due to subsequent 

flake removals (Figure 141). Only a single quartz core displays solely simple platform preparation, 

although a further 11 exhibit simple preparation in combination with other types. On three cores 

evidence for platform preparation has been completely lost. Unprepared platforms are present on 

the majority of the quartz cores, either alone, or in combination with other forms of preparation. 
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Figure 141. Tràigh na Beirigh 1 core platform type 

6.2.2.4.6. Core Tool 

The core tool (SF14) was recovered from the fill of a shallow, scoop shaped negative feature (C022). 

It is made from greasy quartz and is 40.72mm at its maximum dimension, weighing 13.58g. There 

are six multidirectional removals from the core, and there are a range of platform preparation 

stages from unprepared to simple, and lost. The cortex present is flat and frosted, suggesting the 

piece derived from a vein source. Of the flake removals, two are very abrupt and have been initiated 

from one edge, opposite a break, to create a pointed end. These removals appear to be very late in 

the knapping sequence and are too small to have provided adequate flakes for working; therefore 

the intention behind their removal appears to be to shape the point. Based on the modification of 

a single edge to create a pointed end, it is likely this piece is a borer (McCartan 1990). 

6.2.2.5. Primary Technology: Flakes 

The flake assemblage from Tràigh na Beirigh 1 totals 111 pieces. The flake analysis presented below 

only comprises material >10mm in length. As mentioned in Chapter Five, the small fraction flakes 

(<10mm), chunks, and small fraction chunks simply represent in situ knapping debris (Ballin 2000:10; 

Finlayson et al. 2000:67); therefore, this data is presented in Appendix Twelve. A description of the 

seven flake cores and core rejuvenation flake, which were also recovered from the site, is given in 

a separate section after the initial flake analysis. 

The majority of the flake assemblage was recovered from the main body of the shell midden (C008; 

C009; C020). A high proportion was also found in the old ground surface deposits, and soil/sand 

layers underlying the shell midden (C014; C015; C016; C017; C022; C032). A small number of flakes 

were identified in the interface deposits between the turf and the shell midden (C005, C014). The 

remainder of the assemblage comprises a single flake that was recovered from a discrete layer of 
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razor clams (Ensis sp.) below the main body of the shell midden (C011), and two flakes from the fill 

of a negative feature (C026) cut into the underlying ground surface. 

6.2.2.5.1. Raw Material 

The flake assemblage from Tràigh na Beirigh 1 is dominated by quartz flakes (92%; Figure 142). Flint 

only comprises 5% of the assemblage, and the remainder of the flakes are made on feldspar or 

granite. 

  

Figure 142. Tràigh na Beirigh 1 flake raw material composition 

Greasy quartz, including a dark variety, is most frequently found in the flake assemblage from this 

site, with smaller quantities of milky quartz represented (Figure 143). There are very few fine 

grained pieces, and the mixed quartz varieties range between milky and greasy quartz with feldspar 

inclusions; milky quartz which grades into coarser grained quartz varieties such as quartzite is also 

present. 

  

Figure 143. Tràigh na Beirigh 1 flake quartz varieties 

Flint
5%

Quartz
92%

Other
3%

Fine grained Greasy Milky Mixed

Flake 4 77 16 5

0

10

20

30

40

50

60

70

80

90

Q
ty

Quartz variety

n=111 

n=102 



 

231 

 

6.2.2.5.2. Flake Dimensions 

The summary statistics for the flint and quartz flakes from Tràigh na Beirigh 1 are presented in Table 

25. On average, the flint flakes are longer than the quartz flakes; however, the quartz flakes have a 

greater range in terms of length, with a higher standard deviation. Despite this, both raw materials 

have an almost equal widths and thicknesses on average, albeit the flint marginally bigger. There is 

a very small range of thickness in the flint flakes, which is reflected in the low standard deviation. 

This contrasts with the larger range in thickness of flakes made from quartz. 

Raw Material  Length (mm) Width (mm) Thickness (mm) 

Flint 

Min 16.34 7.12 4.71 

Max 26.99 22.40 7.59 

Mean 21.55 14.73 5.82 

SD 5.086883 5.086828 1.084535 

Quartz 

Min 10.06 5.00 1.10 

Max 42.89 38.13 27.29 

Mean 16.49 14.60 5.30 

SD 6.835002 6.773683 3.449084 

Table 25. Tràigh na Beirigh 1 flake dimension summary statistics for primary raw materials 

Overall, there is a positive linear trend between the increasing length and width of the quartz flakes 

(Figure 144). The densest cluster of points falls between 10mm-15mm in length and 5mm-16mm in 

width. Outside of this cluster the points become more dispersed and all of the flakes, with a single 

exception, fall below less than 30mm in length and 35mm in width. The flint flakes from two groups 

in terms of length – one at c.17mm and another at c.26mm, but there is little difference between 

the widths. The granite flake falls in the dense cluster of quartz flakes, whereas the two feldspar 

flakes are slightly longer and wider. 

 

Figure 144. Tràigh na Beirigh 1 flake dimensions length:width 
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A linear trend between increasing flake length and thickness is also observed in the flake 

assemblage from Tràigh na Beirigh 1 – the longer flakes are generally thicker. As described above, 

the clear dense grouping of quartz flakes, and two groups of flint flakes are evident in Figure 145. 

The narrow range of the thickness of flint flakes is visible, with none exceeding 8mm in thickness. 

A very small proportion of the quartz flakes are thicker than 10mm. One of these is a significant 

outlier with a thickness of 27.29mm, although it is quite short. The granite and feldspar flakes all 

fall within a similar range of thickness as those of flint and quartz. 

 

Figure 145. Tràigh na Beirigh 1 flake dimensions length:thickness 

The extremely thick quartz flake falls at the narrower end of the range in terms of width (Figure 

146). Overall, there is a weak positive correlation between the increasing width and thickness of 

quartz flakes; however there are a number of thicker flakes of mid-range width that do not fit this 

trend. There is little variation in the thickness of the flint flakes, regardless of width, which is also 

the case for the feldspar and granite flakes. 

 

Figure 146. Tràigh na Beirigh 1 flake dimensions width:thickness 
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6.2.2.5.3. Cortex 

There are no flint flakes at Tràigh na Beirigh 1 which have 100% cortex present, and only a single 

flake retains >50% of the cortex (Figure 147). The remainder of the flint flakes have <50% or none 

at all. Where cortex is present on flint flakes it is smooth, rounded and water worn, indicating it 

was sourced from beach pebbles. One of the feldspar flakes has 100% cortex present which is also 

smooth and rounded, suggesting the likely source of the material is again a beach pebble. The other 

feldspar flake and granite flake both retain >50% of the original outer surface, which is smooth and 

weathered, suggesting an outcrop source for both pieces. 

The majority of the quartz flakes from the assemblage are completely decorticated, and a high 

number retain <50%. Considerably fewer quartz flakes have >50% or 100% dorsal cortex. The cortex 

present on the quartz flakes is most frequently smooth, rounded and water worn which also 

suggests the source is beach pebbles. There are also a small number of flakes with flat, frosted 

cortex that is frequently combined with weathered feldspar. This is indicative of ‘parent’ material, 

where a block or plate of quartz has been detached from an outcrop. 

 

Figure 147. Tràigh na Beirigh 1 flake cortex percentage 

6.2.2.5.4. Striking Platform – Type and Dimensions 

The platforms of all of the flint flakes are either broken or crushed, which is also the most frequently 

recorded platform type category recorded for quartz flakes (Figure 148). The striking platform is 

absent from the feldspar and granite flakes. Where the striking platform on the quartz flakes is 

present and complete, these platforms are either cortical or plain. Cortical platforms occur more 

frequently than those created by a previous flake removal. 
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Figure 148. Tràigh na Beirigh 1 flake platform type 

The majority of both platform types fall between 5mm-17mm in width and 1mm-9mm in depth 

(Figure 149). Two plain platforms exceed 20mm in width, one of which is unusually deep, and two 

cortical platforms are more than 25mm wide. There is a single flake with a cortical platform that is 

a significant outlier at 25.31mm in depth. 

 

Figure 149. Tràigh na Beirigh 1 quartz flake platform dimensions 

6.2.2.5.5. Dorsal Flake Scars – Count and Pattern 

The maximum number of dorsal flake scars present on quartz flakes is four, although this is not 

common and the majority of quartz flakes only display a single dorsal flake scar (Figure 150). Of the 

other raw materials that have dorsal flake scars, the feldspar flake and the granite flake have single 

removals each. Flint flakes generally exhibit several dorsal flake scars, which range in number 

between two and eight. 
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Figure 150. Tràigh na Beirigh 1 dorsal flake scar count 

A unidirectional dorsal flake scar pattern is most frequently observed on the quartz, feldspar and 

granite flakes (Figure 151). Equal numbers of flint flakes display multidirectional and unidirectional 

flake removals. On one flint and one quartz flake a bidirectional pattern was observed. This 

indicates a bipolar reduction technique has been employed to reduce the flint flake, and is 

evidenced by a high number of dorsal flake scars (Figure 152); however for the quartz flake it simply 

demonstrates that the knapping sequence had alternated from one end to another. 

For a small number of flakes the knapping pattern could not be identified, and in all cases this was 

where only two dorsal flake scars were present (Figure 152). A multidirectional flake scar pattern is 

evident in the majority of flakes with two or more flake scars; however in a small number of flakes 

two or three dorsal scars indicate a unidirectional pattern. 

 

Figure 151. Tràigh na Beirigh 1 dorsal flake scar pattern 

One Two Three Four Five +

Flint 2 1 1 2

Quartz 52 26 8 3

Feldspar 1

Granite 1

0

10

20

30

40

50

60

Q
ty

Dorsal Flake Scar Count

Bidirectional Indeterminate Multidirectional Unidirectional

Flint 1 1 2 2

Quartz 1 4 21 63

Feldspar 1

Granite 1

0

20

40

60

80

Q
ty

Dorsal Flake Scar Pattern

n=97 

n=97 



 

236 

 

 

Figure 152. Tràigh na Beirigh 1 dorsal flake scar pattern in relation to the number of dorsal flake scars counted 

6.2.2.5.6. Flake Breakage 

Only a small proportion of flakes in the assemblage do not exhibit any evidence of breakage beyond 

knapping shatter. The majority of flakes in each raw material are broken to some extent (Figure 

153).  

 

Figure 153. Tràigh na Beirigh 1 flake breakage 

6.2.2.5.7. Flake Core 

Seven quartz flake cores were recovered from Tràigh na Beirigh 1. L33 was recovered from an 

interface context between the turf and the top of the shell midden (C005). SF8, L94, L160, and L226 

were all recovered from the main body of the shell midden (C008, C009), whilst L273 was found in 

the underlying old ground surface (C014). SF19 was recovered from the fill of a discrete feature 

below the shell midden (C028). The dimensions of these pieces are presented in Table 26, and each 

piece is described below. 
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Catalogue No. Context No. Length (mm) Width (mm) Thickness (mm) 

SF8 008 22.16 21.65 5.49 

SF19 028 15.73 21.12 6.59 

L33 005 18.93 14.62 4.07 

L94 009 17.94 13.93 4.54 

L160 008 10.39 11.74 3.60 

L226 008 5.37 15.13 2.20 

L273 014 15.29 11.66 4.08 

Table 26. Tràigh na Beirigh 1 flake core dimensions 

SF8 is made from greasy quartz and does not have any cortex present. The original platform is 

absent due to breakage and a single, unidirectional dorsal flake scar is present. The break was used 

as the platform to remove a further flake on the dorsal face of the original flake. 

SF19 is also a greasy quartz flake core, and there is <50% cortex on the piece, which is flat and 

frosted suggesting a vein source. The cortex covers the striking platform which measures 18.13mm 

X 4.90mm. A single, unidirectional flake scar is present on the dorsal face. A further flake removal 

has been initiated from a break on the right lateral side of the piece, which formed the platform for 

its removal. 

L33 is a greasy quartz flake core with complete dorsal cortex coverage, which also extends on to 

the ventral face. Two very small flake removals have been made into the ventral face from a break 

along the left lateral edge. There is no evidence for the original striking platform. 

L94 is quartzite with a broken platform, no cortex present, and a single unidirectional dorsal flake 

scar. A break on the right lateral edge has been used as a platform to remove a further flake. 

L160 is a milky quartz flake core. A single, unidirectional dorsal flake scar has left >50% cortex on 

the piece. This cortex is smooth, rounded, and water-worn suggesting it was obtained from the 

beach. A further flake removal on the ventral face has been initiated from the right lateral at the 

proximal end, removing the platform of the original flake. 

L226 is very similar to SF19. The greasy quartz flake also has <50% cortex present which covers the 

striking platform. The platform measures 13.65mm X 2.20mm. In contrast to the other flake cores, 

this piece displays four dorsal flake scars that have been removed from multiple directions. There 

are two bulbs of percussion present on the ventral face, which has subsequently been destroyed 

by a later flake removal. 

L273 is made from milky quartz and the original striking platform has been crushed. There is no 

cortex present on the piece and a single, unidirectional flake scar is present on the dorsal face. The 
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removal of a further flake on the same face was initiated from a break on the right lateral edge, 

which acted as a fresh platform. 

6.2.2.5.8. Core Rejuvenation Flake  

A single quartz core rejuvenation flake was recovered from the main body of the shell midden (C008) 

at Tràigh na Beirigh 1. L162 is made from greasy quartz and measures 18.95mm X 12.76mm X 

14.62mm. There is <50% cortex present on the piece and the striking platform is broken. There are 

two multidirectional flake scars evident in addition to further breakage. 

6.2.2.5.9. Natural Quartz Fragments 

The site of Tràigh na Beirigh 1 lies on an outcrop of Lewisian gneiss, with a vein of quartz running 

through the centre of the site. The samples from the site, principally from the basal sand and old 

ground surface contexts, therefore contained a quantity of natural quartz fragments. Quartz was 

observed actively becoming detached from the bedrock during the excavation of these basal 

contexts, and thus became incorporated into the samples. These fragments were clearly 

identifiable as they are frosted and weathered on both faces, with angular breaks along natural 

fracture planes. Other natural fragments were found within the samples from other contexts, 

however these principally comprised small, sub-angular pieces of rock crystal with micaceous 

inclusions. The natural quartz fragments from each context were weighed and archived; the 

weights are presented in Appendix Five. 

6.2.2.6. Assemblage Summary 

A total of 320 pieces make up the lithic assemblage from Tràigh na Beirigh 1, which is largely derived 

from the shell midden deposits. Flint and quartz debris in the underlying ground surface indicates 

that the site was used prior to the build-up of midden deposits; without further radiocarbon dates 

the relationship between this occupation and use of the midden is not clear. The presence of 

artefacts in the upper interface layers is likely to be a consequence of the upper section of the 

midden being eroded, and possibly later activity at the site.  

Quartz is the dominant raw material throughout the occupation of Tràigh na Beirigh 1. It is evident 

from the manuports, and the cortex of the cores at the site, that both a vein and beach pebbles 

were exploited as the sources of this raw material. There are a higher number of vein quartz cores 

than pebble cores, which indicates the former source was more frequently exploited. The presence 

of a small number of granite and feldspar flakes at the site, which appear to be decorticating flakes 

from the primary reduction of quarried quartz, supports this. There is evidence for quarrying of the 

quartz vein outcrops around Gridig, the small promontory on which Tràigh na Beirigh 1 is situated, 

in the presence of small, circular impact marks that denote attempts to remove a piece. Other 
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outcrops of quartz, also with visible evidence for quarrying have been identified on the west side 

of the Bhaltos peninsula near Cliobh (McHardy 2010). 

The quartz is predominantly of a very fine grained (greasy) variety, as such the material is of very 

high quality, which contrasts to Northton and Tràigh an Teampuill. The cores display an average of 

3.2 flake removals, and this remains largely constant throughout the occupation of the site. There 

is, however, a noticeable difference between the average number of flake removals on purely 

greasy quartz (3.7) and purely milky quartz (2.7). On quartz cores where these two varieties grade 

into one another, there is an average of 3.5 flake removals, suggesting that the better quality raw 

material was more intensively reduced. This is reflected in the greater number of greasy quartz 

flakes present in the assemblage and this quartz variety is primarily used for the flake cores and 

core rejuvenation flake. The large size of many of the cores indicate they were discarded long before 

they were exhausted, as often observed when a raw material is locally abundant. The flake cores 

do not appear to have been intentionally produced in terms of strategic economising of the raw 

material, however. In almost every instance breakage on the original flake has been used 

opportunistically as a platform to initiate a further removal. 

Quartz was primarily reduced using platform technology, and is evident in several aspects of the 

assemblage. The high number of unprepared platforms on the cores display flat, frosted cortex that 

denotes the edge of a block or plate, which functions as a ‘ready made’ platform (Ballin 2008:69-

70). Furthermore, plain platforms are present on a number of flakes, which demonstrates they have 

been removed from cores with simple platform preparation. Flakes displaying cortical platforms 

are almost exclusively pebble quartz. The large size of many of these pieces could relate to the 

application of bipolar technique for initial ‘quartering’ of the pebbles (Ballin 2008:70-71). The high 

frequency of multidirectional flake removals on the cores, but dominance of single, unidirectional 

dorsal flake scars in the flake assemblage attests to the frequent turning of the core to remove a 

single flake. 

Flint is found in small quantities throughout the occupation deposits at Tràigh na Beirigh 1, where 

it is clearly very heavily reduced. The cores average seven removals, and the flakes display an 

average of 3.3 dorsal flake scars. There is little evidence for the primary reduction of flint at this 

site. The two cores in the flint assemblage do not display any cortex, and the only flake to retain >50% 

cortex suggests that the source of the material was a beach pebble. The primary reduction of these 

pebbles may have therefore taken place elsewhere. Both bipolar and platform technology was used 

to knap the flint. Where the latter was performed, the core was rotated frequently, and flakes 

removed from multiple directions. The small number of flint flakes present in the assemblage at 

Tràigh na Beirigh 1 is not in accordance with the high number of flake removals represented by the 

flakes and cores, therefore it appears that the majority of the flint flakes have been removed from 
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the site. There are no known flint sources nearby, and the closest recorded is in South Uist. This 

material may have therefore been imported to the site, hence the reason for its intensive reduction. 

The manuports of gneiss and diorite, which are locally derived, may have been used in processing 

activities at Tràigh na Beirigh 1. Their flat shape is not conducive to use as hammerstones, although 

they may have been used in platform-on-anvil reduction, to support the splitting of quartz and flint 

pebbles. The notched gneiss piece has clearly been intentionally modified but its function is 

unknown. 

Overall, the assemblage at Tràigh na Beirigh 1 represents a collection of knapping waste from the 

reduction of flint and quartz. The final stages of the chaîne opératoire, such as the modification of 

flakes for tools, is largely absent. Only the barely-modified core borer represents clear evidence of 

tool production at the site, and there is no evidence for microlith technology. Comparisons with the 

other shell midden sites on Lewis will be made within the subsequent assemblage summaries, to 

establish whether the assemblage is representative of this site-type in the Western Isles. A more 

detailed appraisal of Mesolithic shell middens is discussed in Chapter Eight, in order to contextualise 

these assemblages more fully.
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6.3. Tràigh na Beirigh 2 

6.3.1. Discovery and Excavation  

6.3.1.1. Excavation 2012 

A shell midden at Tràigh na Beirigh 2 (NGR NB 1002 3642) was discovered in September 2012 

following a small-scale coastal erosion survey. This was conducted along the headland between 

Tràigh na Beirigh beach and Cnip campsite jetty to the north, as part of the excavation of the 

Mesolithic shell midden at Tràigh na Beirigh 1. The survey was conducted with the same aims and 

criteria that were so successful in identifying the third Mesolithic site in the Western Isles at Tràigh 

an Teampuill, described in Chapter Five. This survey was previously conducted in 2011, however 

nothing was observed. The exposure of the shell midden is therefore most likely a consequence of 

extreme coastal erosion and machair deflation in the area, caused by the very dry summer and 

aggressive autumn storms of 2012, which has been a long-standing issue (Armit 1994). The site was 

observed eroding from under the machair dune, with the basal deposits of the midden grading into 

a probable early to mid-Holocene soil, as observed at Tràigh na Beirigh 1, which made it likely to be 

Mesolithic in date (Bishop et al. 2014a). It is situated to the north of the Gridig promontory, where 

Tràigh na Beirigh 1 is located. 

A 1.3m section of the eroding deposits was cleaned for investigation, although the deposits were 

sporadically visible in the eroding section for a significant distance along the headland. Below the 

machair dune lies a probable buried ground surface (Figure 154). This overlies a stone layer, which 

seals a shell-rich midden deposit. The midden in turn overlies another probable buried land surface. 

The lower deposits are heavily concreted as a result of groundwater outflow in this area (Bishop et 

al. 2014a). 

In accordance with the sampling strategy outlined for the Western Isles (Church 2002b; Jones 1991), 

the deposits were 100% sampled, and 51.5 litres of bulk samples were taken. Initial processing of 

the samples indicated the deposits contained a similar repertoire of wild animal and plant species 

to those found in Northton, Tràigh an Teampuill and Tràigh na Beirigh 1, most notably fish and hare 

bones, shellfish, crustacean, charred hazel nutshells, and charcoal. Struck quartz was also present. 

There was no evidence of domesticated plant or animal species; however, the upper deposits 

contained very small fragments of heavily abraded pottery, which may be residual (Bishop et al. 

2014a). Four hazel nutshell fragments recovered from the main body of the shell midden produced 

statistically consistent dates of 4542-4465 cal. BC, which is c.200 years earlier than the occupation 

at Tràigh na Beirigh 1. 
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Figure 154. Mesolithic deposits revealed underlying the machair at Tràigh na Beirigh 2 following excavation in 2013. 

Photo courtesy of Mike Church 

6.3.1.2. Excavation 2013 

Further excavation of Tràigh na Beirigh 2 in 2013 exposed a more substantial stretch of shell midden 

deposits along the headland than the previous season, and a little under 400 litres of bulk samples 

were removed from site overall. The samples contained large quantities of the artefacts and 

ecofacts that have become characteristic of the Mesolithic shell midden deposits in Lewis. The site 

most likely forms part of a relic Mesolithic landscape that is preserved under the machair across 

the east of the peninsula, which incorporated the Tràigh na Beirigh site 1 on Gridig in addition to 

Tràigh na Beirigh Sites 3, 4 and 9, discussed subsequently (Burgess & Church 1997). 

6.3.2. Tràigh na Beirigh 2 Lithic Assemblage Results 

6.3.2.1. General Character of the Assemblage 

The total lithic assemblage from the >4mm fraction of Tràigh na Beirigh 2 is 351 artefacts. Nine 

lithics were not included in the final analysis however, as these were recovered from cleaning 

contexts (C001, C007, C022). They are listed in Appendix Six alongside the raw data for the whole 

assemblage. Although it is highly likely these derived from the Mesolithic deposits, this cannot be 

guaranteed, therefore the total number of artefacts presented in the subsequent analysis is 342. 

The main body of the shell midden (C005 and C011) contained the highest proportion of lithics, and 

artefacts were recovered in small quantities from almost all of the recorded contexts. A small 

quantity of pottery fragments were found C003, however it is likely these are intrusive. 
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The assemblage is dominated by flakes, which represent 83% of the total quantity (Figure 155 and 

Table 27). Flake cores, core rejuvenation flakes, and small fraction (<10mm) flakes are included 

within the flake category represented in Figure 155. 12% of the assemblage is made up of cores; 

indeterminate chunks, including small fraction chunks are present in small quantities, and several 

manuports were recovered (Figure 155 and Table 27). No formal tools were identified from the site. 

 

Figure 155. Tràigh na Beirigh 2 assemblage composition 

 Technology 
Raw Material  

Quartz Flint Other Total 

Core 41 
 

1 42 

Chunk 4  
 

4 

Small Fraction Chunk 6   6 

Flake 111 7 
 

118 

Core rejuvenation flake 2  
 

2 

Flake Core 1 
  

1 

Small Fraction Flake 160 2 
 

162 

Hammerstone/Manuport 6 
 

1 7 

Total 331 9 2 342 

Table 27. Tràigh na Beirigh 2 assemblage composition 

Almost three quarters of the lithic assemblage from Tràigh na Beirigh 2 was recovered from 

contexts interpreted as shell midden deposits (C005, C011; Figure 156 and Figure 157). The shell 

midden predominantly contained quartz, in addition to most of the flint and other raw materials 

found in the assemblage (the latter primarily from C011; Figure 157). The upper interface layers of 

mixed machair and shell overlying the midden deposits (C003, C004, C009, C010 and C012), 

contained around one-sixth of the total assemblage, the majority of which derived from C003. 

These are almost exclusively quartz, with only two pieces of flint identified. There were two old 

ground surface horizons, an upper (C006, C016, C017), and lower (C019, C020, C021), underlying 

Core
12%

Chunk*
3%

Flake*†
83%

Hammerstone / 
Manuport

2%

n=342 
* includes small fraction 
† includes flake cores and core rejuvenation flakes 
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the midden. The lithics recovered from both of these old ground surface layers comprise a little 

over 10% of the lithic assemblage and are also predominantly quartz. A single piece of flint was 

recovered from C016 in the upper ground surface and a gneiss manuport from C021 in the lower 

horizon. 

 

Figure 156. Tràigh na Beirigh 2 assemblage by stratigraphic sequence 
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Figure 157. Tràigh na Beirigh 2 raw material by context 
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6.3.2.2. Raw Material 

Quartz dominates the lithic assemblage at Tràigh na Beirigh 2 with 97% of the artefacts made from 

this raw material, including a metamorphosed variety (Figure 158). Only a small amount of flint was 

recovered from the site (2%), in addition to single pieces of gneiss and feldspar. 

The assemblage is in fresh condition, and there is little evidence for post-depositional disturbance 

beyond the conflation of the upper interface contexts. All of the flint is completely patinated, which 

predominantly ranges in colour from white to grey, although the patina on one flint flake is creamy 

yellow. There is no staining or scratching on the assemblage. 

 

Figure 158. Tràigh na Beirigh 2 raw material composition 

The most common quartz variety recorded at Tràigh na Beirigh 2 is greasy quartz, which includes a 

dark variant (Figure 159). A small proportion of fine grained quartz is also present, in addition to 

three pieces of quartzite. Milky quartz is more common than the mixed quartz varieties in the 

assemblage. The mixed varieties are most often milky or greasy types, which grades to fine grained 

types or feldspar. 
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Figure 159. Tràigh na Beirigh 2 quartz varieties 

The primary technology from the site is detailed in the following sections. Results of the small 

fraction flakes, chunks, and small fraction chunk analysis are presented in Appendix Twelve. 

6.3.2.3. Primary Technology: Coarse Stone Tools 

6.3.2.3.1. Hammerstones and Manuports 

A single hammerstone (L320) was identified in the shell midden (C011) at Tràigh na Beirigh 2. The 

piece is of sub-rounded, water worn, metamorphosed quartz-feldspar, which is pitted and has 

fractured along one face. The pitting and fracture is indicative of damage caused by percussion. 

Six manuports with no obvious function were also recovered from the site, the majority of these 

derived from the same shell midden context as the hammerstone described above (C011). L316 

and L319 are sub-rounded to sub-angular, water-worn stones of quartzite, whereas L317, L318 and 

L320 are metamorphosed quartz-feldspar pieces, which are also sub-rounded to sub-angular and 

water-worn. There are no signs of working present on the pieces; although small chips and a crack 

are present around the edge of L318, which is likely post-depositional degradation of the rock. 

A sub-angular, flattish piece of gneiss (L145) was recovered from the lower old ground surface 

(C021). This piece is chipped along one edge but does not appear to be the type of percussion 

damage associated with a hammerstone. 

The final manuport recovered from Tràigh na Beirigh 2 is a rounded, water-worn pebble of 

metamorphosed quartz-feldspar from the shell midden (L240; C005). The pebble has broken 

laterally, which may have been the result of the pebble being ‘tested’ for knapping quality. The 

dimensions of the hammerstone and manuports are presented in Table 28. Tràigh na Beirigh 2 

manuport dimensions 
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grained
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Total assemblage 13 52 244 3 19

0

50

100

150

200

250

300

Q
ty

Quartz Variety
n=323 



 

248 

 

Catalogue 

No. 

Context 

No. Raw Material 

Length 

(mm) 

Width 

(mm) 

Thickness 

(mm) 

L145 021 Gneiss 101.78 56.89 19.41 

L240 005 Quartz-feldspar (metamorphosed) 58.58 47.91 24.75 

L316 011 Quartzite 91.19 55.88 25.40 

L317 011 Quartz-feldspar (metamorphosed) 68.63 36.23 24.04 

L318 011 Quartz-feldspar (metamorphosed) 69.79 44.12 21.05 

L319 011 Quartzite 43.12 42.55 22.94 

L320 011 Quartz-feldspar (metamorphosed) 50.75 33.86 19.67 

Table 28. Tràigh na Beirigh 2 manuport dimensions 

6.3.2.4. Primary Technology: Cores 

There are 42 cores present in the assemblage at Tràigh na Beirigh 2 which comprise 12% of the total 

assemblage (Figure 155). The largest proportion of cores (30) was recovered from the shell midden 

deposits (C005, C011), with seven cores found in the upper interface layers (C003, C004) and five 

in the underlying old ground surface deposits (C006, C016, C019, C021). 

6.3.2.4.1. Raw Material 

The cores from Tràigh na Beirigh 2 are almost exclusively quartz (Figure 160). Only a single core of 

feldspar was recovered from the site. 

 

Figure 160. Tràigh na Beirigh 2 core raw material 

Greasy quartz, including some dark greasy quartz, is the dominant variety in the core assemblage 

with a small number of cores made from milky quartz (Figure 161). The mixed quartz core grades 

between greasy and fine grained quartz and there is a single core of quartzite. 

Feldspar
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98%
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Figure 161. Tràigh na Beirigh 2 core quartz varieties 

6.3.2.4.2. Core Dimensions 

The majority of quartz cores are less than 40mm in length and 50g in weight (Figure 162). The three 

largest cores, which are over double the length of the majority, are also the heaviest by a significant 

margin. The feldspar core is one of the largest cores, but is much lighter than quartz cores of a 

similar length. 

 

Figure 162. Tràigh na Beirigh 2 core dimensions 

6.3.2.4.3. Cortex 

The ‘cortex’ present on L237 is evident as the weathered outer surface of the feldspar (Figure 163). 

Cortex is present on all but three of the quartz cores. On the majority of cores this is smooth and 

rounded, indicating the original piece was a water-worn beach pebble. Some pieces display flat and 

frosted cortex which suggests it has derived from a block or a plate. A small number of cores display 

circular percussion marks on the cortical surface, or on flake scars, which is evidence of failed 

attempts to remove flakes. 
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Figure 163. Tràigh na Beirigh 2 core cortex presence 

6.3.2.4.4. Flake Removals – Count and Pattern 

Only a single quartz core has one flake removal scar (Figure 164). The feldspar core has two flake 

removals and this number of removals is present on seven of the quartz cores. Marginally more 

quartz cores display four flake removals than three. The largest number of quartz cores have five 

or more flake scars – most have five or six, although one core has ten flake removals recorded. 

 

Figure 164. Tràigh na Beirigh 2 core flake removal count 

The two flake scars on the feldspar core have been removed from one direction (Figure 165 and 

Figure 166). Most of the quartz cores have a multidirectional flake removal pattern. This pattern is 

exclusively present in cores with five or more flake removals. The unidirectional pattern is only 

found on a small number of quartz cores with between one and four flake removals. 
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Figure 165. Tràigh na Beirigh 2 core flake removal sequence 

 

Figure 166. Tràigh na Beirigh 2 sequence of flake removals from cores in relation to the number of flakes removed 

6.3.2.4.5. Core Platform Preparation 

There is only one quartz core that exclusively displays simple platform preparation (Figure 167). 

The platform on the feldspar core has been lost, which is also recorded on eight of the quartz cores. 

A slightly higher number of quartz cores display solely unprepared platforms. The majority of the 

quartz cores fall into the ‘mixed’ category. In all cases evidence for the type of platform preparation 

has been lost, however the cores also retain unprepared platforms or evidence for simple platform 

preparation. 
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Figure 167. Tràigh na Beirigh 2 core platform preparation 

6.3.2.5. Primary Technology: Flakes 

The flake assemblage (>10mm) from Tràigh na Beirigh 2 totals 118 pieces, which are described 

below. Separate descriptions detailing the flake core and two core rejuvenation flakes are given at 

the end of the section. 

The majority of the flake assemblage derived from the shell midden deposits (C005; C011; C014; 

C015; C018). A high proportion was also recovered from the overlying interface deposits of mixed 

machair and shell, predominantly in C003. A small quantity of flakes were found in the upper old 

ground surface horizon (C006; C016; C017), and only a single context from the lower ground surface 

(C021) yielded pieces of this typology. 

6.3.2.5.1. Raw Material 

The flake assemblage from Tràigh na Beirigh 2 is dominated by quartz (94%; Figure 168). Only seven 

flakes in the assemblage are flint. 

The most common quartz variety found in the flake assemblage is greasy quartz (Figure 169). Milky 

quartz accounts for a small proportion of the assemblage, and a small number of fine grained and 

mixed varieties are also present. The mixed varieties are generally milky or greasy quartz with some 

coarse grained varieties, which grade into fine grained quartz or feldspar. 
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Figure 168. Tràigh na Beirigh 2 flake raw material 

 

Figure 169. Tràigh na Beirigh 2 flake quartz varieties 

6.3.2.5.2. Flake Dimensions 

Table 29 displays the summary statistics for the flake assemblage at Tràigh na Beirigh 2. The quartz 

flakes range more widely than the flint flakes in each dimemsion recorded, and as such have a 

greater standard deviation from the mean. The quartz flakes have significantly higher maximum 

values than the flint flakes, and are therefore larger on average in all dimensions. 
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Raw Material  

Length 

(mm) 

Width 

(mm) 

Thickness 

(mm) 

Flint 

Min 10.30 7.22 1.90 

Max 23.44 17.93 6.24 

Mean 13.43 12.08 3.37 

SD 4.71391 4.327869 1.500549 

Quartz 

Min 10.00 3.18 1.65 

Max 42.84 42.4 23.04 

Mean 17.06 14.20 5.22 

SD 6.584664 7.397428 3.312754 

Table 29. Tràigh na Beirigh 2 flake dimension summary statistics for primary raw materials 

The largest quartz flake exceeds 40mm in both length and width, which separates it distinctly from 

the rest of the quartz assemblage (Figure 170). The densest cluster of quartz flakes falls between 

10-15mm in length and 3-20mm in width. Almost all of the flint flakes also fall within this cluster. 

The flint flake which falls outside this group is much longer than the other flakes in this raw material, 

but not much wider. The outlying flint flake lies within the more dispersed group of quartz flakes. 

There is a positive correlation between the increase in length and width for both raw materials 

present. 

 

Figure 170. Tràigh na Beirigh 2 flake dimensions length:width 

There is no clear relationship between the length and thickness of the flint flakes; however the 

quartz flakes display a clear positive correlation between these dimensions (Figure 171). The range 

between the minimum and maximum measurements for thickness of the quartz flakes is very wide, 

with a difference of over 20mm, which contrasts to the flint flakes which are separated by less than 

5mm (Table 29). The dense cluster of quartz and flint flakes discussed above with regard to length, 

is again observed in Figure 171. The longest flint flake which, falls outside this main group, is no 

thicker than the shorter flakes in this raw material. The majority of the quartz flakes are less than 
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15mm in thickness and only two exceed this measurement, one of which is the longest and widest 

outlier mentioned above. 

 

Figure 171. Tràigh na Beirigh 2 flake dimensions length:thickness 

All of the flint flakes are less than 20mm in width and 10mm in thickness, as are the majority of the 

quartz flakes (Figure 172). There is no relationship between increases in these dimensions for the 

flint flakes, although a positive trend can be seen for the quartz flakes. Of the four widest quartz 

flakes, three of these are also the thickest. 

 

Figure 172. Tràigh na Beirigh 2 flake dimensions width:thickness 
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majority of the cortex is smooth and rounded, indicating the source of the material was water-worn 

cobbles from the beach. On a very small number of flakes the quartz is mixed with feldspar, which 

forms part of the cortex. This is weathered in appearance; therefore these pieces, in addition to 

those with flat and frosted cortex, indicate that an outcrop was also exploited for raw material. The 

cortex present on the flint flakes indicates this raw material was obtained from beach pebbles.  

 

Figure 173. Tràigh na Beirigh 2 flake cortex percentage 

6.3.2.5.4. Striking Platform – Type and Dimensions 

The striking platform is absent from almost all of the flint flakes at Tràigh na Beirigh 2, the only 

exception is one flake where the platform is broken (Figure 174). Broken or crushed platforms are 

most commonly recorded on quartz flakes at the site, with absent striking platforms also frequently 

observed. Only ten quartz flakes have complete striking platforms. Three of these are plain, caused 

by the removal of a flake to prepare the platform prior to knapping, and seven of these are cortical. 

 

Figure 174. Tràigh na Beirigh 2 flake platform type 
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The dimensions of the cortical platforms varies widely (Figure 175). The widest cortical platform 

(39.38mm) is also the deepest (23.04mm) by a significant margin, as most of the cortical platforms 

to not exceed 12mm in depth. The width of the plain platforms is similar to the smallest of the 

cortical platforms, but less deep. 

 

Figure 175. Tràigh na Beirigh 2 flake platform dimensions 

6.3.2.5.5. Dorsal Flake Scars – Count and Pattern 

Single dorsal flake scars are most frequently recorded on flint and quartz flakes from Tràigh na 

Beirigh 2 (Figure 176). None of the flint flakes have more than two dorsal flake scars, which is the 

second most common number recorded on quartz flakes. Seven quartz flakes have three dorsal 

flake scars and the remaining quartz flakes display either four or five removals. 

 

Figure 176. Tràigh na Beirigh 2 dorsal flake scar count 
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observed on flakes with up to three dorsal flake scars (Figure 177 and Figure 178). Multidirectional 

flake removal patterns are found on flint or quartz flakes with two or more dorsal scars. Flakes with 

two dorsal flake scars also fall exclusively within the indeterminate category, where a pattern could 

not be discerned. A single quartz flake with four removals exhibited a bidirectional pattern, where 

the flakes were removed from directly opposing directions, rather than through bipolar reduction. 

 

Figure 177. Tràigh na Beirigh 2 flake removal sequence 

 

Figure 178. Tràigh na Beirigh 2 dorsal flake scar pattern in relation to the number of flakes removed 

6.3.2.5.6. Flake Breakage 

Only 20% of the quartz flake assemblage is complete, as are only two of the seven flint flakes 
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Figure 179. Tràigh na Beirigh 2 flake breakage 

6.3.2.5.7. Flake Core 

A greasy quartz flake core was recovered from the shell midden deposits at Tràigh na Beirigh 2 

(C005). L179 measures 22.96mm X 23.75mm X 7.84mm and does not retain any cortex. The original 

striking platform is absent from the piece as the proximal end of the flake has been removed by a 

further flake removal on the dorsal face. This was initiated from the distal end of the original flake, 

and has destroyed the distal end of the ventral face with knapping shatter. There is a single 

unidirectional flake scar present on the dorsal side. 

6.3.2.5.8. Core Rejuvenation Flake 

Both core rejuvenation flakes from Tràigh na Beirigh 2 were found in the main body of the shell 

midden (C011). L251 is made from greasy quartz and measures 19.03mm X 7.31mm X 17.63mm. 

There is no cortex present on the piece and the striking platform for the rejuvenation is plain, 

measuring 2.28mm X 3.79mm. The core rejuvenation flake is complete and there is evidence for 

three multidirectional flake removals from the piece, one of which has been initiated from the 

rejuvenated platform. 

L263 is a milky quartz core rejuvenation flake, measuring 10.92mm X 9.21mm X 10.84mm. There is 

no cortex present, and the plain striking platform measures 5.53mm X 8.38mm. There are four 

multidirectional flake scars present on this piece, which is complete. 

6.3.2.5.9. Refits 

A quartz flake and small fraction flake from C003, an interface context, refit together. The original 

flake has snapped across the width, although whether this happened pre- or post-deposition 

cannot be determined. L167 is the proximal end of the flake and L168 is the distal end of the flake. 
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6.3.3. Assemblage Summary 

Tràigh na Beirigh 2 is slightly older in date than Tràigh na Beirigh 1, described above, with a slightly 

larger lithic assemblage that totals 342 pieces. The assemblage primarily derives from the main shell 

midden deposits, with only small quantities found in the underlying old ground surface, and the 

overlying interface deposits with the machair. There are no formal tools present at the site and the 

assemblage is comprised of flake debitage from the reduction of quartz, and a very small quantity 

of flint using a gneiss hammerstone. 

Quartz comprises 94% of the total lithic assemblage at Tràigh na Beirigh 2. The fine grained (greasy) 

variety is primarily used, which is also the most dominant quartz type at Tràigh na Beirigh 1. In 

contrast to Tràigh na Beirigh 1, a higher number of cores with water-worn cortex at this site 

suggests that pebble quartz was more frequently exploited than the local vein sources. 

Furthermore, the quartz is more heavily exploited at this site, with an average of 4.2 

multidirectional flake removals per core – this is one extra removal per core on average than at 

Tràigh na Beirigh 1. The milky quartz, although less frequent, is worked more intensively than the 

greasy quartz, and again this is at odds with the more intensive reduction of greasy quartz at the 

later site. At neither site does the intensity of reduction pertain to the source or size of the raw 

material – there are a wide range of core sizes at both sites, most of which have been discarded 

without being exhausted. The profligate use of this raw material is further reflected in the low 

average number of dorsal flake scars on the quartz flakes. The dominance of single, unidirectional 

dorsal scars on the flakes indicates that each turn of the core relates to a single episode of knapping, 

whereby a very small number of flakes were removed before the core was turned again. 

Quartz was primarily reduced using platform technology at Tràigh na Beirigh 2. In both pebble and 

vein quartz cores there is very little evidence of platform preparation, with flakes frequently struck 

from plain or unprepared platforms. No preparation is necessary for vein quartz, as the flat face of 

the natural break provides a clean platform from which to detach a flake (Ballin 2004:11). The 

cortical platforms preserved in the flake assemblage are from rounded beach pebbles, which are 

not conducive to platform reduction. These may have been initially reduced by quartering using 

bipolar technology. One of the quartz-feldspar manuports is split laterally and appears to have been 

‘tested’ using this method. 

A very small proportion (3%) of the assemblage is comprised of flint flakes and small fraction flakes. 

There is little that can be determined from this assemblage, other than the fact that small beach 

flint pebbles were occasionally exploited. The flint appears to have been partly reduced at the site, 

possibly using bipolar technology. The presence of flint throughout the deposits may either be due 

to taphonomic factors, or the fact this raw material was used in a limited capacity throughout the 

occupation of the site. Further radiocarbon dating is required to understand the relationship 
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between the shell midden and the surrounding deposits. As described above, there are no known 

sources of flint in the vicinity, and the high quality of the locally available quartz may have meant 

there was little need for flint to be sourced from elsewhere. 

The small number of quartz-feldspar cobbles, which could easily have been obtained from a nearby 

beach, may have served as a supply of unused cobbles for flaking, or as hammerstones. The chipped 

edge along the flat gneiss piece may have been caused during use as an anvil to support the splitting 

of quartz and flint pebbles. 

Overall, the lithic assemblage at Tràigh na Beirigh 2 is very similar to that found at the slightly later 

site of Tràigh na Beirigh 1, in terms of the raw materials exploited and the reduction strategies 

employed. There is a notable absence of formal tools from this site, which is comparable with Tràigh 

na Beirigh 1, where the full chaîne opératoire is not completely represented. This will be discussed 

further in Chapter Eight.
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6.4. Tràigh na Beirigh 3 and Tràigh na Beirigh 4 

6.4.1. Discovery and Excavation  

6.4.1.1. Excavation 2013 

Following a coastal erosion assessment around the headland close to the site of Tràigh na Beirigh 

2, further areas of the Holocene ground surface were observed eroding from under the machair at 

various points around the headland, to the north of Tràigh na Beirigh 1 and Tràigh na Beirigh 2 

(Figure 125). Each of these sections were sampled; however, only site numbers 3, 4 and 9 contained 

artefact material. The single lithic recovered from 10 litres of sampled deposits at Tràigh na Beirigh 

3 (Figure 180) is presented below, followed by the assemblage from Tràigh na Beirigh 4. It should 

be noted that the deposits from Tràigh na Beirigh 3 and Tràigh na Beirigh 4 are as yet undated. The 

excavation and lithic assemblage from Tràigh na Beirigh 9 is outlined separately in Section 6.5. 

 
Figure 180. Tràigh na Beirigh 3 under excavation in 2013, revealing the buried ground surface. Photo courtesy of Mike 

Church 

6.4.2. Tràigh na Beirigh 3 Lithic Assemblage Results 

A single greasy (very fine grained) quartz flake was recovered from C001, an early to mid-Holocene 

ground surface at Tràigh na Beirigh 3. It is broken, and measures 10.30mm X 7.80mm X 2.02mm; 

there is no cortex present. A single, unidirectional flake has been removed from the dorsal face, 

and the platform is absent. This data is detailed in Appendix Seven. 

The assemblage summary, which follows the presentation of the assemblage from Tràigh na Beirigh 

4, includes this piece. 
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6.4.3. Tràigh na Beirigh 4 Lithic Assemblage Results 

As described above, Tràigh na Beirigh 4 was identified as part of small-scale sampling of the eroding 

coastal edge of the Cnip headland, alongside Tràigh na Beirigh 3 and Tràigh na Beirigh 9. The site is 

situated to the north of Tràigh na Beirigh 3, and eight litres of deposits were removed for sampling 

(Figure 181). The results of the lithic analysis from the site are presented below, and the raw data 

is detailed in Appendix Eight. 

 
Figure 181. Tràigh na Beirigh 4 following excavation in 2013 with the buried ground surface visible in section. Photo 

courtesy of Mike Church 

6.4.3.1. General Character of the Assemblage 

The total assemblage from Tràigh na Beirigh 4 comprises 21 pieces from the in situ and >4mm sieved 

fraction. These all derive from a single context (C001), which is an old ground surface of early to 

mid-Holocene soil. The assemblage is dominated by flakes >10mm in length, and small fraction 

flakes (<10mm in length). Cores and chunks, including small fraction chunks, are equally 

represented (Figure 182 and Table 30). 
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Figure 182. Tràigh na Beirigh 4 overall assemblage 

Technology Quartz 

Chunk 1 

Small fraction chunk 1 

Core 2 

Flake 7 

Small fraction flake 9 

Secondary piece 1 

Total 21 

Table 30. Tràigh na Beirigh 4 overall assemblage 

6.4.3.2. Raw Material 

The whole assemblage from Tràigh na Beirigh 4 is quartz, with three different quartz varieties 

represented (Figure 183). The majority is made from greasy (very fine grained) quartz, whereas two 

are of the fine grained variety. A single piece grades between fine grained and greasy. 

 

Figure 183. Tràigh na Beirigh 4 quartz varieties 
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Only the primary and secondary technology from the site is described in this chapter.  The analysis 

of the small fraction flakes, chunks and small fraction chunks is outlined in Appendix Twelve. 

6.4.3.3. Primary Technology: Cores 

Two cores are present in the Tràigh na Beirigh 4 assemblage. Both are made from greasy quartz and 

neither display cortex. 

SF2 is the larger and heavier of the two cores (Table 31). It exhibits eight bidirectional flake removals, 

indicative of bipolar reduction, and therefore has no platform preparation. One end has been 

retouched to form a scraper, which is discussed in Section 6.4.3.5. 

L18 is smaller and lighter (Table 31). There are four multidirectional flake removals evident and the 

original knapping platform has been lost following the rejuvenation of the core at a later stage of 

working. 

Catalogue No. Length (mm) Weight (g) 

SF2 32.11 8.92 

L18 23.68 3.22 

Table 31. Tràigh na Beirigh 4 core dimensions 

6.4.3.4. Primary Technology: Flakes 

Seven flakes (>10mm) were recovered from the single context at Tràigh na Beirigh 4, and are 

described below. The small fraction flakes (<10mm) are presented in Appendix Twelve. 

6.4.3.4.1. Raw Material 

As observed in the assemblage overall, greasy quartz is the dominant quartz variety for the flakes. 

One quartz flake is of the fine grained variety and the other grades between fine grained and greasy. 

6.4.3.4.2. Flake Dimensions 

On the whole, the flakes fall between 10-20mm in length, with a single exception that is significantly 

larger than the majority of the assemblage (Figure 184). The width of flakes generally falls between 

5-20mm, again excepting this outlier, which is also much thicker than the assemblage overall. It is 

clear that there is a strong positive correlation between all of the dimensions of the flakes at this 

site (Figure 184, Figure 185 and Figure 186). 
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Figure 184. Tràigh na Beirigh 4 flake dimensions length:width 

 

Figure 185. Tràigh na Beirigh 4 flake dimensions length:thickness 

 

Figure 186. Tràigh na Beirigh 4 flake dimensions width:thickness 
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6.4.3.4.3. Cortex 

Only a single flake has a complete coverage of cortex on the dorsal face (Figure 187). The remainder 

of the assemblage is equally split between the other categories, with two flakes each. The cortex 

present varies between smooth and rounded, which indicates that the material is likely derived 

from beach pebbles, and also frosted and flat suggesting a break along the fracture plane from a 

vein source. 

 

Figure 187. Tràigh na Beirigh 4 flake cortex percentage 

6.4.3.4.4. Striking Platform – Type and Dimensions 

The platform types of the seven flakes in the assemblage fall into three categories (Figure 188). On 

five flakes the platform is either absent or broken; on the remaining two flakes the platform is plain, 

which enabled the dimensions to be measured (Table 32). 

 

Figure 188. Tràigh na Beirigh 4 flake platform type 
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The platform on SF1 is narrower than that of L13 and has a greater depth (Table 32). This correlates 

with the dimensions of the flakes whereby L13 is wider than L1, but thinner. 

Catalogue No. Platform Width (mm) Platform Depth (mm) 

SF1 7.51 4.69 

L13 8.25 3.34 

Table 32. Tràigh na Beirigh 4 flake platform dimensions 

6.4.3.4.5. Dorsal Flake Scars – Count and Pattern 

The majority of flakes from this site have single dorsal flake scars (Figure 189). There are two dorsal 

flake removals from one flake, and the very large flake discussed above has five dorsal flake scars. 

The flake with 100% dorsal cortex obviously does not have any dorsal flake removals. 

 

Figure 189. Tràigh na Beirigh 4 dorsal flake scar count 

The only multidirectional dorsal flake removal pattern is recorded on the flake with five dorsal flake 
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Figure 190. Tràigh na Beirigh 4 dorsal flake scar pattern in relation to the number of dorsal flake scars counted 

6.4.3.4.6. Flake Breakage 

All but one of the flakes in the Tràigh na Beirigh 4 assemblage is broken. 

6.4.3.5. Secondary Technology: Scraper 

One end of core SF2, described above in Section 6.4.3.3, was retouched to form a simple scraper 

(Figure 191, arrowed).  This is clear from a convex area of fine, abrupt to very abrupt, sub-parallel, 

sporadic edge retouch and crushing at one end. The orientation of the retouch could not be 

identified due to the fact this was originally a core. 

 

Figure 191. SF2 bipolar core retouched to form a simple scraper at one end 
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6.4.3.6. Secondary Technology: Notch 

A notched piece, L17, was also recovered from Tràigh na Beirigh 4. It measures 15.77mm X 

19.11mm X 4.95mm and does not retain any cortex. The striking platform is broken and there is a 

single, unidirectional dorsal flake scar present. The notch, which is situated on the right side of the 

piece, was created from a single invasive, very coarse, normal removal (Figure 192). 

 
Figure 192. L17 notched piece 

6.4.4. Assemblage Summary 

The material recovered from the eroding cliff section at Tràigh na Beirigh 3 and Tràigh na Beirigh 4 

cannot be categorically assigned to the Mesolithic period as the sites have not yet been dated. 

However, the general characteristics of these pieces fall within the same suite of undiagnostic 

artefacts recovered from the Mesolithic sites identified in the early to mid-Holocene ground surface 

either side of these areas, which extends along a c.200m stretch of the Cnip headland. 

The single greasy quartz flake recovered from Tràigh na Beirigh 3 is considered alongside the very 

small assemblage of 21 quartz pieces from Tràigh na Beirigh 4, which is also almost exclusively 

greasy quartz. 

The two greasy quartz cores from Tràigh na Beirigh 4 suggest that this raw material was used fairly 

conservatively. One core was reduced using bipolar technology, before being retouched further at 

one end to form a simple scraper. The other core has four multidirectional removals, two of which 
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have been initiated from a plain platform created by a rejuvenation scar. There is no cortex present 

on the pieces and they have clearly been discarded following exhaustion. 

The greasy quartz flake assemblage is small in both quantity and size, primarily representing the 

initial stages of platform reduction applied to material provenances from both primary and 

secondary sources. This contrasts to the two, large, fine grained quartz flakes that show evidence 

of more extensive reduction. There are five multidirectional dorsal scars on the larger piece, which 

still retains a small amount of smooth cortex, suggesting it derived from a very large cobble of good 

knapping quality. A single notched flake was the only other ‘tool’ recovered from the assemblage, 

besides the scraper. 

This assemblage is very small, therefore there are few conclusions that can be drawn. Overall, it is 

clear that the presence of high-quality quartz facilitated the production of tools either on, or near, 

the site. The presence of retouched tools in such a small assemblage differs markedly to the relative 

lack of such in the larger assemblages at Tràigh na Beirigh 1 and Tràigh na Beirigh 2.
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6.5. Tràigh na Beirigh 9 

6.5.1. Discovery and Excavation 

6.5.1.1. Excavation 2013 

Tràigh na Beirigh 9 was discovered as part of the same coastal erosion survey described in Section 

6.4 and 6.5. A small-scale excavation along a 1.1m stretch of eroding coastline identified an old 

ground surface, probably contiguous with the same deposit that had been noted around the 

headland at Tràigh na Beirigh sites 2, 3, and 4 to the south (Snape-Kennedy et al. 2014). The poorly 

preserved remains of a single human interment were identified overlying shell midden deposits 

(Figure 193). Owing to time constraints in the field, and the extremely fragmented state of the 

remains caused by crushing from the machair overburden, only the upper portion of the head, torso, 

and arms was excavated as part of bulk samples. Cutting the midden deposits, which date to c. 

4300-4000 cal. BC, was a ‘V’-shaped pit with a basal layer of placed cobbles (Figure 194). These 

overlay the old ground surface. The human remains have been dated to the Mesolithic-Neolithic 

transition, the significance of which will be discussed in Chapter Eight. A large assemblage of struck 

quartz was recovered from the site, in addition to burnt bone, ash, and shell (Snape-Kennedy et al. 

2014). Over 50 litres of material was excavated from the site, which contained a similar suite of 

artefacts and environmental remains to those observed within the Mesolithic shell midden deposits 

of Tràigh na Beirigh 1 and Tràigh na Beirigh 2. 

 
Figure 193. Human remains revealed during the excavation of Tràigh na Beirigh 9 in 2013. Photo courtesy of Mike 

Church 
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Figure 194. The 'V'-shaped cut through Mesolithic shell midden deposits at Tràigh na Beirigh 9. A layer of cobbles is 

visible at the base of the cut. Photo courtesy of Mike Church 

6.5.2. Tràigh na Beirigh 9 Lithic Assemblage Results 

6.5.2.1. General Character of the Assemblage 

A total of 324 lithics were recovered from the in situ deposits and >4mm sieved fraction of Tràigh 

na Beirigh 9. The majority of these derive from C005 and C006 – the former an old ground surface 

and midden deposit around the human skeletal remains, and the latter a mixed shell midden and 

old ground surface deposit. Small quantities of lithics were also found in: C004, an interface deposit 

between the midden and overlying machair; C007, the lower pit fill below the skeleton; C009, a 

midden deposit which had been cut by pit (C008); and C011, the basal soil horizon. Three small 

finds are missing, therefore they could not be recorded as part of the analysis, and one artefact 

(L87) was determined not to be humanly modified. Only the results from the remaining 320 

artefacts are thus included in the subsequent analysis. The raw data is detailed in Appendix Nine. 

Overall, the assemblage is dominated by flakes, which include flake cores, a core rejuvenation flake 

and small fraction (<10mm) flakes. Chunks, including small fraction chunks are also represented. 

The smaller constituents of the assemblage are cores, hammerstones and manuports, and a 

number of subsequently modified pieces such as burins, a notch, and an oblique point (Figure 195 

and Table 33). 
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Figure 195. Tràigh na Beirigh 9 assemblage composition 

Technology 
Raw Material  

Quartz Flint Other Total 

Core 4 
  

4 

Chunk 23  
 

23 

Small fraction chunk 23   23 

Flake 90 1 7 98 

Core rejuvenation flake 1  
 

1 

Flake core 3 
  

3 

Small fraction flake 159  1 160 

Secondary piece 5  
 

5 

Hammerstone/Manuport 1 
 

2 3 

Total 308 1 11 320 

Table 33. Tràigh na Beirigh 9 assemblage composition 

6.5.2.2. Raw Material 

The dominant raw material at Tràigh na Beirigh 9 is quartz, representing over 95% of the 

assemblage. A small number flakes made from carbonate, feldspar, basalt, flint, and granite make 

up the remainder of the raw materials present, an addition to a hammerstone of vesicular volcanic 

rock (flowstone), and a manuport of a small sandstone pebble (Figure 196). 

The assemblage is in a fresh condition, suggesting little post-depositional movement of the material. 

The flint piece is completely covered in a grey-white patina. There is no scratching or staining on 

the piece. 
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Figure 196. Tràigh na Beirigh 9 raw material composition 

The quartz constituent of the assemblage is primarily made from greasy (very fine grained) quartz, 

although milky quartz also contributes a significant proportion of the assemblage. This is followed 

by fine grained quartz, and a number of pieces which are ‘mixed’. The ‘mixed’ category 

predominantly contains quartz varieties grading from milky through to fine, or very fine grained 

and rock crystal. Two flakes of greasy quartz also contained feldspar. Very few pieces are made 

from coarse grained quartz and the presence of rock crystal in the assemblage is rare (Figure 197). 

 

Figure 197. Tràigh na Beirigh 9 quartz varieties 

Quartz is represented in all contexts at Tràigh na Beirigh 9, and is the sole constituent of C004 and 

C011 (Figure 198). C006 contains the most lithics in a wide variety of other raw materials, including 

feldspar and limestone. C005 contains marginally fewer lithics comprised of quartz, a single flake 

of flint, granite, sandstone, and carbonate. A piece of vascular volcanic rock (flowstone) was found 

in C007 and a single piece of basalt in C009. 
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Figure 198. Tràigh na Beirigh 9 raw material by context 

The primary and secondary technology from Tràigh na Beirigh 9 is presented in the following 

sections. The chunk, small fraction flake, and small fraction chunk assemblages are detailed in 

Appendix Twelve. 

6.5.2.3. Primary Technology: Coarse Stone Tools 

6.5.2.3.1. Hammerstone and Manuports 

The three manuports recovered from Tràigh na Beirigh 9 included a small, rounded, broken 

sandstone pebble (L54) from the upper pit fill containing the skeleton C005, a sub-angular milky 

quartz pebble (SF31), and a rounded piece of vesicular volcanic rock (flowstone; L255), which is 

likely to be a hammerstone from the lower pit fill deposits (C007). The dimensions for each of these 

pieces are presented in Table 34. 

The sandstone pebble is notable as the material is not at all consistent with the background material 

from the site. Sandstone is not found close to the site but is available on east coast of Lewis around 

Stornoway, amidst a background of highly conglomerated sandstones, undifferentiated Lewisian 

gneiss, and unassigned fault zone rocks. The breakage of this piece may have been the reason for 

its discard. 

The piece of flowstone is interpreted as a hammerstone owing to a high degree of pitting along one 

face, which may have been percussion damage. However, the possibility of pitting as a result of 

exposure and weathering cannot be overlooked. This piece is unusual, but given the igneous base 

of the bedrock it is potentially locally available. 

The quartz pebble likely derived from beach deposits close to the site. 
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Catalogue No. Context No. Raw Material Length (mm) Width (mm) Thickness (mm) 

SF31 007 Quartz 77.12 50.29 32.60 

L54 005 Sandstone 15.46 14.17 8.45 

L255 007 Flowstone 56.82 32.93 24.34 

Table 34. Tràigh na Beirigh 9 manuport/hammerstone dimensions 

6.5.2.4. Primary Technology: Cores 

Four quartz cores were recovered from Tràigh na Beirigh 9 (Table 33).  

6.5.2.4.1. Raw Material 

Two cores of greasy quartz were recovered from the mixed shell midden/old ground surface that 

contained the skeleton (C005), and a single core of this variety was also found in C006, the 

underlying deposit of a similar composition. A single core of milky quartz was identified in the upper 

interface deposit (C004; Figure 199). 

 

Figure 199. Tràigh na Beirigh 9 core quartz varieties 

6.5.2.4.2. Core Dimensions 

The core from the mixed shell midden/old ground surface (C006) is the largest and heaviest in the 

assemblage (Figure 200). The two cores from the upper pit fill containing the skeleton (C005) differ 

in their dimensions – one is fairly large and of a moderate weight in comparison to the whole 

assemblage, whereas the other is much smaller and lighter. The latter is similar to the dimensions 

of the core from the upper interface deposit (C004).  
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Figure 200. Tràigh na Beirigh 9 core dimensions 

6.5.2.4.3. Cortex 

The presence of cortex is equally represented between the cores. The single core from C004 has 

cortex present, which would be expected given that only one flake has been removed from it. The 

larger core from C005 also has cortex present, whereas the smaller one does not. There is no cortex 

present on the large core from C006 (Figure 201). The cortex on one of the cores is flat and 

weathered, which may have been sourced from a vein or outcrop. The flat cortex on the other piece 

appears to be a break along a natural fracture plane, which also suggests it may have been detached 

from a vein source. 

 

Figure 201. Tràigh na Beirigh 9 core cortex presence 

6.5.2.4.4. Flake Removals – Count and Pattern 

As mentioned above, the core from C004 has a single, unidirectional flake removal. The two cores 

from C005 have four and five removals respectively, and the core from C006 has six flake removals 
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(Figure 202). On the cores that exhibit multiple flake scars, the flakes have been removed from 

several different directions (Figure 203). 

 

Figure 202. Tràigh na Beirigh 9 number of flake removals from core 

 

Figure 203. Tràigh na Beirigh 9 sequence of flake removals from core 

6.5.2.4.5. Core Platform Preparation 

The single removal from the core found in C004 displays no evidence for platform preparation. 

Where the platforms are visible on the large core from C005, and the core from C006, no platform 

preparation can be seen. However, in some instances this had been lost due to a later flake removal. 

The smaller core from C005 displays simple platform preparation, although some of this evidence 

was also lost through subsequent flake removals (Figure 204).  
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Figure 204. Tràigh na Beirigh 9 core platform type 

6.5.2.5. Primary Technology: Flakes 

A total of 98 flakes were recovered from Tràigh na Beirigh 9, in addition to three flake cores and a 

core rejuvenation flake (Table 33). The results of the flake analysis are presented below, with a 

separate presentation of the flake cores, and core rejuvenation flake results at the end of this 

section. As with the previous sites, the data presented here only includes flakes which are >10mm 

in maximum length. To reiterate, this follows the suggestion that small fraction flakes (<10mm) 

simply represent in situ knapping debris (Ballin 2000:10; Finlayson et al. 2000:67). This data, along 

with the indeterminate chunks and small fraction chunks, is presented in Appendix Twelve. 

The flakes (>10mm) were recovered from throughout the archaeological sequence, including the 

overlying interface deposits (C004), mixed shell midden/old ground surface (C006), both the 

primary and secondary pit fill (C007; C005), and the lower soil horizons (C009; C011). 

6.5.2.5.1. Raw Material 

The raw material of the flake assemblage from Tràigh na Beirigh 9 is completely dominated by 

quartz (Figure 205). Only 8% of the flakes are made from other raw materials, which include single 

flakes of flint and basalt, and two flakes each of carbonate, granite, and feldspar (Figure 206). 
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Figure 205. Tràigh na Beirigh 9 flake raw material composition 

 

Figure 206. Tràigh na Beirigh 9 flake 'Other' raw material composition 

The quartz flake assemblage is predominantly of the greasy variety, in addition to a large 

percentage of milky quartz (Figure 207). Mixed quartz varieties are more frequently represented 

than the fine grained variety, and only single flakes of rock crystal and coarse grained quartz were 

recovered. 
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Figure 207. Tràigh na Beirigh 9 flake quartz varieties 

Granite and feldspar are constituents of the background geology of the site. Although there is no 

visible ‘cortex’ on these pieces, they may have been removed as flakes during the initial reduction 

of vein quartz, which was extracted close to contact zones with the parent rock. 

It is clear that flint was not a significant raw material in the lithic assemblages of the other sites 

along the headland, nor is it well represented at Tràigh na Beirigh 9. To reiterate, the nearest known 

source is in South Uist; however, drift deposits of beach flint also occur along the exposed west 

coast of the Inner Hebrides and mainland Scotland. 

Two flakes in the assemblage were identified as carbonate rocks, it is possible that these flakes may 

in fact be limestone or dolomite, similar to those at Northton. The nearest source of 

limestone/dolomite is along the western coast of mainland Scotland (Highley et al. 2006). 

6.5.2.5.2. Flake Dimensions 

The summary statistics for the quartz flakes from Tràigh na Beirigh 9 are presented in Table 35. 

There is a wide range between the minimum and maximum values for each recorded dimension, 

and the mean values are toward the lower end of the range, suggesting the maximum dimensions 

are anomalous. It is likely these high maximum values are responsible for the high standard 

deviation figure. 

Raw Material  Length (mm) Width (mm) Thickness (mm) 

Quartz 

Min 10.00 3.03 0.96 

Max 42.53 28.79 16.00 

Mean 15.05 12.85 4.71 

SD 5.308103 6.447574 2.894855 

Table 35. Tràigh na Beirigh 9 quartz flake dimension summary statistics 
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The flake dimensions for both quartz and the ‘other’ raw materials broadly follow a positive 

correlation between the length and width (Figure 208 and Figure 209). Only a single quartz flake 

exceeds 30mm in length, and the majority of the flakes are less than 25mm in length. All of the 

flakes fall below 30mm in width. 

 

Figure 208. Tràigh na Beirigh 9 flake dimensions length:width 

The two feldspar flakes, the smaller flake of carbonate and the flint flake are all of a very similar 

size, with the basalt flake slightly smaller (Figure 209). These all fall within the densest cluster of 

quartz flakes. The remaining ‘other’ raw materials are larger, with a granite flake and the other 

carbonate flake exceeding 20mm in length. 

 

Figure 209. Tràigh na Beirigh 9 detail of 'Other' raw material flake dimensions length:width 

A similar positive trend is also observed between the increasing length and thickness of the quartz 

flakes (Figure 210). There is a large grouping of flakes less than 8mm in thickness, with small clusters 

set apart from this main group. A collection of four flakes are separate in terms of greater thickness 
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and a group of three are both longer and thicker. These outliers may be a result of flake breakage 

affecting the dimensions. 

 

Figure 210. Tràigh na Beirigh 9 flake dimensions length:thickness 

In terms of the ‘other’ raw materials, there is an observable difference between the flake thickness 

and the raw material, despite a similarity in length for the majority of the pieces (Figure 211). The 

granite flakes are the thickest, despite the difference in length between these pieces. The carbonate, 

flint, and pegmatite flakes at the thinner end of the scale. Although one of the carbonate flakes is 

longer than the majority of the ‘other’ raw materials, it is not thicker. The basalt flake is thick 

considering it is similar in length to the flint and feldspar flakes. 

 

Figure 211. Tràigh na Beirigh 9 detail of 'Other' raw material flake dimensions length:thickness 

Again, a positive correlation is observed between the width and thickness of the quartz flakes 

(Figure 212). The correlation between flake width and thickness is stronger for the ‘other’ raw 

materials than observed in the quartz flake assemblage (Figure 213). The tightest grouping of quartz 
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flakes is between c.3-15mm in width, and 1-6.5mm in thickness. Beyond these values the points 

become widely dispersed. 

 

Figure 212. Tràigh na Beirigh 9 flake dimensions width:thickness 

The granite and large carbonate flakes fall outside of the main clustering of quartz flakes described 

above, in terms of width and thickness (Figure 213). Both of the feldspar, the smaller carbonate, 

flint and basalt flakes fall within the main group. 

 

Figure 213. Tràigh na Beirigh 9 detail of 'Other' raw material flake dimensions width:thickness 

6.5.2.5.3. Cortex 

The highest proportion of quartz flakes retain no cortex, suggesting they are tertiary flakes, which 

is echoed by the ‘other’ raw materials (Figure 214). The only ‘other’ raw materials to retain any 

cortex are the flint flake (L48; <50% cortex), and a granite flake (L126) which is completely 

corticated; this is denoted by a smooth and weathered surface. Equal numbers of quartz flakes are 

secondary pieces, and only nine quartz flakes exhibit 100% cortex. The cortex present on the quartz 
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flakes indicates that, for the majority, this is flat and often mixed with other material. This suggests 

the quartz derived from a vein, and was removed as blocks or plates. Comparatively few quartz 

flakes displayed cortex that was smooth and rounded, indicating the source as a beach pebble. 

 

Figure 214. Tràigh na Beirigh 9 flake cortex percentage 

6.5.2.5.4. Striking Platform – Type and Dimensions 

The platform type could not be determined for the vast majority of both the quartz flakes and the 

‘other’ raw material flakes, as the platforms are either absent, or damaged through breakage or 

crushing (Figure 215). Three quartz flakes retain cortex on the platform, and two are facetted with 

a number of prior removals. Six quartz flakes and a feldspar flake display a plain platform. The 

measured platform dimensions overall indicate a general positive trend (Figure 216); however, 

there appears to be no observable relationship between the platform dimensions and the type of 

platform recorded. 

 

Figure 215. Tràigh na Beirigh 9 flake platform type 
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Figure 216. Tràigh na Beirigh 9 flake platform dimensions 

6.5.2.5.5. Dorsal Flake Scars – Count and Pattern 

The highest proportion of quartz flakes by far display a single dorsal flake scar, followed by two and 

three flake scars respectively (Figure 217). Only four quartz flakes have four or more flake scars, the 

highest of which is SF10 with eight dorsal flake scars. The facetted platform of this flake is likely to 

be a consequence of this. The feldspar and limestone flakes only have one flake removal, with the 

basalt flake displaying two. The carbonate and flint flakes have three dorsal flake removals evident. 

In two instances (SF1a and SF8, both C005), breakage on the flakes had been used as a platform 

from which to detach a further flake, prior to their removal from the core. The dorsal scars on a 

single granite piece (L53) cannot be determined due to the nature of the raw material. 

 

Figure 217. Tràigh na Beirigh 9 dorsal flake scar count 

A unidirectional flake scar pattern is the most commonly observed in both quartz and the ‘other’ 

raw material flakes (Figure 218). Multidirectional dorsal flake scar patterns are also well 

represented in both raw materials. A single quartz flake (SF3) displays bidirectional dorsal flake 

scars; however, this is not evidence of a bipolar reduction strategy – the two flakes have simply 

0

2

4

6

8

10

12

0 5 10 15 20 25

P
la

tf
o

rm
 D

ep
th

 (
m

m
)

Platform Width (mm)

Quartz Cortical Quartz Facetted Quartz Plain Feldspar Plain

One Two Three Four Five + Indeterminate

Quartz 49 14 12 1 3

Other 3 1 2 1

0

10

20

30

40

50

60

Q
ty

Dorsal Flake Scar Count
n=86  



 

288 

 

been removed from opposing directions. The dorsal flake scar pattern on the remaining quartz and 

granite flakes could not be determined due to the nature of the raw material, or the size of the 

flake. 

 

Figure 218. Tràigh na Beirigh 9 dorsal flake scar pattern 

The unidirectional dorsal flake scar pattern is most commonly observed on flakes displaying a single 

flake scar as would be expected, and also observed on flakes with up to three flake scars (Figure 

219). More commonly, flakes with two or more flake scars exhibit a multidirectional pattern. Flakes 

with two dorsal removals are the most common pieces where the dorsal flake scar pattern cannot 

be determined, although this is also the case for a flake with three dorsal flake scars. 

 

Figure 219. Tràigh na Beirigh 9 dorsal flake scar pattern in relation to the number of dorsal flake scars counted 
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6.5.2.5.6. Flake Breakage 

Breakage of both quartz and ‘other’ raw material flakes overwhelmingly dominates the assemblage 

at Tràigh na Beirigh 9 (Figure 220). In very few instances are quartz flakes complete, in addition to 

only one feldspar flake and the basalt flake. 

 

Figure 220. Tràigh na Beirigh 9 flake breakage 

6.5.2.5.7. Flake Cores 

Three flake cores were recovered from Tràigh na Beirigh 9 (SF8; SF34; L128). The former derives 

from C005, the secondary pit fill containing the skeleton, and the latter two from the underlying 

mixed shell midden/old ground surface (C006). All are made from very fine grained (greasy) quartz 

flakes. The dimensions are presented in Table 36. 

SF8 is of the dark greasy quartz variety. This flake core retains <50% cortex, and has broken, causing 

the loss of the original platform. This breakage occurred perpendicular to the platform, creating a 

new platform for a further flake removal, subsequent to the previously existing dorsal flake scar. 

SF34 has three multidirectional dorsal scars; the platform is plain, measuring 15.63mm X 4.89m, 

and it is broken. A further removal was initiated from the same platform. 

There is crushing on the arris of L128 between the two multidirectional dorsal flake scars, denoting 

attempts to remove a further flake perpendicular to the dorsal face. This caused the flake to break, 

leading to the removal of the proximal end of this piece and the loss of the original striking platform.  

Context No. Catalogue No. Length (mm) Width (mm) Thickness (mm) 

005 SF8 23.35 14.1 6.05 

006 SF34 14.71 19.96 5.54 

006 L128 18.30 19.05 7.58 

Table 36. Tràigh na Beirigh 9 flake core dimensions 
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6.5.2.5.8. Core Rejuvenation Flake 

The core rejuvenation flake (SF23) was recovered from the secondary pit fill containing the skeleton 

(C005). It is made from fine grained quartz and measures 23.14mm X 10.54mm X 11.70mm. There 

is no cortex present on the piece, and the plain platform measures 9.82mm X 7.91mm. There are 

five multidirectional dorsal flake scars evident on the piece, which is complete. 

6.5.2.5.9. Refits 

Two very fine grained quartz flakes from C006 (L167 and L169) refit together. A long, thin flake had 

snapped laterally in the medial section, therefore L167 forms the proximal end of the piece and 

L169 the distal end. 

6.5.2.6. Secondary Technology 

The assemblage from Tràigh na Beirigh 9 contains five lithics that display evidence of further 

working. All of these are quartz and most were recovered from the secondary pit fill containing the 

skeleton (C005), with the exception of the notched piece which came from the underlying mixed 

shell midden/old ground surface deposit (C006). 

6.5.2.6.1. Burins 

There are three burins present at Tràigh na Beirigh 9, their dimensions are presented in Table 37. 

L8 is made from fine grained quartz and is the only burin with an undamaged platform, although 

there is subsequent breakage of the piece. The platform is plain and measures 7.88mm X 2.36mm 

(Figure 221). There is no cortex present, and there are two, multidirectional dorsal flake scars 

present. The burin spall has been removed from the distal end to the right lateral edge. 

SF25 is a burin made from milky quartz and there is no cortex present. Although the platform has 

been broken, there is no other recorded breakage to this piece. SF25 displays a single, unidirectional 

dorsal flake scar, and the burin spall was removed obliquely from the proximal end to the right 

lateral edge, with the facet perpendicular to the lower face. 

L89 is also made from milky quartz with no cortex present. The platform has been crushed and 

there three multidirectional dorsal flake scars present. The burin spall was removed from the distal 

end to the left lateral edge. 

Catalogue No. Length (mm) Width (mm) Thickness (mm) 

L8 16.41 13.83 3.41 

L89 10.53 11.34 3.04 

SF25 14.05 15.78 5.11 

Table 37. Tràigh na Beirigh 9 burin dimensions 
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Figure 221. L8 quartz burin 

6.5.2.6.2. Notch 

SF36 is a notched piece of dark greasy quartz recovered from C006. The flake measures 17.79mm 

X 11.68mm X 3.50mm and exhibits <50% cortex. The platform is absent in addition to further 

breakage of the piece, and there is a single unidirectional flake scar on the dorsal face. The notch 

was initiated from ventral side, removing the right lateral edge, and has caused the flake to shatter. 

 
Figure 222. SF36 notched piece 
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6.5.2.6.3. Oblique Point 

A greasy quartz oblique point (SF14) was recovered 

from C005. The piece measures 22.37mm X 

8.99mm X 3.18mm, there is <50% cortex present 

and the striking platform is absent. There are two 

ventral surfaces on the piece, indicating it has been 

removed from a flake core, and the only breakage 

to the piece has been caused by the microburin 

blow which created the point. There is unusual 

microlithic retouch backing the piece, which is 

sporadic and situated along the edge of an arris, 

having been initiated from a cortical ridge (Figure 

223, arrowed). It comprises fine, scaled removals 

following a straight course and at an abrupt angle. 

This may have functioned as keying for hafting. 

 

Figure 223. SF14 oblique point microlith. The microlithic 
retouch is obscured due to the nature of the material 

6.5.3. Assemblage Summary 

The lithic assemblage at Tràigh na Beirigh 9 comprises 324 pieces in total, 95% of which is quartz. 

As seen at the other sites along the headland, this is primarily very fine grained (greasy) quartz, 

however there is a higher proportion of milky quartz in this assemblage than at the others. This may 

account for the higher quantity of indeterminate pieces recovered, especially in the small fraction 

component of the assemblage, due to the tendency for milky quartz to fracture less regularly than 

other varieties (Ballin 2008:44). A full chaîne opératoire is present, including a hammerstone and 

primary to tertiary flakes, as well as a small number of retouched pieces. 

The number of cores at Tràigh na Beirigh 9 is very low, which contrasts with the similarly-sized 

assemblages of Tràigh na Beirigh 1 and Tràigh na Beirigh 2. At both Tràigh na Beirigh 9 and Tràigh 

na Beirigh 1, which are later in date than Tràigh na Beirigh 2, there appears to be more intensive 

reduction of higher quality greasy quartz – although the small quartz core assemblage from this site 

makes such an observation difficult to verify. A further comparison between the two later sites 

(Tràigh na Beirigh 9 and Tràigh na Beirigh 1) is that there is greater exploitation of vein quartz than 

pebble quartz, which is evident from both cores and flakes. It is possible that the continued 

occupation of the region had an impact on the source of beach pebbles, with over-exploitation 

leading to reduced availability. Irrespective of this, the quartz variety and source has no bearing on 

the size of the cores, regardless of the level of reduction. This is a comparable feature of the quartz 
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assemblages across all three sites. If pebble quartz was less available during the latest Mesolithic, 

the supply was still abundant enough when combined with the nearby vein sources not to require 

any change in the reduction strategy in order to conserve the material available. 

Quartz continued to be reduced using platform technology, as evidenced by the unprepared and 

simple platform preparation on the cores, and the plain and facetted platforms preserved on a 

small number of flakes. The preparation of platforms using faceting is unique to this site. The single, 

unidirectional dorsal flake scars on the majority of flakes, and the multidirectional flake removal 

sequence on the cores suggests that the cores were continually turned during the course of 

reduction, with very few flakes removed per episode. 

As at Tràigh na Beirigh 1, the flake cores do not appear to have been intentionally produced, and 

this typology is simply opportunistic use of breakage on the original flake to initiate a further 

removal. There are a greater number of formally retouched tools at Tràigh na Beirigh 9 than at the 

other sites which have large assemblages in the area. The production of burins in quartz is unusual, 

due to its fracture mechanics; however, given the characteristics of greasy quartz which “flakes as 

well as coarser flint varieties”, the manufacture of retouched tools in this higher-quality material is 

not unknown in the Mesolithic of Scotland (Ballin 2008:72-73). 

Tràigh na Beirigh 9 follows a similar trend to the earlier sites along the headland, primarily utilising 

locally available quartz to produce occasional retouched implements, with debitage and discarded 

manufacturing tools incorporated into the midden and old ground surface deposits. The few flakes 

of other raw materials present at Tràigh na Beirigh 9 include indigenous rock types, and some 

unusual pieces that are not local to the Western Isles. Of these non-quartz flakes, flint and 

carbonate have been worked the most intensively. The general lack of flint in the area is mitigated 

by the high quality of the greasy quartz that is most frequently exploited. The potential import of 

other raw materials from within, and beyond, the Western Isles raises interesting questions 

regarding the movement of people, which will be discussed in Chapter Eight.
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6.6. Pabaigh Mòr South 

6.6.1. Discovery and Excavation  

6.6.1.1. Excavation 2013 

Coastal erosion revealed eroding shell midden deposits from a stratigraphically significant position 

on the south coast of the small island of Pabaigh Mòr, which lies 1km to the north-east of the 

Bhaltos peninsula (Figure 224 and Figure 225). A small quantity of bulk samples excavated for 

analysis demonstrated the midden comprised similar material to those on the Cnip headland, and 

were therefore characteristic of a Late Mesolithic midden. The artefact and ecofact assemblage 

included charred hazel nutshells and charcoal, bunt and unburnt mammal and fish bones, marine 

molluscs, crustacean and a quantity of worked flint and quartz (Bishop et al. 2014a; Blake et al. 

2012a; Church et al. 2012b; Church & Rowley-Conwy 2014). Radiocarbon dates from the hazel 

nutshell indicates the main body of the shell midden dates to c.4500 cal. BC. 

 

Figure 224. Location of Pabaigh Mòr South arrowed. Photo courtesy of Peter Rowley-Conwy 
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Figure 225. Pabaigh Mòr South shell midden prior to sampling. Photo courtesy of Peter Rowley-Conwy 

6.6.2. Pabaigh Mòr South Results 

6.6.2.1. General Character of the Assemblage 

The lithic assemblage from Pabaigh Mòr South comprises a total of thirteen lithics recovered from 

the >4mm sieved fraction. These derived from two contexts: C001, an interface layer between the 

overlying machair and the underlying shell midden, and C002, the main body of the shell midden. 

The overall assemblage is dominated by flakes, which include a flake core, and small fraction flakes 

(<10mm; Figure 226). The remainder of the assemblage is represented by two chunks, a core, and 

a tested piece of quartz (Table 38). There are no retouched pieces from the assemblage. 

 

Figure 226. Pabaigh Mòr South assemblage composition 
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 Technology 
Raw Material  

Quartz Flint Total 

Core  1 1 

Chunk 2  2 

Flake 4  4 

Flake Core 1  1 

Small Fraction Flake 4  4 

Test Piece 1  1 

 Total 12 1 13 

Table 38. Pabaigh Mòr South assemblage composition 

The raw data for this assemblage is presented in Appendix Ten. 

6.6.2.2. Raw Material 

The assemblage is almost exclusively quartz. Flint is represented by a single core which is in mint 

condition, showing no evidence for post-depositional rolling or abrasion (Figure 227 and Table 38). 

 

Figure 227. Pabaigh Mòr South raw material composition 

The most common quartz variety is greasy (very fine grained) quartz, and milky quartz is the 

second most common variety (Figure 228). The tested quartz piece grades between fine grained 

and very fine grained quartz. 
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Figure 228. Pabaigh Mòr South quartz varieties 

A total of two quartz pieces were recovered from the interface layer (C001). The majority of the 

quartz assemblage and the single piece of flint derive from the main body of the shell midden (C002; 

Figure 229). 

 

Figure 229. Pabaigh Mòr South raw material by context 

The primary technology from the site is presented below with results of the small fraction flake, 

chunk, and small fraction chunk assemblage detailed in Appendix Twelve. 

6.6.2.3. Primary Technology: Test Piece 

L13 was recovered from the main body of the shell midden (C002). It is a piece of fine grained to 

greasy quartz, and it appears to have been discarded following testing of the raw material 

block/plate. The plate measures 110.4mm in length and weighs 127.09g. There is no cortex 

observable on the piece; however both faces are flat with slight evidence for weathering. There are 

five unidirectional removals along the length of the plate, all struck from unprepared platforms. A 
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further removal on a lateral edge, running perpendicular to the rest of the flake removals is the scar 

created from the blow used to detach the piece from its source (Figure 230, with three of the 

removals arrowed). 

 

Figure 230. L13 tested quartz block with three of the removals arrowed 

6.6.2.4. Primary Technology: Core 

A single white, completely patinated, flint core was recovered from the shell midden (C002). It 

measures 13.97mm in length and weighs 1.78g. Nine multidirectional flake removals were recorded 

from lost or unprepared platforms. The cortex present on the piece is smooth, hard, and slightly 

rounded, suggesting it may have been a beach pebble. 

6.6.2.5. Primary Technology: Flakes 

Four flakes (>10mm) were recovered from Pabaigh Mòr South and are described below.  The flake 

core is detailed in the subsequent section. Data on the small fraction flakes (<10mm) and 

indeterminate chunks are presented in Appendix Twelve. 
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6.6.2.5.1. Raw Material 

All of the flakes are quartz. The flakes from the interface layer (C001) are greasy (very fine grained) 

quartz, as is one of the flakes from the shell midden (C002). The other flake from C002 is milky 

quartz. 

6.6.2.5.2. Flake Dimensions  

The flakes range widely in their dimensions. The length varies between 10mm and 20mm, and in 

width from 4.8mm to 18mm. There is no correlation between these dimensions (Figure 231). 

However, there is a strong positive correlation between the length and thickness, and the width 

and thickness of the flakes (Figure 232 and Figure 233). 

 

Figure 231. Pabaigh Mòr South flake dimensions length:width 

 

Figure 232. Pabaigh Mòr South flake dimensions length:thickness 
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Figure 233. Pabaigh Mòr South flake dimensions width:thickness 

6.6.2.5.3. Cortex 

One flake does not display cortex, and another retains <50%. Two flakes have 100% dorsal coverage 

of cortex (Figure 234). The cortex on two of the pieces is flat and frosted, suggesting they have been 

removed from a block or plate of raw material, probably from a vein. The cortex on the other is flat 

and smooth, which may indicate the source was a water worn beach pebble. 

 

Figure 234. Pabaigh Mòr South flake cortex percentage 

6.6.2.5.4. Platform – Type and Dimensions 

Two of the quartz flakes have broken platforms and the platform is absent on another. A single 

flake has a plain platform which measures 8.11mm X 1.97mm. 

6.6.2.5.5. Dorsal Flake Scars – Count and Patterns 

Of the two flakes with dorsal scars present, both exhibit single unidirectional flake removals. 
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6.6.2.5.6. Flake Breakage 

The entire flake assemblage from this site is broken to some extent.  

6.6.2.5.7. Flake Core 

The flake core, which was recovered from the shell midden context (C002), does not have any 

cortex present. It measures 3.73mm X 25.76mm X 5.74mm and has a broken striking platform. 

There is a single, unidirectional dorsal flake scar and the piece is broken along the left lateral edge 

due to a knapping error. This resulted in an accidentally rejuvenated platform that was used for a 

further flake removal on the dorsal side. 

6.6.3. Assemblage Summary 

The thirteen-piece lithic assemblage from Pabaigh Mòr South is a very small sample and is therefore 

not likely to be representative of the assemblage as a whole. It reflects the grab-sampling strategy 

employed upon discovery of the site, and is thus a very small proportion of the lithic material that 

is likely to be contained within the remaining midden and interface deposits. 

The mint condition of the single flint core recovered from Pabaigh Mòr South suggests that is has 

experienced very little post-depositional movement, and the patina may therefore relate to the 

alkaline nature of the burial conditions (Rottländer 1975). The small size and high number of flake 

removals from this core, taken from several different directions, indicates that it was worked until 

it was exhausted, then discarded. The cortex on the flint core suggests it derived from a secondary 

water-borne context, such as a pebble on a beach. To reiterate, there are no known sources of flint 

nearby. The flake removals are multidirectional and do not indicate a bipolar reduction strategy. As 

such, the original flint pebble may have been large enough to reduce through platform technique. 

The remainder of the assemblage comprises quartz flakes, indeterminate pieces and a tested quartz 

plate. The presence of small fraction debitage and indeterminate pieces is indicative of knapping 

on the site, or close by, with the waste material deposited in the midden. The flakes vary in size, 

with the larger pieces retaining complete or partial cortex, marking them as primary and secondary 

flakes from early in the reduction process. The smaller flake, which does not have any cortex 

present, only bears a single flake scar and may have been removed later in the chaîne opératoire. 

From the cortex present on three of the flakes, the quartz was procured from both primary and 

secondary sources, and is likely to have been reduced using a combination of platform and bipolar 

technology. 

It appears that the exploitation of flint and quartz at Pabaigh Mòr South follows the same process 

as the sites on the Cnip headland across the water, namely conservative reduction of rare flint 

pebbles and profligate treatment of ubiquitous, high quality quartz. Only further investigation of 

the site can affirm this.
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6.7. Conclusions 

This chapter has presented the lithic data from six Mesolithic shell midden in Lewis: Tràigh na 

Beirigh 1, 2, 3, 4 and 9, in addition to Pabaigh Mòr South. The data and initial conclusions drawn 

from each of the assemblages in this chapter will be combined with the results from the open air 

sites from Harris, which were presented in the previous chapter, in order to understand the 

similarities and differences between the assemblages from these two different site-types. The 

interpretation of these results is discussed and contextualised within the Mesolithic of Scotland and 

the broader Atlantic façade in Chapters Eight and Nine.
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Chapter 7 Searching for the Inland Mesolithic of the Western 

Isles: A Survey of Gleann Mor Barabhais 

7.1. Introduction 

This chapter presents the findings of an additional project that was conducted in 2013, alongside 

the main focus of this thesis. The study of the Mesolithic in this region has been hampered by a 

number of issues, most pertinent of which are problems of archaeological visibility in the Western 

Isles, and investigation away from the coastal zone. 

A Mesolithic presence in the Western Isles has been successfully confirmed, as detailed in the 

preceding four chapters. Furthermore, a number of investigations in the interior of mainland 

western Scotland, and the islands of the Inner Hebrides, have yielded positive indicators of inland 

Mesolithic occupation. During 2013 a survey was conducted in an attempt to assess the likelihood 

of identifying the Mesolithic in the interior of the Isle of Lewis. 

A specific set of research questions were generated for this investigation, and the methodology was 

drawn from inland investigations in both Britain and Norway. The identification of Mesolithic sites 

in the interior has, however, been has been cautioned as “more likely to be a matter of chance than 

of careful research” (Armit 1996:34). 

7.2. Investigating the Interior in Scotland and Norway 

7.2.1. Location 

The overall distribution of Mesolithic sites in Scotland and the surrounding islands is coastally 

biased. This imbalance reflects a combination of settlement choice by Mesolithic people, coupled 

with greater visibility and ease of access for research by archaeologists, of which the latter 

contributes most significantly (Wickham-Jones 1990c).  A number of factors, which were discussed 

in Chapter Two, have hindered archaeological investigation of the Scottish interior region. These 

can be summarised as: peat formation, ‘greening’ of the landscape (Edwards & Mithen 1995) and 

topography, especially in the highland region, which limits access described above. Instances where 

Mesolithic sites have been identified inland are frequently accidental, such as in forestry ploughing 

and drainage up-cast (Affleck et al. 1985; Edwards et al. 1983; Wickham-Jones & Firth 2000:123; 

Woodman 1989:6) or through farming and amateur surface collection (Mithen 2000f:9; Ward 2010). 

Furthermore, these ‘sites’ are predominantly un-stratified artefact scatters or isolated finds. 

Alternatively, sites are located as a result of targeted investigation for research (Affleck 1984a; 

1984b; 1984c; 1984d; 1985a; 1985b; Edwards et al. 1983) or prior to infrastructure development 

(Bain 1995; Cachart 1989; Centre for Field Archaeology 1991; Duncan 1997; Mackenzie 1995; 1996; 

2002; Mitchell 2002; Mitchell & Neighbour 2003). 
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Despite the issues affecting discovery, inland Mesolithic sites have been identified in south-west 

Scotland through investigation of major river and loch systems such as the Tweed, Ken and Doon. 

These rivers were likely to have functioned as inter-connecting route-ways through the interior 

during the Mesolithic (Edwards et al. 1983; Ward 2010:3). Recently, significant Mesolithic sites have 

been recorded in the Biggar Gap floodplain where the Biggar Water connects the Tweed in the east 

and the Clyde in the west (Ward 2010:4). Furthermore, the evidence suggests that upland regions 

were also exploited, as evidenced by the Daer reservoir sites situated at 300m a.s.l (Saville 2000:94; 

Ward 1995; 1997). This is corroborated by the identification of over a dozen Mesolithic 

upland/inland sites situated on plateaus close to river systems in Yorkshire, which “appear to 

confirm the association of Mesolithic sites in the uplands (and dales) with wetland habitats” 

(Donahue & Lovis 2003:312). 

In Norway, similar academic and environmental issues prevail, such as bog formation and an 

overarching bias in research towards the coast (Bang-Andersen 2003b:15; Boaz 1998a:63). 

However, this has been mitigated by major engineering and hydro-electrical schemes, conducted 

since the 1920’s, which have altered the water levels of inland lakes and required investigation 

along substantial river systems such as the Dokkfløy, Glomma and Rena, resulting in the discovery 

of numerous inland Mesolithic sites (Bang-Andersen 2003b:15; Boaz 1998b:131; 1998a; Persson 

2009). In northern Scandinavia, Mesolithic sites are identified through the presence of fire-cracked 

stones and quartz lithic debris eroding from the banks of lakes and rivers as general practice 

(Welinder 1977:13). From this work, it is clear that inland Mesolithic sites in Norway and northern 

Scandinavia appear to be similarly situated to those in Britain, with close connections to lakes and 

riverine locations, often occupying “well-drained gravel ridges” (Bang-Andersen 1989:340-344; 

2003b; Fretheim 2009:379; Persson 2009). However, even inland, research bias may also present 

an obscured picture of Mesolithic settlement (Bang-Andersen 1989). Relatively few Mesolithic sites 

are known, or have been excavated, from the low lying forested interior of Norway for instance, 

although there are some known from the high mountains (Boaz 1998a:32, 37-8). Consequently, 

some archaeologists have called for survey work to be conducted away from the rivers to rectify 

this (Fretheim 2009:383). To this end, it is significant that investigations in Scotland have begun to 

identify sites in ‘dry’ areas i.e. away from watercourses (Ward 2010). On the whole, this evidence 

suggests that inland evidence for Mesolithic activity in the Western Isles is very likely. 

7.2.2. Methods 

The methods used to investigate inland areas vary depending on local conditions. As on the coast, 

erosion has been responsible for the identification of numerous sites in western Scotland. The 

natural fluvial process of a flowing river may produce transects through the mid- to late-Holocene 

peat development, potentially exposing the relic ground surface below (Wickham-Jones & Firth 
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2000:123; Figure 235). Where sites have been identified by lakes or rivers, such as by Loch Doon, 

lithics and charcoal were observed in the freshly eroding sections of loch edges or river banks 

(Affleck 1984c; 1984d; Ansell 1968c; 1969b). Unsystematic investigation by the Scotland’s First 

Settlers and Southern Hebrides Mesolithic projects focussed on inspection of other erosion events, 

such as natural scars, peat cuttings, footpaths, road drains, and mole hills (Hardy 2009a; Mithen 

2000a:57). The identification of an artefact scatter excavated at Kati’s Bay, Skye was made when 

lithics were uncovered in a sheep ‘scrape’ - a deliberate hollow made by sheep for shelter 

(Kozikowski et al. 1999). 

 

Figure 235. Eroding peat hags along the banks of Gleann Mor Barabhais. Photo courtesy of Peter Rowley-Conwy 

Locations for shovel pits, test pits, and trial trenches are most often governed by prior investigation, 

such as systematic field-walking or walk-over surveys, which identify ‘hot spots’ of activity like lithic 

scatters. Test-pitting is then often conducted to assess the viability, preservation, or extent of a site 

once it has been located (Hardy 2009a; Mithen 2000a:58-59). Unfortunately in the Western Isles 

only 0.14% of the total agricultural area is dedicated to arable farming, where ploughing could 

facilitate field-walking as a method of investigation. Only a slightly greater area (0.19%) is forested, 

where drainage ditches and up-cast could be observed (Scottish Government Environment and 

Forestry Directorate & RESAS 2013). In the absence of viable ploughed land in Norway ‘blind’ test-

pit surveys have been extensively used (Bang-Andersen 1989; Woodman 1989). However, this 

method is both time consuming and labour intensive, requiring a detailed sampling strategy and 

the transportation of heavy equipment, with limited success of identifying a site (Mithen 2000a:57-

58). 
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7.3. Research Questions 

Understanding spatial relationships is one of the most integral aspects of archaeology (Clarke 1977). 

It is clear from the archaeological evidence presented above that the perceived distribution of 

Mesolithic occupation along the coast is a misnomer; therefore a predictive model can be used to 

evaluate the potential for occupation evidence in other, less obvious, locations (Woodman 

1997:41-43). This has the benefit of providing a “guide to fieldwork, thus making it a more cost and 

time effective procedure” (Woodman 1997:41), especially regarding the significant challenges to 

archaeological investigation of the interior that are presented by the environment of the Western 

Isles. 

For this survey it was predicted that riverine contexts would provide the greatest potential for 

investigation. This was based on several factors: first was the burgeoning evidence in Scotland, and 

significant finds in Norway for Mesolithic occupation along rivers. Second was that the types of 

deposits most likely to produce evidence for Mesolithic activity in the interior were expected to be 

located under thick peat and overlying glacial till, as in evidence at the coastal sites of Northton, 

Tràigh an Teampuill, and Tràigh na Beirigh 2, which were sealed beneath metres of machair and 

observed eroding from the cliff-edge. As such, the most viable of the limited methods available to 

investigate this landscape was to inspect eroding areas caused by fluvial activity. 

There were four research questions that the inland survey aimed to explore.  

QI. Is there a Mesolithic presence in the interior of the Western Isles? 

The successful identification of Mesolithic sites in the interior would supplement the burgeoning 

proof for hunter-gatherer habitation of these islands, where previously evidence for human 

occupation was limited to palaeoenvironmental conjecture. If no sites were found, this would raise 

further questions of whether archaeologists are looking in the right place (see Q.2), or if Mesolithic 

occupation was restricted to the coast. 

QII. Do these sites occur in riverine locales, where predicted? 

Today, the River Barvas provides seasonal gluts of salmon and sea trout in late summer-early 

autumn (Fish Hebrides 2014; Groome 1884-1884:133). Rivers not only provide access to essential 

fresh water and a ready supply of edible aquatic resources, but also facilitate transport links (Bonsall 

et al. 2009:71; Edwards et al. 1983; Warren 2005b:63). 

QIII. What is the age, character, and formation processes of these site(s)? 

The highly acidic nature of the peaty soils in the region are not conducive to bone preservation 

(Fairnell & Barrett 2007:469); therefore, lithics and carbonised plant material are frequently the 

only surviving Mesolithic evidence recovered from inland sites in Scotland and Norway. The 
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presence of lithics undeniably attests to human presence; whereas carbonised plant material may 

result from anthropogenic activities, or a natural event (cf. Edwards 1996; Tipping 1996). The 

recovery of carbonised plant material would provide means to date the sites. The dating evidence 

from the six coastal Mesolithic sites presented in Chapters Five and Six span the late to terminal 

Mesolithic, therefore the recovery of dating evidence would further refine the chronology for 

Mesolithic occupation in the Western Isles. 

7.4. Methodology 

7.4.1. Preliminary Investigation 

A desk-based assessment was conducted using Ordnance Survey Landranger 1:50,000 Maps and 

Google Earth to identify a river system that would offer the most prospective location for Mesolithic 

sites. The criterion for this was that the river must be geographically constrained within a valley; 

ensuring marginal alteration to the watercourse over the last 7000 years. Gleann Mor Barabhais 

was selected as the most ideal locale. This is the longest river in Lewis, penetrating c. 10km into the 

island’s interior (Figure 236). Furthermore, historical and modern fishing accounts attest to the 

abundance of salmon in this river, which would have no doubt attracted Mesolithic hunter-

gatherer-fishers (Fish Hebrides 2014; Macrae 1836; Martin 1703). 

The locations and details of all previously recorded archaeological sites in the vicinity of the river 

were obtained from the Royal Commission on the Ancient and Historical Monuments of Scotland’s 

online database CANMORE. These were plotted in ArcGIS ArcMap 10.0 on to Ordnance Survey 

MasterMap 1:1000 raster data of the area, obtained from the University of Edinburgh’s online 

mapping and geospatial data resource ‘Digimap’, and converted to ESRI format by ESRI Productivity 

Suite 2.1 MapManager software. The survey area was arbitrarily restricted to a 10m radius of the 

river banks; a 10m buffer zone was created and applied to the inland water polygons that 

represented the surveyed river. Any previously recorded sites that fell outside the buffer zone were 

subsequently omitted from the survey. 

7.4.2. Walkover Survey 

As the nature of the topography prevented traditional methods of preliminary archaeological 

survey such as field-walking (and therefore surface collection of material), a walk-over survey was 

conducted which would identify and record visible archaeological features along both banks of the 

river. Observations were made of eroding sections and banks for diagnostic attributes that may 

indicate Mesolithic activity. Any material of this type was expected to be contained in deposits 

situated below peat and above glacial till. The presence of carbonised plant macrofossils, namely 

wood charcoal and charred hazel nutshell, would provide the dating evidence required to confirm 

these sites as Mesolithic. Furthermore, there is currently no record of large terrestrial game for the 
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post-glacial of the Islands (Fairnell & Barrett 2007). Preservation conditions permitting, interior sites 

may provide valuable insight into native terrestrial species and their exploitation. 

 

Figure 236. Gleann Mor Barabhais survey area. Ordnance Survey data © Crown Copyright/database right 2014. An 
Ordnance Survey/EDINA supplied service 
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7.4.3. Monument Recording, Excavation and Sampling 

The overall aim of the survey was to identify potential Mesolithic sites, however it was decided that 

a full archaeological survey should be conducted; therefore, all archaeological remains, regardless 

of age were recorded. The catalogue of all recorded sites is provided in Appendix Fourteen. 

A field survey record sheet obtained from the Orkney Research Centre for Archaeology was used 

as a template to record the sites, detailing the information listed in Table 39. A sketch plan of each 

site was also drawn in addition to this information. 

Attribute Information required 

Site Code DLS’13. This was derived from Durham Lewis Survey 2013 

Site Name The name of the river being surveyed – Gleann Mor Barabhais 

Site Number The number attributed to the site being recorded 

Northings and Eastings The six or eight-figure National Grid Reference (NGR) beginning 

NB. For speed and portability in rough terrain a navigation-grade 

(handheld) Garmin GPS was used following English Heritage 

guidelines (Ainsworth & Thomason 2003); consequently all GPS 

points were recorded to c.10m accuracy, additionally an 

Ordnance Survey Explorer 1:25,000 map of the area was used in 

case of GPS failure 

Type The site type being recorded i.e. cairn, shieling etc. 

Previously noted? This identified whether or not the site has been previously 

recorded - if so, details of the Sites and Monuments Record 

(SMR), National Monuments Record (NMR) and Scheduled 

Ancient Monument (SAM) numbers were also given 

Photograph number The numbers of any photographs taken which could be cross-

referenced with the photograph register; not all sites, for 

example lazy beds, were photographed 

Erosion The state and possible cause of any erosion affecting the site 

Estimated date Estimated age of the site 

Description/Interpretation Written description of the site, including dimensions and any 

other sites in the vicinity the site being recorded may be 

associated with 

Table 39. List of attributes recorded for each site 

When a site indicating significant potential of Mesolithic activity was identified, the above 

information was recorded and further recording techniques implemented. The section was cleaned, 

photographed and recorded using standard single-context recording. An illustration of the section 

identifying the different stratigraphical units was drawn at 1:10 (Figure 237). Two soil 

micromorphology samples (S.1 and S.2) were taken from the eroding section to provide detailed 

site-formation information (Macphail et al. 1990), and a single bulk sample of c.3.5 litres (S.3) was 

also excavated to ensure the maximum recovery of environmental remains (Jones 1991). The soil 
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micromorphology samples were wrapped in cling-film and placed in sealed bags to be transported 

to the environmental laboratory at Durham University. The samples were kept in cold storage (4°C) 

until required for sampling. 

7.4.4. Laboratory Methods 

7.4.4.1. Bulk Sample Processing 

The bulk sample was sub-sampled for routine soil tests (loss on ignition, magnetic susceptibility and 

soil pH) by Elise McLellan as part of her MSc guided study, prior to floatation by hand to recover 

artefacts and ecofacts (Kenward et al. 1980). The flot was caught by 1mm and 0.5mm mesh sieves 

and a 1mm mesh sieve retained the residue. Both flots and residue were slowly oven-dried before 

being fractioned through geological test sieves at 4mm, 2mm and 1mm mesh sizes for sorting using 

a low-powered stereo microscope at X15-80 magnification. 

7.4.4.2. Palaeoenvironmental Analysis 

Charcoal was only extracted from the >4mm fraction due to difficulties in identifying fragments 

below this size (Pearsall 2000). The identification of wood species was conducted by examining the 

transverse, radial and tangential sections at up to X600 magnification. The remaining 

archaeobotanical remains were recovered from all fractions. The identification of plant 

macrofossils was aided by modern reference material held in the Department of Archaeology, 

Durham University. Nomenclature follows Stace (1997). 

7.4.4.3. Sedimentary Analysis 

Sedimentary analysis was undertaken on a 5ml sub-sample of the bulk sample and at 1cm 

increments for each of the soil-micromorphology samples. 

7.4.4.3.1. Basic Soil Description 

Basic descriptions of the physical characteristics of each sample were recorded for the sub-sample 

of the bulk sample and the two soil-micromorphology samples. This comprised texture, following 

DEFRA guidelines (2006), and colour which was estimated using a Munsell colour chart. 

7.4.4.3.2. Magnetic Susceptibility 

Mineral magnetic analysis was conducted on 4cm3 sub-samples. Samples were dried and ground 

with a pestle and mortar before being passed through a 2mm mesh sieve to remove stones and 

large particles. The <2mm fraction was placed in 1cm3 vials in a Bartington MS2G Single Frequency 

Sensor. The volume specific magnetic susceptibility () was calculated following Dearing (1994). For 

Sample 1, magnetic susceptibility and loss-on-ignition could not be conducted between 9-9.4cm as 

the layer is heavy in stone inclusions and not enough material could be recovered for the analysis. 
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7.4.4.3.3. Loss-on-Ignition 

Sequential loss-on-ignition was conducted following (Heiri et al. 2001). 1cm³ sub-samples were 

dried in ceramic crucibles in a Carbolite AAF Furnace for 16 hours at 105°C. Upon removal for 

cooling, lids were placed over the crucibles inside a dessicator to ensure atmospheric moisture was 

not re-absorbed into the dried samples, thus affecting the mass (Heiri et al. 2001). This was 

repeated after the samples were replaced in the furnace and burnt at 550°C for four hours. The 

organic content of each sub-sample is calculated through the percentage difference of the dry-

weight before and after firing (Heiri et al. 2001). 

7.5. Survey Results 

The investigation was conducted, intermittently due to inclement weather, over ten days during 

September 2013. Both banks of Gleann Mor Barabhais, and a substantial tributary of the river along 

Gleann Airigh na Gile, were surveyed during this time. Due to the weather, there was clear evidence 

for recent high river levels in the area; therefore there were numerous fresh erosion scars from 

bank collapse that could be inspected. 

A total of thirty features were recorded during the survey, seven of which had been previously 

identified and were present in the NMR. Three sites detailed in the NMR that fell within the survey 

area were not located during the investigation. Twenty-nine of the sites most likely date between 

the Medieval and modern periods. These include a high number of lazy beds, structures, and 

earthworks – often in association with one another. Two shielings, and walls built to stabilise the 

river banks, were also recorded. The full details of these sites are presented in Appendix Fourteen. 

7.5.1. Excavation Results 

Of the thirty recorded sites, only a single feature (DLS’13 #30; NB 3746 4648) displayed evidence 

for potential early anthropogenic activity of the type the survey was designed to locate. At an 

eroding section of the river bank, further worn away by a sheep scrape, a c.6cm layer of dark 

brown/black silty-clay with charcoal flecks was identified overlying a thin layer of grey clay and well-

sorted gravel. This was in turn overlain by series of alluvial laminations under the turf. The layer 

was visible for c.5m along the eroding edge. A 0.95m stretch of the section was targeted for bulk-

sampling for evidence of archaeological material (S.3). The layer is present between 3-7cm in S.1, 

and 4-9cm in S.2 (Figure 237, Figure 238 and Figure 239). 

7.5.2. Palaeoenvironmental Analysis 

Eleven pieces of small deciduous round-wood charcoal were recovered from the 4mm residue 

fraction of DLS’13 #30. The charcoal was very poorly preserved, with post-depositional iron-oxide 

mineral deposits largely obscuring diagnostic features. Despite this, the fragments were positively 

identified as Calluna vulgaris based on the diffuse pore arrangement, and the fact the largest of 
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these pores appeared in the upper third of a single growth year (Hather 2000; Schweingruber 1990;  

Lorne Elliott pers. comm.). Additionally, the sample contained the charred remains of typical 

heathland species including a single seed of Arctostaphylos cf. uva-ursi (Bearberry), culm nodes and 

a culm base of Poaceae spp., two rhizomes, and an abundance of sclerotia (resting bodies) of 

Cenococcum geophilum (Table 40). This ectomycorrhizal soil fungus is known to be closely 

associated with the roots of tree species including Betula and Pinus (Hudson 1986). This therefore 

implies the presence of such tree species in the vicinity of the burning activity. 

Charred plant macrofossils Qty 

Charcoal 

Calluna vulgaris 11 

Charred plant material 

Poaceae undiff. culm node 3 

Poaceae undiff. culm base 1 

Poaceae undiff. rhizome 2 

Arctostaphylos spp. seed 1 

Cenococcum geophilum  sclerotia >120 

Table 40. Abundance of charred plant macrofossils recovered from Sample 3 

The band of silty clay loam sampled for potential archaeological evidence has a high, diamagnetic 

organic content (56-65%), with magnetic susceptibility ranging between extremely low and positive, 

to slightly negative. This contrasts to the overlying alluvium which is very low in organic content 

(10-30%), and has slightly elevated levels of magnetic susceptibility. In the underlying thin band of 

grey clay the percentage of organic content is equal to that of the overlying alluvium, and the level 

of magnetic susceptibility peaks, although is still low. There is virtually no organic content (<10%) 

present in the basal gravel layer, and the magnetic susceptibility is very low (Figure 240). Magnetic 

susceptibility and loss-on-ignition could not be conducted between 9-9.4cm in S.1 as the layer is 

heavy in stone inclusions and not enough material could be recovered for analysis. Overall, the lack 

of magnetic enhancement of this material indicates burning did not occur in situ (Dearing 1994).
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Figure 237. Left - Section of DLS’13 #30, cleaned before sampling, facing south-west; Right – DLS'13 #30 section 1:10
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Figure 238. DLS'1 #30 Sample 1 basic soil description 
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Figure 239. DLS'1 #30 Sample 2 basic soil description 
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Figure 240. DLS'13 #30 loss-on-ignition and magnetic susceptibility results
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7.5.3. Radiocarbon Dating 

A single fragment of deciduous round-wood charcoal was submitted for single-entity AMS 

radiocarbon dating at the Scottish Universities Environmental Research Centre (SUERC). Calibration 

of the date was conducted using OxCal 4.2 (Bronk Ramsey 2014), with atmospheric data derived 

from Reimer et al. (2013). This piece was dated, at 95.4% probability, to 4460-4355 cal. BC (5583±27 

B.P., SUERC-55370, Figure 241), placing it at the end of the Late Mesolithic in Britain (Piper et al. 

2015). 

 

Figure 241. Calibration plot of radiocarbon dated charcoal from DLS'13 #30 

7.6. Discussion 

Research Question 1: Is there evidence for Mesolithic dated burning in the interior of the Western 

Isles? 

The charred palaeoenvironmental material recovered from DLS’13 #30 dates to the Late Mesolithic 

of Britain. The carbonised heather and other plant macrofossils were recovered from floodplain 

deposits c.5km inland from the present coastline. During this time the sea level would have been 

as much as 5m lower than today (Jordan et al. 2010:131; Ritchie 1979; 1985:174-175). The wider 

catchment from which the material is likely to have originated extends a minimum of 7km further 

up-river, and may be as much as 10km wide. This places the source of the material firmly within the 

interior of the Isle of Lewis. 
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Research Question 2: Do these sites occur in riverine locales, where predicted? 

The survey targeted a major river, which was deemed unlikely to have significantly altered course 

over time. As previous investigations in Britain and Norway have proven, evidence for Mesolithic 

occupation is closely associated with watercourses and easily accessible to researchers (Bang-

Andersen 2003b; Boaz 1998b; Donahue & Lovis 2003; Edwards et al. 1983; Persson 2009; Ward 

2010). Inspection of the eroding banks of Gleann Mor Barabhais and the successful identification 

of Mesolithic-age palaeoenvironmental remains in section has demonstrated that locating sites 

using this methodology and predicted location of a riverine context is attainable. 

Research Question 3: What is the age, character, and formation processes of these site(s)? 

Age: The charcoal from DLS’13 #30 is Late Mesolithic date (4460-4355 cal. BC). This falls within the 

current range for known Mesolithic occupation along the coast of Lewis, between c.4600-4000 cal. 

BC, along the Cnip headland of the Bhaltos peninsula at the sites of Tràigh na Beirigh 1, 2 and 9. 

Character and Site Formation: The effects of burning events on aggregate stability, principally 

causing an increased susceptibility of soils to water runoff and erosion, are well documented (i.e. 

Fox et al. 2007; Kutiel et al. 1995; Mataix-Solera et al. 2011; Yoder 1936). Archaeologically, the 

effects of such burning events in the Mesolithic have been intensively studied in the Pennines and 

North York Moors of Northern England. The degradation of soil through repeated Mesolithic 

burning activities has been attributed as a primary causal factor of the 6000 B.P Ulmus decline in 

these regions (Simmons 1975 ; Simmons et al. 1975; Simmons & Innes 1987; Sturludottir & Turner 

1985). 

Sedimentary analysis of the samples taken from DLS’13 #30 indicates that the site comprises a 

series of silty-clay alluvial laminations. The laminated nature of the stratigraphy and low magnetic 

susceptibility, described above, suggests that this small quantity of carbonised plant remains were 

not burnt in situ, but re-deposited. In light of this, and the above archaeobotanical evidence, it can 

be reasonably inferred that: 

 a fire event occurred within the interior of Lewis, a landscape which comprised 

areas of heathland; 

 the fire event occurred upstream of DLS’13 #30, within in a potential catchment 

area of the Barvas river that extends over 36.5km2 (Figure 242); 

 the resultant aggregate instability caused by this fire event led to soil erosion and 

runoff during a period of rainfall or flooding, which contained both sediment and 

charred plant macrofossils; 

 the material carried by the runoff was redeposited during one or more low-energy 

hydrological events as the downstream floodplain accreted. 
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Figure 242. Topographic map detailing likely catchment for the source of charred archaeobotanical remains 
recovered from DLS'13 #30. Ordnance Survey data © Crown Copyright/database right 2014. An Ordnance 

Survey/EDINA supplied service 

The palaeoenvironmental evidence from DLS’13 #30 provides a very small snapshot of an open 

scrub/heathland area of landscape in inland Lewis. This is a significant contribution to 
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understanding the palaeoenvironmental make-up of the Western Isles, which is traditionally 

described as open scrub birch-hazel woodland (Bohncke 1988; Tipping 1996). Calluna is tolerant of 

a wide-range of moisture and may grow in wet to dry conditions, from heathland mor humus or 

peat bog, to the open birch woodlands so well represented in the pollen diagrams from Lewis 

(Edwards 1996; Simmons 1996:108). The presence of Cenococcum within the assemblage attests 

to the presence, or former presence, of Betulaceae (birch) in the vicinity of the burning activity. The 

inferred presence of birch, in addition to the heathland shrub taxa of Calluna and Arctostaphylos 

suggests that the upstream catchment of Gleann Mor Barabhais comprised an open scrubland and 

heathland-carr environment, potentially with early bog formation (Stace 1997). 

Evidence for the Mesolithic flora of the Lewisian landscape is present in pollen diagrams from 

Callanish-3, Loch Builaval Beag, and Loch na Beinne Bige, situated c.20 kilometres away from Gleann 

Mor Barabhais as the crow flies (Bohncke 1988; Fossitt 1996; Lomax 1997). These indicate that 

heathland only contributed to a very small proportion of total land pollen in the area at this time, 

although local expansions in Calluna heathland are recorded at Loch Builaval Beag and Callanish-3 

between c.8400-7900 B.P. (Edwards 1996; Tipping 1996). It is likely, therefore, that the landscape 

comprised areas of heathland openings within a still-wooded environment (Fyfe 2007). At the site 

of Aird Calanais, East Loch Roag, charred plant macrofossils were recovered from an old ground 

surface below a Neolithic hearth feature (O’Brien et al. 2009). Charred hazel nutshell from the 

deposit was radiocarbon dated to 6685-5690 B.P., which is only slightly earlier than the dates from 

DLS’13 #30. Other palaeoenvironmental indicators included charcoal of Betula spp. and Salicaceae 

undiff. (willow/poplar), again indicating an open scrubland environment, similar to that at DLS’13 

#30 (O’Brien et al. 2009). Although no interpretation could be made as to whether the burnt 

material derived from human or natural agency, the presence of a single undiagnostic piece of 

quartz may lend credence to an anthropogenic source. In contrast to Lewis, palaeoenvironmental 

evidence from Loch a’Phuinnd, South Uist indicates that there is evidence for a more widespread 

and well-established Calluna heathland on the southern islands during the Mesolithic period 

(Fossitt 1996). 

Two popular models are frequently cited with regard to the presence of open areas in the 

Mesolithic landscape. The ‘wood pasture’ model proposes a patch-work of woodland and pasture 

“maintained by large herbivore grazing regimes” (Fyfe 2007; Vera 2000). The second ‘high-forest’ 

model, proposed by Peterken (1996), favours a closed-canopy landscape with some open areas. 

Bradshaw et al. (2003) argue that in both models “dense populations” of large ungulates are 

necessary in maintaining these areas of openness. There is currently no evidence for the presence 

of large terrestrial mammals in the Mesolithic of the Western Isles, however. In which case, the 
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creation and/or maintenance of open areas within this landscape are likely to result from an 

alternative source: fire (Bradshaw et al. 2003). 

There is an abundance of evidence for Mesolithic-age fire incidence connected with disturbance 

phases in local vegetation cover throughout Britain, particularly in the Pennine region (e.g. Albert 

& Innes 2015; Blackford et al. 2006; Caseldine 1999; Caseldine & Hatton 1993; Innes & Blackford 

2003; 2009; Innes et al. 2013; Innes et al. 2010; 2011; Innes & Simmons 2000; Ryan & Blackford 

2010; Zvelebil 1994). Largely, these studies have focussed on the effects of deforestation through 

human agency as deliberate land-management strategies, designed to increase yields from nut 

species (particularly Corylus); additionally, these practices would promote open areas of newly 

regenerating woodland which would increase browsing opportunities, and thus the predictability 

and productivity of large terrestrial herbivores (e.g. Clarke 1976; Dimbleby 1962; Edwards 1990; 

Innes & Blackford 2003; Jacobi et al. 1976; Simmons 2001:46; Simmons & Innes 1987; Zvelebil 1994). 

Furthermore, Mesolithic-age human impact on the environment has also been recorded within the 

islands of the Inner Hebrides, such as Kinloch, Rum (Hirons & Edwards 1990); Loch a’Bhogaidh, Islay 

(Edwards & Berridge 1994); and Auchareoch, Arran (Affleck et al. 1988), which is supported by 

archaeological evidence. 

In this instance, Mesolithic fire ecology models from mainland Britain cannot be applied to the 

Western Isles. The issues are twofold: 

 these models centre on the creation of clearings within predominantly woodland 

habitats, whereby the pollen peaks indicating the presence of recolonization 

species such as Calluna are a by-product (intentional or otherwise) of repeated 

burning; 

 such models focus on the attraction of ‘big game’ species. 

To reiterate, the palaeoenvironmental evidence from DLS’13 #30 presents burning of an already 

open area of landscape and there is currently no evidence for large ungulates in the Western Isles. 

Furthermore, these models are largely derived from palaeoenvironmental cores whereby data is 

extrapolated from peaks in micro-charcoal – “low-level background rain of carbonised particles” 

from off-site burning (Innes & Simmons 2000). The data from DLS’13 #30 is on a macro scale. 

To expand on the first issue, there are only a few studies which discuss Mesolithic fire incidence in 

open areas such as heathland. Analysis of a number of cores taken from intertidal peats along the 

west coast of South Uist have indicated burning episodes associated with Calluna heathland during 

the Late Mesolithic (Ballantyne & Ward 2009; Bennett et al. 1990; Edwards 1996:34; Edwards et al. 

1995; Mulder 1999; Simmons 1996:158). Evidence for any perceptible human impact on the 

landscape involving fire has only been inferred from North Locheynort, Loch an t-Sil, Rineval, and 
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Borve on Benbecula (Brayshay & Edwards 1996; Edwards 1990; Edwards et al. 1995; Whittington & 

Edwards 1997). The expansion of heathland communities has largely been attributed to 

“progressive soil deterioration” (Mulder 1999:276-278). Although there is, as yet, no physical 

evidence for a Mesolithic presence on South Uist at this time, fire ecology by way of heathland 

management during the Mesolithic is documented in England (Caseldine & Hatton 1993; Simmons 

2001); Wales (Fyfe 2007; Smith & Cloutman 1988), and Norway (Hjelle et al. 2010; Prøsch-Danielsen 

& Simonsen 2000), which is supported by the archaeological record. Furthermore, it is notable that 

Calluna is “readily inflammable in many stages of its growth and under most likely weather 

conditions” (Simmons 1996:122). The implication here is that it requires a deliberate source of 

ignition and dry, dead plant matter such as deciduous grasses or sedges to create the necessary 

heat with which to burn the heather (Simmons 1996). Experimental, simulated burning of 

heathland has indicated that controlled burning can improve the regeneration of Calluna 

(Whittaker & Gimingham 1962). Moreover, continued burning of moorland would be necessary to 

some extent to prevent the regeneration of woodland and maintain clearings (Mighall et al. 

2008:625). 

The second issue is also pertinent to the application of such models in Ireland. The evidence for 

Mesolithic age disturbance of local woodland, including fire incidence on the Mizen Peninsula, Co. 

Cork, would traditionally be interpreted through fire ecology models as a deliberate management 

strategy to attract large game species (Mighall et al. 2008). However large ungulates, other than 

wild boar, are entirely absent from Ireland during the Mesolithic. This has prompted questions over 

why such practices would therefore be necessary (Woodman et al. 1997). Consequently, the 

analogous situation of the Western Isles leads to the question of whether the evidence from DLS’13 

#30 represents anthropogenic disturbance of the environment at all. 

Accordingly, a hypothesis for a natural cause must also be investigated. In contrast to Simmons 

(1996), Peterken (1996) and Brown (1997) have argued that heathland species, including heather 

and gorse, are more susceptible to natural fires such as those caused by lightning strike. Climatic 

instability and high natural fire frequency during very dry periods of the early Holocene is often 

postulated as an explanation for elevated charcoal levels in palaeoenvironmental records of north-

west Europe (Brown 1997:136; Fossitt 1990; Huntley 1993; Tipping 1996). Furthermore, light 

surface fires of ground-level vegetation are a frequent part of natural fire dynamics (Moore 2000). 

It should be noted that the dating evidence from the charred material from DLS’13 #30 accords 

with increasing precipitation towards the end of a “regionally significant and broadly synchronous” 

period of drier climate between 8000-5000 B.P. (Tipping 1996:50-51). 

Supporting evidence for significant human impact on the environment in the Mesolithic of Lewis is 

also highly circumstantial. Low levels of charcoal and woodland decline at Loch Builaval Beag were 
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interpreted as indicative of natural, climatic change (Fossitt 1996:188), similarly the evidence from 

Loch na Beinne Bige does not attest to significant anthropogenic disturbance of the environment, 

only the possiblity of small, local fires (Lomax 1997:240, 265). Only the medium levels of charcoal 

abundance at Callanish-3 have been interpreted as anthropogenic in origin (Bohncke 1988). Light 

surface fires are also the most frequently created fires by humans, therefore distinguishing 

between an anthropogenic or natural cause is highly problematic without very fine-resolution 

sampling (Moore 1996; 2000). Moreover, Tipping (1996:45) has cautioned against drawing close 

comparisons between broad datasets due to discrepancies in data presentation and recording 

methodologies between studies. 

One final interpretation is that the charred plant macrofossils represent the remains of localised 

burning of peat or turf (Hall 2003), rather than a ‘catastrophic’ and large-scale fire for the purposes 

of managing woodland resources (Moore 1996). The burning of peat/turf for fuel is well 

documented in the Western and Northern Isles, as well as other islands of the north Atlantic, from 

the Iron Age to modern times (Bishop et al. 2013; Church 2002a; Church et al. 2005; Church et al. 

2007; Dickson 1998; 1999; Smith 1999), and the Bronze Age in England (Branigan et al. 2002). There 

is little evidence for the burning of turf in the Mesolithic however. It has been suggested that 

incorporation of charred tubers of lesser celandine (Rununculus ficaria) within the Mesolithic 

deposits at Staosnaig, Colonsay may have been due to the burning of turf, rather than collected for 

human consumption  (cf. Hall 2003; Mithen et al. 2000a). Turves may have also have been used in 

a domestic hearth or a fire for the purposes of smoking or drying foodstuffs at the Mesolithic site 

of Northton, Isle of Harris (Bishop 2013). In sum, although comparable evidence for the deliberate 

burning of peat/turf as fuel at DLS’13 #30 is weak, it is nonetheless plausible. 

Gleann Mor Barabhais has clearly meandered, with evidence for flood events visible in the eroding 

sections of the banks. The active river systems on Lewis have almost certainly changed, especially 

given the extent of sea level rise since the Mesolithic period, which will have altered the water table 

and, consequently, drainage patterns (Woodman 1997:370). Furthermore, it cannot be readily 

assumed that the heavily managed modern rivers were comparable during the Mesolithic (Warren 

2005b:56). Overcoming this issue would require extensive digital modelling of underlying geology 

or relic river systems based on local geomorphology (Woodman 1997:370), or a programme of 

coring to detect sedimentation of relic beds (Wren et al. 2008). 

The geomorphological processes and environmental changes that have occurred on Lewis since the 

mid-Holocene have greatly altered the landscape. In addition to the natural barriers that have 

hampered this investigation, theoretical hurdles must also be overcome. The predictive model 

explored in this chapter is based on the long-standing view that Mesolithic mobility encompassed 

regular movements between coastal and inland regions, whether residential moves of the whole 
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group (Clark 1972), logistic forays by specialist task-groups (Binford 1980), or a more complex 

mobility pattern combining both models, such as has been proposed for the Mesolithic occupation 

of the Pennines (Donahue & Lovis 2006). These ethnographically-derived models and their 

application to the archaeological record have been criticised as creating a coast:inland dichotomy 

that has pervaded, unimpeded, over interpretations of Mesolithic sites in Britain (Preston 2013; 

Spikins 2000). Even so, models such as Spikins’ Social Territories Model (1996) and the Pennine 

Nexus Hypothesis (Preston 2013), formulated as alternatives, are restrictive in their application as 

both are tied to river networks. The data therefore becomes part of a hermeneutic cycle: sites are 

found by rivers, therefore models are created based on this data; surveys are conducted based on 

said model, which in turn result in further data that reinforce the model. Warren (2005b:64-65) has 

criticised the neglect by archaeologists of over-land routes as likely means of movement through 

the landscape, stating the Holocene woodland has been characterised as “dark and impenetrable: 

overgrown, foreboding places…”. This is despite evidence from the Tweed valleys in south-east 

Scotland which indicate Mesolithic settlements were situated away from the coast and rivers 

(Warren 2005b:141). Further work investigating the interior of the Western Isles must therefore 

heed such admonitions, whilst it must be understood that in the absence of any other suitable 

method of investigation, successful implementation of the river-survey methodology will only 

continue to support this bias.  

7.7. Conclusion 

The charred palaeoenvironmental remains from DLS’13 #30 represent evidence for burning of 

Calluna heathland, which is situated within the catchment of Glean Mor Barabhais in the interior 

of Lewis during the Late Mesolithic. It is likely that the effects of this burning caused a degree of 

aggregate instability which in turn caused the charred material to be eroded from its original 

location, and incorporated within flood deposits further downstream. 

There are three different hypotheses which could explain the presence of the charred 

palaeobotanical material at DLS’13 #30: 

 the material represents deliberate land management strategies by Mesolithic 

people in order to clear woodland/maintain heathland with the purpose of 

manipulating both floral and faunal resources by way of fire ecology; 

 the material represents a natural event, such as fire by lightning strike; 

 the material represents small-scale burning of turf in an anthropogenic setting, 

such as a domestic hearth or for the purposes of food processing. 

The results of palaeoenvironmental analyses from across Scotland and the Hebridean Islands 

indicate there are notable relationships between Mesolithic-age vegetation disturbance and 

charcoal presence during the period of known Mesolithic occupation of the islands. This is further 



 

325 

 

corroborated by palaeoenvironmental and archaeological evidence from England, Wales, Ireland 

and Norway. On the whole, these patterns are interpreted as deliberate land management 

strategies by hunter-gatherers. 

However, based on the evidence alone, it is not possible to ascertain whether the charred plant 

remains from DLS’3 #30 derive from anthropogenic interference such as domestic hearth material, 

rather than active vegetation clearance (Edwards 1990:77; Simmons 1996:158), or a landscape fire 

resulting from deliberate land-management strategies such as fire ecology (Edwards 1990; 1996; 

Jacobi et al. 1976; Tallis & Switsur 1990). It is possible that the fire in the landscape is simply a 

natural occurrence (Tipping 1996). 

What is certain is that the methodology employed in the survey along the river, which was based 

upon successful investigations of eroding river banks in Britain and Norway in order to identify 

Mesolithic sites, was a success. Although the sampling did not yield definitive evidence for 

Mesolithic occupation, it is hoped that future investigation of the interior will reveal Mesolithic 

remains, despite the present difficulties of investigation.
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Chapter 8 The Mesolithic Occupation of the Western Isles 

8.1. Introduction 

This chapter draws together the whole of the available archaeological evidence from the Mesolithic 

occupation of the Western Isles. First, the wider evidence of settlement and subsistence activities 

conducted at each of the sites is outlined. A summary of the results of the technological and 

typological analysis of the Western Isles lithic assemblages, presented in Chapters Five and Six, is 

then integrated. This provides a holistic overview of the nature of Mesolithic occupation in the 

Western Isles that can be compared with the evidence for the Mesolithic in western Scotland, 

discussed in Chapter Two. In doing so, detailed comparisons can be drawn between each region to 

determine the nature of hunter-gatherer subsistence and the occupation on the two main islands 

over the period of c.2700 years. The aim of this section is to collate the information required to 

answer the second research question of this thesis: how do the lithic assemblages fit into the 

occupation of the Western Isles sites? 

The methodology used in the lithic analysis, and outlined in Chapter Four, was designed to answer 

the first research question of this thesis: what is the nature of the lithic technology of the Mesolithic 

in the context of the Western Isles of Scotland? The second section of this chapter returns to address 

the four sub-questions of research question one, in order to further discuss the themes that pertain 

to lithic chaîne opératoire. These themes comprise: raw material acquisition, reduction strategy, 

technology and type-facies. By aligning the methodology used in the lithic analysis with those used 

in Scottish Mesolithic studies, and by drawing upon the evidence that was observed during such, it 

is possible to compare between these and other assemblages to ascertain whether Mesolithic lithic 

production in the Western Isles is representative of the Scottish Mesolithic overall. This will be 

discussed further in Chapter Nine alongside the wider implications for group settlement and 

subsistence patterns in the Mesolithic of the north-east Atlantic façade. 

It should be reiterated here the caveat that the small size of the assemblages present in the Western 

Isles only provides a very limited sample of material through which to contextualise Mesolithic 

settlement, activities, technology and lithic traditions. 

8.2. Mesolithic Occupation in the Western Isles: The Wider Evidence 

The first, unequivocal evidence for the Mesolithic in the Western Isles of Scotland has only been 

established within the last decade. The evidence from Aird Calanais and DLS’13 #30, discussed in 

Chapters Two and Seven respectively, suggests there are other areas of buried early to mid-

Holocene landscapes that may contain new Mesolithic sites. The excellent organic preservation at 

the Mesolithic sites from the Western Isles provides a rare insight into the exploitation of particular 

terrestrial and marine resources by Mesolithic people inhabiting the area, and thus their 
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subsistence practices (Kitchener et al. 2004:80). The evidence observed to date indicates that the 

major economic focus of the communities living on these islands was on fishing, hunting small 

terrestrial game, and processing plant material. Sites with organic preservation are unfortunately 

rare in Scotland and it is most often scatters of lithics that betray the ephemeral presence of 

Mesolithic people in the landscape (Saville 2003:342). The lack of organic preservation at Mesolithic 

sites in Scotland makes it difficult to understand whether the activities at these sites are 

representative of Mesolithic open air sites in Scotland as a whole. The plant and animal remains 

recovered from the Western Isles are integral to understanding the little-known post-glacial 

palaeoenvironmental record of the islands. Additionally, these inform us of the species Mesolithic 

inhabitants may have exploited as part of the subsistence strategies that extreme maritime coastal 

adaptation required (Bishop et al. 2011b). 

This section therefore considers each site as a whole. The topographic location of each site is 

described alongside the various the faunal and floral assemblages, which inform subsistence 

activities that may have been carried out at each of the sites. In turn, this influences understanding 

of how the lithic assemblages correlate with particular activities, such as the procurement and 

processing of specific resources. It is the availability of these resources which directly influences 

hunter-gatherer settlement patterns, as such different economic strategies are adapted as a result 

(Binford 1979; 1980; Woodburn 1980). It is clear from Figure 243 that understanding the 

subsistence strategies of these Mesolithic communities is intrinsically linked with interpreting lithic 

function. It is not enough to simply analyse tools and debitage as products of the knapping process 

in isolation - the decisions involved behind their production must also be addressed in addition to 

their role in the subsistence economy. 

The islands of Harris and Lewis present two very different types of sites. The earlier open-air sites, 

within relic ground surface deposits at Northton and Tràigh an Teampuill on Harris, contrast in 

appearance to the later shell midden sites around the Cnip headland at Tràigh na Beirigh and 

Pabaigh Mòr, Lewis. Despite the differences in site composition, it is clear that the Toe Head 

peninsula of Harris and the Bhaltos Peninsula of Lewis were prime locations for hunter-gatherer 

activity during the Mesolithic for very different reasons, and that the exploitation of marine 

resources is a trait shared at both locations. Where appropriate, comparisons with these sites are 

drawn between the evidence from Ireland and larger Scottish islands, as well as Norway. These 

parallels will be drawn upon again more fully in Chapter Nine. 
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Figure 243. Inter-related aspects of settlement and subsistence within hunter-gatherer groups 

8.2.1. The Late Mesolithic on Harris 

8.2.1.1. Northton 

During the Mesolithic, Northton would have been situated atop a rocky platform, several hundred 

metres from the existing shoreline (Figure 244). The archaeobotanical evidence from the site 

indicates that the immediate environment was a mixture of open grassland and woodland, as 

machair had not yet developed in the area (Bishop 2013:221; Church 2006a; 2006b; Ritchie 1979). 

The spread of Mesolithic occupation deposits at Northton are broadly interpreted as “a palimpsest 

of disturbed and bioturbated hearth deposits containing fuel remnants and food waste” (Bishop et 

al. 2011a:1; 2011b; 2012b). During processing of the environmental samples, it was noted that the 

faunal assemblage from Northton is burnt and highly fragmented. The charred and calcined nature 

of these remains has prevented their decay in the usually acid soils of Scotland. An initial study of 

the faunal and floral remains from Phase 3 at Northton has provided an indication of the types of 

activities conducted at the site and the subsistence strategies employed there. A chart indicating 

the most likely seasons of occupation at the site is presented in Table 41. 
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Figure 244. Northton (arrowed right) would have been situated away from the immediate shore and likely to have 
been close to woodland. Whilst the machair beaches would not have been present, the rocky tidal embayment would 
have served as an ideal harbour. The hill of Ceapabhal can be seen rising to the left on the picture. A similar 
environment would have existed during the occupation of Tràigh an Teampuill (arrowed left). Author’s own photo 

Preliminary identification of large faunal species from the site points towards a clear exploitation 

of marine species. These include seabird species such as guillemot (Uria aalge), and the now-extinct 

Great Auk (Alca impennis; Rowley-Conwy pers. comm.). Great auk were a large, pelagic bird that 

spent the majority of the year at sea. They were also flightless, and reported to only have been 

present on shore during a few weeks from April-June for breeding, which would have made them 

vulnerable to predators (Fisher & Lockley 1954). Their presence in the faunal assemblage at 

Northton therefore indicates occupation of the site during spring. Similar seabird species have been 

recovered from Mesolithic shell midden sites in Brittany, where they display definitive evidence for 

human consumption in the form of cut-marks and burning (Dupont et al. 2009:102). Alcids such as 

the guillemot nest on steep cliffs, where they are likely to have been caught using nets or lines 

(Dupont et al. 2009:102). Hunting seabirds, using home-made poles and snares, was an integral 

part of life for the islanders of St. Kilda, until the island was abandoned in 1930; the guga (Gallic for 

gannet) hunt  on the island of Sula Sgeir, 40 miles north of the Butt of Lewis, is a Hebridean tradition 

that endures to this day (Beatty 1992). 

The presence of cetacean species – potentially porpoise (Phocoenidae) or orca (Orcinus orca) – has 

been inferred through analysis of unidentified bone fragments from the site using ZooMS (Charlton 

2016). Otter (Lutra lutra) and seal (Phocidae spp.) bones have also been identified (Rowley-Conwy 

pers. comm.). The only terrestrial fauna recovered from the site were bones of hare (Lepus spp.); 

evidence for large terrestrial game is conspicuous in its absence. Otter and hare are well-known 

fur-bearing species and there is extensive evidence for their exploitation during the Mesolithic, it is 
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also likely their flesh was consumed (Grigson & Mellars 1987:285). Particular evidence for skinning 

otters for their pelts has been found at Tybrind Vig and other sites in Denmark, as well as in the 

Netherlands (Louwe Kooijmans 2003; Richter 2005; Trolle-Lassen 1987), whereas hare remains 

from Moynagh Lough, Ireland were processed for meat (McCormick 2004; Warren 2015b). Seals 

would have provided a wide range of raw materials, including food, blubber for oil, and skin for 

boats, tents, containers, and clothing amongst other uses. The disproportionate number of 

particular elements at Cnoc Coig, Oronsay were interpreted as evidence for the multitudinous uses 

of seal (Grigson & Mellars 1987:271). 

The major fish taxa exploited at Northton were wrasse (Labridae) and cod families (Gadidae), the 

latter of which included species of Atlantic cod (Gadus morhua), saithe/pollack (Pollachius spp.), 

pout (Trisopterus spp.), and whiting (Merlangius spp.) amongst others (Blake 2011:55, 80). 

Accepting the possibility of taphonomic bias against larger fish, analysis of the size of gadid family 

fish indicated that the majority were estimated at <300mm in length. This falls within a specified 

size category of ‘tiny-small’, which is representative of first, second, and potentially some third year 

fish (Blake 2011:15, 54). Young gadids, up to three years of age, naturally migrate from deep ocean 

water after spawning to shoal inshore between late spring and mid-winter (Wilkinson 1981:34). 

Based on the dominance of small-medium sized gadids from the Phase 3 occupation of Northton, 

it is proposed that the fish assemblage indicates repeated visits to the site during summer and 

autumn. This is supported by the presence of herring (Clupeidae), juvenile plaice (Pleuronectidae), 

and European eel (Anguilla anguilla), which can also be caught inshore during these seasons (Blake 

2011:154-157). Visits during the spring are also likely given the presence of smaller fish and other 

species such as Great Auk, whereas winter occupation could be indicated by seal (Table 41).  

The diversity of species present in this catch has been taken to suggest that the fishing methods 

employed at Northton were largely unselective (Blake 2011:160). Whilst line-fishing could have 

been used to procure these species, it is more likely that a tidally regulated stationary trap or net 

was used, such as those identified in Halsskov, Denmark and the Liffey estuary, Ireland (McQuade 

& O'Donnell 2007; McQuade & O’Donnell 2009; Pedersen 1995). This would facilitate the catch of 

a range of species inhabiting the inshore area, as well as the different year groups of fish such as 

saithe and pollack (Enghoff 1995). The coastal geomorphology of sheltered, tidal embayment close 

to the site at Northton would also be conducive to this (Blake 2011:161, 163).  

Exploitation of the inshore zone at Northton is further corroborated by the species of shellfish and 

crustacean present in the environmental assemblage. Species favouring both rocky shore and sandy 

substrate habitats are represented. The former include limpet (Patella spp.), periwinkle (Littorina 

spp.); dog whelk (Nucella lapillus); common mussel (Mytilus edulis) and green shore crab (Carcinus 

maenas). The latter habitat is indicated through the presence of razor clam (Ensis spp.) and 
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common cockle (Cerastoderma edule; Blake 2011:70-72, 94-95). These resources would have been 

available year-round and most easily accessible at low-tide. The variety and abundance of marine 

mollusc and crustacean remains from Northton has been taken to suggest the Mesolithic 

inhabitants procured these extensively, on a generalised and intensive scale (Blake 2011:182-184, 

194-197). 

Skeletal element representation of the two most commonly exploited fish taxa, Gadidae and 

Labridae, is indicative of the presence of the whole fish at the site. From the high ratio of burnt 

bones present at Northton, it is interpreted that these fish were immediately processed at the site, 

whole, through cooking methods that would expose the bones to high temperatures for an 

extended period of time such as on open fires. The burnt and fragmented nature of the crustacean 

remains, as well as of many of the mollusc shells, suggests that a similar method is likely to have 

been used to process these taxa on site for human consumption (Blake 2011:169, 172, 190-193, 

196). Such cooking methods are likely to account for the high quantity of carbonised plant material 

from Northton, including fragments of pine (Pinus spp.) and hazel (Corylus avellana) charcoal 

(Bishop et al. 2015). This charred material has been interpreted as representative of hearth material, 

in addition to food waste, which included not only the faunal remains, but numerous quantities of 

hazel nutshell, seeds, and edible roots from species such as lesser celandine (Rununculus ficaria), 

and bitter-vetch (Lathyrus linifolius) (Bishop et al. 2012a; Bishop et al. 2011a; Bishop et al. 2014b). 

The charred hazel nutshells are estimated to have derived from >500 whole nuts, and are 

interpreted as evidence of extensive hazel nut exploitation at the site with subsequent roasting of 

the haul (Bishop 2013:201, 219). The well-preserved nature of the tubers at Northton has been 

taken to suggest the material was accidentally charred during, or after, intentional drying for 

storage (Bishop et al. 2014b:41). This was proposed for the large quantity of charred hazel nutshell 

and lesser celandine at Staosnaig, Colonsay (Mithen et al. 2001; Mithen et al. 2000a). Although no 

distinctive hearth features were identified, the presence of fire-cracked rocks and a small number 

of burnt flint flakes attests to the processing of foodstuffs at Northton. This interpretation is 

corroborated by an abundance of heat fractured stone ‘pot boilers’ at the site, which are similar to 

those produced experimentally, and have been recovered from the Mesolithic site at Sand in the 

Inner Hebrides (Clarke 2009a; Wickham-Jones 1986). The abundance of charred grass material at 

Northton has also been taken to suggest steaming or roasting activities using peat or turf (Bishop 

2013:218). Overall, the charred plant macrofossils suggest that Northton was situated in a wooded, 

scrubland environment with areas of open, disturbed ground. Within this environment edible 

plants were likely to have been gathered through the summer and autumn before being processed 

at the site, which supports the seasonality evidence from the fish remains. However, it should also 

be noted that once cooked and dried, hazel nuts and tubers can be stored for long periods of time 

and may have been deposited during a visit to the site by Mesolithic people during any season 
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(Bishop 2013:215-222). Irrespective of this, there is definitive evidence in the form of charred plant 

material, calcined bone, and fire-cracked rocks from Northton that attest to deliberate burning at 

the site, probably involving the processing of foodstuffs. 

To re-iterate the main findings of the lithic analysis from Northton presented in Chapter Five: the 

earliest occupation of Northton (Phase 4) was dominated by the use of flint, which had either been 

imported to the site along with the first occupants, or was locally available in an extremely small 

quantity. This was supplemented by the use of locally available quartz. During the later phase of 

occupation (Phase 3), quartz is the most prolifically used raw material. Flint is only represented in 

small quantities, alongside a nominal amount of baked mudstone, which has been imported from 

across The Minch in a pre-prepared state. 

Overall, the results of the lithic analysis from the recent investigations at Northton largely support 

Nelis’ original interpretation of the assemblage as “representative of a Mesolithic chipped stone 

assemblage in, at least, this area of the Western Isles”. The implication therein is that the largely 

undiagnostic material from the Western Isles is characteristic of an independent, potentially insular 

industry akin to the trajectory of lithic industry development in Ireland, which will be discussed in 

more detail below. The suggestion that the Western Isles Mesolithic assemblage is entirely 

undiagnostic can no longer be supported in light of the presence of microliths, albeit few in number. 

Finally, it should be noted that the most enigmatic find from the Mesolithic deposits at the site is 

that of a distal fragment of a human second middle phalanx. An in-depth discussion of this 

pertaining to Mesolithic burial practices is presented in the following chapter. 

8.2.1.2. Tràigh an Teampuill 

Tràigh an Teampuill is located in a very similar geographical position to Northton, occupying a rocky 

outcrop which may easily have overlooked the encroaching sea (Figure 244). As yet, there has been 

little analysis conducted on the organic remains from Tràigh an Teampuill. A quantity of charred 

hazelnut shells were recovered throughout the deposits in addition to a discrete deposit of 

periwinkle shells which filled a clay-ash lined scoop that cut into the old ground surface. The hazel 

nutshells are poorly preserved and suggested to have derived from occasional discard onto 

domestic hearths. As at Northton, their presence may suggest the site was occupied during the 

autumn, but it is also possible that the hazelnuts had been stored (Bishop 2013:220). Well-

preserved bones of small mammals and birds have been observed within the faunal assemblage in 

addition to thousands of fish bones, which indicate the site may have been visited at various times 

of the year (Table 41). Thus far, there is no categorical evidence for large terrestrial mammals in 

the Western Isles during the Mesolithic, beyond undiagnostic bone fragments. Results from ZooMS 

analysis of these fragments indicates the Mesolithic inhabitants of the site exploited marine 
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mammals, including seal (Phoca spp.) and various species of Cetacea such as grey whale 

(Eschrichtius robustus); porpoise (Phocoenidae)/orca (Orcinus orca); humpback whale (Megaptera 

novaeangliae)/grey whale, and Risso’s dolphin (Grampus griseus)/pilot whale (Globicephala spp.). 

There were also results which indicated large terrestrial mammals such as deer (Cervidae spp.) or 

elk (Alces alces; Charlton 2016). 

At its greatest extent, the British Ice Sheet of the Last Glacial Maximum (LGM hereafter) extended 

to the west of the Western Isles, covering the islands in ice. Deglaciation in the region occurred at 

least c.13,000 cal. BC, when the Minch exhibits evidence for open sea conditions, separating the 

Western Isles from the mainland (Bradwell et al. 2008:212-213). Based on this, and the highly 

restricted number of native species which survived the LGM further south in Ireland, it would 

appear all but impossible for the Western Isles to have functioned as long-term glacial or interglacial 

refugia where large terrestrial mammals such as red deer/elk could have survived the Loch Lomond 

re-advance; during which time some islands of the Inner Hebrides were re-glaciated and the Outer 

Hebrides would have experienced a semi-frozen, tundra landscape (Edwards & Whittington 1994; 

Lowe & Walker 1986; Montgomery et al. 2014). As such, any presence of red deer/elk in the 

Western Isles is likely to be a human introduction. It is unknown if this was with live animals to 

create a niche by importing a breeding population, much as wild boar were introduced to Ireland 

(Montgomery et al. 2014; Rowley-Conwy & Layton 2011). The occupation of the site is c.400 years 

later than at Northton. If Mesolithic people had begun to transport these animals across it would 

be likely that by the time of occupation at Tràigh an Teampuill a viable population could have been 

established. Alternatively, it may be that haunches of meat were imported, as there is currently no 

secure evidence for the presence of red deer in the Western Isles until the Neolithic (Stanton et al. 

2016). The possibility of imported commodities will be discussed further in the following chapter. 

The red deer antler tine present at Tràigh an Teampuill could also have been an imported product. 

Although no microliths were recovered from the small lithic assemblage, this closely resembles a 

pressure flaker, which would have been an intrinsic part of the microlithic tool kit, although is not 

the only method of producing microliths (Finlay 2006). On the continent, antler pressure flakers 

have been variously recovered from Mesolithic contexts in Russia (Skakun et al. 2011; Zhilin & 

Matiskainen 2002); Serbia (Vitezović 2011); Denmark (Andersen 1989), and Sweden (Hallgren 2011). 

In Scotland, antler tines have been recovered from An Corran (Saville et al. 2012b), Cnoc Coig 

(Grigson & Mellars 1987), Sand (Hardy 2009c), Risga (Foxon 1991), and MacArthur’s Cave, Oban 

(Elliott 2012). The function of these tines as punches or pressure flakers has not been considered 

in a recent synthesis of antler-working practices during the Mesolithic of Britain, which contrasts to 

the continental sites mentioned above (Elliott 2012), and has previously been largely rejected 

(Foxon 1991); instead the notion that these artefacts functioned as ‘bevel-ended tools’ persists, 

despite experimental evidence to the contrary (Hardy et al. 2009; Tolan-Smith 2008:149). Given 
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there is currently no evidence for populations of deer living on these islands during the Mesolithic, 

the antler must have been brought to the site as a raw material commodity from the Inner Hebrides 

or elsewhere, where red deer were present. This may have been linked with the import of other 

raw materials such as flint, baked mudstone and limestone which are discussed in more detail in 

the following chapter. 

A small number of broken worked bone points have also been recovered from the site. These may 

have functioned as piercers or needles, potentially for the production and repair of clothes or fish 

nets. Larger specimens of bone points have been recovered from An Corran (Saville et al. 2012a); 

Oronsay (Bishop 1914; Lacaille 1954:226; Mellars 1987); the Oban caves (Anderson 1895; Clark 

1956); Sand (Hardy 2009c), and Risga (Foxon 1991). It is notable that the sites in which bone and 

antler points are found in Scotland are all shell midden sites, which contributed to the long-standing 

assumption that bone and antler artefacts were associated with the ‘Obanian’ industry (Saville et 

al. 2012a). A more plausible interpretation is that this results from the more alkaline conditions of 

shell middens which facilitate a greater degree of organic preservation than open-air sites. The 

assemblage from Tràigh an Teampuill therefore provides rare evidence of the organic component 

of the Mesolithic took kit from non-shell midden sites, which is largely absent from the 

archaeological record in Scotland. 

The lithic assemblage from Tràigh an Teampuill, as described in Chapter Five, follows a very similar 

pattern of raw material exploitation to Northton. The assemblage is comprised entirely of flake and 

blade debitage, dominated by locally available vein and pebble quartz, which was reduced on an ad 

hoc basis using platform technology. The flint assemblage is only partial: there is no evidence for 

primary reduction of flint at the site nor are there any cores. The flakes and blades that are present 

however, have been treated in the same manner as at Northton – intensively reduced, using a 

combination of both bipolar and platform technology, which reflects the small size of the original 

raw material. Only a single flake of baked mudstone was recovered in addition to a small number 

of other, more local, raw materials. 

8.2.2. The Terminal Mesolithic on Lewis 

8.2.2.1. Tràigh na Beirigh 1  

The location of Tràigh na Beirigh 1, atop the rocky promontory of Gridig, would have occupied a 

prominent position along what would have been a cliff face during the Mesolithic, due to slightly 

lower sea-level and absence of machair (Figure 245). From here, both terrestrial and marine 

resources could easily have been exploited. Analysis of the faunal material from Tràigh na Beirigh 1 

suggests that Mesolithic activities at the site almost exclusively involved fishing and shellfish 

collection. There is limited evidence for the exploitation of terrestrial resources, which appears to 

be restricted to hare (Rowley-Conwy pers. comm.) and charred faunal material. As at Tràigh an 
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Teampuill, the small quantity of poorly preserved hazel nutshells may result from the occasional 

disposal of material onto domestic hearths during the autumn, or consumption of stored nuts at 

another time of the year (Bishop 2013:220). 

 
Figure 245. Tràigh na Beirigh 1 under excavation at low-tide (arrowed left). This site, Tràigh na Beirigh 2 (arrowed right), 
and the other areas of exposed midden at the machair-bedrock interface are situated at the edge of what would have 
been a cliff-face during the Mesolithic, when the sea level would have been a minimum of two metres lower and the 
machair formations above would not have existed. Photo courtesy of Mike Church 

The fish remains recovered from the site are almost exclusively of the Gadidae family, primarily 

saithe and pollack. A very small proportion of other species such as sea scorpion (Cottidae) and 

dragonet (Callionymus lyra) are also present (Blake 2011:115). Analysis of both fish bones and 

otoliths by Blake (2011), and otoliths by Morley (2015), indicated that repeated episodes of fishing 

activity were likely at Tràigh na Beirigh 1, with the most intensive activity during the spring and 

winter seasons. In Morley’s study, this was based on the distribution of otolith size, which shows 

two distinct groups of saithe present. The first group is indicative of a high number of small first 

year fish, which shoal inshore during late spring (April-June) shortly after spawning in deep offshore 

waters. The second, most prominent, group were of larger first year fish that have not yet migrated 

into deeper waters, the size of which suggests mid-winter fishing from November to late December 

(Morley 2015:29-30). The otoliths previously studied by Blake largely fall into the same range as 

those studied by Morley and the total fish length, estimated from both the bones and a small 

sample of otoliths, corroborates the suggestion that the saithe present were almost exclusively first 

year fish (Blake 2011:124-125). 

The large standard deviation of otolith size within the sample was interpreted as evidence for an 

extended fishing season, suggesting “multiple fishing events at different times throughout the year”, 

but with the most intensive exploitation during spring (Morley 2015:30). A significantly protracted 

fishing season similar to this is observed in the saithe otoliths from Caisteal nan Gillean I/II where 

the range of fish exploited includes both first and second year fish throughout mid-summer to mid-
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winter. This differs from the other shell middens on Oronsay where the evidence suggests fishing 

seasons were much shorter (Mellars et al. 1980:35-36). The highly selective catch – both in terms 

of species and homogenous size as determined by Blake – is suggested to imply the use of more 

discriminatory fishing methods than those used at Northton, for example hook and line or nets. 

Furthermore, a stationary trap, such as the like suggested for Northton would not be viable at 

Tràigh na Beirigh 1 due to wide, exposed shoreline (Blake 2011:164). Although a similar 

interpretation of the fishing methods employed at Tràigh na Beirigh 1 is given by Morley, the means 

by which she arrived at this conclusion are very different. Morley suggests that the range in the size 

of otoliths present is representative of the natural population range of fish procured over a long 

fishing season, which is indicative of unselective capture technology. Methods such as netting could 

have been conducted close to the shore; fish may also have been collected from natural traps, for 

instance inter-tidal rock pools that now lie buried beneath the machair beach (Morley 2015:35). It 

should be noted that the sample studied by Blake was very small and taken throughout the entire 

thickness of the midden deposits (Blake 2011:19, 159), whereas the data from Morley was obtained 

from a more stratigraphically secure unit (C008). Consequently, the data from these two studies 

requires further resolution. 

Low levels of carbonisation of the otoliths were noted, indicating that the methods used in 

processing the fish meant the fish heads did not frequently come into direct contact with fire. Fish 

heads may have been removed prior to cooking over an open fire for example, or the whole fish 

may have been boiled (Morley 2015:35-36). During sorting of the environmental remains to collect 

the data for this thesis, few calcined fish bones were observed, which supports the latter 

interpretation. Smoking of the fish may also be a viable alternative suggestion, with a low number 

of carbonised otoliths potentially representative of a small number of waste fish that had dropped 

off the smoking rack and become incorporated into the embers below. This would be supported by 

the very small quantity of calcined fish bone (7%) reported by Blake (2011:112). Furthermore, the 

representation of the full suite of skeletal elements has been interpreted as “on-site consumption 

of whole, freshly caught gadids” (Blake 2011:158, 174). 

Extensive exploitation of the inshore environment is indicated by the substantial shell midden 

deposits at Tràigh na Beirigh 1, where a similar range of marine molluscs and crustaceans to 

Northton were recovered. These again included species indicative of both rocky shore environs as 

well as sand flats, and which were available all year round (Blake 2011:182, 185, 193). An in-depth 

study of the marine mollusc assemblage concluded that there was a minimum taxa of 21 mollusc 

species largely indicative of exposed shorelines. Of these species limpet (Patella spp.) is the most 

prevalent, followed by razor clam (Ensis spp.), and dog whelk (Nucella lapillus; Evans 2015:41-42). 

The exposed nature of the shore at Tràigh na Beirigh 1 is further attested by the low number of 

periwinkle (Littorina spp.). Periwinkle are much more frequently represented at shell midden sites 
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from the Inner Hebrides with sheltered shores, such as Ulva Cave, Sand and An Corran (Evans 

2015:57, 72; Russell et al. 1995:280). 

There is an unusually high representation of razor clam at the site, with a marked absence of 

juvenile taxa, which is not representative of a natural population. This has been interpreted as 

selective exploitation of larger individuals during the most extreme low tides, such as the spring 

and autumn equinoxes (Evans 2015:43, 69). This is further corroborated by the presence of a 

number of large specimens of other mollusc species such as banded carpet shell (Polititapes 

rhomboids) and common otter shell (Lutraria lutraria). These species inhabit the same environs as 

razor clams and were exclusive to the sub-assemblages where razor clams were present. It has been 

suggested that these molluscs may have been “‘caught out’ by the extremes and variability of low 

spring tides” (Evans 2015:57, 69-70). This also coincides with the season of occupation as indicated 

by the otolith data (Morley 2015:41). A summary chart of the proposed seasons of occupation at 

this site is presented in Table 41. 

The exploitation of razor clams on the scale seen at Tràigh na Beirigh 1 is unique to this site and not 

reflected at other Scottish Mesolithic sites. This is despite the evidence for an overall greater 

exploitation of the low shore region at sites such as Sand and An Corran, than is observed at Tràigh 

na Beirigh 1 (Evans 2015:59, 68-69). This has been attributed to the difference in exposure of the 

shoreline; Sand and An Corran are more sheltered, hence a greater representation of low shore 

species, whereas the exposed nature of the shore at Tràigh na Beirigh 1 may “render the very lowest 

part of the shore an unacceptably hazardous location” (Evans 2015:69). 

The dominance of limpets at Tràigh na Beirigh 1 is consistent with shell middens of Mesolithic age 

in the Inner Hebrides at Sand, An Corran, Ulva Cave, Carding Mill Bay, MacArthur Cave and Oronsay 

(Anderson 1895; Connock et al. 1992; Mellars 1987; Milner 2009; Russell et al. 1995:284; Saville et 

al. 2012b). More widely, this is consistent with Mesolithic middens found in Brittany and Cantabrian 

Spain (Bailey & Craighead 2003; Dupont et al. 2009; Gutiérrez-Zugasti 2011). This is divergent from 

the Køkkenmøddinger of Denmark however, which are dominated by oyster and appear vastly more 

complex in terms of structural evidence and year-round occupation (Gutiérrez-Zugasti et al. 

2011:73; Rowley-Conwy 1999; 2004). 

Limpet exploitation took place across the whole shore during the occupation of Tràigh na Beirigh 1, 

with the weather a key factor in determining their shoreline availability in this exposed location. 

This may explain the preponderance of smaller, more conical specimens, indicative of higher shore 

zones as inclement weather would restrict access to the lower shore. This is consistent with the 

comparatively flatter profile of low shore limpets from An Corran and Ulva Cave, and the selective 

procurement of razor clam discussed above (Blake 2011:186; Evans 2015). In contrast to razor clam 
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exploitation, the procurement of limpets appears to be much more generalised and it has been 

suggested that they may have been used as fishing bait (Blake 2011:187, 190; Morley 2015:41-42). 

The possibility of seaweed collection, for use as food or fuel, is also inferred by the presence of 

small numbers of flat periwinkle (Littorina fabalis) and yellow periwinkle (Littorina obtusata; Bell 

1981; Evans 2015:68). These were abundant at Ulva Cave, leading to a suggestion that seaweed 

collection may have been a particularly targeted resource (Russell et al. 1995; Saville & Wickham-

Jones 2012:38), very small shells indicative of seaweed collection were also recovered at Sand, 

Carding Mill Bay, and An Corran (Milner 2009; Pickard & Bonsall 2012:68; Russell et al. 1995). At 

the latter site and at Staosnaig, Colonsay, charred seaweed has been identified (Bishop et al. 2014b; 

Holden & Miller 2012:71; Saville & Wickham-Jones 2012:98). 

The lithic assemblage from Tràigh na Beirigh 1 was presented in Chapter Six, therefore only a brief 

re-cap of the main findings is provided. The lithic assemblage was largely derived from the shell 

midden deposits, however the presence of flint and quartz debris in the underlying ground surface 

suggests the site may have been in use prior to the build-up of the midden. High-quality greasy 

quartz dominates the lithic assemblage at Tràigh na Beirigh 1, which was derived from both a vein 

source and beach pebbles that could be obtained within the immediate vicinity of the site. Evidence 

for quarrying of the vein close to the site is discussed below in Section 8.3.1. Despite the quality of 

the raw material there no evidence for blade production and the only formal tool present in the 

assemblage is a barely-modified borer made from an exhausted core. The quartz assemblage on 

the whole reflects an expedient flake-based industry that was reduced on-site with informal tools 

produced on an ad hoc basis. A very small quantity of worked beach pebble flint was also recovered 

from Tràigh na Beirigh 1. The absence of significant aspects of the chaîne opératoire suggest that 

the primary reduction of flint was conducted elsewhere, and that flakes detached during further 

working of the core were removed from the site. A number of coarse stone manuports were also 

recovered from the site, which may have been used as anvils for the reduction of lithics, or in the 

processing of plant material. 

8.2.2.2. Tràigh na Beirigh 2 

Tràigh na Beirigh 2 also occupies a similar position to Tràigh na Beirigh 1, on the relic cliff-edge 

overlooking the wide embayment of Tràigh na Beirigh (Figure 245 and Figure 246). The faunal 

material from the site has not yet been fully analysed, but it is evident that during the occupation 

of the site, a large number of marine resources were exploited, in addition to terrestrial plants and 

small mammals. The location of the site would have been ideally situated for this. Otoliths from the 

main body of the shell midden (C005) at Tràigh na Beirigh 2 were also studied by Morley (2015:9). 

The results show a very different exploitation strategy to the one proposed for Tràigh na Beirigh 1. 

The fishing activities at this site are represented by more intensive exploitation of larger first year 

saithe during the winter months, with less evidence for second year fish present in the assemblage. 
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The range of fish sizes does, however, extend to smaller fish captured late in the summer and 

throughout autumn. Overall, the high standard deviation for the range of fish size supports an 

extended period of fishing practice at Tràigh na Beirigh 2, with the most intense period of activity 

in mid-winter (Morley 2015). The only midden on Oronsay to clearly display evidence for saithe 

fishing during this part of the year is at Priory Midden, where a high number of exclusively first year 

fish were intensively exploited; however, mid-winter fishing at Caisteal nan Gillean II is also implied 

(Mellars et al. 1980:34-36). The extended fishing season observed at this site and Tràigh na Beirigh 

1, however, is similar to the evidence from Cnoc Coig, Oronsay where both first and second year 

fish were caught from mid-summer into autumn, potentially as late as December (Mellars et al. 

1980:34). 

The sudden drop-off in fish size at the largest end of the scale at Tràigh na Beirigh 2 is not 

representative of a natural population, and is taken to indicate more selective procurement or 

processing strategies (Morley 2015:32-33, 35-36). It was noted that the higher rate of carbonisation 

and fragmentation in the assemblage may be a contributing factor to the fall-off in size, and may 

therefore be taphonomic rather than cultural (Morley 2015:43). It is clear that the Cnip peninsula 

was ideally situated for exploitation of young saithe throughout spring and late summer to mid-

winter, with repeated visits to both these sites indicated throughout these seasons (Table 41). 

Despite this, the preferred season of exploitation between Tràigh na Beirigh 1 and Tràigh na Beirigh 

2 differs, with a greater intensity of exploitation during spring at Tràigh na Beirigh, and during winter 

at Tràigh na Beirigh 2. Given the close geographical location, but temporally separate nature of the 

two sites, Morley suggests this may be down to changing procurement and processing practices 

over time (Morley 2015:38). 

The lithic assemblage from Tràigh na Beirigh 2 can be summarised in a similar manner to that of its 

slightly later, neighbouring site of Tràigh na Beirigh 1. The large very fine-grained (greasy) quartz 

assemblage was largely derived from beach pebbles, although some appears to have been quarried 

from a vein. This material was reduced using platform technology to expediently produce a high 

quantity of flakes that were not subsequently modified, despite the high quality of the raw material. 

Worked flint is found in extremely small quantities at the site. As at Tràigh na Beirigh 1, a small 

quantity of lithic debris was recovered from the old ground surface underlying the middens deposits, 

which suggests activity at the site prior to the build-up of the midden. The main body of the shell 

midden again contained the majority of the lithic assemblage. 

8.2.2.3. Tràigh na Beirigh 9 

The articulated remains of part of a single human individual were recovered from a pit cut into a 

Mesolithic-age shell midden at Tràigh na Beirigh 9. The base of the pit was lined with intentionally-

placed cobbles, and the pit filled with re-deposited midden material (Snape-Kennedy et al. 2014). 
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The recovery of human remains dating from the Mesolithic in Scotland is rare, and a formal burial 

from this period in the region is unique (Saville & Wickham-Jones 2012:73; Wickham-Jones 

2009d:482). The individual has been dated to 4040-3805 cal. BC6, which spans the traditional 

transition period between the Mesolithic and Neolithic. Based on the δ13C (-15.2 ‰) and δ15N (15.5 

‰) stable isotopic values, it is believed that the diet of this individual was c.55% marine, which 

testifies to hunter-fisher-gatherer subsistence (Church pers. comm.; Richards & Hedges 1999; 

Schulting & Richards 2002). This has significant implications for understanding the Mesolithic-

Neolithic transition in the region, and the continuity of Mesolithic hunter-gatherer subsistence 

practices in peripheral environments (Schulting & Richards 2002:147-148). In terms of funerary 

traditions, this burial is markedly different to the isolated find of the single finger bone fragment 

recovered from deposits c.2000 years earlier at Northton, yet both are consistent with Mesolithic 

burial practices across the Atlantic façade. A more in-depth discussion of this, alongside the 

burgeoning evidence for continuity across the Mesolithic-Neolithic transition is presented in the 

following chapter. 

Initially, it was believed the individual may have been buried with a quantity of quartz debitage. 

However, detailed analysis of the lithic assemblages from the surrounding context (C005), and that 

of the underlying Mesolithic-age shell midden (C006), has demonstrated the two are identical 

(Appendix Twelve). Based on this, and the homogeneity of the deposits surrounding the individual 

with those of the midden below7, it is interpreted that any such cut was filled with redeposited 

midden material once the individual had been interred. As at the other shell midden sites along the 

Cnip peninsula, very-fine grained quartz dominates the assemblage. In most other respects, the 

assemblage is slightly different from the other shell midden sites. The full chaîne opératoire relating 

to the reduction of quartz is evident, including the presence of a number of tools. Furthermore, 

there is significant evident for the movement of raw materials at this site. The sandstone manuport 

is likely to have been imported to the site from east Lewis and the presence of carbonate (dolomite 

or limestone) suggests contact with the west coast of Scotland where this material outcrops. This 

will be discussed in more detail in Chapter Nine, in connection with the movement of Mesolithic 

people around the Hebridean islands. 

Post-excavation analysis of the environmental remains from Tràigh na Beirigh 9 has not yet been 

carried out; however, during preliminary sorting of the material small bones of mammals and fish 

– including otoliths, crustacean fragments, marine molluscs, and charred hazel nutshell were all 

noted. This environmental assemblage is closely comparable with that of the other Mesolithic shell 

                                                           
6 This date has not been fully corrected for the Marine Reservoir Effect as the ∆R for this region is unknown. 
7 There was no discernible ‘grave cut’ beyond the layer of cobbles below the individual. It should also be 
noted that the human remains and cobble layer were slightly off-set, suggesting a degree of slumping has 
occurred. 
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midden sites along the Cnip headland (Snape-Kennedy et al. 2014). In the absence of machair dunes, 

the cliff-top position of the site would have enabled observation of marine resources across the bay 

at Tràigh na Beirigh, in addition to capitalising on terrestrial resources (Figure 246). Based on this, 

a tentative indication of when the site may have been occupied is presented in Table 41. 

 
Figure 246. View across the bay at Tràigh na Beirigh, with excavation of Tràigh na Beirigh 9 in progress (arrowed). The 

other sites lie just beyond the machair dune. Photo courtesy of Mike Church 

8.2.2.4. Pabaigh Mòr South 

Otolith analysis was also conducted on the small sample from C002 at Pabaigh Mòr South (Morley 

2015:9). As at Tràigh na Beirigh 1, the results from this site showed that only first year fish were 

represented, and that there was a similarly intensive exploitation of very small saithe during the 

spring. The range of sizes of first year fish represents the natural population, and is indicative of 

similarly unselective fishing practices close to the shore that were suggested for Tràigh na Beirigh 

1 above (Morley 2015:35). However, the size of these fish were smaller than at Tràigh na Beirigh 1, 

suggesting they were caught earlier in the year, soon after their arrival inshore between April and 

May. In contrast to both Tràigh na Beirigh 1 and Tràigh na Beirigh 2, the low standard deviation of 

the otolith measurements suggests that the fishing season at Pabaigh Mòr South was very short, 

possibly only relating to brief seasonal visits (Morley 2015:31). Similarly short episodes of fishing 

activity were observed at Cnoc Sligeach, albeit during mid-summer, between June-July (Mellars et 

al. 1980:34). The higher rate of carbonisation at this site attests to different processing strategies 

than at Tràigh na Beirigh 1. Given the very small size of the fish, it is likely they were simply cooked 

whole (Morley 2015:36). 
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Further analysis of the faunal assemblage has yet to be conducted; however, preliminary sorting of 

the environmental remains indicates a very similar midden composition to those on the Cnip 

headland – predominantly limpets, with razor clams and periwinkle/dogwhelk also present. 

Fragments of crustacean, seal, small mammal and fish bones, and charred hazel nutshell were also 

recovered (Rowley-Conwy pers. comm.; Church & Rowley-Conwy 2014). The fish remains are 

therefore the most reliable seasonal indicator for the occupation of the site, yet seasonal visits 

outside the winter months are hinted at in the wider environmental assemblage (Table 41). The site 

occupies a very similar position to those at on the Cnip headland. It is situated on a rocky platform, 

close to a sheltered embayment. This would have offered an ideal landing area for boats, and thus 

access to marine resources, as well as terrestrially-based species. 

 

Figure 247. Pabaigh Mòr South (arrowed) is situated atop a rocky platform, next to a sheltered bay. Photo courtesy of 
Peter Rowley-Conwy 

The lithic assemblage from the site is extremely small, owing to the small sample taken for analysis. 

As with the environmental assemblage, the lithic assemblage also appears to be closely comparable 

with those on the Cnip headland. The single, exhausted flint core indicates that this pebble-derived 

raw material was reduced intensively, as in the Tràigh na Beirigh assemblages. Similarly, the quartz 

assemblage is evidence of the exploitation of both primary vein and secondary beach pebble 

sources that were expediently reduced using platform technology to produce a flake-based industry. 

This section has described the results to-date of the environmental evidence that has been 

recovered from the Western Isles Mesolithic sites. The importance of fishing at all of these sites is 

overwhelming and the contribution of terrestrial resources to the subsistence base is conspicuous 
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in its scarcity. The following section begins to draw this evidence together with a detailed 

interpretation of the lithic assemblages, which forms a base for the exploration of a number of 

notable themes across the Mesolithic of the Atlantic façade, which will be discussed in Chapter Nine. 

8.3. Interpreting the Western Isles Lithic Evidence within the Context of the 

Late Mesolithic of the Atlantic Seaboard 

There are several themes that have emerged from the analysis of the Mesolithic lithic assemblages 

in the Western Isles that contribute to answering the first research question of this thesis: what is 

the nature of the lithic technology of the Mesolithic in the context of the Western Isles of Scotland? 

Each section – raw material acquisition, reduction strategy, technology, and tool use – will be 

discussed in turn and contextualised by drawing on evidence from Scotland, Norway, and Ireland. 

Throughout this section the evidence for subsistence activities at the sites described above will be 

integrated with the lithic technology evidence, and used to inform interpretations of the decisions 

that influenced the chaîne opératoire. 

8.3.1. Raw Material Acquisition 

The first trend is that overall, the Later Mesolithic assemblages in the Western Isles are dominated 

by locally available raw materials. This was supplemented by less readily available raw materials 

which were imported from elsewhere. The sources and practical methods of procurement for flint 

and quartz are discussed in the following section. The import of baked mudstone to Harris and 

limestone to Lewis will be discussed in Chapter Nine, alongside greater elaboration on the 

implications of raw material sourcing for mobility and social connections. 

8.3.1.1. Quartz – Varieties, Sources and Procurement 

Quartz is a ubiquitous raw material throughout Scotland, and is the most common component of 

the Western Isles Mesolithic assemblages. There are many different varieties of quartz, to recap, 

these are: rock crystal, milky quartz, ‘greasy’ (very fine grained) quartz, fine grained quartz, coarse 

grained quartz and quartzite, which were described in detail in Chapter Four (Ballin 2008). The 

boundaries between each type are not distinct, and varieties may grade between one another. Even 

within a single quartz vein or outcrop, the type of quartz can vary significantly (Jones forthcoming 

in Ballin 2008). Furthermore, the knapping quality between these varieties also varies. This provides 

a significant point of discussion regarding the similarities and differences between the Late 

Mesolithic sites on Harris, and the Terminal Mesolithic sites on Lewis. 
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Marine mammals     

Seabirds     

Terrestrial plants     

Terrestrial mammals     

  Spring Summer Autumn Winter 
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Northton 

                        

                       

                        

                      

                       

                        

Tràigh an Teampuill 

                        

                        

                      

                        

Tràigh na Beirigh 2 

                        

                       

                      

Tràigh na Beirigh 1 

                        

                       

                      

                        

Pabaigh Mòr South 

                        

                       

                        

                        

Table 41. Seasonality indicators for Mesolithic occupation of the Western Isles sites, derived from the 

environmental remains analysed thus far. The key below refers to the potential seasons of availability of resources 

at the sites (likely), and if definitive seasonal evidence for these resources have been recovered from the 

archaeological record (definite). 
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Milky quartz is the most commonly occurring quartz type in Scottish quartz-bearing rock formations 

and has been exploited throughout Scottish prehistory (Ballin 2008:47). It is massive (not grainy), 

usually translucent and white in colour with a vitreous lustre. Depending upon the quality, milky 

quartz grades between appearing almost rock crystal-like to highly irregular, which affects the 

flaking properties of the material (Ballin 2008:44). Generally, milky quartz does not fracture 

conchoidally, as flint does, but through “intricate cracking…which…tends to produce cubic 

fragments in an uncontrollable fashion”, and consequently a large amount of debitage or debris8. 

As evident in the preceding results chapters, despite the high fragmentation rate of this raw 

material, this does not preclude the majority of the assemblage from being identified as  

indeterminate pieces, also known as the ‘gravel effect’ (Callahan 1987). Milky quartz is the most 

frequently occurring variety of quartz at both sites on the Toe Head Peninsula of Harris. At Northton 

the quartz assemblage is made up of 65% milky quartz, with 54% of the quartz assemblage at Tràigh 

an Teampuill made from milky quartz. In both instances this is often mixed with other quartz 

varieties. The remainder of the quartz assemblages at these sites are predominantly of mixed 

saccharoidal (grainy) quartz varieties, with small contributions of coarse-grained quartz/quartzite 

and rock crystal. 

Quartz that has been directly obtained from a vein is characterised by the presence of red, brown 

and yellow to orange coloured surfaces. This is interpreted as mineral deposits – possibly iron, 

which appear between the contact points of different quartz layers. Often the exposed outer 

surface of a quartz vein displays a ‘frosted’ appearance due to weathering. Other indications of a 

vein source is the inter-mixing of the parent rock type – such as gneiss or pegmatite – with the outer 

face of the quartz (Ballin 2004:8-9; 2008:56-57). The exploitation of this type of source is evident in 

both the quartz assemblages on the Toe Head Peninsula as indicated by the presence of weathered, 

mixed-material or frosted ‘cortex’. The majority of the 2001 quartz assemblage from Northton was 

identified as either vein quartz or “derived from the granite pegmatite near to the site” (Nelis 

2006b). Similarly, 40% of the quartz assemblage excavated from Northton in 2010 displayed 

evidence for the exploitation of a vein source. At Tràigh an Teampuill, just over a quarter of the 

quartz was derived from a vein source. Furthermore, exploitation of the quartz-granite-pegmatite 

vein that is situated close to the sites is evidenced by the high variation in the quality and variety of 

quartzes at both Northton and Tràigh an Teampuill. 

                                                           
8 According to Inizan et al. (1999), ‘débitage’ is “used to denote the intentional knapping of blocks of raw 
material, in order to obtain products that will either be subsequently shaped or retouched, or directly used 
without further modification. Refers also to the tangible results (débitage products) of this action”. This 
contrasts to the definition of ‘debris’ as “shapeless fragments whose mode of fracture cannot be identified, 
and which cannot be assigned to any category of objects”. 
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The shear zone where this granite-pegmatite protrudes is clearly visible from both sites, emerging 

from the south-east face of a nearby hill, Ceapabhal, and is highlighted by the sun on a clear day 

(Phillips 2006a; Figure 248, Figure 249 and Figure 250). Exploration of this shear zone during the 

field season in 2010 provided highly varied samples of pegmatite and quartzites, although no 

evidence to indicate quarrying of the granite-pegmatite vein was observed. 

 

Figure 248. Outcrops of quartz running across the flank of Ceapabhal are clearly visible on a bright day. Photo 
courtesy of Peter Rowley-Conwy 

 
Figure 249. Simplified map of the bedrock geology of the Toe Head peninsula, highlighting the close proximity of the 
Mesolithic sites to the exposed vein. Ordnance Survey data © Crown Copyright/database right 2014. An Ordnance 

Survey/EDINA supplied service 
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A greater proportion of the quartz assemblages at both Northton and Tràigh an Teampuill is 

characterised by a pebble quartz (60% and 73% respectively). Pebble quartz is simply vein quartz 

that has become “detached from its original matrix and subsequently abraded and rounded by a 

variety of water media” (Ballin 2008:46); in this instance the sea. The ‘cortex’ of pebble quartz is 

therefore smooth and rounded, which is easily identifiable on flakes and cores where cortex is 

retained. Given the prolific nature of quartz within the bedrock geology of Scotland and the 

Western Isles, it is probable that the supply of pebble quartz is continuously replenished by the tide. 

A brief survey of the pebbled beach to the west of the site at Northton recovered numerous small 

quartz pebbles, and is likely to have been the source of the material used at these sites (Figure 250). 

On the Toe Head peninsula it is clear that overall, quartz was immediately abundant. The Mesolithic 

inhabitants could easily exploit both the pegmatite vein on Ceapabhal, above the sites, or retrieve 

pebbles from the beach below. The ease of procurement from these sources is reflected in the 

treatment of the raw material, which is discussed in detail in Section 8.3.2. 

 

Figure 250. Pebbles recovered from the beach close to Northton and a piece of vein quartz from the exposure on 
Ceapabhal (centre back) 

The Tràigh na Beirigh sites on Lewis are comprised of a different quartz variety. ‘Greasy’, or very 

fine grained quartz, is so called because of the slightly frosted lustre created by its microscopic 

granular structure (Ballin 2008). Greasy quartz is suggested to have better flaking properties than 

many other quartz types, almost akin to coarse varieties of flint or chert (Ballin 2008:44, 49, 56). 
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The high quality of the quartz present around the Bhaltos peninsula and Tràigh na Beirigh was noted 

by Lacaille during a survey of the region in 1935, commenting that: 

“The vein-quartz of Valtos, while inferior to flint for the manufacture of implements, 

is not of the poor quality so often met with in localities where other varieties 

predominate. At Valtos the quartz is virtually granular and its cleavage approaches 

that of some gritty cherts, fine quartzite, or schistose grit. The implements show that 

percussion does not always produce these features noticeable in flint intentionally 

struck. Nevertheless, a large proportion of vein-quartz flakes of the West bear, if not 

a perfect part of a cone, at least a prominence not unlike the soft swelling seen on 

flint flakes detached from the cores by the use of a percussion instrument such as a 

wooden bar.” (Lacaille 1937:282). 

The regular flaking properties of greasy quartz have also been recognised during the analysis of 

later prehistoric quartz assemblages on Lewis, such as Calanais and Dalmore. At these sites different 

quartz varieties dominate, but greasy quartz appears to have been used specifically to produce 

artefacts such as arrowheads (Ballin 2008). In the absence of any known site in the Western Isles 

where this variety of quartz dominates, and its presence in later prehistoric assemblages primarily 

as finished tools, Ballin has suggested that “this resource may have been saved for the production 

of more prestigious objects, such as arrowheads and other sophisticated forms”. This is attributed 

to the very different visual and flaking properties between this variety and milky quartz or rock 

crystal. As such, it has been proposed that prehistoric people may have perceived these as separate 

raw materials in their own right, favouring greasy quartz for the production of specific tools (Ballin 

2008:2, 48, 56; Saville & Ballin 2000:47). During Ballin’s (2008) study of quartz use in Scottish 

prehistory the only known site where greasy quartz dominates the assemblage is the multi-period 

site of Shieldaig, on the mainland of Scotland at Wester Ross. Ballin therefore proposed that greasy 

quartz may have been sourced from Shieldaig, and imported to the Western Isles for use in 

arrowhead production at Dalmore and Calanais (2008:66, 89). 

Focussing on the assemblages from the around the Cnip headland (Table 42), it is clear that greasy 

quartz dominates at all the sites, which is unprecedented in the Western Isles. This begins to 

challenge Ballin’s suggestion that this quartz variety may have been imported, therefore it is 

important to address this. If true, this would have significant implications for the understanding of 

raw material procurement. To assess whether the greasy quartz at the Tràigh na Beirigh 

assemblages was imported, the whole chaîne opératoire is considered. The extraction, reduction 

and movement of finished tools has been extensively studied in the Mesolithic and Neolithic of 

Norway. As such, the Tràigh na Beirigh sites should theoretically fit within a spectrum of 

characteristic ‘site types’ relating to the reduction and movement of this raw material. These ‘site 
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types’ are based on the distinct stages of reduction associated with the proximity of the site to the 

source, which have been modelled on the distribution of high quality raw materials with very 

specific sources such as greenstone, diabase, rhyolite, and slate. Where raw materials were 

transported or exchanged over long distances it would be expected that products of later 

operational stages would be present at the destination – blanks, cores or finished artefacts and 

associated debris from later modification or use. Raw nodules or unprepared blocks, debitage and 

debris relating to basic preparation and the primary stages of working – decorticating and ‘roughing 

out’ – would be greater at the source of the material. This would be in order to reduce the dead 

weight of redundant material before transport (Ballin 2008:64; Bergsvik 2006:156-164; Olsen & 

Alsaker 1984:81-83). 

Site 
Total Assemblage Quartz assemblage 

% Quartz % Other  % Greasy  % Milky % Other 

Tràigh na Beirigh 1 94% 6% 60% 34% 6% 

Tràigh na Beirigh 2 97% 3% 78% 18% 4% 

Tràigh na Beirigh 3 & 4 100% 0% 86% 14% 0% 

Tràigh na Beirigh 9 96% 4% 48% 32% 20% 

Table 42. Quartz composition from the Tràigh na Beirigh assemblages 

Furthermore, as evident from Table 43, the full range of the chaîne opératoire is present in the 

greasy quartz assemblages at all the Tràigh na Beirigh sites. This includes unworked or tested pieces, 

a vast quantity of debitage and debris from the reduction and rejuvenation of cores, and only a 

small number of finished artefacts. This is characteristic of both procurement and reduction of the 

raw material on-site by the occupants (Bergsvik 2006:156). If Shieldaig were the source of greasy 

quartz, it would suggest the direct procurement of this raw material by the inhabitants of Cnip, a 

distance of over 100km as the crow flies across The Minch, with raw blocks transported back to 

Lewis. 

Directly procuring, or acquiring through trade/barter a raw material over such a distance would 

involve a substantial amount of time and effort. In instances where non-local, high quality raw 

materials are required for the production of specific tools, this time/effort is offset by “the 

organization of technology” (Andrefsky 1994; Torrence 1989b:3). The chaîne opératoire would 

therefore be expected to show conservative reduction, or specific use, of the raw material in order 

to compensate for the expense in acquiring it (Jeske 1989:36; Morrow & Jeffries 1989:30). 

Conservative reduction would be indicated by very small exhausted cores, worked using bipolar 

technology, which would maximise the quantity of flakes removed from the core, in addition to the 

preparatory reduction at the source to reduce transport costs discussed above (Barham 1987:49; 

Binford 1980:10, 16; Manninen & Knutsson 2014:95). These characteristics are not displayed in the 

greasy quartz assemblages at any of the sites. For example, the cores frequently have a high number 
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of flake removals, but were often discarded long before they became exhausted. This uneconomical 

treatment of quartz is likely to reflect an abundance of material to hand, and is indicative of an 

embedded procurement strategy. Several quartz beach pebbles could have been picked up by a 

Mesolithic fisher returning to camp from their day collecting limpets and checking the fish trap, for 

example. 

   

Tràigh na 

Beirigh 1 

Tràigh na 

Beirigh 2 

Tràigh na 

Beirigh 3 & 4 

Tràigh na 

Beirigh 9 

Core 29 41 1 4 

Chunk 9 4 1 23 

Small fraction chunk 11 6 1 23 

Flakes   

Primary 13 12 1 9 

Secondary 44 35 4 28 

Tertiary 45 64 3 53 

Core rejuvenation flake 1 2  1 

Flake Core 7 1  3 

Small fraction flake 139 160 9 159 

Secondary pieces 1  2 5 

Manuport 2 6  1 

Table 43. Quartz artefact composition of the Tràigh na Beirigh assemblages 

It should be noted that with boat technology, the cost:benefit compromise in terms of embedded 

procurement is significantly reduced. Ames (2002) suggests that ‘field processing’, i.e. kill-site 

butchering of animals, or testing of raw materials at the source, is a primary concern of terrestrial 

hunter-gatherers. The load-bearing capacity of groups who largely move on foot is very low, as such 

transport costs of resources must be offset against their economic return. With aquatic hunter-

gatherers, however, transport cost is negligible – “what is 15kg in a boat that can easily carry 

2000kg?” (Ames 2002:35-37; Bjerck 2016). Furthermore, whilst a distance of 100km would take 

between 4-5 days to travel on foot, by boat in favourable conditions this could be travelled in two 

(Ames 2002). Boats significantly extend the geographical range of foraging groups, thus embedded 

procurement is feasible on a much greater scale (Rowley-Conwy & Piper in press). In light of this, 

the chaîne opératoire alone is insufficient evidence to determine whether Shieldaig is the only 

source of greasy quartz as Ballin proposes. 

The cortex present on the greasy quartz at these sites indicates that the material was indeed 

primarily extracted from a vein source (discussed in Chapter Five); however, evidence for the use 

of locally available beach cobbles at all of the Tràigh na Beirigh sites is also in abundance. A quartz 

vein at the Gridig promontory, on which Tràigh na Beirigh 1 is situated, exhibits signs of being 

exploited, and could have been easily accessed from any of the sites. There are three main types of 
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evidence for quarrying that may be visible on an exploited quartz vein. The first is ‘stepping’, caused 

by the removal of blocks or plates along the natural planes of weakness within the vein. The second 

are ‘circular impact scars’ which are incipient Hertzian cones either in the centre or near the edges 

of the block surface, created by attempts to break through a layer. The third are ‘denticulated edges’ 

created by the removal of a block or a plate, the success of these produces denticulated flake 

removal scars along a protruding edge. On the whole this strategy aims to remove blocks or plates 

for further reduction elsewhere. These diagnostic features are evident at the quartz quarry at Cnoc 

Dubh, near the town of Gearraidh na h-Aibhne, Lewis (Ballin 2004:8-11); this quarry lies 15km to 

the south-east of the Mesolithic sites on the Bhaltos peninsula, as the crow flies. 

There are circular impact scars present on the Gridig vein which attests to quarrying of this raw 

material (Figure 251 and Figure 252). Further evidence for quarrying of a quartz vein is found on 

the tested quartz piece from Pabaigh Mòr South. This piece has clearly been detached as a ‘layer’, 

denoted by a set thickness defined by the plane of weakness within the vein, and has 

characteristically flat sides and a weathered appearance of the outer surfaces, as observed on the 

quarried vein at Cnoc Dubh (Ballin 2004). Some of the flake scars may have been created during the 

process of detaching the piece from the source, certainly the single flake scar perpendicular to the 

others on the lateral edge is evidence for this, creating the characteristic denticulated appearance. 

The flake scars present are very small and shallow, with large areas of the piece unworked (Figure 

253). It may have been discarded following a few test blows to ascertain its flaking properties, or 

lost before it could be utilised. 

Overall, it is concluded that the greasy quartz present in the Tràigh na Beirigh assemblages is 

derived from a very locally available source, rather than imported from the mainland. This is based 

on several observations, discussed above, which include: the dominance of greasy quartz in all of 

the Mesolithic assemblages on Lewis; the presence of an exploited greasy quartz vein close to the 

sites; the large quantity of primary manufacturing debitage and associated tools at these sites; the 

profligate treatment of this raw material, which does not fit with conservative reduction practices 

that would be expected if the material was hard to come by or expensive to obtain. This is 

irrespective of reduced transport costs by boat-using communities. 
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Figure 251. Circular impact scars created through the quarrying of the quartz vein, Gridig, Cnip. Photo courtesy of 
Peter Rowley-Conwy 

 

Figure 252. Close-up of impact scars evident in Figure 251. Photo courtesy of Peter Rowley-Conwy 
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Figure 253. Tested quartz plate (L13) from Pabaigh Mòr South with removals arrowed 

It is notable that the exploitation of beach pebble sources appears to change during the Mesolithic 

occupation of the Western Isles. On Harris, beach pebbles were used more frequently than the 

nearby vein. This may have been due to the low quality of the milky quartz from the vein, which 

included large quantities of mica and pegmatite. At the later sites on Lewis, the proportion of 

pebble quartz is highest at Tràigh na Beirigh 2, the oldest site on the Cnip peninsula. This is slightly 

reduced at Tràigh na Beirigh 1, and by the occupation at the youngest site of Tràigh na Beirigh 9 

extraction of vein quartz has greatly increased (Table 44). The difference between exploitation of 

vein and pebble sources at these sites may be due to availability, or ease of access to the most 

appropriate material. It is also possible that over time, the supply of quartz pebbles may have ‘dried 

up’ on Lewis, as suggested for the drop-off in flint use on Harris above. This clearly indicates the 

choices made by the Mesolithic inhabitants for raw material that is both locally available and of 

reasonable quality, due to high use-rate of this raw material. Such requirements suggests direct or 

embedded procurement would have been the most suitable method of obtaining quartz, and is 

evident in later prehistoric quartz-using communities on Lewis (Ballin 2008:65). 
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Site 
Quartz Source 

Pebble Vein 

Tràigh na Beirigh 1 57% 43% 

Tràigh na Beirigh 2 73% 27% 

Tràigh na Beirigh 9 35% 65% 

Table 44. Proportion of vein quartz and pebble quartz at the Tràigh na Beirigh sites, where likely provenance could be 
determined from the cortex of cores and flakes 

8.3.1.2. Flint – Sources and Procurement 

There are very few known sources of flint in the Western Isles. The smooth, water-rounded cortex 

present on the flint debitage recovered from both sites on Harris as well as at Pabaigh Mòr South, 

Tràigh na Beirigh 1, and Tràigh na Beirigh 2 on Lewis, indicates this material was derived from a 

secondary, water-borne source. The small size of the debitage present in the assemblages as a 

whole suggests that the supply of flint was limited and likely to have been obtained from 

“diminutive beach pebble[s]”, as described by Nelis for the Northton assemblage (2006b:23-25). 

The nearest derived deposits bearing flint in the Western Isles are situated on South Uist, and 

further away on Barra; however, these are described as a single “boulder of chalk flint recorded in 

drift”, and “rare but large” chalk flint boulders from drift deposits in the north-east of the island, 

which were recorded in 1925 (Wickham-Jones & Collins 1978:11-12; Figure 254). The lack of 

systematic survey for flint sources in Scotland, beyond the investigations conducted on Islay for the 

Southern Hebrides Mesolithic Project, hampers our understanding of the movement of this raw 

material (Marshall 2000b; 2000c). From this, and the long-outdated gazetteer by Wickham-Jones 

and Collins (1978), the known distribution of flint is predominantly along the exposed, western 

facing coasts of islands around the Inner Hebrides, where it has been washed ashore from eroding 

sub-marine outcrops and commonly recovered as rolled beach pebbles (Benn & Dawson 1987; 

Dawson & Dawson 2000; Marshall 2000b; 2000c; Ritchie 1981; Wickham-Jones 1986). 

Table 45 summarises the proportion of flint found in each of the largest assemblages. It is notable 

that flint contributes to a greater proportion of the assemblages on Harris than those on Lewis. In 

Lewis, despite the local abundance of much higher quality quartz than on Harris, flint is clearly still 

a valued raw material as evidenced by the exhaustively worked cores. 

Site 
Total Assemblage 

% Flint % Quartz % Other 

Northton 17% 71% 12% 

Tràigh an Teampuill 44% 49% 7% 

Tràigh na Beirigh 1 3.5% 95% 1.5% 

Tràigh na Beirigh 2 2.7% 97% 0.3% 

Tràigh na Beirigh 9 0.3% 97% 2.7% 

Table 45. Main raw material composition of the debitage from the largest sites from Harris and Lewis, excludes 
manuports or coarse stone tools. The Northton assemblage comprises raw material from all excavations. 
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There are a number of possible reasons that may explain the disparity in the quantity of flint 

between the Western Isles assemblages: 

1. Time 

Initially, this factor appeared to be the most relevant, especially when considering the change in 

raw material use during the Later Mesolithic. At Northton flint dominates in the earliest (Phase 4) 

deposits; however, the proportion of flint diminishes significantly in the later (Phase 3) deposits at 

the site when baked mudstone is present in the assemblage and quartz is more widely exploited. 

Furthermore, at Tràigh na Beirigh 9, the youngest site on Lewis (c.2000 years younger than the 

oldest occupation at Northton), flint is represented by only a single flake. If the flint could only be 

sourced from derived deposits, rather than drift, then without a continued replenishment at the 

source areas this raw material would quickly become over-exploited. The lack of flint in younger 

sites may therefore be linked to the effects of over-exploitation, or geographic availability, which 

diminished the supply of flint over time, as recorded for the same period in Southern England (Pitts 

& Jacobi 1979). 

This interpretation is not straightforward, however. Tràigh an Teampuill is c.400 years younger in 

date than Northton, yet the flint and quartz are almost equally represented. Furthermore, the 

proportion of beach pebble flint at Tràigh an Teampuill is higher than the Phase 3 deposits at 

Northton. Although it is difficult to draw definitive conclusions about the nature of the lithic 

assemblage from Tràigh an Teampuill due to its small size, there are two plausible explanations. 

The first is that the higher quantity of flint at the younger site may have been the result of an 

increase in supply. The Storegga tsunami occurred c. 6000 cal. BC, between the dates of occupation 

at Northton and Tràigh an Teampuill (Smith et al. 2004). Flood deposits potentially relating to the 

Storegga tsunami have been recorded on the eastern side of the Toe Head peninsula (Jordan et al. 

2010). As such, sediment disturbed by fluctuating water levels as a result of the tsunami, or a major 

storm event, may have contained erratic nodules of flint that replenished raw material supplies in 

the area. This frequently occurs on flint bearing beaches on Islay (Marshall 2000b; 2000c). It is also 

notable that there is little baked mudstone present at the site – the increase in flint supplies may 

therefore have precluded the necessity for this raw material to be imported in the quantities 

required at Northton. Alternatively, the flint, baked mudstone, and antler pressure flaker may have 

been imported by Mesolithic people travelling to Tràigh an Teampuill from the Inner Hebrides, as 

part of their mobile existence. 
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Figure 254. Known distribution of flint sources in 
western Scotland and the Hebrides, in relation 
to the Western Isles Mesolithic sites (starred). 
Ordnance Survey data © Crown Copyright/ 
database right 2014. An Ordnance 
Survey/EDINA supplied service. 

 

2. Proximity to source 

Another likely explanation is the proximity of these sites to the source of the raw material. The 

nearest known drift flint sources to Harris and Lewis are located on Skye, which lies across the 

Minch. The derived flint deposits from South Uist are slightly further afield (Figure 254). 

Drop-off patterns, whereby the presence of a raw material diminishes in relation to the distance 

from the source, have been extensively studied for a variety of raw materials during the Mesolithic 

in Norway (Ballin 2009:54; Bergsvik 2006:20). Similarly, this pattern has been observed regarding 

the reduction of flint in the Inner Hebrides. During the Southern Hebrides Mesolithic Project a 

number of Mesolithic sites were excavated in Islay and Colonsay, with surveys of the surrounding 

beaches conducted to assess raw material procurement strategies (Marshall 2000b; 2000c). The 

site at Coulererach is situated less than a kilometre from the west coast of the Rhinns of Islay, and 

less than two kilometres from two of the surveyed beaches that yielded a large range of flint 

pebbles, suitable for replicating blade core technology (Marshall 2000b). The assemblage from 

Coulererach was exclusively made from flint, and comprised a high number of unmodified and 
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tested flint pebbles. Primary flaking debitage dominated the assemblage – indicative of the initial 

stages of the knapping process. Cores were large, frequently reduced using platform technology 

and, although often discarded once exhausted, exhibited less intensive reduction in terms of 

working the final platform area. Overall, this assemblage was interpreted as indicative of flint 

procurement activities that included testing of raw material. The wasteful reduction process, and 

frequent discard of cores, reflects the high abundance of large flint pebbles given the site’s close 

proximity to the beaches (Finlay et al. 2000; Mithen & Finlay 2000:220-227; Mithen & Finlayson 

2000b). This contrasts with the assemblage recovered from Gleann Mor. This site is further inland, 

in the upland region of the Rhinns although still only an hour’s walk from the flint-bearing beaches 

of the west coast (Mithen 2000d:607). The assemblage is significantly different from that at 

Coulererach. The unworked flint pebbles recovered were very small and there was a greater use of 

quartz at the site. The core reduction demonstrated use of both bipolar and platform techniques, 

with the majority of the sample analysed indicating that between 70-100% of the final platform 

surface had been worked. This indicates substantial and intensive core reduction associated with 

the more distant location of the site to the source of flint (Finlay et al. 2000:567-568; Mithen 

2000f:607-608; Mithen & Finlayson 2000a:194-198). Mithen notes these cost-benefit decisions are 

also present in the Mesolithic assemblages on Jura, whereby the quantity of flint in each 

assemblage diminishes toward the north-east of the island, away from the flint-bearing beaches of 

Islay (Mithen 2000f:608). 

In the Western Isles this drop-off pattern can also be observed. The sites on Harris are much nearer 

to the flint sources on South Uist or Skye than the sites on Lewis. All other things being equal, the 

higher proportion of flint on Harris is a result of closer proximity to the source. It follows that the 

lack of flint at the sites on Lewis is due to their greater distance from the source. This can be 

substantiated further by comparing the composition of flint debitage at the sites, although 

reduction strategies are discussed in greater detail in the following section. Whilst Northton and 

Tràigh an Teampuill do not display the same profligate reduction of flint as at Coulererach, there is 

clear evidence for primary working of the material. Moreover, flint comprises a low, but not 

insubstantial proportion of the raw material present. In contrast, the sites on Lewis compare more 

closely with Gleann Mor – flint bears an almost negligible presence in relation to quartz, and 

primary reduction of this raw material is all but absent. 

3. Group mobility 

The third factor, group mobility, is intrinsically linked with the distance to the source and has 

previously been discussed in Piper (2011).  It was concluded that if flint was either embedded within 

seasonal visits, or directly procured, then both sources lie beyond the ‘regional’ catchment zone of 

50km that was anticipated to have been covered within a groups’ annual movement. As such, 
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procurement of this resource via direct access, or embedded within other activities, would have 

significant implications for the degree of mobility around this region, for example the annual 

territory of these people was far greater than anticipated, allowing material from much further way 

to be obtained. An alternative suggestion is that flint was indirectly procured – traded, exchanged 

or bartered. If so, the drop-off may relate to connections between distant trading groups and the 

effects of maintaining these connections. By the implication of cost-benefit, material from further 

away would be more ‘expensive’ in terms of the effort expended in the maintenance of remote 

contacts (Whallon 2006). In both instances, economical treatment of the raw material would be 

expected (Manninen & Knutsson 2014; Orton 2008:1093). The networks existing between distant 

groups may also be subject to change over time, thus affecting exotic raw material supply (e.g. 

Costa & Sternke 2009; Whallon 2006). These interpretations should be treated with caution 

however, as they are based upon models of terrestrial hunger-gatherers. Ethnographic and 

experimental evidence for the use of boats in transporting both people and material goods has 

indicated that a daily foraging catchment may extend up to 30km – three times that of terrestrial 

hunter-gatherers (Ames 2002; Higgs & Vita-Finzi 1972; Jarman 1972). As an extreme example, 

annual territories for residential groups specifically within the Gulf of Georgia (incorporating 

Vancouver Island, mainland British Colombia, the extreme north of Washington state and the San 

Juan Islands) averaged 420km, whereas groups elsewhere along the Pacific Northwest Coast could 

move as little as 10km or as great as 100km in a year (Ames 2002; Mitchell 1971). It is evident 

therefore, that the annual territorial range of boat-using hunter-gatherers has the potential to be 

far greater than that of terrestrially-based groups. In turn, this increases the opportunity to access 

more distant raw materials via embedded or direct procurement. As evident in Figure 255, 

Northton is over 50km in a straight line from the nearest source. The sites on Lewis are over 100km 

away as the crow flies, thus flint is still expensive to obtain overall. This expense is reflected in the 

reduction of the flint, which is discussed in the following section. 

It is difficult to extricate the three scenarios – time, distance and group mobility – from one another 

given the limited data available, indeed, the three may be intricately interwoven. It is possible 

however, to highlight the strongest influencing factor – distance to source – by briefly assessing a 

more complete dataset. There are a much greater number of Neolithic sites recorded throughout 

the Western Isles. The raw material evidence from Neolithic sites reflects a similar pattern to those 

studied in this thesis. At Allt Chrisal on Barra, the lithic assemblage is almost exclusively comprised 

of flint (Wickham-Jones 1995; Figure 255). The site is also situated extremely close to one of the 

known sources of beach flint at Vatersay. An Doirlinn is located further north, on South Uist and is 

equidistant between the source on Barra, and one known in the north of the island at Skiport. Flint 

also dominates the lithic assemblage, although to a lesser extent than at Allt Chrisal, which most 

likely reflects the greater distance of the site from the source (Pirie forthcoming). Bharpa Carinish, 
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North Uist is a similar distance from the Skiport source as An Doirlinn, but to the north and over 

several water crossings. Whilst flint still dominates the assemblage, it is again of a smaller 

proportion than the site further south (Crone et al. 1993:375). At Geirisclett, situated almost at the 

furthest north-west point North Uist, flint is virtually absent (Dunwell et al. 2003:19). At the later 

Neolithic/Beaker-age phase from Northton, flint is certainly diminished in quantity, an observation 

also made regarding the assemblage at Callanish, Lewis (Ballin 2016b; Nelis 2006a). This follows a 

pattern of ‘down the line’ exchange (Renfrew 1977), whereby an inverse relationship exists 

between the quantity of the raw material and the distance from its source (Olsen & Alsaker 1984). 

Nelis notes that within the Neolithic/Beaker assemblage at Northton the relative expense of 

acquiring raw materials is “reflected in the dimensions of the lithic material. Quartz material tends 

to be larger than other lithic material used, and is usually minimally worked, whereas flint and 

indurated mudstone tends to be small and exhaustively worked” (Nelis 2006b:71-72). This is 

expanded upon in the following section. Importing baked mudstone, which is discussed in the next 

chapter, and extensive reduction of the flint available confirms the suggestion that not only did the 

Neolithic occupants of Northton have “limited access to suitable raw materials” (Nelis 2006b:71-

72). It is clear that this was also true during the Mesolithic. 

The sporadic availability of flint in South Uist may have therefore been enough to supply Neolithic 

communities inhabiting the south, but the quantity was not such that it could be exported north 

(Garrow 2015; Pirie forthcoming). The greater proportion of flint at Northton and Callanish, in 

contrast to Geirisclett, may suggest an as-yet unknown source of flint on Harris and/or Lewis. 

Overall, a lower population density and/or higher mobility during the Mesolithic may have allowed 

a slightly wider range of raw material movement, however the net effect is the same. A more in-

depth exploration of changing raw material use and distribution during the Mesolithic throughout 

Atlantic Europe is presented in the following chapter. 

8.3.2. Reduction Strategies 

The second notable theme to emerge from the Mesolithic assemblages is that when each raw 

material is considered, it is clear that the reduction strategies employed are specific to the nature 

of the raw material being utilised. A combination of both simple or unprepared, migrating platform 

reduction and bipolar technique were used where necessary. Not only does this reflect an 

adaptation to the fracture mechanics of the raw material involved, but is also indicative of the 

logistics in acquiring the material from its source, as briefly discussed in the section above. 

The variations in fracture mechanics of different raw materials, specifically flint and quartz have 

been a source of extensive debate in the study of lithic technology, as discussed in Chapter Four. 

The application of different reduction strategies to specific raw materials is likely to have been 
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necessary to account for the inherent flaking properties of the raw material. Alternatively, similar 

reduction sequences may have been used in order to produce specific tool types, regardless of the 

raw material. This would be expected in the application of blade technology to produce microliths 

for example, and is discussed in the subsequent section. 

 
Figure 255. Proportion of flint within Neolithic assemblages in relation to known flint sources. Ordnance Survey data 

© Crown Copyright/database right 2014. An Ordnance Survey/EDINA supplied service 
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8.3.2.1. Bipolar Reduction 

Bipolar technology is commonly perceived as “the dominant approach” in Mesolithic assemblages 

throughout Norway, northern and middle Sweden, and is most strongly correlated with the use of 

non-flint raw materials (Ballin 1999a; 2008:71; Broadbent 1979; Lindgren 1995). This correlation is 

also observed in non-flint industries of Holocene South Africa (Barham 1987), Northern United 

States (Flenniken 1981; Goodyear 1993), and Australia (Hiscock 1996). Conversely, where flint is 

ubiquitous in primary deposits (i.e. Cretaceous chalk), such as in southern Sweden and south-east 

England, bipolar technology is lacking (Ballin 1999a:21). 

Bipolar reduction is used in a number of ways, and it is clear that this technology is closely linked 

with the flaking properties of raw materials. For example, in Scandinavia where assemblages are 

comprised of coarser raw materials such as quartz, that is both large and locally ubiquitous, the 

bipolar reduction technique has been interpreted as a strategy to control flakeability and proven in 

experiments to prevent unpredictable flake shatter (Callahan et al. 1992; Lindgren 1995:96; 

Manninen & Knutsson 2014:93; Tallavaara et al. 2010; Vergès & Ollé 2011). In contrast, where 

bipolar reduction is applied to flint assemblages in Scandinavia, it is interpreted as evidence for the 

maximisation of a high quality, but scare, resource that is only available in small nodules, and used 

as a “coping mechanism” in response to the limited availability of the resource (Ballin 1999a; 

Manninen & Knutsson 2014:94; Thorsberg 1985). In instances where flint is of high quality, bipolar 

reduction allows the knapper to extend the life of the core further and eke out as much material as 

possible. This is often observed when bipolar reduction has subsequently been applied to an 

exhausted platform core, and/or the piece is too small to reduce further using platform technology, 

as at Kilmore, Scotland (Bonsall et al. 2009:75). 

The bipolar treatment of flint described in Scandinavia fits well with what is observed in the 

Western Isles Mesolithic assemblages. Here, bipolar reduction was largely reserved for reducing 

small, rounded beach pebbles of flint that were not locally abundant. Pebbles cannot be reduced 

using platform technology. Often, their size precludes the removal of cortex to access the interior 

material, and the rounded exterior does not provide a suitable platform to execute a successful 

strike. As such, a bipolar technique is the only method of reduction (Ballin 2008:69; Barham 1987; 

Thorsberg 1985; Vergès & Ollé 2011). 

The use of bipolar technique at Northton is evident not only in the worked lithic assemblage but 

also the coarse stone tool assemblage, where a gneiss anvil was identified in the Phase 3 deposits. 

It had been worked on one side to produce a depression that could be used to support cores during 

the reduction process (Figure 256). In the reduction process, anvils can be used in two different 

ways, either for bipolar reduction, or platform-on-anvil reduction (Ballin 2008:70-72; Callahan 

1987:60; Driscoll 2011). Although the knapper has less control over the removal of flakes using this 
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technique, it maximises the number of flakes that can be produced by a single hammer strike 

(Barham 1987:49). This is reflected in the high number of flake removals recorded on the flint cores 

at Northton, Tràigh an Teampuill and Pabaigh Mòr South. These flint cores are very small in size, 

which further indicates the material was worked to its maximum extent. The shortness of the flint 

flakes in all of the assemblages attests to the minimal size of the original source material. 

 

Figure 256. The stone anvil from Northton 

In terms of raw material acquisition, discussed above, there is evidence at Tràigh an Teampuill to 

suggest that flint may have been imported by the inhabitants of the sites from a distant source. In 

the flint assemblage from this site there is no evidence for primary working of flint. As such, flint 

may have been initially prepared at the source in order to reduce transport costs, then imported as 

flake blanks that could be modified as needed. 

Overall, the use of flint within the Western Isles Mesolithic is minimal. The intensive reduction of 

flint through bipolar technology reflects the small size of the flint pebbles available to the Mesolithic 

inhabitants of the Western Isles, coupled with its limited local availability, or the expense of 

obtaining it from a distance. Bipolar reduction in the flint industry was therefore employed as an 

economising or curating strategy that attests to the ‘costliness’ of its presence at the sites, in the 

absence of any locally known sources. 

As discussed in the section above, the quartz at the Mesolithic sites on Harris was more frequently 

procured from beach pebble sources than the nearby vein. Pebble quartz was often exploited on 

Lewis, but not to the same extent. During the course of analysis some flakes were found to be 
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difficult to categorise, sometimes owing to the presence of two ventral faces and segment shape. 

It was subsequently recognised that these may be “split cobble cores”, whereby bipolar technology 

was applied to initially quarter, or break open, the quartz beach pebbles in order to test the material 

and produce a workable edge (Flenniken 1981:37; Figure 257). The size of some of discarded pebble 

cores are large and could therefore have been subsequently reduced using simple platform 

reduction following the initial breaking of the pebble. The later stages of working the core would 

obscure the initial treatment (Ballin 2008:70-71). A similar operational schema was observed in the 

quartz assemblages at Lealt Bay and Lussa River, Jura, which were also derived from locally available 

beach pebbles. These displayed more extensive core preparation, and the use of bipolar reduction 

on exhausted platform cores, however (Ballin 2001; 2002). 

 

Figure 257. Schematic diagrams showing the varying applications of bipolar reduction - (A) splitting a small pebble, 
(B) splitting a core, (C) spalling fom the core edge inwards. Arrows show the direction of the hammer strike (after 

Callahan 1987:16) 

It should be noted that ‘split cobble cores’ are not technically cores if the terminology of Inizan et 

al (1999) is followed. A core is defined as “a block of raw material from which flakes, blades, or 

bladelets have been struck, in order to produce blanks for tools” (Inizan et al. 1999:137, my 

emphasis). In contrast, a split cobble core is described as being used to open a cobble in order to 

determine the raw material quality, or the “first stage of cobble reduction” (Flenniken 1981:42). If 

suitable, the piece was further reduced, thus making it a true core. If rejected (and subsequently 

discarded) it falls within the first definition of a flake – a piece of material “removed from a core 

during its preparation”, which is also known as a preparation flake, preliminary flake or first flake 

(Inizan et al. 1999:141-124). As such, the presence of split cobble cores at these sites was simply 

quantified as evidence for bipolar reduction, and to provide more certain evidence for the use of 

bipolar technology, which is largely lacking in these assemblages. Strictly, these pieces are flakes 

and were therefore categorised as such. A total of 40 quartz ‘split cobble cores’ were positively 

identified in the Western Isles assemblages, primarily from Northton, Tràigh na Beirigh 1 and Tràigh 

na Beirigh 2. This provides a greater degree of certainty about the use of bipolar technology for 

reducing quartz pebbles, in addition to the very low number of bipolar flakes and cores. Only a 

single quartz core from Tràigh na Beirigh 1 is clearly a true bipolar core, which has subsequently 
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been modified into a borer. One quartz core from Phase 3 at Northton also showed a bi-directional 

flake removal sequence, however this was caused by the removal of separate flakes from opposing 

platforms, rather than bipolar reduction. Only a single quartz flake from the 2010 assemblage 

indicated bipolar reduction. On the whole, despite this further category of data, the evidence for 

bipolar reduction of quartz in the Western Isles remains minimal. 

Overall, it appears that there were factors other than controlling flakeability, which influenced the 

reduction process of quartz at these sites. This further supports the suggestion made by Driscoll 

(discussed in Chapter Four) that the association of bipolar technology with quartz reduction has 

been over-emphasised, and that “it is clear that the use of a bipolar technique was certainly not a 

necessity but came down to traditions of working and choices by the knappers, rather than material 

constraints” (Driscoll 2010:81). In contrast to Norway, there is little evidence for bipolar reduction 

in Ireland (Driscoll et al. 2013:12), or on the Scottish mainland during this period (Finlay et al. 

2002:108). Similarly, in the Western Isles the local ubiquity and quality of the quartz facilitated the 

use of a less economical knapping strategy – simple platform technology – with bipolar reduction 

only applied where necessary. 

8.3.2.2. Simple and Unprepared Platform Reduction 

Despite the traditional association between the fracture mechanics of quartz and bipolar reduction, 

it appears that bipolar technology was not frequently employed in the quartz assemblages from 

any of the Western Isles sites, discussed above. The primary means of working quartz in the 

Western Isles assemblages is freehand, using simple or unprepared migrating platform reduction 

that may have been aided by the use of an anvil (Figure 258). Simple/unprepared platform 

reduction is the most appropriate method of reduction for quarried vein quartz, as it is procured 

from blocks and plates which have flat edges, therefore “these constituted natural cores, with 

ready-made striking and anvil platforms” (Ballin 2008; Powell 1965). There are an abundance of 

exposed quartz veins in the Western Isles and, as discussed in the section above regarding quartz 

procurement, the vein at Tràigh na Beirigh 1 exhibits clear evidence for exploitation. On Lewis the 

availability of high quality ‘greasy’ quartz would certainly have been conducive to reduction using 

platform technology, as noted elsewhere in the Scottish Mesolithic (Ballin 2013:3).  

The treatment of the greasy quartz at these sites is indicative of a raw material that was ubiquitous 

throughout the region. Comparison between the dimensions of quartz, flint, and other raw 

materials shows that the quartz flakes from the Western Isles assemblages are generally larger 

overall. Most significantly, the quartz flakes are thicker and with deeper striking platforms. 

Enlarging the striking platform is a conscious decision made by the knapper and has a direct effect 

on the thickness of the flake (Davis & Shea 1998; Dibble 1997). Increasing flake thickness makes the 

flake less brittle and therefore not as prone to breakage through platform collapse. However, by 
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doing so, this removes a greater proportion of the core’s working edge, and is thus a highly 

uneconomical strategy (Ballin 2008:70; Tallavaara et al. 2010:2447). The majority of the cores in all 

of the Western Isles Mesolithic assemblages exhibited multi-directional, irregular flake removals in 

no clear sequence, which indicates frequent turning of the core – also known as migrating-platform 

cores (White & Ashton 2003:599). The intention behind this knapping strategy is to remove 

medium-sized flakes in “an invasive fashion”, i.e. increasing flake thickness by removing material 

from the body of the core (White & Ashton 2003:599). Again, this reflects an uneconomical strategy, 

which would create thicker quartz flakes. These cores were frequently discarded before they were 

exhausted, as attested by the large size of many of the abandoned cores. 

 

Figure 258. Schematic diagram of freehand platform (A) and platform-on-anvil reduction (B). Arrows show the 
direction of the hammer strike (after Callahan 1987:15) 

The presence of a high quantity of debitage and quartz small fraction flakes at all of the Western 

Isles Mesolithic sites clearly attests to in situ knapping of quartz. It is notable that at Tràigh na 

Beirigh 9 there are a very low number of quartz cores present in comparison with the other the 

sites along the peninsula, which suggests they may have been removed from the site and further 

reduced elsewhere. Likewise, at Tràigh na Beirigh 1 the representation of the different stages of 

core reduction at the site is disproportionate to the number of cores. Despite being situated above 

the vein, the small number of primary flakes suggests that the initial reduction of quartz was 

conducted elsewhere, perhaps in another part of the site that has since been destroyed. It is highly 

likely that tertiary flakes detached during further working of the core were removed from the site 

for use at another location. 

Overall, the profligate use of quartz is most likely to be associated with the ease of procurement. 

The local abundance of this raw material is evident in the un-economical reduction of the cores, 

primarily using platform technology, to expediently obtain irregular flakes. The two different 

knapping strategies that were employed to reduce the two different raw materials reflects three 

inter-related aspects: the flaking characteristics of the raw material based on its source; the 
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impetus to conserve flint which had limited availability and was expensive to obtain; the technology 

and tools that were required for use. This latter point is discussed henceforth. 

8.3.3. Technology and Tool Use 

On the whole, there is a notable absence of formally retouched tools in the Western Isles 

assemblages. The use of bipolar and simple or unprepared platform reduction strategies has 

resulted in irregularly-shaped cores with migrating platforms, described in the section above. This 

demonstrates that there was no intention to produce blades, and thus specialised production of 

microlith technology so closely associated with this, in any raw material at these sites. There are a 

number of potential interlinked explanations for the lack of retouched tools, which will be discussed 

in turn. It is possible to draw inferences regarding the absence of specialised microlith production 

in the Western Isles from the transition between microlithic to macrolithic technology in Ireland. 

The presence of coarse stone tools at the site, and the use of other, organic, raw materials as tools 

is also discussed. 

8.3.3.1. Microliths and Retouched Tools 

Only a very small number of flint microliths were recovered from Northton. These comprised: two 

crescents; a scalene triangle/crescent; a fine point; a double backed blade; an obliquely blunted 

blade; a truncation, and a microburin. Two flint burins were also present, in addition to 

miscellaneous retouched pieces that included a retouched core rejuvenation flake and an 

indeterminate backed piece. Northton is therefore unique within the Western Isles Mesolithic. 

There are no flint tools present at any of the younger sites, and the small number of irregular flint 

flakes does not suggest that blade production for the manufacture of tools such as microliths was 

intended by the knappers. 

There are a very small number of retouched quartz artefacts in the Western Isles Mesolithic 

assemblages. These account for a scraper at Northton; a modified core borer at Tràigh na Beirigh 1; 

a modified core scraper and notched flake at Tràigh na Beirigh 4; another notched flake, a small 

number of burins and an oblique point microlith at Tràigh na Beirigh 9. These pieces are all 

described in Chapters Five and Six. There are a number of possible factors why the number of 

retouched tools – especially microliths – is so low. This section will focus on the purely functional 

aspects, with consideration of social implications in the following chapter. 

8.3.3.1.1. Raw Materials 

First, raw material suitability and procurement strategy are significant factors that influence tool 

manufacture. Andrefsky (1994) identified a highly significant correlation between the availability 

of raw materials, the quality of raw materials, and the influence on tool manufacture. This follows 

the optimisation of stress factors proposed by Torrence (1989b). The primary stress factors that 
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affect hunter-gatherers are time and energy. Tool production is therefore influenced by either 

access to, or availability of suitable raw materials, on the basis that “it is the energy involved in 

obtaining the stone that affects the subsequent production and consumption rather than the 

quantity of raw material itself” (Torrence 1989b:3). For example, in the Rochelle archaeological 

district, Wyoming, sites were situated within an area containing ubiquitous, but poor-quality 

porcellanite. This raw material was utilised for informal tool production, such as flakes and informal 

cores, which dominates the assemblage. Non-local raw material was imported to the site for the 

production of a small number of formal tools, such as scrapers and projectile points (Andrefsky 

1994:28-29). 

The assemblage from Northton falls within this pattern, whereby a locally abundant, but poor 

quality, raw material (milky quartz) is readily available close to the site. The flaking properties of 

milky quartz are generally not conducive to the production of formal tools, and the reduction 

strategy used at these sites implies expedient reduction of a ubiquitous resource (Ballin 2004; 

Driscoll 2011; Saville & Ballin 2000). Only a single scraper was recovered from the large quartz 

assemblage. In contrast, there were a higher number of flint tools identified at the site, despite the 

low overall presence of flint. The tools are therefore made from a higher quality, but non-local raw 

material that was imported to the site. It is probable that pre-prepared baked mudstone was also 

imported for tool manufacture in a similar way, however this cannot be substantiated by the 

present assemblage. This pattern also follows the ‘rules’ of predicting raw material value proposed 

by Morrow and Jeffries (1989). 

The relationship between raw material procurement and tool manufacture observed on Lewis is 

very different from those on Harris. In contrast to the assemblages from Wyoming, Andrefsky (1994) 

noted that at Pinon Canyon, Colorado a large number of good-quality local raw material varieties 

were readily available. As such, there was “no preference [of raw material] for production of either 

formal or informal tools”. This was despite the presence of a small number of very high quality non 

local raw materials (Andrefsky 1994:29). This pattern is consistent with the production of quartz 

tools on Lewis. As established above, the greasy quartz present in the assemblages of the Tràigh na 

Beirigh sites and Pabaigh Mòr South is certainly locally abundant, and of high quality. Therefore, 

this may account for both the small number of formal tools and largely informal, expediently 

produced, flake technology made from the same raw material. The refined flaking properties of 

greasy quartz for both tool manufacture and expedient flakes has been observed at Shieldaig, 

Wester Ross (Ballin 2008:72). 

However, the above scenario does not take into account other risk factors such as the availability 

of food. Woodman (2015), following the risk models of Torrence (1989a), suggests that variability 

in raw material procurement in the Later Mesolithic of Ireland is not only tied to the quality of the 
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material, but to the reliability of the resources that it was used to capture. In areas such as the Bann 

Valley, where resources may have been seasonally available, and only reliable for a short period of 

time, axes were imported from significant distances away. In contrast, food supplies were 

continually available throughout the year in the Strangford region, therefore the risk-level was low. 

Here, locally available and lesser-quality erratic flint was utilised in the form of small blade-like 

flakes and axes are not present (Woodman 2015:258-262). Further adaptations with regard to 

mitigating risk of resource availability in terms of tool use are discussed below. 

The diversification of raw material use is an adaptive strategy which affects the entire chaîne 

opératoire – from procurement and reduction to the artefacts produced (Manninen & Knutsson 

2014:94). A basic, generalised technology is therefore a functional response to a lack of available 

high-quality raw materials, and is posited as a significant factor in the transition from microlithic to 

macrolithic technology in Ireland. As discussed previously, the production of specialist tools such as 

microliths required a high quality material, for instance flint that was primarily sourced from the 

north-east of the island. Without the constraints of such a high-maintenance toolkit, this facilitated 

a greater degree of freedom in the use of more local and diverse ranges of raw materials. Employing 

a more generalised technology was better suited to the flaking characteristics of less fine-grained 

materials (Callahan 1987:58; Costa & Sternke 2009:799; Costa et al. 2005:26). Such changes to the 

technological schema can significantly impact on diagnostic or characteristic “traits”, which may 

ultimately have led to “a loss of culturally acquired skills… [whereby] effects on technology… seem 

similar to those of demographic fluctuations” (Manninen & Knutsson 2014). The culture-historical 

suggestion that the change from microlithic to macrolithic technology in Ireland was due to 

population replacement of the ‘Sandelians’ by the ‘Larnians’ is no longer valid (Mitchell & Ryan 

1997:118-119). The transition is ascribed to insular developments that began taking place as early 

as the first known occupation at Mount Sandel. As such, the use of microliths in Ireland may have 

lasted less than a thousand years (Costa et al. 2005:22; Mitchell 1976; Woodman 1978:203). Raw 

material diversification, and technological simplification to suit the flaking properties of quartz by 

the Mesolithic inhabitants of the Western Isles is in evidence at the earliest site at Northton. Like 

Mount Sandel, this suggests that adaptations were already occurring by the time Northton was 

occupied, and indicates that the inhabitants were already used to utilising this material, which is 

evident in the diverse knapping repertoire, and aware of its abundance. 

Where microliths are present in the Western Isles assemblages (at Northton, and a single oblique 

point from Tràigh na Beirigh 9), they are traditional narrow-blade types that are found in Later 

Mesolithic assemblages on both open-air and shell midden sites around the Inner Hebrides and 

western mainland. The presence of scrapers and non-microlithic, miscellaneous retouched pieces 

also fits within this technological repertoire (Ballin 2001; McCullagh et al. 1989; Mercer 1968; 
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Pollard 2000; Wickham-Jones 2004a; 2009b). Large numbers of flint microliths feature in these 

assemblages however. The flint assemblages present in the Western Isles therefore differ 

significantly from those in the Inner Hebrides. As in the quartz assemblage, there are very few 

blades present, and the manufacturing debris does not indicate that blade production was the 

objective of the Mesolithic inhabitants. The closest comparable assemblage is a pilot study on a 

small sample of the lithic assemblage recovered from Cnoc Coig (Pirie et al. 2006). Beach pebble 

flint dominates, with quartz making up the remainder of the assemblage. There were a number of 

retouched tools recovered (≤10 in each raw material); significantly, however, this did not include 

microliths which contrasts markedly to the flint-dominated, microlithic, Mesolithic industries in the 

Inner Hebrides. The lithic industry was instead found to be flake-based, whereby tools were made 

and used on an ad hoc basis, and with an extremely low emphasis on blade production irrespective 

of the raw material present (Pirie et al. 2006:8). It is likely that the lithic assemblages from the 

middens of Caisteal nan Gillean I and Cnoc Sligeach are also a-microlithic, based on the brief 

description of the assemblages by Lacaille (1954:218, 227-228). The absence of microliths within 

the shell midden lithic assemblages of the Western Isles – with the exception of the oblique point 

from Tràigh na Beirigh 9 – is therefore consistent with the similarly dated terminal Mesolithic shell 

midden site of Cnoc Coig. This may be attributed to site function, discussed in the following section, 

or raw material suitability. 

To test this further, the tool ratios between raw materials at microlith-bearing Mesolithic sites in 

the Inner Hebrides should be considered. Milky quartz dominates the quartz assemblages at Lealt 

Bay and Lussa River, Jura, which although mixed by marine transgression, contain a small number 

of diagnostic Late Mesolithic artefact types (Ballin 2001; 2002). Only a single quartz microlith was 

recovered from Lealt Bay, and only four from Lussa River. The debitage products indicate that there 

was clearly no intention by the occupants to produce blade technology in this raw material at either 

site, with simple flakes being the main product. This contrasts significantly with the flint assemblage 

from both sites. At Lealt Bay for example, over a thousand flint microliths were recovered. Whilst 

this may be due to the intended site activity or chronology of the site, characteristics of the raw 

material appear to be a significant factor (Ballin 2001; 2002). 

8.3.3.2.1. Subsistence and Optimal Solutions 

Jeske (1989) argues that the optimisation of stress factors is critical in environments where success 

rates of food procurement are low, and vice versa. For example, deer hunting has a low success 

rate, so projectile points used in this activity will be well made with “a high degree of energy 

[in]…manufacture and maintenance”, in order to ensure the tool has less chance of failing (Jeske 

1989:35). Furthermore, increasing tool diversity and specialisation is directly correlated with 

increasing the stress factors, thus reliable tool systems are required (Bleed 1986; Myers 1989:87). 

In contrast, tasks that are guaranteed to succeed require less investment of time or energy. 
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Consequently more expedient and maintainable tools, made from lesser quality raw materials, will 

suffice (Bleed 1986; Jeske 1989; Myers 1989). 

Based on this, it is possible that the diverse hunting/trapping/fishing subsistence activities at 

Northton were more stressful (energy/time) or risky (failure) than those on the Cnip headland, 

which appear to have functioned as specialist shell/fish processing sites 9 . For example, non-

seasonal resources cannot be easily scheduled, which places a greater reliance on high-risk  

strategies such as encounter-hunting (Kuhn & Stiner 2001:106). The use of microliths in composite 

tools, such as projectiles, are seen as maintainable elements of a very complex and reliable tool  

system (Eerkens 1998; Finlayson 1990b:53; Myers 1989:96-87; Torrence 1983:13). Whilst there is 

evidence for some predictable seasonal resources at Northton – such as the pelagic, flightless Great 

Auk – many of the resources available on the Toe Head Peninsula may have been unpredictable, 

either in terms of availability, or that the success rate of these activities were low. This would have 

required the use of a reliable technological system, which was repaired and maintained at the site. 

Following the observations of Woodman (2015), regarding the use of particular raw materials for 

tools in Ireland, the requirement for a complex maintainable and reliable microlithic technology 

necessitates the import of high quality raw materials (flint). Further evidence of mitigating the risk 

of failure at Northton is demonstrated by the diverse fish catch present at the site, which suggests 

the use of untended trapping facilities. Such facilities are generally found “where search time is 

high due to the low density and high mobility of resources” (Torrence 1983:16) – this could also 

apply to snares that may have been used for catching the hares and otter also recovered from the 

site. The technology used to mitigate these perceived risks may be a result of the unfamiliarity of 

the early occupants of Northton with the resources that were available, and that the early colonists 

brought to the site the technology and raw materials with which they were most familiar. Over time, 

as the inhabitants become acquainted with their environment, the risk of unsuccessful food 

procurement diminished, thus lower quality, but locally available quartz becomes more frequently 

used. 

It is possible that a shift away from microlithic technology was an adaptive response to the absence 

of large game, and toward a more specialised subsistence strategy focussing on fishing and trapping 

of the resources available on the island (McCartan 2003:337-338). For example, there is no 

evidence for hunting on the islands of Corsica and Sardinia, where the largest terrestrial mammal 

is the Sardinian pika (Prolagus sardus). The Mesolithic on these islands is therefore characterised 

by simple subsistence strategies of fishing and trapping pika, utilising local, poor-quality raw 

materials (primarily quartzite) for expedient tool production. No microliths are known from the 

                                                           
9 This interpretation may change once the full post-excavation analysis of all of the sites has been carried 
out. 
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island, which is in stark contrast to the lithic technology of the wider Mediterranean; however, in 

all other respects there is no apparent difference between the islanders and their mainland 

counterparts (Costa et al. 2003). 

Thus far, a similar situation appears to be reflected in the Scottish islands. This is most pronounced 

when comparing the striking typological and faunal differences between the contemporary sites of 

the Toe Head peninsula in the Western Isles and those on the Inner Hebridean islands of Islay and 

Coll. The Storakaig and Rubha Port an t-Seilich assemblages are predominantly made from flint, 

supplemented by quartz, with a high quantity of microliths and microlith manufacturing debris. The 

assemblages fit within the characteristic Scottish Mesolithic narrow blade tradition that is so well 

evidenced on Islay through Mithen’s previous work on the island. There is also definitive evidence 

for the exploitation of large terrestrial game as the major resource base on Islay (Mithen 2000c; 

Wicks et al. 2014:407-408). This contrasts markedly with the lithic assemblages from the sites on 

Harris. Prior to the investigation in 2010, the known Mesolithic lithic assemblage from Northton 

was entirely undiagnostic with regard to period-specific type facies. The assemblage from Tràigh an 

Teampuill remains so. These assemblages are instead dominated by the ad hoc reduction of quartz 

to produce an expedient flake-based technology. Furthermore, the evidence for any large 

terrestrial game from Northton and Tràigh an Teampuill is highly circumstantial, as discussed in 

Section 8.2.1.2. 

This interpretation however, presupposes that microliths were primarily used in hunting/projectile 

technology, when there have been a number of studies that indicate a microliths were used in a 

wide range of functions, including plant processing (Dumont 1985; 1988; Eerkens 1998; Finlayson 

1990a; Finlayson & Mithen 2000; Hardy 2004; Mithen & Finlayson 2000a). Given the lack of 

evidence for any discernible change in subsistence during the Mesolithic in Ireland, it is evident that 

the inhabitants were able to continue carrying out the same activities using informal, ‘simple’ 

technology made from local raw materials that were previously conducted using flint-dominated 

microlithic assemblages (Costa et al. 2005:23; Finlay 2003:88; Woodman & Anderson 1990:380). 

The presence of microliths at Northton, and the implied production of microliths at Tràigh an 

Teampuill through the presence of the pressure flaker, harks back to the long-standing argument 

between microlithic open-air sites and the ‘Obanian’ shell middens. This difference has partly been 

attributed to site function, whereby shell middens were utilised as specialised fish- and shellfish-

processing sites, and open-air sites were used for hunting (Bonsall et al. 2009:71). The relative 

absence of microliths within the shell midden assemblages on Lewis only supports this dichotomy 

to an extent. There is significant evidence for fishing on Harris, and only circumstantial evidence for 

large terrestrial game. Consequently, the presence of microliths at Northton does not fit with this 

debate. Fishing and small-mammal hunting appears to have been the mainstay of subsistence 
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throughout the Mesolithic of the Western Isles. If the shift away from microlithic technology is real, 

rather than perceived, it attests to the continuity of the same fishing-based subsistence practices 

throughout the Mesolithic occupation of the island, but utilising less formal technology, as in 

Ireland. 

The use of an informal, expedient lithic technology made from quartz at the Western Isles sites fits 

within the broader picture of quartz-dominated assemblages in the Mesolithic of northern Europe 

(Manninen & Knutsson 2014:86). This follows the pattern of low-quality, but highly abundant, raw 

material use anticipated by Andrefsky (1994) and Tallavaara (2010:2447). There is abundant use-

wear evidence from ethnographic, experimental and archaeological sources that flakes, and even 

shatter from bipolar reduction, can be used in the majority of day-to-day activities without 

modification or retouch (Andrefsky 1994; Berman et al. 1999; Flenniken 1981; Hardy 2004:34; 

Sussman 1985; Wickham-Jones 2004a). Where quartz tools are present in the Mesolithic 

assemblages on Lewis they still comprise significantly less than 10% of each assemblage, which is 

consistent with the general low percentage of quartz tools throughout the Mesolithic and later 

prehistory (Ballin 2001; 2002; 2008:59-60). Overall the ad hoc, irregular quartz flakes that dominate 

the Western Isles Mesolithic are indicative of a general purpose tool-kit that could be used for a 

wide range of tasks, including fishing, trapping, manufacture of structures, and plant processing to 

name but a few (Torrence 1983:13). This may have been supplemented by coarse stone tools and 

organic artefacts, which are described below. The topic of subsistence will be returned to more fully 

in Chapter Nine. 

8.3.3.3. Coarse Stone Tools 

Finlay et al. (2002:111) state that “One class of artefact that unites the middens and the scatter 

sites is the coarse stone tool”. The array of coarse stone tools recovered from the Western Isles 

assemblages therefore fits well into this aspect of the Mesolithic tool repertoire. Hammerstones 

and anvils made from locally available feldspar, basalt, and gneiss for use in lithic reduction are 

found at Kinloch, Bolsay Farm, Staosnaig, MacArthur Cave, and on Oronsay (Clarke 1990a; Lacaille 

1954; Mithen et al. 2000a; Mithen et al. 2000d). An alternative suggestion is that these cobbles 

could have been used in processing animal skins, hides or plant material or shellfish as proposed 

for Ulva Cave (Gregory 2006; Russell et al. 1995:283). The absence of any distinctive use-wear on 

these pieces prohibits functional analysis, however (Clarke 2009b). An alternative use for the coarse 

stone anvil found at Northton could be for cracking open hazel nuts, as suggested for the anvils 

found at Staosnaig (Score & Mithen 2000). Throughout the occupation deposits of the larger 

Western Isles Mesolithic sites, a number of gneiss, quartz-feldspar and other coarse-stone cobbles 

were recovered, which may have functioned as hammerstones or for processing foodstuffs (Figure 

259). 
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A coarse stone chopper was also recovered from Northton. Beyond a brief description of “boldly 

edge-flaked” pebble choppers from Cnoc Sligeach, Oronsay by Lacaille (1954:228), and a “chopper-

like tool” (subsequently reclassified as a core in the absence of use-wear) made from a dolerite 

pebble at An Corran (Hardy et al. 2012:22), there appears to be no indication of the presence of 

this tool type in Scottish Mesolithic sites where detailed analysis of the coarse stone assemblage 

has been conducted (Clarke 1990a; 2004; 2009a; Mithen et al. 2000a:402-403; Mithen et al. 

2000d:276). A large number of cobble chopper tools were recovered from Culverwell shell midden 

on the Isle of Portland, Dorset. Their proximity to hearth features led to the interpretation they 

were associated “with cooking or food preparation activities” (Palmer 1999:57). The association of 

the chopper with the bioturbated hearth deposits at Northton would correspond with this 

interpretation.  

 

Figure 259. Broken hammerstone from Northton 

The use of barely-modified coarse stone tools directly contrasts to Ireland and Norway where 

‘coarse stone’, such as schist and basaltic rocks (primarily greenstone and diabase) were utilised to 

produce ground, pecked, or polished stone tools – a defining feature of the Mesolithic technology 

in these regions (Gjerland 1990; Olsen & Alsaker 1984; Ryan 1980; Woodman 2012). In these areas 

there is also deliberate caching of materials, which does not readily occur in the Scottish Mesolithic. 

The quartz cobbles present at Northton, Tràigh na Beirigh 1, Tràigh na Beirigh 2 and Tràigh na 

Beirigh 9 are spatially separate, and given the lack of evidence for post-depositional disturbance at 

the midden sites, it is unlikely that this is a result of taphonomic factors. These cobbles have been 

transported to the site to be worked, and for some reason were discarded or left unused, but not 

as caches. 
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Bevel-ended tools made from bone and stone have traditionally been recognised as one of the 

defining characteristics of the ‘Obanian’ shell midden sites (Lacaille 1954:200). The Obanian, as 

discussed in Chapter Two, is no longer recognised as the material remains of a separate culture; the 

presence of this particular suite of artefacts is interpreted as functionally related. This has, however, 

created “a stereotyped functional approach to artefacts”, based upon the perceived use of 

individual sites (Finlayson 1995:261). The suggestion that bevel-ended tools may have functioned 

as hammers to procure limpets was made by Anderson (1898), reporting on the artefacts recovered 

from the Mesolithic shell middens at Druimvargie, Oban and on Oronsay. This was based upon the 

local knowledge of similarly-shaped stones historically used to detach limpets from rocks, and 

known in Gaelic as a ‘limpet-hammer’ (Anderson 1898:312). Furthermore, an experiment by Bishop 

(1914) using a similarly shaped piece of cement, made for a persuasive argument regarding the use 

of these tools “for gouging the mollusc of the limpet from the shell”, thus naming them limpet-

scoops (Bishop 1914:95). This misnomer has endured, in spite of repeated suggestions that the 

association with limpets “is both unlikely and unhelpful” (Finlayson 1995:262). Despite this, an 

experimental study on the use of elongated-pebble-tools (EPT’s hereafter) by Barlow and Mithen 

concluded that the removal of limpets did create the distinctive use-wear (breakage and fracturing 

patterns) observed on EPT’s found in the Mesolithic assemblages on Islay, when compared to other 

tasks of flint knapping and hide preparation (Barlow & Mithen 2000). 

Limpets comprise 80% of the shell midden at Tràigh na Beirigh 1 (Evans 2015:44), and dominate the 

other shell middens under consideration in this thesis. It follows that, if Anderson and Bishop’s 

interpretations are correct (bolstered by Barlow and Mithen), with all things being equal, bevel-

ended tools would be a notable component within the artefact assemblages of the Lewis middens. 

None, however, have been found. This lends credence to the suggestion that they may have been 

used in other activities, such as the processing of hide (Finlayson 1995:263 contra. Barlow & Mithen 

2000), or of plant remains (Mithen et al. 2000a:439-440; Score & Mithen 2000); however without 

further analysis the function of these pieces remains enigmatic (Clarke 2009b:13-14). An analogous 

example for the ethnographic use of bevel-edged coarse-stone tools is found in midden deposits of 

coastal south-east Queensland, Australia. These were used in the processing of plant foods, 

primarily the starchy root of the ‘bungwall’ fern (Blechnum spp.). Whilst these are technically flaked 

tools, the scraping-pounding use of stone created a polished, bevelled edge “so pronounced as to 

give the impression that the working edge has melted away” (McNiven 1992). These tools are 

similar in form to the bevel-ended tools recovered from Mesolithic middens in Scotland. 

The absence of bevel ended tools within the Western Isles assemblages is comparable with the site 

of Sand on Skye. Here only a “narrow range of tool types” were recovered, which implied that the 

variety of activities requiring the use of coarse stone tools at the site was either limited, or highly 
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specialised (Clarke 2009a). This contrasts with the much wider range of coarse stone tools, including 

bevel ended stones, in Mesolithic assemblages on Rum, Islay and Colonsay (Clarke 2009b; Mithen 

et al. 2000a; Mithen et al. 2000d). Following Torrence, the increase in tool diversity or complexity 

is inversely proportional to time stress (Torrence 1989b). The use of EPT’s at certain sites may 

therefore have been an adaptive strategy to efficiently complete a particular time-constrained task. 

Alternatively, they may not have had any particular functional use. The following section discusses 

less tangible evidence for tool use within the Mesolithic. 

8.3.3.4. Imperceptible Tools: Organic Artefacts 

As discussed above, the general lack of microliths at shell midden sites in the region may be 

attributed to site function. As such, the use of organic materials as tools must also be considered in 

place of formal lithic technology. The presence of bone and antler harpoon-like tools at Risga, Oban, 

and Oronsay supports the suggestion that the activities conducted at these sites may have required 

the use of organic artefacts rather than microliths (Bonsall 1997:25; 2004; Pollard et al. 1996:176). 

In contrast to the ‘Obanian’ shell middens in the Inner Hebrides and western Scotland, and despite 

the excellent preservation conditions, there is no evidence for similar bone and antler tools present 

in the shell midden sites in the Western Isles. This suggests an absence of the resources required 

to make them, and corroborates further the suggestion that there was no large terrestrial game in 

the Western Isles during the Mesolithic, as the antler pressure flaker from Tràigh an Teampuill may 

have been imported. 

Only the presence of two broken worked bone points at Tràigh an Teampuill, described in Section 

8.2.1.2, attests to the use of organic materials within the Western Isles Mesolithic tool-kit.  These 

may have been used in the construction of nets, baited lines, and snares that could have been used 

to catch the birds and small mammals that are present within the faunal assemblages. It is probable 

that such equipment was made from wood, plant or animal fibres and has since decayed (Bailey & 

Milner 2002:7; Dupont et al. 2009; Hardy 2008; Zhilin & Karhu 2002). Such mass capture technology 

is another method of averting the risk of failure (Hayden et al. 1981). By employing mass capture 

technology such as a stationary, tidally regulated fish trap, the inhabitants of the Toe Head 

peninsula were able to widen and diversify available species within the catch, therefore broadening 

the spectrum of resources that were exploited at the site (Blake 2011). This contrasts to the Cnip 

headland, where the resources are both abundant and predictable. The short, intensive bursts of 

activity at the sites targeted specific resources (young saithe) at specific times of the year, when 

marine molluscs could also be collected. As such, a high success rate was guaranteed and there was 

less need to invest time and energy in producing a reliable toolkit, when a maintainable one would 

suffice (Myers 1989:87). A maintainable, expedient strategy places less time/energy stress on the 

community as there is no requirement to procure non-local, high quality raw materials for tool 
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manufacture, as discussed above. Although there is no direct evidence for the use of fishing 

traps/nets, or hooks and line, to capture the vast quantities of fish recovered from the Western 

Isles sites, this may be inferred from preserved fish traps and organic artefacts found within 

numerous Mesolithic contexts in Demark, Ireland, and France (Andersen 1985; Fischer 2004; 

McQuade & O'Donnell 2007; McQuade & O’Donnell 2009; Mordant & Mordant 1992; Mossop 2009; 

Pedersen 1995; 1997). The construction of ‘complex’ technology, in the form of fixed facilities such 

as stationary fish traps, takes a significant investment of time, resources and energy, especially 

where there is evidence for the use of coppiced wood (Bishop et al. 2015; Christensen 1997; 

McQuade & O’Donnell 2009; Rowley-Conwy 2001). This has a demonstrable effect on the 

organisation and mobility of the communities who use them, which is discussed further in Chapter 

Nine. 

A deliberately modified oyster shell (Ostrea edulis) was identified at the base of the shell midden 

deposits at Tràigh na Beirigh 1. The shell is extremely thin, with a circular perforation though the 

centre and is worn around the edges in a roughly circular shape (Figure 260). Tool marks could not 

be detected during conservation of the artefact owing to the fragile nature of the shell (Jones 2012); 

however, the perforation may have been made using a tool similar to the quartz core-borer that 

was recovered from the same site. The use of shells as tools has frequently been overlooked, 

despite strong ethnographic evidence, and their presence in Holocene hunter-gatherer contexts 

elsewhere (Cuenca-Solana et al. in press; Cuenca-Solana et al. 2011; Hardy 2010; Szabó 2013). The 

evidence, which largely derives from the Pacific islands, Australia, the Caribbean and North America 

attests to a wide range of uses for both unmodified shells and shells that have been carefully shaped 

for specific purposes. These include: picks, adzes/axes, knives, vegetable peelers/scrapers, net 

sinkers, and fish hooks (Allen & Ussher 2013; Attenbrow 2010; Cuenca-Solana et al. 2011; Meehan 

1982; Moore 1921; O'Day & Keegan 2001; Przywolnik 2003). 

Perforated or modified shells have been recovered from numerous Mesolithic shell midden 

contexts in western Scotland, with examples also more widely known from western Britain and 

continental Europe. Worked scallop (Pecten maximus) has also been recovered from a number of 

Mesolithic shell middens in Scotland. A perforated scallop was recovered from Caisteal nan Gillean 

I on Oronsay (Mellars 1987), and scallops with modified edges from the nearby middens of Cnoc 

Coig and Cnoc Sligeach were interpreted as “scoops or ladles”  by the original excavator (Bishop 

1914). At Sand, worn scallop fragments, including a shell where a section had been deliberately cut 

out, were found and are suggested to have been used at tools (Hardy 2010). Empty scallop shells 

were also deliberately brought to the midden at Ulva cave, as evidenced by the presence of worm 

casts inside the shells (Russell et al. 1995). The use of limpet (Patella sp.) and Mediterranean mussel 

(Mytilus galloprovincialis) for processing non-woody plant matter have also been identified in 
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Mesolithic deposits in Spain (Cuenca-Solana 2015). There was no evidence for the deliberate 

modification of limpet shells at the Tràigh na Beirigh 1 sites, however (Evans pers. comm.); any 

perforations are likely to have been made by natural predators (Barton & Roberts 2015; Bishop 

1914; Hardy 2010). Cockles (Cardiidae) bearing edge-wear and perforated hinges have also been 

recovered from Cnoc Sligeach (Hardy 2010), and further afield at Culverwell on the Isle of Portland, 

Dorset (Barton & Roberts 2015; Palmer 1999). 

Most frequently, perforated shells are interpreted as items of personal adornment such as beads 

or pendants (Cuenca-Solana et al. 2011; Hardy 2010; Simpson 2003). However, perforations allow 

suspension in many respects, not only for personal ornamentation. The use of perforated bivalves 

as net sinkers is known from archaeological deposits in Mailu, Papua New Guinea (Irwin 1985). 

These were expediently perforated with a hole “bashed” close to the hinge of the shell in order to 

thread the net through (Irwin 1985:223; Przywolnik 2003:15). This treatment contrasts with the 

meticulous stages of manufacture that were involved in producing thinned, smoothed and 

perforated shell pendants that have been recovered from Kimberly, western Australia (Akerman & 

Stanton 1994; Przywolnik 2003:16). 

Whilst the use of shells as tools cannot be ruled out during the Mesolithic occupation of the Cnip 

headland, the evidence for such careful shaping and perforating of the oyster shell from Tràigh na 

Beirigh 1 suggests it was created for something more meaningful than a fish-net sinker, based on 

the comparable ethnographic evidence described above. Furthermore, the positioning of the 

modified shell at the interface between the underlying old ground surface deposits and the 

overlying shell midden accumulation potentially indicates deliberate deposition. The significance of 

this is discussed in Chapter Nine. 

 

Figure 260. Perforated oyster shell in situ at Tràigh na Beirigh 1. Photo courtesy of Peter Rowley-Conwy 
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8.4. Conclusion 

This chapter has brought together the results of the technical and typological analysis of each of 

the Western Isles lithic assemblages, and discussed them in terms of the wider context of the 

activities conducted at each site. A number of major themes have been identified through the 

interpretation of the lithic assemblages that, when combined with the supporting contextual 

evidence for the types of site activities, contribute significantly to the interpretation of hunter-

gatherer settlement and subsistence strategies on the island. Overall, the reduction strategies 

employed at these sites were adapted to suit the raw materials present in terms of their availability, 

quality, and fracture mechanics. These raw materials were expediently reduced to produce 

irregular flakes that could be used as a generalised tool-kit, in order to exploit a range of resources. 

It is evident that whilst at both the earlier, open-air sites on Harris, and the younger shell midden 

sites on Lewis there is an emphasis on fishing, the Lewisian sites appear more specialised in terms 

of the resources targeted. Whilst the nature of the site activities appear to have little effect on the 

lithic assemblages overall, the broader spectrum of foraging and trapping may be one of a multitude 

of explanations for the presence of microliths at Northton. Furthermore, the importance of fishing 

at these sites, during the course of over 2000 years of occupation, attests to the use of technology 

that has no longer survived. 

Where deemed appropriate during this chapter, examples of comparable evidence have been 

drawn from across the Mesolithic of the Atlantic seaboard, as well as ethnographic parallels, to 

support the interpretations that have been made. The following chapter expands on this further in 

order to integrate the evidence from the Western Isles Mesolithic more fully with our current 

understanding of the Mesolithic at the edge of western Europe.
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Chapter 9 The Western Isles Mesolithic in its Atlantic 

Context 

9.1. Introduction 

In Chapter Eight the current evidence for Mesolithic occupation in the Western Isles was presented, 

in order to provide a holistic overview of technology and subsistence in the region. In this chapter 

interpretations that were developed previously are finally placed within the context of the 

Mesolithic of the north-east Atlantic seaboard. Comparisons and contrasts between the evidence 

for Mesolithic occupation in the Western Isles, the Inner Hebrides, and the western Scottish 

mainland will be drawn throughout. This is to ascertain whether the Mesolithic of the Western Isles 

is representative of the broader Scottish Mesolithic tradition – of island-hopping hunter-gatherers 

exploiting marine and terrestrial resources, utilising local raw materials to expediently produce 

composite tools. 

This chapter is structured around three themes: inter-island connections; mobility; settlement and 

subsistence, and overarching trends in the western European Mesolithic. These themes are not only 

reflected within the immediate context of coastal western Scotland, but also island environments 

beyond – from the neighbouring areas of the Atlantic seaboard in Ireland and Norway. As outlined 

in Chapters Two and Three, these areas also exhibit a perceived preference by Mesolithic people 

for the exploitation of coastal and riverine environments (Woodman 2004:287). Both Ireland and 

Norway were colonised by Mesolithic hunter-fisher-gatherers after some delay, with subsistence 

strategies that relied heavily on aquatic resources. By exploring the similarities and differences 

between the archaeological record in the Western Isles and the broader Atlantic façade, this 

chapter endeavours to answer the third research question of this thesis: are the Western Isles sites 

representative of the Scottish Mesolithic, and how do they fit within the Mesolithic of the north-east 

Atlantic façade?  

9.2. Inter-Island Connections 

In the previous chapter it was discussed in detail that, where non-local raw materials are present 

at the Mesolithic sites in the Western Isles, the intensive reduction of these materials suggests they 

were ‘expensive’ and obtained from distant sources. As such the Mesolithic communities inhabiting 

the Western Isles were tied into an existing network of inter-island connections. Embedded/direct 

procurement, or small-scale exchange, of exotic raw materials is reflected in the existing evidence 

for the movement of different raw materials with restricted sources around the Inner Hebrides and 

mainland during the Mesolithic (Piper 2010). These raw materials comprise baked mudstone, 

limestone, bloodstone, and pitchstone. Movement of organic materials is also evident but not to 
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the same extent. The evidence for these connections is most apparent in the assemblages on Harris, 

where baked mudstone has been imported to Northton and Tràigh an Teampuill. The presence of 

limestone/dolomite at Tràigh na Beirigh 9 also implies connections between the Inner Hebrides 

with Lewis. Irrespective of whether these raw materials were exchanged, directly procured, or 

collected as an embedded part of seasonal mobility, a relationship with the communities at the 

sources of these raw materials is implicit in order to facilitate trade or access. In the absence of 

large terrestrial ungulates in the Western Isles, organic raw materials such as the red deer antler 

tine from Tràigh an Teampuill also suggest imported commodities. First, the importance of 

exchange networks as a risk-reduction strategy in early colonising communities is described with 

reference to the colonisation of Ireland and Norway, drawing upon ethnographic parallels. 

Subsequently, tracing raw material movement is considered in order to understand how the 

Western Isles Mesolithic sites are incorporated into an existing distribution network of raw material 

movement that extends along the western Scottish coastline between contemporary sites. 

9.2.1. The Importance of Trade in Colonising Communities 

Maintaining contacts with ‘parent’ communities is fundamental to ensuring biological survival for 

colonising groups, or groups with high risk of resource failure (Rowley-Conwy & Piper in press). The 

importance of exchange networks in supplying resources, such as raw materials, is observed in the 

Western Desert of Australia where exchange networks of exotic materials including obsidian are 

extended over significant distances, and consequently social relationships are just as far reaching. 

These relationships acted as “insurance against local resource failure” (Layton 2005:134). Although 

the high risk of unpredictable resources in the Australian desert is not analogous for the Mesolithic 

in Britain and Ireland, this insurance may also be a significant factor in early colonising societies 

(Kelly & Todd 1988:237-238; Tolan-Smith 2003:122; Whallon 2006). This would be most 

exaggerated in the occupation of offshore islands (Tolan-Smith 2003:124; 2008:145). 

As discussed in Chapter Three, the Early Mesolithic assemblages in Norway and Ireland are almost 

exclusively comprised of flint. The knapping debris at the Early Mesolithic sites suggests the raw 

material has been transported wholesale from coastal sources to be reduced at the site. This is 

characteristic of embedded procurement within groups that have a high degree of residential 

mobility (Binford 1979; Costa & Sternke 2009:797-979; Torrence 1989b:5; Woodman 1987:142). 

During the post-glacial colonisation of these regions, the availability of suitable raw materials could 

not have been guaranteed as communities expanded into new, unknown, areas. Consequently, raw 

materials would have been imported with groups from familiar sources, frequently over long 

distances, maintaining contact with their original communities and trading resources as an 

insurance network. This follows an ‘undifferentiated network system’, whereby population 

densities are low, with strong links between ‘parent’ and colonising groups resulting in 
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technological homogeneity over a wide area, as observed in the Early Mesolithic of Norway 

(Madden 1983:196). The use of microliths in the Early Mesolithic of Ireland is also suggested to 

have been due to “retain[ing] strong links with their perceived homeland in Britain” (Woodman 

2009a:210). 

Similarly, the post-glacial colonisation of Scotland and its islands would have involved movement 

into an environment rich in glacial erratic raw material, which may have included flint and various 

other flakeable siliceous raw materials. Throughout the islands quartz, in its various forms, is 

abundant, predictable and largely of good quality. Other discrete sources of utilisable raw materials 

are also available including flint, chert, other chalcedonic silicas such as agate and jasper; 

bloodstone from Rum; pitchstone which is largely derived from Arran; baked mudstone from Skye 

and the Shiant Isles, and various coarse stones (Saville 1994; Wickham-Jones 1986; 2009c). Based 

on this, Saville (1994) states that the absence of flint in Scotland was not a factor in the delayed 

colonisation of the region (contra. Movius 1942:198). 

Northton and Tràigh an Teampuill represent the earliest evidence for occupation in the Western 

Isles of Scotland. The date of the earliest phase of occupation at Northton is c.7000 cal. BC, which 

is contemporary with the earliest phases of a number of Mesolithic sites in the northern islands of 

the Inner Hebrides, namely at Kinloch, Rum; Rubha Port an t-Seilich, Islay and Fiskary Bay, Coll 

(Figure 261; Wicks & Mithen 2014). To date, these sites represent the earliest known occupation of 

each of their respective locales. Such a broad spread of contemporary Mesolithic activity across a 

number of separate islands demonstrates significant seafaring capabilities, and rapid maritime 

adaptation of hunter-gatherer-fishers who had soon familiarised themselves with the resource-rich 

environment (Bjerck 2009). 

Within the early phases of occupation in a region, there is little difference observed between the 

technology and raw materials used in lithic assemblages (Åkerlund et al. 2003; Woodman 2012). 

The flint-dominated Phase 4 lithic assemblage from Northton has been extensively reduced using 

bipolar technology to maximise the raw material available, and the ratio of microliths is high 

(relative to the assemblage as a whole). This closely resembles Mesolithic assemblages from the 

Inner Hebrides, and suggests that the early inhabitants of Northton maintained close contact with 

their eastern neighbours. 

During the later, more substantial Phase 3 deposits at Northton, the proportion of locally available 

quartz within the assemblage far outweighs that of flint. Furthermore, whilst a number of flint 

microliths are present the overall number of formal tools is lacking, and quartz is reduced far more 

liberally than flint. It is clear that by this point, there is a much greater use of local resources, and 

technology has developed to suit this as long-term settlement of the environment is established 
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(Åkerlund et al. 2003; Housley et al. 1997; Woodman 2012). Many of the sites contemporary with 

the later phase of occupation at Northton display evidence for localised movement of restricted 

raw materials such as bloodstone, baked mudstone, and limestone, especially around the Inner 

Sound region. Baked mudstone is also imported to Northton, which attests to the continued 

movement of people between the Inner and Outer Hebrides. Despite this contact, the use of flint 

and microliths decline. These alterations may reflect changes in the networks that existed between 

communities during the early occupation of these areas, once settlement was well established. This 

has been attributed in part to the change in technology between the Early and Late Mesolithic in 

Ireland, and is discussed in more detail with regard to the Scottish evidence in the following section 

(Woodman 2012). 

9.2.2. Procurement and Movement of Exotic Raw Materials 

As highlighted in Chapter Two, patterns in the provenance, distribution and usage of different of 

raw materials between the Scottish islands and mainland have posed interesting questions 

regarding the movement of – and possible trade networks between – Mesolithic communities. This 

section expands on the ideas presented in Piper (2010). 

9.2.2.1. Baked Mudstone 

Baked mudstone is a fine grained sedimentary rock that knaps well when fresh, but becomes very 

soft as it degrades over time (Wickham-Jones 2009c:455). This raw material is not known to be local 

to the Western Isles, with the nearest identified sources outcropping on the Shiant Isles 

(Goodenough 1999); and Staffin on Skye (Hesselbo & Coe 2000; Wickham-Jones 2009c). 

To recap the main findings presented in Chapter Five, the Mesolithic baked mudstone assemblage 

is only found in the Phase 3 deposits at Northton, and comprises over 10% of the total raw material 

from the site. There is very little ‘cortex’ present on this material, 97% of the pieces retain between 

0-50% of the outer surface. Where enough cortex remains to identify its probable source, it is 

weathered in appearance, suggesting the material may have been obtained from an outcrop. The 

absence of primary flakes, and very few cores, suggests that baked mudstone may have been 

imported to the site in a pre-prepared state, following its extraction from a sill elsewhere. One of 

the cores displays evidence for bipolar reduction, indicating conservative treatment of a raw 

material that was ‘expensive’ to obtain. The mudstone at Tràigh an Teampuill also lacks evidence 

of primary working, potentially imported as flake blanks that could be modified as needed.  

Similarly conservative treatment of this raw material is observed at Mesolithic sites around the 

Inner Hebrides. The use of baked mudstone around the islands of the Inner Sound appears highly 

localised. Artefacts made from this raw material have been identified in a number of lithic scatters 

around this region that contain evidence for Mesolithic activity, but may also be later prehistoric 
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contamination. The small assemblage from Auchareoch, Arran is notable for the distance from the 

source, however the pieces were retrieved from undated areas of the site (Affleck et al. 1988). 

There are five sites in the region of the Inner Sound that are contemporary with Northton10, and 

contain a baked mudstone assemblage (Figure 261). There is a significant relationship between the 

distance of these sites to the source and the reduction of this raw material. 

An Corran is situated closest to the baked mudstone sources at Staffin, Skye and an outcrop was 

identified at the time of the excavation above the rockshelter overhang (Hardy et al. 2012). The 

lithic assemblage is comprised of 63% baked mudstone, which was used to make large blades and 

retouched tools. The full chaîne opératoire is present, and the production of such large blades is 

attributed to the immediate availability of “large angular blocks” of raw material (Hardy et al. 

2012:34). Baked mudstone was also recovered in significant quantities from lithic scatters around 

the rockshelter, many of which contained diagnostically Mesolithic microliths (Hardy & Wickham-

Jones 2009a:93-36). In contrast, the Mesolithic site at Camas Daraich is located at the southern end 

of Skye, 70km from the baked mudstone source. Baked mudstone comprises around 1% of the total 

number of lithics in this assemblage, and there are no pebbles or cores present. The limited number 

of primary flakes again indicate that this material was brought to the site in a pre-prepared form, 

or as finished tools (Wickham-Jones 2004a:37). 

Sand is situated on the Applecross peninsula, in the highland region of western Scotland. Baked 

mudstone accounts for 43% of the lithic assemblage at this site. Beyond a single unworked pebble 

of baked mudstone, there is very little evidence for the reduction of this raw material in the 

assemblage. There are only a small number of flakes retaining cortex, again leading to the 

suggestion that baked mudstone was reduced at its source, in order to reduce transport costs, and 

imported in a semi-prepared state or as finished tools (Wickham-Jones 2009b). 

Two small assemblages from Raasay – between Skye and the mainland – also contained evidence 

for the use of baked mudstone during the Mesolithic. A single, heavily worked core fragment was 

recovered from Clachan Harbour; at Loch a Sguirr 1, baked mudstone debitage, flakes, and a blade 

were found in test-pits (Ballin et al. 2011; Hardy & Wickham-Jones 2009a:169-173). Owing to the 

small size of these assemblages, they offer little interpretative value other than evidence for 

distribution.  

Overall, the evidence from these sites lends credence to the suggestion that the introduction of 

baked mudstone to Northton during the later phase of Mesolithic occupation was as a result of 

                                                           
10 Clachan Harbour is not depicted as the radiocarbon dates are not directly associated with the lithic 
assemblage, but derived from overlying peat. The date range of 7598-7084 cal. BC provides a terminus ante 
quem for the deposition of the lithic assemblage, which is cotemporary with Northton. 
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contact with groups from the Inner Hebrides, following an expansion in settlement of the region. 

The semi-prepared state of this raw material within these deposits is comparable to those at Sand 

and Camas Daraich, which are also beyond the immediate vicinity of the source. 

These contacts were maintained over the intervening centuries between the occupation of 

Northton and Tràigh an Teampuill. The dates for the latest occupation of Sand overlap with the 

latest occupation at Tràigh an Teampuill, which may have facilitated continued access to the baked 

mudstone by Mesolithic communities across the Minch (Figure 262). It should be noted that the 

occupation at Tràigh an Teampuill is c.400 years later than the Phase 3 deposits at Northton, when 

baked mudstone was first introduced to the area. It is therefore unlikely that the occupation 

deposits at Northton would have still been visible for raw materials to have been scavenged from 

the site. It is also worth reiterating that baked mudstone is present during the Neolithic/Beaker 

phases at Northton, as described in the previous chapter (Gregory & Simpson 2006; Phillips 2006b). 

Consequently, it can be reasonably argued that the long-established contacts between the Toe 

Head peninsula and the Inner Hebrides endured over millennia, continuing to supply this raw 

material to their agriculturalist descendants during later prehistory. 
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Figure 261. Northton (starred) and contemporary Mesolithic sites from the Inner Hebrides and western Scottish 
mainland. 1. An Corran; 2. Loch a Sguirr; 3. Sand; 4. Camas Daraich; 5. Kinloch; 6. Fiskary Bay; 7. Creit Dubh; 8. 
Druimvargie; 9. Lón Mór; 10. Raschoille; 11. Staosnaig; 12. North Carn; 13. Lussa Wood; 14. Coulererach; 15. Bolsay 
Farm; 16. Newton; 17. Rubha Port an t-Seilich; 18. Auchareoch. Ordnance Survey data © Crown Copyright/database 
right 2014. An Ordnance Survey/EDINA supplied service 
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Figure 262. Tràigh an Teampuill (starred) and contemporary Mesolithic sites from the Inner Hebrides and western 
Scottish mainland. 1. An Corran; 2. Sand; 3. MacArthur Cave; 4. Rockside; 5. Bolsay Farm; 6. Gleann Mor. Ordnance 
Survey data © Crown Copyright/database right 2014. An Ordnance Survey/EDINA supplied service 
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9.2.2.2. Limestone 

At Northton and Tràigh na Beirigh 9 three pieces of carbonate rock were found – one from the 

former and two from the latter site. The closest source of this rock type is found in the Cambro-

Ordovician Durness Group of north-west Scotland, which is largely comprised of limestone and 

dolostone (Raine 2009:1). The Durness Group runs as a belt for c.170 km from Durness on the north 

coast of Scotland to Skye, with various formations exposed along the west coast (Raine 2009:27). 

Silicified limestone has also been identified on the west coast of the small island of Eigg in the Inner 

Hebrides, and artefacts made from this raw material (although initially identified as quartzite) have 

been recovered in the lithic assemblages from Kinloch, Rum and Camas Daraich, Skye (Durant et al. 

1990:52; Wickham-Jones 2004a:21). Wickham-Jones states that the outcrops of Durness Group 

limestone near Loch Slapin and Loch Kishorn would have been available within the annual round of 

the Mesolithic inhabitants at Camas Daraich (Wickham-Jones 2004a). All of the carbonate flakes 

from these sites are tertiary flakes. The absence of any evidence for primary working of this raw 

material suggests it may have been imported in a pre-prepared state, as suggested above for the 

baked mudstone. At Northton, it may have been imported alongside the baked mudstone, however 

it is impossible to make any definitive conclusions based on the presence of only three flakes. 

9.2.2.3. Bloodstone 

In order to consolidate the theory of tracing a network of mobile communities through raw material 

distribution more fully, other examples of raw material movement between the Hebridean islands 

are considered. Bloodstone, a variety of chalcedonic silica primarily sourced from Bloodstone Hill 

on the island of Rum, dominates the Mesolithic assemblage at Kinloch (Durant et al. 1990). 

In a similar manner to baked mudstone, this raw material appears in a heavily reduced state at 

Mesolithic sites around the Inner Sound. Bloodstone Hill is situated c.25km away from Camas 

Daraich, Skye and is clearly visible across the sea. Within this assemblage bloodstone comprises 33% 

of the assemblage. As described above, the source of baked mudstone is over 70km away from the 

site and this raw material makes up just 1% of the total assemblage. Despite this, both bloodstone 

and baked mudstone display similarly low percentages of cortical flakes, indicating that preparation 

of the material was conducted at the source before being transported to the site (Wickham-Jones 

2004a). The lack of evidence for further working or abandonment of cores within the bloodstone 

assemblages from An Corran and Sand also suggests that the raw material was imported to these 

sites in a pre-prepared condition (Hardy et al. 2012; Wickham-Jones 2009b). 

In contrast, there is a higher preponderance of cores and decortical flakes at Kinloch, which is 

situated far closer to the source than at any of these sites; however, even this was not significant 

in terms of evidence for the primary reduction of the raw material by task-groups at the site (Tolan-

Smith 2008:155). It is proposed that the “majority of nodules were opened for testing and roughly 
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shaped elsewhere, probably on the beach where they were collected”, with more specialised blade 

production occurring at Kinloch (Zetterlund 1990:78). This clearly demonstrates the cost-benefit of 

decisions made by Mesolithic communities in terms of raw material transport, even where the 

source of the raw material is close-by. 

9.2.2.4. Organic Materials 

The network of raw material supply between the Inner Hebrides and the Western Isles may have 

even extended to organic commodities. The faunal record from the Western Isles Mesolithic 

indicates that there is very limited evidence for the presence of terrestrial mammals on the islands, 

as discussed in Chapter Eight. The only evidence thus far is from Tràigh an Teampuill, where a red 

deer antler tine pressure flaker and small fragments of undiagnostic bone, identified using ZooMS 

as deer/elk, were recovered (Charlton 2016). The groups which moved between Tràigh an 

Teampuill and the Inner Hebrides, and supplied the baked mudstone, could have also imported 

organic materials that were not available in the Western Isles. The deer/elk bone may have been 

the remains of a haunch of meat that was brought on the journey – similar to the suggestion for 

the presence of domesticated cattle within the Mesolithic deposits at Ferriter’s Cove, Ireland 

(Whittle 2007). 

There is very clear evidence for the import of already-butchered red deer to Oronsay during the 

Mesolithic occupation of the middens. At Cnoc Coig, a number of meat-bearing bones were 

recovered, indicating that joints of meat had been transported to the island. It has been suggested 

that the presence of non-meat bearing elements, including lower limb bones and metapodials, as 

well as antler, were deliberately imported as raw material for tool manufacture. During the 

Mesolithic Oronsay would have been too small to sustain a natural population of deer. Analysis of 

the size of these bones suggested that Mesolithic people were exploiting two separate cervid 

populations; one group of deer were most likely to have been resident of the neighbouring islands 

of Colonsay, Islay, or Jura based on their small stature, the second were more consistent with the 

size of deer from the mainland (Grigson 1981; Mithen & Finlayson 1991; Richards & Mellars 1998). 

The above evidence undeniably demonstrates the level of Mesolithic mobility between the islands 

of the Inner Hebrides, which can be used as a proxy for the Western Isles. In the following section, 

proposals for a social territory that incorporates the Hebridean islands and the western mainland 

of Scotland are synthesised. This model is then applied to the Western Isles. 

9.2.3. Defining Social Territories 

It is clear from the evidence above that there is almost a ‘shopping list’ of raw materials which are 

in use at Mesolithic sites around the Inner Hebrides and the western mainland of Scotland. With 

regard to the distribution of baked mudstone, Hardy and Wickham-Jones suggest this may be 



 

389 

 

representative of “a ‘sphere of influence’ perhaps even a territory that stretches as far as Staffin 

Bay in the north and the island of Rum in the south.” (2009a:189; Saville 2003). Along a north-south 

axis this territory would be c.70km in length. By extrapolating the radius, this territory would 

therefore incorporate the whole of Skye, and the fringes of mainland Scotland to the east. A similar 

proposal has been made by Ballin regarding the presence of bloodstone at Mesolithic sites around 

the Inner Sound, although the scale of this is much larger. Mesolithic sites containing bloodstone 

largely fall within a radius of c.90km from the source on Rum. Ballin states: 

“It is thought that the area around Rhum, with its bloodstone-bearing early 

prehistoric sites, may define a Mesolithic social territory and its associated exchange 

network, with the northernmost sites being those at Loch Torridon and the 

southernmost those in Ardnamurchan, Morvern and on Mull…As the distribution of 

Staffin baked mudstone from Skye (cf. Saville et al. 2012) corresponds roughly to 

that of Rhum bloodstone it is quite possible that the baked mudstone distribution and 

the bloodstone distribution define the same exchange network and the same social 

territory.” (Ballin 2016a:35-36) 

Within this radius, there is a significant drop-off in the proportion of bloodstone within Mesolithic 

lithic assemblages. As described above, bloodstone comprises 33% of the assemblage at Camas 

Daraich, 25km from the source (Wickham-Jones 2004a). At Loch Doilean, situated on the Morvern 

peninsula of mainland Scotland and 57km straight-line distance from Bloodstone Hill, bloodstone 

makes up just 3.4% of the assemblage (Ballin 2016a). This adheres to the pattern of ‘down the line’ 

exchange (Renfrew 1977), which was observed in the Neolithic distribution of flint in the Western 

Isles, and inferred for the distribution of flint during the Mesolithic in the preceding chapter. 

The movement of raw materials between communities via exchange networks, and the implication 

for social territories is well documented in southern Norway. As discussed in Chapter Three, the 

most recognisable example of this is the movement of greenstone and diabase along the coast from 

their respective island sources. Different stages of artefact manufacture were evident dependent 

on the proximity to the source. Quarrying and workshop sites were identified at the raw material 

source, on the islands of Bømlo and Flora; production areas for further working were situated on 

the mainland away from the immediate sources; blanks and finished products were then removed 

to other sites within the main distribution area, which extended up to 100km from their sources 

(Bergsvik & Olsen 2003; Olsen & Alsaker 1984). Whilst it is suggested that quarrying and tool 

production was conducted via direct procurement by task-groups that had equal access to the 

sources, the movement of artefacts in these raw materials beyond their main distribution area is 

evidence of a long-distance exchange network. The social boundary that is inferred, based on the 
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distribution of these two raw materials, is supported by stylistic differences in the adzes and axes 

that were produced (Bergsvik & Olsen 2003; Olsen & Alsaker 1984). 

If the model for a social territory of up to 100km for aquatic hunter-gatherers can be accepted, 

based upon the observations of Hardy regarding baked mudstone (Hardy & Wickham-Jones 2009a); 

Ballin in relation to bloodstone (Ballin 2016a); Olsen and Alsaker vis-à-vis greenstone and diabase 

(Olsen & Alsaker 1984), and Ames’ ethnographic reports (Ames 2002), it is highly likely that a similar 

territory may encompass the western coastline and islands of Scotland. At 70km in diameter, the 

westward extent of the social territory proposed by Hardy (2009a) would almost overlap with the 

easternmost extent of a similarly-sized territory that radiates from the Toe Head peninsula, Harris 

at the Waternish peninsula of Skye (Figure 263). This would facilitate access to distant raw materials 

such as flint to the south, and baked mudstone and limestone to the east, through an exchange 

network with other groups closer to the source. This could explain the presence of baked mudstone 

250km south of its source at Auchareoch, Arran. 

With a radius of 90km, the larger territory suggested by Ballin (2016a) easily incorporates both the 

Shiant Isles and Toe Head peninsula (Figure 264). Within this model, Mesolithic communities 

inhabiting both the outer islands and the mainland could easily have obtained these raw materials 

through embedded/direct procurement from the source, as in Norway. 

9.3. Mobility, Settlement and Subsistence 

Thus far, the themes outlined in both the previous chapter and above have established: how raw 

materials were sourced and procured; that approaches to the conservation and treatment of these 

materials were adapted through the application of different reduction sequences and choice of 

technology; that inter-island connections were implicit in the access and transport of raw materials 

between the source and the site of consumption. Each of these are significant in interpreting the 

settlement and subsistence practices of Mesolithic groups inhabiting the Western Isles. Based on 

these themes, it is suggested that overall, the lithic assemblages of the Western Isle Mesolithic are 

largely representative of an expedient (immediate use) technology, obtained through embedded 

procurement by logistically organised groups. 

This section integrates the procurement, reduction, and tool-use evidence from the lithic 

assemblages with the organic evidence for site activities, which were outlined in the previous 

chapter, in order to strengthen the above interpretation of Mesolithic mobility and subsistence in 

the Western Isles. 
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Figure 263. Mesolithic assemblages of western Scotland containing bloodstone and/or mudstone that are 
encompassed by the 70km-diameter (solid line) social territory suggested by Hardy (2009a). The epicentre of the 
territory is equidistant between the source of bloodstone on Rum and the mudstone sources at Staffin on Skye. The 
dashed line is representative of the same sized territory with its centre at the Toe Head peninsula. Inset highlights the 
sources of mudstone and Mesolithic sites around An Corran at Staffin Bay. Ordnance Survey data © Crown 
Copyright/database right 2014. An Ordnance Survey/EDINA supplied service 
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Figure 264. Mesolithic assemblages of western Scotland containing bloodstone and/or mudstone that are 
encompassed by the 90km-radius social territory suggested by Ballin (2016a). The epicentre of the territory is 
equidistant between the source of bloodstone on Rum and the mudstone sources at Staffin on Skye. Inset highlights 
the sources of mudstone and Mesolithic sites around An Corran at Staffin Bay. Ordnance Survey data © Crown 
Copyright/database right 2014. An Ordnance Survey/EDINA supplied service 
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9.3.1. Ethnographic Models of Hunter-Gatherer Subsistence 

In Chapter Three, ethnographically-derived models of hunter-gatherer subsistence were alluded to 

by way of explaining the economic systems of Mesolithic communities in Ireland and Norway. A 

very brief overview of these models is presented in order that the evidence from the Western Isles 

can be fully interpreted, and subsequently aligned with that of the eastern Atlantic fringe. This 

enables the third research question of this thesis to be answered, as outlined at the beginning of 

the chapter. 

Binford (1980) defined the variability observed between hunter-gatherer settlement systems in 

terms of subsistence strategies and organisation of mobility. This was largely based upon 

interactions with the Alaskan Nunamuit Eskimo (Inuit). At one end of the spectrum are foragers. 

These groups move between resource “patches”, practicing an encounter hunting/gathering 

strategy whereby resources are returned to the residential base on a daily basis for immediate 

consumption. As such, foragers are characterised by high residential mobility. Base-camps reflect 

the season and duration of occupation of these groups and are characterised by evidence for “most 

processing, manufacturing and maintenance activities”, with very few, ephemeral, extraction 

camps (a location). There is little investment in caching of resources in these instances and tool 

discard is low, resulting in ephemeral palimpsests as locations are re-used (Binford 1980:5-10; Kelly 

2013:78). In contrast, collectors residentially move to a specific resource and frequently store food 

for later consumption (Renouf 1991:95-96). In this way, the number of whole-group (residential) 

moves are lower, and frequent forays are made by logistically organised specialist task-groups that 

consisted of skilled individuals to procure specific resources, which are brought back to the 

residential base-camp. The position of the residential camp to one critical resource frequently 

compromises the proximity of another, as such task-groups may disperse over large areas for a 

period of time, resulting in more established extraction and field camps. The specialised 

procurement of large-quantities of specific resources are reflected in the accumulation of material 

at a field camp, whereby resources may be processed and temporarily stored (Binford 1980:10-12; 

Kelly 2013:78). On the whole, logistical organisation of subsistence strategies results in a higher 

degree of variability between sites (Binford 1980:13). 

In a similar vein, Woodburn identified two economic systems formulated during his work with the 

Hadza of Tanzania (Woodburn 1980). Immediate-return strategies are broadly parallel to Binford’s 

foragers: food is obtained and consumed on the same day, utilising equipment that is “simple, 

portable, utilitarian, easily acquired, replaceable tools and weapons” (Woodburn 1982:432). There 

are no fixed places within this strategy; camps are occupied by individuals who move freely 

between camps, and the camps also move. Conversely, delayed-return systems are more closely 

aligned with the collector concept. Most significantly, this system entails rights over, or ownership 
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of, assets and people. Assets may comprise specific resource areas, some of which may be managed, 

as well as “technical facilities” such as boats, traps and weirs which require a significant investment 

of labour (Newell & Constandse-Westermann 1984). Processing or storage of food is usually 

practiced, and social relationships entail binding commitments whereby territoriality frequently 

ensues (Finlayson 2009; Woodburn 1980). 

Neither Binford nor Woodburn presuppose that these models represent mutually exclusive 

dichotomies, indeed both acknowledge that significant variability lies with these systems (Binford 

1980; Woodburn 1980). Exceptions to these models are well-known, and it should be made clear 

that hunter-gatherer settlement systems do not simply lie along a continuum, but move adaptively 

on axes of variation (Finlayson 2009; Layton 2005; Rowley-Conwy 2001; Rowley-Conwy & Piper in 

press; Winterhalder 2001). 

‘Complex hunters’ is a term coined by Rowley-Conwy (1983) to describe hunter-gatherers that do 

not fit with the “nomadic norm” of simple, egalitarian, highly mobile foragers. Divergence may be 

manifest in a number of ways: complex technology; semi-permanent residences; a high number of 

facilities; social stratification and territoriality. These differences largely arise from the reduced 

mobility of ‘complex hunters’ in relation to food supply. Residential home-bases are supplied by 

special-purpose task-sites, which is in-line with Binford’s logistic group organisation. However, 

these differ in a significant respect; residential home-bases within a logistic system move 

occasionally, within a ‘complex hunter’ system they are permanent (Rowley-Conwy 1987). 

Overall, the statement made above, in which the lithic evidence from the Western Isles generally 

appears to represent expedient technology, obtained through embedded procurement by 

logistically organised groups, displays elements of both an immediate-return and a delayed-return 

strategy. The following section recapitulates the lithic evidence from each site as a whole in order 

to test this, alongside the subsistence activities at the site. 

It should be noted that when reduction in mobility is alluded to, the argument here is that there is 

a reduction in terrestrial mobility. Water transport allows groups to remain mobile, but with a 

means to significantly reduce the transport cost of moving raw materials, which would facilitate the 

long-distance contacts for the movement of exotic raw materials. This is most evident in Norway, 

despite the absence of evidence for boats. The importance of boats in the Mesolithic of western 

Scotland cannot be underestimated. The number of sites with significant evidence for Mesolithic 

occupation around the islands of the Inner Hebrides and western mainland, coupled with strong 

evidence for raw material transport, attests to the sea which was “important as a highway” (Hardy 

& Wickham-Jones 2002b:832). With the raw material evidence from Harris and Lewis, the Western 

Isles can now be included in this picture, and resolutely corroborates the recent suggestion that 
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“the character of Late Mesolithic occupation and maritime connectivity in the Outer Hebrides and 

Orkney will be revealed as similar to the picture of significant maritime activity proposed for the 

Inner Hebrides” (Garrow & Sturt 2011:66). 

9.3.2. Logistic Systems in the Western Isles Mesolithic: Reviewing the Lithic Evidence 

There are a number of elements within a lithic assemblage that can be used to discern the probable 

use of a site, with regards to the differences in activities between residential base-camps and 

procurement locations or specialised field camp site-types. The lithic component of a long-term 

residential home-base will differ markedly from that of an overnight hunting camp for example, 

given the propensity for debris-heavy manufacturing and maintenance activities to be conducted 

at the former (Binford 1980:9). In light of this, there are a number of characteristic attributes that 

are indicative of mobility patterns, and hence site-types. These are largely based on the presence 

of formal tools. For example, high tool diversity; caching of material; the presence of exhausted 

tools (due to ‘gearing up’ or curation), and a small percentage of non-quartz artefacts are suggested 

to represent an assemblage produced at residential base-camps (Ballin 2008:65-66). In contrast, 

low tool diversity; the absence of caches; an extremely low number of exhausted tools and an 

almost exclusive use of quartz are interpreted as an assemblage characteristic of logistic extraction 

camps (Ballin 2008:65-66). The percentage of locally available raw material within an assemblage 

appears to be related to the cost-benefit compromise of direct versus embedded procurement. The 

composition of the assemblages at these different site-types concurs with the evidence proposed 

for these site-types by Binford (1980); however, as both of these site-types occur within forager 

and collector groups, it is difficult to discern between the systems based on the lithic evidence alone. 

Site 

Assemblage Characteristics 

Tool Diversity Tool Cache 
Exhausted 

Tools 

% Locally 

Available RM 

(Quartz) 

Northton Moderate Absent Few 69% 

Tràigh an Teampuill Low* Absent Absent 49% 

Tràigh na Beirigh 1 Extremely low Absent Minimal 94% 

Tràigh na Beirigh 2 Extremely low Absent Absent 97% 

Tràigh na Beirigh 3/4 Extremely low Absent Minimal 100% 

Tràigh na Beirigh 9 Low Absent Minimal 96% 

Pabaigh Mòr South Extremely low Absent Absent 92% 

Table 46. Characteristics to determine between residential and logistic assemblages (adapted from Ballin 2008:65-66; 

Binford 1979) *this includes the organic component of the assemblage 

On the whole, the data presented in Table 46 overwhelmingly conforms to the defining features of 

a logistic tool-kit; however, the evidence from Lewis is much stronger for this than the evidence 

from Harris. At Northton and Tràigh an Teampuill, the characteristics of a specialist task-specific 
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assemblage are less pronounced. The presence of a number of different discarded tool types at 

Northton suggests there may have been more maintenance-based activities at the site. 

Furthermore, the presence of organic components at Tràigh an Teampuill raises the diversity of the 

tool-kit in an aspect that is not evident at any of the other sites. As discussed in Chapter Eight, the 

antler pressure flaker indirectly attests to the production of microliths, and the bone points may 

have been used in the manufacture or repair of equipment or clothing. The presence of imported 

exotic raw materials, both organic and stone also suggests that resources were being brought to 

the sites, to facilitate the activities conducted there. This evidence does not support a residential 

base-camp interpretation for the Mesolithic sites on Harris, but a palimpsest of recurrent resource-

procurement activities taking place over an extended period of time, as would be anticipated in a 

logistically-organised field camp. These economic activities are discussed in a subsequent section 

to further support this interpretation. 

Whilst the typological composition of these assemblages (the first three columns of Table 46), is 

largely indicative of the organisation of mobility, the raw material composition and reduction 

strategies at these sites – the final category proposed by Ballin (2008) – is less useful as a method 

of discerning between residential and logistic systems. As outlined in the preceding chapter, 

Mesolithic technology in this region is characterised by the use of quartz, which has been sourced 

locally and reduced on an ad hoc basis using simple, migrating platform reduction to produce 

expedient flakes and irregular cores. The ubiquity of quartz in the landscape of the Western Isles, 

with sources of this raw material situated close to the Mesolithic sites, suggests that quartz 

procurement was embedded within other activities that were occurring. The location of these sites 

are close to critical resources: the sea for fishing and transport, and quartz outcrops for raw material 

procurement. The logistic assemblage could then be used to quickly process fish, birds, and small 

mammals, in an immediate-return capacity, for consumption by a specialist task-group, or for 

further processing and storage to be later returned to a residential home-base. 

The cost-benefit of procurement strategies proposed by Ballin appear to be based upon 

compromises introduced by terrestrial mobility (Ballin 2008:64-65). In terms of group mobility, 

embedded procurement is an optimal strategy given the propensity for quartz to fracture easily. 

This results in the continual need to replenish supplies, and is reflected in the expedient use and 

discard of informal flakes. It has been argued that the high transport costs associated with this 

would not be conducive to groups with high mobility (Ballin 2008:64; Lindgren 1995:96; Tallavaara 

et al. 2010:2447-2448). Furthermore, the frequent discard of irregularly reduced quartz cores 

before they were exhausted is an uneconomical and inefficient strategy, which has also been 

associated with low group mobility (Hertell & Tallavaara 2011:98). However, this profligate 

treatment of quartz would only become problematic if there were no sources of better-quality raw 

materials available, and sources of lesser-quality raw materials were restricted. This is not the case 
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for the Western Isles. Furthermore, as discussed previously the use of boats would offset high 

transport costs, facilitating a wider range of movement (Ames 2002). 

The complexities of utilising the proportion of locally available raw material as a proxy for the extent 

of residential mobility is exemplified by contrasting evidence from northern and southern Norway, 

and Ireland. In the Later Mesolithic of northern Fennoscandia there is a marked diversification of 

lithic raw materials, in this instance to locally available vein quartz. A less formal toolkit resulted 

from the technological changes that were made in order to adapt to the poorer-quality of this raw 

material. On the whole, this “relaxed constraints on mobility posed by the use of specific localized 

raw materials”, allowing increased residential mobility associated with larger foraging ranges 

(Manninen & Knutsson 2014:95). The diversification in raw material use, and subsequent relaxation 

of those constraints are also observed in the Later Mesolithic of Ireland. In contrast to northern 

Fennoscandia however, this facilitated smaller group movements, as people no longer relied upon 

long-distance moves in order to directly obtain flint from sources restricted to the north-east (Costa 

& Sternke 2009:799). Furthermore, the rise of discrete ‘social territories’ in south-western Norway, 

implied by the restricted movement of locally available raw materials and stylistic differences of 

artefacts, attests to diminishing residential mobility (Bang-Andersen 1996a:439; Bergsvik & 

Hufthammer 2009; Bergsvik & Storvik 2012:32-33; Olsen & Alsaker 1984:97). 

On the whole, it is abundantly clear from the evidence presented in both Chapter Eight, and the 

preceding section of this chapter that the proportion of raw materials within an assemblage is a 

significant informative factor in establishing the extent of hunter-gatherer mobility. The percentage 

of local raw material is one category utilised by Ballin (2008), in order to differentiate between lithic 

assemblages indicative of the organisation of group mobility. In attempting to fit the quartz 

evidence from the Western Isles Mesolithic assemblages with this category it is evident that, where 

a local raw material is ubiquitous, there is no differentiation between its frequency in a residential 

home-base assemblage, or a logistic task-site assemblage. The evidence from the Western Isles, 

Ireland, and Norway all demonstrate evidence for adaptively diversifying both raw material 

procurement and lithic technology, to exploit locally available raw material resources. In some 

cases, this facilitated lower residential mobility, in other cases residential mobility increased. It is 

therefore impossible to determine which of these mobility strategies are present from the 

percentage of local raw material, consequently this is an inappropriate criterion suggested by Ballin 

(2008:65-66). 

This review of the lithic evidence has provided a number of tentative indications that the Mesolithic 

inhabitants of the Western Isles were logistically organised, adapting their lithic technology to suit 

the availability of raw materials and procurement of different resources. As such, the lithic 

industries from these sites display aspects of both immediate- and delayed-return strategies. The 
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following section presents the evidence for subsistence activities from these sites, and others along 

the western Atlantic seaboard, with the purpose of strengthening this proposal. 

9.3.3. Variation and Adaptation in Mesolithic Subsistence Strategies 

The inextricable relationship between subsistence, technology and mobility is without doubt. This 

section takes the evidence for economic activities outlined in Chapter Eight, and aligns it with the 

subsistence models of foragers and collectors, immediate-return and delayed-return to form a more 

coherent foundation for the proposal that the Mesolithic hunter-gatherers of the Western Isles 

were logistically organised communities. 

In the European Mesolithic, a reduction in residential mobility is directly linked with subsistence 

and the development of marine relations (Bjerck 2007; Hertell & Tallavaara 2011:108; Newell & 

Constandse-Westermann 1984). Given the extremely high biomass of coastal regions, it has been 

suggested that this environment could support near sedentary, or higher density, populations 

(Ames 1994; Arnold 1996; Hayden 1990; Renouf 1991; Rowley-Conwy 1983; 2004; Simmons 

1996:26; Williams 1987; Yesner et al. 1980). Equally, ethnographic evidence has demonstrated that 

a heavy reliance on large terrestrial game results in high residential mobility. Longer occupation in 

environments where terrestrial resources form the main subsistence base is reflected in the 

broadening of the number of species exploited, as pressure on the surrounding resource base 

intensifies (Binford 2001; Kelly 1995). 

The absence of any conclusive evidence for any large terrestrial game at the Western Isles sites 

suggests the latter mode of subsistence is unlikely to begin with. The extraordinary preservation 

conditions at these sites presents a valuable dataset with which to reconstruct Mesolithic 

subsistence practices. Moreover, the presence of faunal material at Northton and Tràigh an 

Teampuill provides a unique insight into the organic assemblage of non-shell midden open-air sites 

in the Western Isles. Only very recently have comparably preserved faunal assemblages been 

discovered at non-shell midden open-air sites in the Inner Hebrides. Excavations at Rubha Port an 

t-Seilich and Storakaig on Islay, and Fiskary Bay on Coll have revealed open-air sites rich in 

fragmented faunal remains and charred palaeobotanical material similar to those at Northton and 

Tràigh an Teampuill (Mithen & Wicks 2009; 2010; 2011a; 2011b; 2011c; 2012; 2013; Mithen et al. 

2007d). These sites demonstrate clear marine-oriented subsistence practices, especially at Fiskary 

Bay, which has been interpreted as a specialised fish processing site. The broad range of fish species 

present has been taken to suggest that a fish trap was probably used to target these resources, 

which is comparable to the proposed fishing strategy at Northton (Blake 2011; Mithen & Wicks 

2009; Mithen et al. 2007d). The faunal assemblages at Rubha Port an t-Seilich and Storakaig are 

representative of the exploitation of a broader spectrum of resources. Both marine and terrestrial 

species are present, which include fish, small terrestrial mammals, wild boar, red and roe deer 
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(Mithen et al. 2007d). Collectively, these five sites represent the only non-shell midden sites with 

faunal remains in Scotland (Mithen & Wicks 2011b; 2011c; 2012; Wicks et al. 2014:407). The faunal 

assemblages from Northton and Tràigh an Teampuill demonstrate that the Toe Head Peninsula was 

a prime location for hunting, gathering and fishing over the course of a millennium. These sites 

were ideally situated to exploit both coastal and terrestrial resources, a short distance in land. The 

diverse range of resources present at Northton demonstrate definite seasonal evidence for 

occupation from spring to autumn, although year-round occupation may have been feasible (Table 

41). The resources at Tràigh an Teampuill also indicate that occupation of the peninsula was viable 

throughout the year, however without full analysis of the zooarchaeological and archaeobotanical 

assemblages this cannot yet be verified. The spread of occupation deposits across a wide area of 

the peninsula, in combination with the above data may suggest the sites served as a base for 

repeated seasonal occupation, perhaps as a short-term residential base-camp, or longer-term task-

site. 

The nature of the Late Mesolithic sites on the Toe Head peninsula appears similar to coastal sites 

of the Middle and Late Mesolithic in Norway, discussed in Chapter Three. During the Middle 

Mesolithic, there is evidence for decreasing residential (whole group) mobility to the point where 

the Later Mesolithic is characterised by semi-sedentary groups living in large coastally-situated 

residential bases. This low level of residential mobility was supported by a broad-spectrum 

subsistence strategy based largely on marine resources with, occasional, logistically organised 

forays into the interior (Bergsvik 2001; Bergsvik & Hufthammer 2009; Bergsvik & Storvik 2012; 

Gundersen 2009:239; Indrelid 1978:166; Nygaard 1990:233; Renouf 1991:92). This fits with the 

greater carrying-capacity of a rich coastal biomass in sustaining a denser, more settled population 

suggested above. This does not imply that Mesolithic people were no longer mobile, but that the 

wholesale movement of communities is more likely to have taken place within the coastal zone, 

rather than from the coast to the interior (Simmons 1996:26). 

As in Norway, the Inner Hebridean sites that are contemporary with the occupation of the Toe Head 

peninsula clearly attest to the movement of Mesolithic groups around the western coast of the 

mainland and islands of the Inner Hebrides (Figure 261 and Figure 262). However, it is difficult to 

ascertain whether this movement made by whole residential groups, or by logistically organised 

task-groups. This issue is highlighted by the seasonality evidence from the Terminal Mesolithic shell 

middens on Oronsay, in the Inner Hebrides, which have been the subject of a long-standing debate 

over the occupation of this small island. One interpretation of the evidence is that each of the 

middens on the island represent different seasonal residential bases of a single group, occupying 

the island throughout the year (Finlay et al. 2002; Mellars et al. 1980; Richards & Mellars 1998). 

Alternatively, it has been proposed that the middens represent logistic task-sites, occupied 

sporadically at different times of the year, by groups from a number of communities that were 
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more frequently resident on other larger, neighbouring islands (Bonsall 1997; Mithen 2000e; 

Mithen & Finlayson 1991; Wickham-Jones 2009d:483). Both scenarios fit with the attributes of a 

collector strategy, yet a dearth of comparatively dated sites from the region has, until recently, 

prohibited any resolution of the debate. The date of the recently discovered open-air occupation 

at Storakaig, Islay overlaps with those of the shell middens on Oronsay, and Bayesian modelling of 

the dates from these sites has begun to resolve a number of issues (Wicks et al. 2014). Although 

tentative, one conclusion based on the Bayesian model is that the formation of the shell middens 

may have been separated by as much as 200 years. This significantly diminishes the likelihood of a 

single residential community. Furthermore, the presence of a contemporary group on Islay 

strengthens the probability that Oronsay was visited on a seasonal basis by mobile hunter-gatherer-

fishers, but also poses the possibility of two separate groups (Wicks et al. 2014:421). 

The radiocarbon dates from the Western Isles shell midden sites attest to a third contemporary 

group occupying these islands. The shell middens on the Cnip headland and Pabaigh Mòr are open-

air, similar to contemporary middens on Oronsay and Risga (Wicks & Mithen 2014; Figure 265 and 

Figure 266). These site-types conform to a distinctive aspect of Late Mesolithic settlement and 

subsistence along the Atlantic seaboard. Open-air shell middens are also found along the Scottish 

east coast, Brittany, and the large Ertebølle middens of Denmark (Andersen 2004; Bailey 1992 ; 

Coles 1971; Dupont et al. 2009; MacKie 1972). These differ to the middens on the Oban coastline 

and Skye, in Ireland, Norway, and the Asturian shell middens of Spain, which are situated in caves 

or rockshelters (Anderson 1895; 1898; Bjerck 2007; Clark 2004; Connock 1985; Connock et al. 1992; 

Fano Martínez & González Morales 2004; Hardy 2013; Hardy & Wickham-Jones 2009b; Saville et al. 

2012b). 

The general consensus is that the presence of shell middens along the Atlantic seaboard is primarily 

a result of local coastal geomorphology, preservation conditions, and the nature of the activities 

conducted at the sites, which were determined by the availability of resources (Bonsall 1996:17; 

Hardy 2013). The location of these midden sites was contemporary with the shoreline, situated on 

the rocky coasts of a network of islands, sea lochs, and skerries that would have provided sheltered 

conditions for fishing and seafaring, and abundant access to marine resources (Bjerck 2007:6-7; 

Bonsall 1997:31). Furthermore, the seashore acted as a liminal zone between sea (high tide) and 

land (low tide), which would have provided an opportunity for the intensive exploitation of different 

resources dependent on the time of day or night (Pollard 1996:202-203). 
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Figure 265. Tràigh na Beirigh 2 and Pabaigh Mòr South (starred) alongside the contemporary palaeoenvironmental site 
at DLS’13 #30 and Mesolithic sites from the Inner Hebrides and western Scottish mainland. 1. Risga; 2. Ulva Cave; 3. 
Staosnaig; 4. Caisteal nan Gillean I; 5. Caisteal nan Gillean II; 6. Cnoc Sligeach; 7. Cnoc Coig; 8. Priory Midden; 9. 
Storakaig; 10. Shewalton. Ordnance Survey data © Crown Copyright/database 
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Figure 266. Tràigh na Beirigh 1 and Tràigh na Beirigh 9 (starred) alongside the contemporary Mesolithic sites from the 
Inner Hebrides and western Scottish mainland. 1. An Corran; 2. Carding Mill Bay; 3. Staosnaig; 4. Caisteal nan Gillean I; 
5. Caisteal nan Gillean II; 6. Cnoc Sligeach; 7. Cnoc Coig; 8. Priory Midden; 9. Storakaig. Ordnance Survey data © Crown 
Copyright/database 
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The combined otolith data from the Oronsay middens indicated long fishing seasons throughout 

the summer months, and into the winter (Mellars et al. 1980). This contrasts with the middens on 

the Cnip peninsula of Lewis and Pabaigh Mòr South, where the evidence attests to fishing during 

the spring, autumn and early winter. There are no seasonal indicators at the middens on Oronsay 

or Cnip to suggest whether Mesolithic people continued to occupy these areas during the winter 

offshore migration of young gadids, or whether they moved away to exploit resources elsewhere. 

There is, so far, limited evidence to suggest that saithe were fished during the summer at Tràigh na 

Beirigh 1 and Tràigh na Beirigh 2 and Pabaigh Mòr South, in contrast to the sites on Oronsay, which 

further study may resolve (Morley 2015:38). The summer exploitation of saithe is well documented 

at Olsteinhelleren, Hardanger, western Norway (Bergsvik & Hufthammer 2009). This rock-shelter 

site, which contained unusually substantial shell deposits for a Norwegian Mesolithic site, has been 

interpreted as a field-camp, but one which was occupied over an extended period of time in order 

to exploit a wider range of species (Bergsvik & Hufthammer 2009). 

Similarly, Scottish shell middens are interpreted as special purpose camps for the processing of fish 

and shellfish, occupied by logistically organised task-groups. These activities occurred on a seasonal 

basis, often over an extended period of time, which “fulfilled a specific role in the Mesolithic 

settlement-subsistence system of the region” (Bonsall 1997; 2004:16-19; Finlayson 1990b:203; 

Pollard 1996; Pollard et al. 1996:177; Warren 2000:100). It should also be noted however, that the 

task-specific nature of shellfish collecting or fish processing at midden sites may have simply been 

created during a few hours spent collecting resources, as observed during ethnographic study of 

the Anbarra of northern Arnhem Land in Australia. Discrete episodes of discard within midden 

deposits represented ‘dinnertime camps’ of small groups of individuals returning to the same place 

and consuming shellfish, whilst conducting other activities (Andersen 2004; 2007; Bonsall 1997:30; 

Meehan 1977; 1982). Discrete layers of ash deposits and lenses of single mollusc species, which 

were identified at Ulva Cave, are interpreted as “individual deposits of refuse” (Russell et al. 

1995:278). A similar interpretation may be made for the razor clam ‘dump’ at Tràigh na Beirigh 1, 

which indicates this species had been collected specifically, within a short space of time (Evans 

2015:69-70). Such activities are examples of immediate-return foraging strategies. Whilst on the 

surface, this diverges from the overriding argument for a delayed-return, logistically organised 

system, the specialist task-group must sustain itself in order to conduct the necessary extraction 

and processing of their designated resources. 

Overall, the shell middens from the Bhaltos peninsula and Pabaigh Mòr are largely comparable with 

contemporary middens of the Inner Hebrides and western Scotland, as well as the broader Atlantic 

façade – they are collections of “marine shells within a coastal location” (Wickham-Jones 

2009d:478). When considered on a micro-scale, however, a high degree of variability is apparent in 

terms of location, composition, function, formation and duration of occupation. As such, it has been 
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suggested that Mesolithic shell midden sites in Scotland, and Europe as a whole, cannot be 

interpreted as a homogenous entity, but as a “disparate phenomenon…a varied part of the 

archaeological record” which require further contextualisation within wider Mesolithic settlement 

and subsistence practices (Gutiérrez-Zugasti et al. 2011; Wickham-Jones 2009d:482). 

9.3.3.1. Further Complexities of Mesolithic Subsistence Strategies 

From the evidence presented thus far, the marine resource-dominated faunal assemblages and 

coastal locations of the sites on the Toe Head Peninsula, the Cnip headland, and Pabaigh Mòr 

certainly attest to a sustained occupation of the littoral zone. When considered alongside the 

contemporary evidence of the Scottish west coast, the seasonally-based subsistence activities of 

these sites strongly indicate they functioned as specialised task-camps. This continues to fit with 

the logistic system first indicated by the lithic evidence. However there is as-yet no definitive 

evidence for a residential home-base site akin to the Mesolithic house structures of northern 

England, the Isle of Man, and east Scotland (Brown pers. comm.; Gooder 2007; Robertson et al. 

2013; Waddington 2015) . 

The absence of evidence for a conclusive residential home-base is a similar problem that occurs in 

the Later Mesolithic of Ireland (Finlay 2003:92). However, this is mitigated by the extensive 

evidence for delayed-return technology, where there is strong indication that Mesolithic people 

exhibited “a greater reliance on organic components and fixed equipment” (Finlay 2003:89, 90-92), 

in the form of fish traps that were described in Chapter Three (McQuade et al. 2007; McQuade & 

O'Donnell 2007; 2009). Although there is strictly no evidence for specialist and complex technology 

such as traps or nets in the Western Isles, this technology is implicit through the faunal record 

described in Chapter Eight (Smart 2003). Furthermore, the necessity for boats in facilitating the 

successful occupation of each of these island locales during the Mesolithic was also discussed in 

Chapter Three. The investment in time and resources to manufacture and maintain “food-getting 

technology” (Rowley-Conwy 1983), is substantial for marine adapted hunter-gatherers. Such 

commitments to fixed facilities implies low group mobility or sedentism, small territories, and rights 

of ownership – further characteristics of ‘delayed-return-logistic’, ‘collector-complex hunter’ 

economic systems observed throughout this chapter (Binford 1980; Newell & Constandse-

Westermann 1984; Rowley-Conwy 1983; Testart 1982; Woodburn 1980; 1982). The investment in 

fixed facilities and boats hints at a ‘complex hunter’ system which may include ownership or rights 

of access to certain resources, both in terms of subsistence and raw materials (Rowley-Conwy 1983). 

Delayed-return activities such as the roasting of hazel nuts and drying of fish for storage is also 

implied throughout the Mesolithic of western Scotland. The faunal remains from Islay and Coll are 

largely preserved due to charring, which is also a notable feature of the faunal assemblage at 

Northton. Whilst this may simply be a product of processing for immediate consumption, the 
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evidence from throughout the Mesolithic of Europe attests to the importance of fish as a stored 

resource, particularly where seasonal fluctuations in resources are most pronounced (Rowley-

Conwy & Zvelebil 1989). 

Whilst the lack of burnt fish bones from Tràigh an Teampuill suggests this resource may have been 

processed in another manner to those at Northton, the presence of a scoop or depression at this 

site may provide potential evidence for the processing of other foodstuffs. The primary fill of the 

scoop is an ashy-clay deposit, very similar to the description of Later Mesolithic pits found at Suidhe, 

Argyll, which “…were filled with charcoal, ash and fine white/grey sand with occasional small 

angular, heat affected stones. One of the pits was lined with ashy clay” (Ellis 2009). One suggestion 

is that pits were used for roasting hazel nuts. In order to replicate the substantial hazelnut deposits 

within a pit feature at Staosnaig, experimental roasting of hazel nuts have been conducted in pits 

that were lined with sand. This was said to aid the recovery of the nuts following roasting. It was 

concluded that the pit identified at Staosnaig was used for a similar purpose, but as it had been cut 

straight into the beach deposits, there was no need for a lining (Score & Mithen 2000). In the 

absence of sand at Tràigh an Teampuill – the site is situated on a rocky platform – this clay-ash 

deposit may have served a similar function as a lining of the pit for the roasting of hazelnuts (charred 

shells were recovered from the site), or processing other foods such as fish or shellfish. The scoop 

was subsequently filled with a dump of periwinkle shells amongst other carbonised material11. The 

numerous pits identified at Mount Sandel have also been taken to suggest that storage and other 

functions were taking place at the site, as such the site was representative of a home-base  

(Woodman 1985b).  

By drawing together the lithic and subsistence evidence, the Mesolithic of the Western Isles can be 

classified as both adaptively immediate-return and delayed-return societies, incorporating both 

simple and complex technology (Layton 2005; Woodburn 1982:449). The expediently produced 

quartz technology in use during the occupation of these sites accords with the logistically organised 

exploitation of low to medium-low ranked, but high-return, marine resources present at the sites 

(Kuhn & Stiner 2001). Across Scotland, specialised shell midden task-sites are characterised by 

expedient technology in terms of design, manufacture and raw material, where simple flakes were 

the desired end product that could be used immediately to process large quantities of fish, before 

being discarded (Bonsall 1997:32; 2004:16; Finlayson 1990b:52; Flenniken 1981; Pollard 1996:203). 

The presence of elements of curated technology within the lithic assemblages of the Toe Head 

peninsula is suggestive of maintenance activities within more generalised task-sites, focussing on 

less targeted resource procurement than the shell middens. The conservative treatment of flint and 

                                                           
11 This cannot be interpreted as a single episode of discard however, as the two radiocarbon dates from this 
fill are statistically inconsistent. 
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baked mudstone indicates there is a concerted effort to maximise these high quality raw materials 

that were expensive to obtain. The abandonment of a small number of microliths at Northton may 

also indicate an element of ‘gearing-up’ as tools were repaired on-site, before use, to ensure they 

did not fail when required (Binford 1979:263). If quartz tools were being produced at these sites, 

and the manufacturing debris is all that remains, this may represent a procurement activity by a 

logistically organised task-group “seeking to procure specific resources in specific context”. This raw 

material was then reduced at the location to produce flake blanks, in turn lowering transport costs 

to subsequently return to the group elsewhere (Binford 1980:10, 16; Manninen & Knutsson 

2014:95). 

Ownership rights and territoriality are difficult traits to identify within such an ephemeral 

archaeological record. The implied ownership of, or rights to, resources has already been discussed 

with regards to fixed facilities and food-procuring technology; however, it may also have extended 

to other resources such as raw materials. Although the extensive distribution of baked mudstone 

and bloodstone around the Hebridean islands indicates unrestricted access, as for diabase and 

greenstone in Norway, the prestige that the presence of an exotic raw material symbolises should 

not be overlooked (Olsen & Alsaker 1984:94; Taffinder 1998). Prestige is a highly influential role 

within egalitarian hunter-gatherer societies that, since it is an attribute bestowed by others rather 

than the individual, limits the rise of social stratification (Spikins 2008a; Woodburn 1982). 

In sum, it is evident that complexities of distinguishing between the economic systems outlined at 

the beginning of this section are substantial. Immediate- and delayed-return, forager and collector 

systems should not be seen as a dichotomy, but considered as adaptive responses to different 

group requirements (Binford 1980:12; Layton 2005; Woodburn 1982:449). The different site types 

on Harris and Lewis are indicative of different activities along the axis of variation in subsistence 

and settlement, which required a stone tool repertoire for both generalised and specialised 

economic tasks within a logistically organised system (compare Figure 267 and Figure 268). This 

accords with localised variation and overarching changes in lithic technology across the Mesolithic 

of the western Atlantic façade, which is discussed in the following section. 
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Figure 267. Mesolithic occupation on Harris 

 
Figure 268. Mesolithic occupation on Lewis 
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9.4. Change and Continuity Across the Mesolithic of the Atlantic Façade 

This final section draws together several notable themes from across the western Atlantic seaboard 

that have emerged as a result of placing the Western Isles Mesolithic within its wider European 

Mesolithic context. These trends are all-encompassing, occurring from Norway in the north, to 

Spain in the south. Primarily, the changes that are observed pertain to raw material use and 

microlithic technology, which suggest an alteration in subsistence and mobility may be underlying 

factors. Conversely, continuity across this vast region appears to be related to less tangible aspects 

of identity and material culture; shell midden construction and their use in funerary tradition is one 

example which endures into the Neolithic, the aesthetic qualities of quartz is another. The use of 

modified shell in both mundane and funerary contexts attests to other aspects of material culture 

that may only be speculated upon. 

9.4.1. Raw Materials 

The first trend has already been noted in the previous chapter - that the Later Mesolithic 

assemblages in the Western Isles are dominated by locally available raw materials. This is consistent 

with raw material exploitation patterns in the Later Mesolithic across the Atlantic seaboard in non-

flint bearing regions. Small-scale import of non-local raw materials is also a consistent occurrence. 

This differs significantly from the Early Mesolithic in these regions; therefore in order to 

contextualise the significance of the changes in raw material choice, it is important to consider the 

relationship between hunter-gatherer communities and the multitude of associated factors 

influencing raw material use. 

As discussed above, importing raw materials such as flint between sites during the Early Mesolithic 

was likely to have been a mitigation strategy against the risks of resource acquisition in an 

unfamiliar environment for colonising groups. During the Later Mesolithic, there is a clear increase 

in the use of more locally available and diverse range of raw materials, “of generally inferior 

mechanical properties” (Myers 1989:84). This occurs independently across the Atlantic seaboard in 

Britain, Ireland, Norway, Spain, and France (Arias et al. 2009; Bang-Andersen 1996b; Costa & 

Marchand 2006; Fuglestvedt 2012; Marchand & Tsobgou Ahoupe 2009; Myers 1989; Nygaard 1990). 

Myers (1989) criticises the lack of attempts to explain this, stating that it is unlikely that reasons 

such as the difficulty of obtaining high quality raw materials like flint, due to the rising sea levels, 

could explain changes throughout the whole of Britain, for example. 

The changes in raw material use during this period are evident at the earliest stage – procurement. 

Where a non-local raw material is imported to sites during the Later Mesolithic, it appears as a pre-

formed blank, resulting in significantly less primary knapping debris at the site. This is linked to 

lower residential group mobility, with smaller ‘task’ groups procuring material from ‘workshop sites’ 

(Andrefsky 1994; Binford 1980:5; Torrence 1989b). The use of local raw materials is therefore 
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associated with the reduction in the size of territories in Later Mesolithic France, Norway, and 

Ireland (Costa & Marchand 2006; Glørstad 2013:72; Warren 2015a:53). Consequentially, social 

networks that existed between groups may be affected by reduced group mobility. The significantly 

lower frequency of ‘exotic’ raw materials, irrespective of their quality, may indicate that locally 

available resources were occasionally of equal or better quality, or that lesser-quality material was 

so abundant this offset the risk of failure (Andrefsky 1994:28-29; Manninen & Knutsson 2014:95). 

Furthermore, it may be that the tasks conducted at particular sites did not warrant the use of formal 

tools made from high-quality raw materials, when expedient quartz flakes would suffice, thus 

imported material could be curated for other purposes. On the whole, once communities were 

familiar with their surroundings by diversifying raw material use to include locally available 

resources, there was no longer the need for costly long-distance ‘insurance’ contacts with other 

groups (Manninen & Knutsson 2014:95). This is consistent with attributes of the ‘undifferentiated 

network system due to distance’ proposed by Madden (1983:196) for the Middle Mesolithic of 

Norway. 

A further aspect of the diversification of raw materials and change in procurement strategies are 

the direct changes in technology, typology, and stylistic output of artefacts as reduction strategies 

were modified to fit the available raw material. This is most pronounced in the abandonment of 

microlithic technology in the Later Mesolithic of Ireland (Costa & Sternke 2009). This change is 

attributed to both the “weakening” of social relationships with Britain and the exchange networks 

that supplied flint, which then combined with the change in technological tradition, to have a direct 

effect of “raw material constraints” (Costa & Sternke 2009; Woodman 2009a:210). Thus, 

“accept[ing] increased technical difficulties associated with the use of non-flint raw 

materials… [people] chose an increased flexibility of lithic production and a de-

specialisation of their toolkits to achieve a significant reduction of social time and 

energy costs associated with the maintenance of an exchange network that would 

secure access to high quality raw material” (Costa & Sternke 2009:799). 

Overall, the diversification of local raw material use in the Later Mesolithic can be interpreted as an 

opportunistic and adaptive strategy (Ballin 2009:27; Manninen & Knutsson 2014:94; Saville 1994). 

The evidence demonstrates how social, functional and economic factors relating to the 

independent increase in the use of local raw material in newly colonised, non-flint environments 

along the Atlantic seaboard are intrinsically linked. This has a significant effect on technological 

organisation. Below, the diminishing use of microliths in the region is considered as a parallel trend, 

further supporting the demonstrable link between the uptake in use of local raw materials, 

alongside decreasing residential group mobility, and a rise of logistically organised settlement 

systems. 
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9.4.2. Moving Away from Microliths - An Island Adaptation? 

The lack of microliths within the Western Isles Mesolithic assemblages was discussed in the 

previous chapter from a purely functional perspective. This section considers the conspicuous 

absence of microlithic technology further, as part of an overarching trend in north-east Europe, 

where social factors may have been just as significant as raw material availability/suitability and 

subsistence strategies. 

It is possible that the scarcity of traditional Mesolithic blade and microlith technology in the 

Western Isles indicates the development of an independent lithic style or tradition, as in Ireland 

and the Isle of Man discussed in Chapter Three. The undiagnostic flake technology, and small 

number of blades, recovered from the early excavations at Northton was interpreted as potentially 

“representative of a Mesolithic chipped stone assemblage in, at least, this area of the Western Isles” 

(Gregory & Simpson 2006:79). The combination of adaptations to a more diverse raw material base, 

and low risk trapping/fishing that were already taking place at Northton, may have initiated a 

sequence of operational change which led to the eventual abandonment of microlithic technology. 

The Mesolithic archaeological record from the Western Isles appears no different to the rest of 

Scotland, except for the fact both large terrestrial game and microlithic technology is largely absent 

in these islands. This suggests subsistence and microlith use are closely connected, as indicated by 

the transition from microlithic to macrolithic technology in Ireland. 

The factors influencing this change may have been exacerbated by the lack of flint in the region, as 

discussed in the previous chapter. To reiterate, flint microliths are only present at Northton, the 

earliest known site in the Western Isles. It is possible that these tools were brought to the site with 

the first inhabitants of Northton from their place of origin; however another scenario may be 

presented. The earliest inhabitants of Northton may have arrived without microliths, yet a local 

source of flint was available to produce these tools.  Both suggestions are indicative of the fact that 

wherever the first settlers of the Western Isles came from, most likely the Inner Hebrides, they 

brought with them the microlithic tradition of their homeland. If local sources of flint became 

depleted over time, and the quality of raw materials that replaced it (i.e. quartz) were not conducive 

to microlith production, this indicates an adaptation of the technology to suit the available raw 

material (Manninen & Knutsson 2014). A similar situation may have been caused by a change in 

mobility, or access rights, by the Terminal Mesolithic, as such the occupants of the sites on Lewis 

were unable to procure enough material for the manufacture of these tools. This seems unlikely 

however as, although of negligible quantities, flint is still present in the assemblages at most of the 

Tràigh na Beirigh sites and Pabaigh Mòr South. 

As has been repeated throughout this discussion, it is clear that the communities inhabiting the 

Western Isles were part of a mobile population with access to raw material resources in the Inner 
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Hebrides. Such mobility may have provided a social impetus for these inhabitants to differentiate 

themselves from other groups because of contact, which was manifested through technological 

change and, gradually, the abandonment of microlithic technology (Bergsvik & Olsen 2003:401; 

Garrow & Sturt 2011:66; McCartan 2004:280). This is an extension of the ‘differentiated network 

system due to distance’ discussed in the preceding section, whereby regional stylistic differences 

emerge from the proximity of neighbouring groups, local environment, and available resources in 

terms of both subsistence and raw materials (Madden 1983:198). The presence of an unfinished 

quartz oblique point at Tràigh na Beirigh 9 is the first evidence for a microlith in the Western Isles 

for over 2000 years, which attests to continued contact with microlith-producing groups elsewhere. 

It is impossible to ascertain whether this artefact may have been imported from the Inner Hebrides 

by inhabitants or visitors, given the homogeneity of quartz; or whether it may represent an attempt 

to reinstate such technology if, indeed, microlith technology had been abandoned. 

In fact, proposals concerning the loss of microlithic technology during the later Mesolithic of 

western mainland Scotland and the Inner Hebrides have been made since the turn of the 

millennium; however, they are frequently buried within ‘big picture’ discussions, and almost as a 

passing aside. A “…trend through time towards bipolar and flake based reduction, and evidence is 

growing for a lack of microliths on some sites during the later part of the period” in Scotland was 

raised in a review of the Scottish Mesolithic in 2002 (Finlay et al. 2002:108). When discussing the 

lithic assemblage from Camas Daraich, Wickham-Jones noted that “parts of the Mesolithic, 

especially perhaps the later Mesolithic, may not have used microlithic tools”, but did not expand 

further (Wickham-Jones 2004a:36). Deep within the Scotland’s First Settlers sites report, alongside 

a description of the fieldwalking activities around An Corran Hardy and Wickham-Jones write: 

“One of the characteristics of Mesolithic sites around the Inner Sound, indeed further 

afield on the west coast of Scotland, is that when radiocarbon determinations are 

obtained they tend to come out early in the Scottish Mesolithic. There are very few 

later Mesolithic dates from this area, and one is forced to consider why. It is unlikely 

that the area became depopulated in the latter half of the Mesolithic and it may be 

that the archaeological record has been biased by the use of microliths to identify 

‘Mesolithic’ sites. The possibility of a non-microlithic period towards the end of the 

Mesolithic has been raised on several occasions (for example Wickham-Jones 

2004b; Woodman 1989). Late dates exist for microlithic sites in east Scotland (for 

example Warren forthcoming), but as yet they are rare in the west. Is it possible, 

therefore, that the Later Mesolithic of the Inner Sound area made much less use of 

microliths? If this were so, the main element by which we usually recognise 

Mesolithic sites would be removed.” (Hardy & Wickham-Jones 2009a:95-96). 
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The conspicuous absence of microliths at Cnoc Coig can no longer be attributed to the ‘Obanian’ 

tradition, but may in fact relate to a decline in microlith use from the 6th millennium, despite the 

continuation of narrow blade technology (Pirie et al. 2006). Notably, the lack of diagnostic tools has 

also been described as a feature of Scottish west coast Neolithic (Pirie forthcoming). With the 

exception of Northton, the fortuitous preservation of organic remains is the only evidence that the 

sites from the Western Isles represent Mesolithic activity. In the absence of microliths, the type-

facies of the Mesolithic, the contextual evidence in terms of dating and faunal remains are critically 

important – without such these assemblages would remain undiagnostic and unrecognised. If Hardy 

and Wickham-Jones are correct, this has significant implications for identifying Mesolithic sites 

throughout the region and “may, for instance, suggest that many of the undiagnostic lithic scatters 

recovered from the area represent the very evidence that has eluded the recognition of Mesolithic 

activity in this region for so long” (Gregory et al. 2005:954). As archaeologists, we may have to 

seriously consider revising what constitutes ‘characteristic’ Mesolithic material in western Scotland. 

Microliths can no longer “be used as a broadscale marker across the whole chronological, and 

perhaps even geographical, sweep of the Mesolithic” (Wickham-Jones 2009a:157). 

It appears there is a close correlation between the trends described above. The diminishing use of 

flint across the extreme north-west of Atlantic Europe is observed alongside a change in technology 

away from microlith production around the 6th-7th millennium cal. BC. It is notable that this 

contrasts to continental Europe where microlith technology endures; however, changes in microlith 

forms, such as the appearance of trapeze microliths, have been attributed to “a broader suite of 

technological shifts that coincided with wider social change” at the same time (Anderson-Whymark 

et al. 2015:968; Warren 2015a). 

The coincidence of these broad-scale changes in technology and raw material acquisition suggests 

that there is an overriding causal factor that occurs during the 7th millennium cal. BC. As noted 

above, this had a significant impact on large-scale social change that occurred across Europe. It is 

during this millennium that the Later Mesolithic begins in Norway and Ireland. In both regions the 

uptake of local raw materials is observed; delayed-return subsistence becomes notable in Norway, 

and there is an abandonment of microlithic technology in Ireland. All of these characteristics seem 

to combine in Western Scotland, as ascertained throughout this discussion. Crucially, it is also the 

millennium in which a number of catastrophic events occurred, including the collapse of the 

Laurentide ice sheet and the Storegga-slide tsunami, which caused devastating flooding and sea-

level rise across the North Atlantic, in addition to the 8.2ka BP (c.6200 cal. BC) cold event. The 

Storegga-slide tsunami is argued to have caused the final inundation of Doggerland in the North 

Sea basin (Weninger et al. 2008:16-17). This event consequently sealed the physical and cultural 

separation of Britain from the continent. The latter departure is manifest in the absence of trapeze 
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microlith forms in Britain which, as described above, develop throughout continental Europe during 

this period (Ballin in press; Jacobi 1976). 

The impact of this event across Mesolithic Atlantic Europe cannot be over-emphasised, given the 

extreme maritime adaptations of the Mesolithic communities inhabiting these regions. Below, the 

effects on major elements of settlement and subsistence are summarised in order to present a 

viable rasion d’etre for the pan-European uptake in local raw materials, and the abandonment of 

microlithic technology in the far north-west. This is also linked to the end of the seeming unusually 

long-lived immediate-return subsistence in coastal south-west Norway. 

Understandably, the most pronounced effect of the rising sea levels and flooding event would have 

been felt along the coast. As has been established throughout this thesis, beach pebble flint was a 

staple raw material during the Mesolithic of Norway, Scotland, and Ireland, and procurement of 

beach flint was likely to have been embedded within general subsistence activities during the Early 

Mesolithic. If the ‘insurance’ hypothesis stands, high mobility would have ensured a plentiful supply 

for inland groups or island colonists from coastally-based contacts. The scouring of the coast caused 

by the advance and retreat of waves during this event would have instigated extensive coastal 

erosion and drowned beach deposits (Weninger et al. 2008). This may have seriously compromised 

the availability of beach flint and disrupted the supply of such, as well-known sources were lost 

under the encroaching sea. As a result, communities may have had to resort to using more 

immediately available raw materials that outcropped nearby. 

The supply-chain for raw material procurement would also have been catastrophically affected. The 

Storegga-slide tsunami would have destroyed coastal homes and their resident families – possibly 

even whole community groups (Weninger et al. 2008:16). Small hunter-gatherer societies, 

particularly island inhabitants, are highly vulnerable to demographic collapse (Riede et al. 2009; 

Wicks & Mithen 2014). Not only would this impact on population densities as a whole, but these 

communities are “dependent upon extensive alliance networks for the flows of people, information 

and material items…should one part of the network be de-stabilised the effects might reverberate 

over an extensive area” (Wicks & Mithen 2014:254). 

The short-term effects of population fluctuations “can precipitate archaeologically as regional 

depopulation, site abandonment or the change or disappearance of particular tool making 

traditions” (Riede et al. 2009:178). Evidence for the former has been proposed by Wicks & Mithen 

(2014), whereby a palaeodemographic model based on radiocarbon dates indicates a shift in 

settlement towards the Inner Hebrides in the wake of the 8.2ka BP event. This should be treated 

with caution however, as the data is heavily skewed by sites with high numbers of dates. It may be 

that the abandonment of microlithic technology in the north-west of Europe is evidence for the 
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latter. The severance of connections with microlith-using and flint-supplying communities due to 

such an event, or the weakening of these relationships as colonising communities became more 

established, may have led to increasing regionalisation as technological change occurred in order 

to adapt to different raw materials, as proposed for Ireland (Costa et al. 2005; Woodman 2009a). 

The effects on subsistence and the food resources of coastal communities must also be considered. 

Flooding of coastlines, and the influx of saltwater into fresh water environments, would have 

severely imbalanced local ecosystems for significant distances inland following extensive tidal run-

up. Not only would this have affected coastal resources such as shell beds, migration and breeding 

patterns of fish and marine mammals, but the incursion of saltwater would have also destroyed 

terrestrial ecological systems (Losey 2005; Weninger et al. 2008:16; Wicks & Mithen 2014). Food 

shortages must have been a stark reality, with a risk of starvation, as stored food caches may have 

also been destroyed (Spikins 2008b:6-7). Given the higher carrying-capacity of coastal 

environments, the resultant population displacement would have caused significant pressures on 

inland resources, as communities shifted in reaction to the encroaching sea (Coles 1999:54; Newell 

& Constandse-Westermann 1984). The concentration in population may have limited the extent of 

group mobility, and competition over resources has been interpreted as the reason for evidence of 

interpersonal violence in Mesolithic burials on the Continent. This may have precipitated the 

establishment of territories and implicit changes toward more a stratified society as a consequence 

(Spikins 2008a). 

It does not appear that Ireland was directly affected by the Storegga-slide tsunami, however (Hall 

et al. 2010). In terms of subsistence, aspects of delayed-return strategies developed very quickly – 

most likely as an adaptive response to the absence of large terrestrial game, as discussed in Chapter 

Three. It is only the changes in raw material procurement and technology that are observed, which 

may be an indirect result of changes in population dynamics caused by this event, and which are 

not archaeologically visible. By contrast, the effects of this event would have been profound in 

Norway. As discussed in Chapter Three, during the Early Mesolithic it appears that the inhabitants 

of Norway subsisted on a forager/immediate-return basis, with a gradual transition during the 

Middle Mesolithic to a less residentially mobile subsistence strategy. This may have been 

precipitated by an earlier cooling event within the North Atlantic c. 9.2ka BP, which coincides with 

the beginning of the Middle Mesolithic Chronozone (Bjerck 2008b; Fleitmann et al. 2008; Wicks & 

Mithen 2014). The climatic changes that took place during this period, and the consequences 

described above, may be correlated with a shift in settlement patterns to occupy the inner coastal 

zone. Moreover, this may have accelerated the establishment of a near-sedentary and fully 

delayed-return subsistence strategy by the Late Mesolithic. 
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It would appear that the responses of Mesolithic groups in Scotland paralleled those of its Atlantic 

neighbours. In the outer islands, aspects of delayed-return are already present during the earliest 

evidence of occupation, which indicates a similar economic adaptation to Ireland. Furthermore, 

along north-western European seaboard, raw material supplies are affected in a manner that leads 

to the uptake of locally available raw materials, which are distributed on a regional basis. The 

abandonment of microlithic technology in Ireland and some areas of Scotland in the Later 

Mesolithic appears intrinsically connected to this, as an adaptation to local resources both in terms 

of raw material procurement and subsistence. Whilst true microlithic technology did not develop 

in south-west Norway, the distinctive regional styles described in Chapter Three are representative 

of a similar response. On the whole, whilst the changes in raw material procurement and 

technology cannot be attributed to a single environmental event, it is likely that the adverse climatic 

conditions of the seventh millennium cal. BC, and the challenges these posed to Mesolithic 

communities, were a catalyst for the adaptations that were already occurring in relation to 

subsistence based on local environment and ecology (Woodman 2009a:210). Furthermore, these 

changes must have had a significant impact on society and identity. Whilst these elements are 

difficult to trace in the archaeological record, some inferences may be drawn from a number of 

contexts and are discussed in the section below. 

9.4.3. Identity and Material Culture 

This final section considers less tangible evidence for connections that span the Atlantic façade. 

Ideas and identity may be represented through shell midden construction and their use for the 

deposition of human remains, the latter a practice that bridges the Mesolithic-Neolithic transition. 

The modification of shells for use as beads, and other purposes, is another similarity that has origins 

in the Palaeolithic. Finally, an acknowledgement of the non-utilitarian function of raw material 

acquisition is made. 

9.4.3.1. Shell Middens as Monuments and Funerary Places 

One aspect of shell midden formation that has been recently highlighted is the deliberate 

construction of these deposits to function as focal points in the landscape, rather than “simply by 

products of repeated activity and waste discard at particular places in the landscape” (Bailey et al. 

2013:4). The open air shell middens on Oronsay and Risga are the only kind of “upstanding 

monuments” from this time period (Figure 269; Wickham-Jones 2009d:479). Maritime 

communities that inhabit coastal areas, and continually move around using the sea, are intimately 

knowledgeable of both their land-scape and their sea-scape. This comes from generations of “local 

knowledge and lived experience that lie at the heart of the way in which people socialize seascapes. 

Part of this process of socialization is the recognition and marking of the land and sea in ways that 

may leave material traces” (Cooney 2004:324); which occurs in both functional and spiritual 
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spheres (Bailey & Milner 2002:6; Robinson 2013). Ethnographically known midden-producing 

cultures, such as the Maori, have a tradition of using distinctive terrestrial landscape features that 

could be observed from the sea as landmarks to define boundaries for fishing grounds (Barber 2004). 

The flocks of scavenging seabirds such as skuas, gulls, fulmars and gannets surrounding fishing 

trawlers is a common sight at sea and in modern fishing ports (Mitchell et al. 2004). This may have 

been something which occurred during the Mesolithic. Accumulations of shell refuse, fish offal, and 

other animal remains may have attracted seabirds and other scavenging animals to the site, making 

it a very visible and audible point along the coast. Colonies of cormorants have been observed 

nesting on an archaeological shell midden at Daisy Cave, San Miguel Island, California, and gulls 

have been seen to occupy a prehistoric shell midden in the San Juan Islands, USA (Erlandson & Moss 

2001:419-420). Whilst this contributes a note of caution regarding the inter-mixing of natural and 

cultural deposits at these middens, it also demonstrates how seabirds may have been drawn to 

these sites to scavenge carrion. 

The shell middens on the Cnip headland could have easily been observed from the sea and may 

have functioned as an important point in the landscape, especially when considering their 

prominent position on the cliff-top. In a study of Neolithic chambered cairns on Orkney, Woodman 

(2000) noted that the prominent coastal positioning of the monuments ensured they 

predominantly overlooked the sea, and that “the view out from them was more important than the 

view of them from the land” (Warren 2007:313); as such the cairns and middens were more visible 

from the sea – a landward perspective (Phillips 2004). Some are strategically placed, marking 

entrances to wide bays and narrow channels, which would be crucial as navigational aids, and also 

perhaps represent boundaries. Land is never out of sight around the island-scape of Orkney, 

therefore the strategic location of the cairns may have formed crucial navigational aids in the strong 

currents and skerries around the islands (Phillips 2004). During the Mesolithic the white, sun-

bleached shell middens along the Cnip headland (Figure 270) may have therefore served, in 

conjunction with “the sky, the sea, the seabed, [as] seamarks and landmarks [to] articulate 

navigation, pilotage and safe arrival in port” (Parker 2001), which has been suggested for the 

Oronsay middens (Mellars 2004:181). 

Many of these locations appear to have already been prominent sites for hunter-gatherers prior to 

the build-up of midden deposits. Evidence from the buried ground surface beneath the main 

midden deposits suggests that these sites were important locales for the initial inhabitants of the 

area. At Tràigh na Beirigh 1, the presence of post-holes indicates structural evidence of some nature 

and at Tràigh na Beirigh 2, lithic debris and faunal remains were recovered from the sand layer 

beneath the midden. Unfortunately, due to lack of dates from the buried ground surfaces at these 

sites, it is difficult to interpret the chronological significance of this. However, it is certain that 

material was incorporated into the ground surface before midden material began accumulating, 



 

417 

 

and is indicative of earlier occupation. The use of sites prior to midden deposition is also seen at 

West Voe, Shetland; in Ireland at Glendhu, Dalkey Island, and Sutton, as well as in the Danish 

Ertebølle (Andersen 2004:394; Melton & Nicholson 2007; Milner & Woodman 2007:109; Warren 

2007; Woodman 1985a:40). 

The continuity in use of these sites is also evident after the main period of midden accumulation. 

Many of the shell middens along the Atlantic seaboard show evidence for continued use into the 

Neolithic, whilst frequently “containing a material culture more reminiscent of a hunter-gatherer 

lifestyle” (Andersen 2004:408; Bjerck 2007; Meiklejohn & Woodman 2012; Melton 2009; Melton & 

Nicholson 2007; Wickham-Jones 2007:88; 2009d). The evidence for the use of shell middens over 

several millennia does not support the notion that the ‘Obanian’ shell middens were a distinct 

cultural or chronological entity, or that shellfish were consumed as a famine food (Bonsall 1997:36; 

2004:14; Wickham-Jones 2009d:481, contra. Mellars 2004:2173-2174). There is a strong likelihood 

that some of the burials were later insertions into the middens, possibly from the earliest Neolithic 

in the region (Wicks et al. 2014:421), which also occurs in the Western Isles. 

 

Figure 269. Caisteal Nan Gillean I, Oronsay from the north-west © RCAHMS (1980). The sea level would have been c.6m 
higher during the Mesolithic, thus the shell middens, now inland, would have been situated along the shoreline (Jardine 
1987). The shell midden itself also stood a much taller, conical mound in a photograph taken prior to the excavations 
carried out by William Galloway and Symington Grieve in 1881 
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Figure 270. Excavation in progress atop the Gridig promontory at Tràigh na Beirigh 1. Situated at the edge of what 
would have been a cliff-face during the Mesolithic, when the sea level would have been a minimum of two metres 
lower and the machair formations above would not have existed, this would have formed a focal point along the 
coastline. Photo courtesy of Mike Church 

As discussed in Chapter Eight, the individual buried within the midden deposits at Tràigh na Beirigh 

9 closely post-dates the traditional date for the Mesolithic-Neolithic transition. The individual 

appears to have been laid on its left side, oriented NE-SW, and no grave goods were observed in 

association with the burial. The age and sex is as yet unknown, although the roots of the teeth are 

fully formed, and the cusps of the pre-molars are heavily worn, suggesting the individual is an adult 

(White et al. 2012:387-389). The isotope data regarding the diet of the individual is the most 

relevant aspect concerning the lithic evidence. The isotope results are directly comparable with 

those from Cnoc Coig and Caisteal nan Gillean II, Oronsay which are of a similar age, or slightly 

earlier than, Tràigh na Beirigh 9 (Figure 271). The isotope signature of the individuals from Cnoc 

Coig indicates that their diet was almost exclusively derived from marine resources, and the trophic 

level indicates that shellfish, fish and sea mammals were likely to have been consumed (Schulting 

& Richards 2002:159). The isotope values from the Tràigh na Beirigh 9 individual are closer to the 

one sampled from Caisteal nan Gillean II. This individual is determined to have consumed a mixed 

terrestrial-marine diet, and the high δ15N value indicates that the marine component of the diet 

was from a high trophic level, such as marine mammals (Schulting & Richards 2002:159). Given that 

the δ15N value for the Tràigh na Beirigh 9 individual is higher than that of the one from Caisteal 

nan Gillean II, it can be reasonably inferred this is representative of a similar diet. The -14.0 δ13C 

value for individual from Ferriter’s Cove, Ireland, indicates a similarly high level of marine resource 

consumption as those from Cnoc Coig; the radiocarbon dates also overlap. This is significant as the 

human remains were recovered in association with domesticated cattle bones, and directly 

“overlap with the date obtained from cattle bone on the site…thus showing prima facie evidence 
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for behavioural overlap between late Mesolithic foraging and early Neolithic style cattle herding 

prior to 4000 cal. BC” (Meiklejohn & Woodman 2012:28). Although this does not necessarily attest 

to farming on Ireland – it may simply have been an imported joint of meat – it does provide evidence 

for connections between hunter-gatherers on Ireland and farming communities elsewhere. Despite 

this contact, hunting and gathering continued in Ireland for several hundred years longer (Whittle 

2007). The earliest Neolithic-dated site containing pottery and domesticated plant remains in the 

Western Isles is at Eilean Domhnuill, North Uist (3792-3361 cal. BC12), which may overlap with the 

date from the Tràigh na Beirigh 9 individual, once the date has been calibrated with an appropriate 

marine correction factor. It is notable that continuity of foraging practices between the Mesolithic 

and Neolithic of western Scotland has also come to light in the archaeobotanical record (Bishop et 

al. 2009). The similarity in Neolithic and Mesolithic lithic assemblages, in terms of the lack of 

formally diagnostic tools, has also been noted (Ballin 2009:44; Pirie forthcoming). The endurance 

of Mesolithic hunter-fisher-gatherer subsistence practices in the Western Isles, beyond the 

traditional date for the Neolithic, is therefore highly plausible. 

 

Figure 271. Isotope values from Tràigh na Beirigh 9, compared with those from Oronsay and terrestrial and marine 
fauna for reference (after Schulting & Richards 2002) 

A further aspect pertaining to the human remains at this site is the uniqueness of the burial, which 

differs from the Mesolithic treatment of the dead in western Scotland, but can be contextualised 

within the wider Mesolithic Atlantic diaspora. There are no articulated human remains known from 

Mesolithic sites in Scotland or Ireland, which contrasts to the evidence from the continent. In France, 

multiple Mesolithic inhumations have been recovered from the Mesolithic open-air shell middens 

at Téviec and Hoëdic, Morbihan which date to 5640-5220 cal. BC and 6040-4440 cal. BC respectively 

(Gray Jones 2011:70; Meiklejohn et al. 2010). Elaborate graves of the Ertebølle cemeteries at 

Vedbæk and Skateholm in Denmark also demonstrate deliberate inhumation of the dead 

                                                           
12 Date range for the earliest phase of occupation. 
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(Albrethsen & Brinch Petersen 1977; Larsson 1988). Middle Mesolithic burials in Norway also fit 

with this pattern. Several female individuals were interred over an extended period of time (7490-

6527 cal. BC) at Søgne, Vest-Agder; a single female was buried in Bleivik, Rogaland; several 

individuals have been recovered at Grønehelleren on the island of Ytre Sule, Sogn og Fjordane; and 

an adolescent was buried in Svarthola cave, in Viste, Jæren (Bjerck 2008b:97; Sellevold & Skar 1999). 

Cave sites were also frequently used for the Mesolithic burial of individuals in Cantabrian Spain 

(Meiklejohn 2009).  

The presence of the single human finger bone at Northton is more consistent with the Scottish 

Mesolithic tradition of the interment of particular disarticulated skeletal elements, although this is 

also well known across Mesolithic Europe. Remains occur in three key locations: midden deposits, 

open sites, and caves/rockshelters. The middens of Cnoc Coig, Caisteal nan Gillean II and Priory 

Midden on Oronsay contained a total of 55 fragments of disarticulated human skeletal remains. 

These primarily included hand and foot bones, however teeth, cranial fragments, and post-cranial 

elements of adults and an adolescent/young adult were also present (Meiklejohn & Denston 1987). 

The Cnoc Coig assemblage is interpreted as the remains of individuals from a place of excarnation 

(Gray Jones 2011:172). In Ireland, the fragment of human femur was recovered from a midden at 

Rockmarshall I, Louth, which was noted by the excavator to be similar in nature to the Scottish 

middens (Meiklejohn & Denston 1987:31; Mitchell 1947). There are also disarticulated human 

remains recovered from middens in France (Beg-er-Vil, Morbihan), and Cantabrian Spain/Basque 

Country (Poza L’Egua, Gipuzkoa); however, these are less common locations than cave/rockshelter 

sites or open sites for the interment of human remains (Meiklejohn 2009; Meiklejohn et al. 2010). 

Mesolithic disarticulated human remains have also frequently been recovered from open sites and 

cave/rockshelter locations in Ireland, England, Wales, Benelux, and Germany (Gray Jones 2011; 

Meiklejohn 2009; Meiklejohn et al. 2010; Meiklejohn et al. 2011; Meiklejohn & Woodman 2012). 

Only a single instance of disarticulated human hand and foot bones has been recovered from 

Skipshelleren rockshelter, Norway (Bergsvik & Storvik 2012; Sellevold & Skar 1999). At Vedbæk, 

Demark both calcined and unburnt loose human bones were recovered alongside formal burials 

(Brinch Petersen 2015). It is not possible to ascertain whether the deposition of the finger bone 

fragment at Northton was in intentional act of burial however, if so, it fits within widely understood 

mortuary practices throughout Atlantic Europe. 

The burial of post-Mesolithic human remains in Mesolithic sites is well known in Scotland. A number 

of articulated burials dating to the Neolithic, Bronze, and Iron Ages have been recovered from 

midden deposits within caves and rockshelters such as An Corran, Skye; Creag nan Uamh, Assynt; 

Carding Mill Bay and Raschoille along the Oban coastline, and Killuragh Cave in Ireland (Connock 

1990:29-30; Meiklejohn & Woodman 2012:31-31; Milner & Craig 2009:148; Saville 2005a:358; 

Saville & Hardy 2012b:73; Schulting & Richards 2002:163-164; Warren 2007:315; Wickham-Jones 
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2009d:482). In France, a later burial of a non-adult in the Mesolithic midden is recorded at Beg-en-

Dorchenn, Morbihan (Meiklejohn et al. 2010); re-use of other cave sites containing Mesolithic 

deposits for burial is attested throughout the country, as well as in Norway, the Mediterranean, 

and beyond (Bergsvik & Skeates 2012; Bergsvik & Storvik 2012). 

Burial of individuals is closely associated with territorial behaviour controlled by descent lineages 

in some hunter-gatherer societies. The formal burial of the dead ‘justifies’ the occupation of a place, 

and thus the right to its resources (Goldstein 1981; Pardoe 1988; Rowley-Conwy & Piper in press; 

Saxe 1970). This is therefore linked with delayed-return behaviour. However, it has been suggested 

that burial places may have functioned in social roles other than territoriality (Renouf & Bell 2011).   

Overall, the treatment of the dead in Mesolithic north-west Europe appears to differ across the 

entire region, as well as within individual sites. Some of these differences have been taken to reflect 

complementary aspects of similar practices, such as locations for excarnation and deposition of 

remains following initial decomposition elsewhere (Gray Jones 2011:181-182). If the burial at Tràigh 

na Beirigh 9 is categorised as Mesolithic, on account of the dietary evidence, it fits within 

multitudinous ways of treating the dead throughout the Mesolithic in North-West Europe, albeit 

unique for Scotland. In the same respect, if the individual is taken to be Neolithic on account of the 

radiocarbon date, it is representative of a continuity of practice in burial tradition. The re-use of 

Mesolithic middens as burial places begins in the 4th millennium cal. BC and extends into the 

Neolithic and later across the Atlantic seaboard (Milner & Craig 2009:148; Warren 2007). It is 

pertinent to note that the Cnip headland where the site of Tràigh na Beirigh 9 is situated has been 

used for the burial of individuals throughout prehistory, most notably during the Bronze Age and 

Norse periods (Armit 1994; Lacaille 1937). Furthermore, with evidence for hunter-gatherer dietary 

practices continuing beyond the Neolithic transition, it appears that the Mesolithic way of life 

endured along the western fringes of Europe for several centuries after farming became the 

mainstay on the mainland. 

9.4.3.2. Modified Shells 

In line with the theme of continuity of practice, the deliberate modification of marine shells during 

the Mesolithic is also evidence of an enduring connection, albeit from the Palaeolithic. The use of 

deliberately modified mollusc shells as possible tools was briefly discussed in Chapter Eight; 

however, the archaeological evidence for such is lacking due to insufficienct research into this area 

(Hardy 2010; Szabó 2013). In contrast, there is abundant evidence for the use of modified shell as 

objects of personal ornamentation, cheifly from funerary contexts. 

The perforated oyster shell artefact from Tràigh na Beirigh 1 is one of a rare suite of deliberately 

modified oyster shells known from British Mesolithic contexts. In Scotland, a number have been 
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recovered from Cnoc Sligeach (Bishop 1914; Hardy 2010). Two others in Britain have been found at 

Bryn Newydd, Prestatyn, Wales, and at Culverwell on the Isle of Portland, Dorset (Barton & Roberts 

2015; Clark 1938; Palmer 1999). The perforation and wear of the Cnoc Sligeach examples is 

indicative of the shell having been suspended, perhaps as jewellery (Hardy 2010). This may also 

have been how the modified oyster from Tràigh na Beirigh 1 was used. 

Despite the wide variety of marine molluscs available on Europe’s seashores, modified shells 

species that have been recovered from Mesolithic sites along the Atlantic façade are restricted to 

only a few species. Scallop, mussel, and limpet were discussed in the previous chapter with regard 

to possible tool use, other species appear to have been preferred for more decorative purposes. 

Cowrie (Trivia monacha) shells, often found with two symmetrical holes, are frequently interpreted 

as pendants or ornaments, and their use in funerary contexts during the Palaeolithic and Mesolithic 

in continental Europe is well known (Álvarez-Fernández 2010; Hardy 2010; Mellars 1987; Simpson 

2003). In Scotland alone, perforated cowries are known from three of the Oronsay middens – Cnoc 

Sligeach, Cnoc Coig, and Caisteal nan Gillean II (Bishop 1914; Mellars 1987); Carding Mill Bay 

(Connock et al. 1992); Ulva Cave (Russell et al. 1995), and Sand (Hardy 2009b). A single perforated 

cowrie was idenitifed in the Baylet midden, Co. Donegal, and is the only known example from 

Ireland (Barton & Roberts 2015). There is debate over whether these shells may have been humanly 

modified. Experiments to replicate perforations using an unretouched (presumably flint) bladelet 

were very successful (Barton & Roberts 2015), whereas metal tools have failed (Hardy 2010). It 

should also be noted that cowries are one of a number of mollusc species subject to predation by 

other species of mollusc such as dogwhelk (Nucella lapillus). Dogwhelks ‘drill’ through the shell of 

their pray to access the flesh inside, creating characteristically shaped holes (Hardy 2010). Naturally 

perforated cowrie shells may therefore have been deliberately collected, and further modified by 

human agency. Other common mollusc species that have been recovered from Mesolithic contexts 

around Britain in a modified state include flat periwinkle (Littorina obtusata), Dentalium, and 

possibly limpet (Barton & Roberts 2015; Hardy 2009b; 2010). 

The use of many of these mollucs species has been associated with personal decoration in funerary 

contexts from the Middle Palaeolithic onwards, throughout Europe, Africa, and Asia (Álvarez-

Fernández 2011; d'Errico et al. 2009; Fano et al. 2013; Pettitt 2013; Simpson 2003; Vanhaeren et al. 

2006). This attests to a strong continuity in the symbolic importance of these materials as “symbols 

of death and renewal” (Bailey et al. 2013:4). Furthermore, the use of shells and shell middens in 

connection with ancestors is also well evidenced, especially when burials are so closely associated 

with these contexts, as discussed above (Bailey et al. 2013:4). It has been suggested that the 

presence of shell artefacts in a wide variety of locations and contexts may have been deliberately 

deposited by Mesolithic people within these places; potentially functioning as intentional “markers” 
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and a means of communicating ideas, territories or signifying a change in the use of a site (Barton 

& Roberts 2015:203). 

The same may also be true for the construction of shell middens themselves. The distribution of 

such finds along the western coastlines during this period may represent the “spread of Later 

Mesolithic traditions along the Atlantic façade”, that do not penetrate the interior (Barton & 

Roberts 2015:204). This may be the true to some extent. Along the coastal fringes of France, Spain 

and Portugal, the use of pierced shells associated with burials is extremely well documented 

(Álvarez-Fernández 2010; Araújo 2009; Arias & Álvarez-Fernández 2004; Barton & Roberts 2015; 

Rigaud & Gutiérrez-Zugasti in press; Schulting 1996; Schulting & Richards 2001; Straus 2008). 

Although no modified shells are known from Norway, where there are very few shell middens, the 

use of rock art during the Late Mesolithic may have had similar significance (Bjerck 2007). This 

places Scotland in a unique situation, positioned in the north of the western Atlantic seaboard, yet 

incorporating traditions more closely associated with the south-west. Such practices would be 

consistent with the Late Mesolithic trend towards ‘complex hunters’, whereby increasing sedentim, 

use of fixed resources, and the establishment of social territories may be validated by the use of 

ancestral claims through funerary tradition (Goldstein 1981; Pardoe 1988; Saxe 1970). This would 

have been especially pertinent given the scale of social upheaval that appears to have been caused 

by the climatic events of the 7th millennium cal. BC, discussed in the preceding section. 

The evidence thus far indicates that the shell middens and the modification of shells in the 

Mesolithic is closely associated with both sacred and mundane. In this respect, the use of other raw 

materials should be considered with regard to their symbolic properties, although this should not 

be divorced from their function. This is briefly discussed with regards to quartz in the following 

section. 
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Figure 272. Perforated shells from Cnoc Sligeach (after Bishop 1914) 

 

Figure 273. Perforated oyster shell from Bryn Newydd, Prestatyn. Scale 1:1 (after Clark 1938) 

9.4.3.3. Non-Utilitarian Aspects of Quartz 

Finally, as outlined above, it is important to consider non-utilitarian aspects of artefacts 

represented at these sites. This is also applicable to the use of lithic raw materials, particularly that 

of quartz. 

Milky quartz is ubiquitous around Western Arnhem Land, which varies in quality and has been used 

in abundance by Aborigines for millennia. The iridescent, aesthetic properties of quartz and 

quartzite are imbued with sacred properties, especially the power of the Ancestral Beings (Taçon 

1991). It is argued that a purely functionalist perspective could not fully explain the changes in 

preference of raw materials for the production of stone points by Aboriginal groups, thus the sacred 
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and mundane must be considered alongside one another (Taçon 1991). Although the symbolic 

meaning of quartz in Australian Aborigine culture cannot be applied to the Western Isles Mesolithic, 

it would be remiss not to acknowledge that the striking visual properties of quartz were simply 

ignored by these people. 

The use of quartz in “ritual spheres”, such as megalithic structures, is demonstrated throughout 

prehistory; in Ireland, it is also observed in historic Christian funerary traditions (Driscoll 2010). 

Similarly, there is strong evidence for symbolic associations of quartz with funerary traditions in 

later prehistory in the Western Isles. A large quantity of worked and unworked quartz was 

incorporated into the kerbed cairn at Olcote, Braesclete near Callanish, blurring the lines between 

“its function as a ritual or symbolic medium from its use as part of a mundane tool kit. Instead it 

appears to have been both, different characteristics of the material being more or less significant 

in specific contexts” (Warren 2005a:46). 

There is little evidence for such definitive ritualistic use of quartz during the Mesolithic, however. 

It has been suggested that the high quality rock crystal quarried at Lealt Bay and Lussa River was 

procured for its appearance, or non-functional use. This is based upon the fact this raw material 

was reduced in the same manner as the lesser-quality milky quartz, despite its superior flaking 

qualities (Ballin 2001; 2002). Equally, the small quantity of rock crystal present in the Mesolithic 

assemblages from the Western Isles displayed no evidence for a particular or distinctive reduction 

strategy, however it could also be argued that the abundance of the material would preclude any 

specialist treatment. 

Ballin also notes that the visually distinctive characteristics of quartz, and other raw materials, may 

have functioned as indicators of identity. Possession of raw materials with particularly localised 

sources may have marked individuals as belonging to particular social groups, or with access to 

particular resources (Ballin 2008:64, 73-74). This harks back to the discussion of social territories 

based on raw material distribution in Section 9.2.3, and is another example of the intangible aspects 

of Mesolithic material culture that can only be guessed at. 

9.5. Conclusion 

A number of major themes have been identified through the interpretation of the Western Isles 

Mesolithic lithic assemblages that, when combined with the supporting contextual evidence for the 

types of site activities, contribute significantly to the interpretation of hunter-gatherer settlement 

and subsistence strategies on these islands. Throughout this chapter, comparisons have been 

drawn between the burgeoning evidence from the Western Isles, and how this fits within our 

current understanding of the Mesolithic period along north-east Atlantic seaboard. Largely, the 

Mesolithic inhabitants of the Western Isles can be seen as an extension of the western Scottish 
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Mesolithic. During the earlier occupation of these islands it is clear they were connected to the 

Inner Hebridean islands through the movement of raw materials; a proposal for a social territory 

that incorporates the isles of Skye, Rum, and the western mainland was discussed in relation to this. 

During the terminal Mesolithic, these connections are less clear, and there is increasing evidence 

for the expression of more regional identities. 

Consequently, it is apparent that the scope for further work leading on from this thesis is extensive, 

with ramifications that may affect our current understanding of this period of time at the 

westernmost point of Europe. This will be discussed in the following chapter, alongside the initial 

research questions that were raised in the introductory chapter of this thesis. The main points 

outlined in this discussion will be reiterated in detail in relation to these questions.
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Chapter 10 Expanding the Mesolithic of the Atlantic Façade: 

Conclusions and Future Work 

10.1. Conclusions 

The overarching research aim of this thesis was to contextualise the lithic assemblages from the 

newly established Mesolithic of the Western Isles of Scotland within a holistic framework that 

explores the nature of hunter-gatherer interaction with the environment at the extreme edge of the 

north-west Atlantic façade. This was addressed through three primary research questions. A 

detailed summary of the major findings from the preceding chapter will be presented in response 

to each of these questions. 

QI. What is the nature of the lithic technology of the Mesolithic in the context of the Western 

Isles of Scotland? 

Overall the lithic technology of the Mesolithic inhabitants of the Western Isles appears to show an 

expedient strategy based largely on the embedded procurement of local resources. Quartz is the 

dominant raw material utilised during the Mesolithic occupation of the Western Isles of Scotland. 

On both Harris and Lewis, this was locally available as water-rolled pebbles that could have been 

picked up from the beach, or as exposed veins of material that were exploited through quarrying. 

The cortex present on the flaked quartz material at all of the sites attests to the use of both types 

of sources. A number of unworked quartz pebbles from sites on both Harris and Lewis may 

represent collected beach pebbles that remained unused, and circular marks on the exposed quartz 

vein at Gridig, next to Tràigh na Beirigh 1, indicates quarrying activity. Overall, the local abundance 

of quartz was conducive to a ‘wasteful’ reduction strategy. Flint is present in varying proportions at 

each of the Mesolithic sites. It is possible that that this was infrequently available as beach pebbles 

close to the sites, but this supply would quickly have been exhausted; alternatively it may have 

been imported from elsewhere. Either scenario could explain the extremely conservative reduction 

strategies employed. The working of flint and quartz in these two very different manners indicates 

that the earliest known inhabitants of the Western Isles were familiar with the specific natures of 

both raw materials. 

The occupation of Harris, at Northton and Tràigh an Teampuill, represents the earliest Mesolithic 

settlement in the Western Isles. It is unlikely that Northton signifies the very pioneer occupation of 

the Western Isles. The flint-dominated assemblage of Phase 4 clearly demonstrates that, at least 

initially, the earliest known inhabitants were still strongly connected with the Inner Hebrides in 

terms of technological style, and possibly raw material supply. This resource may have diminished 

after the population became established, and far-reaching insurance networks were no longer 

relied upon with groups to supply flint from well-known sources. This does not explain the 
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contribution of mudstone to these sites, however. An alternative suggestion therefore is that flint 

was locally available for some time, but the supply quickly ‘dried up’. In this case, there is a 

requirement for contact with groups who could supply/allow access to mudstone. This 

supplementary material may have been necessary due to the poorer quality of the quartz on Harris. 

It should be noted that interpreting the treatment of different raw materials on-site, solely in terms 

of the cost of exploitation and fracture mechanics, risks an overtly functionalist perspective. The 

non-functional aesthetic qualities of quartz, or the fact that baked mudstone may have been 

imbued with ideological properties, might be reasons for the export of these materials across The 

Minch (Ballin 2008:70). 

Throughout the Mesolithic occupation of the Western Isles there is little investment in the 

manufacture of formally retouched tools, specifically microliths. This may, in part, be a 

consequence of raw material availability. Flint was utilised for microlith production at Northton and 

a single scraper, recovered from the same site, forms the only evidence for secondary working of 

quartz on Harris. Therefore the available milky quartz may not have been amenable to the 

production of such tools and higher-quality material was needed. This contrasts to Lewis where a 

number of retouched quartz tools were found, especially at Tràigh na Beirigh 9. The finer flaking 

properties of the high quality greasy quartz on Lewis may therefore have rendered flint unnecessary 

for tool production. However, the dearth of microliths overall appears to suggest that a microlithic 

tradition had been all but abandoned by the terminal Mesolithic. This may be a consequence of the 

small dataset, a functional response to subsistence patterns, or indicative of stylistic regionalisation 

as in Ireland. There are, however, strong indications that the microlithic tradition was waning 

throughout later Mesolithic Scotland (Finlay et al. 2002; Gregory & Simpson 2006; Hardy & 

Wickham-Jones 2009a; Wickham-Jones 2004a). 

QII. How do the lithic assemblages fit into the occupation of the Western Isles sites? 

Without site-specific contextual information it is extremely difficult to understand the function of 

lithic assemblages. Subsistence strategies are vital to explaining hunter-gatherer mobility and 

settlement patterns. This in turn influences how raw materials are procured and reduced as a 

consequence of transport costs. The nature of the specific technology produced is governed by a 

combination of the raw materials available and its end purpose – acquiring and processing means 

of subsistence. 

Understanding the full nature of the activities that were being conducted at each site is currently 

hampered by incomplete post-excavation analysis of the zooarchaeological and archaeobotanical 

assemblages. From the information gleaned thus far, the Mesolithic sites on Harris are 

characterised by a broad-spectrum economy of seasonal fishing and foraging in the littoral zone, 

which included the exploitation of a variety of marine mollusc and fish species. It is likely that 
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smaller marine mammals, such as seal, were actively hunted; however, larger species of cetacea 

would no doubt have been scavenged if they became beached. Seabirds were also caught, some on 

a seasonal basis, and small fur-bearing mammals were captured for their pelts and meat. The 

evidence for large terrestrial game is extremely circumstantial. The red deer antler tine from Tràigh 

an Teampuill would have been an easily transportable commodity. The identification of red 

deer/elk is based upon the analysis of bone collagen from undiagnostic fragments, and does not 

provide conclusive evidence for the indigenous presence of either of these large herbivores in the 

Western Isles. 

At Northton, there is clear evidence for the large-scale exploitation of hazel nuts and gathering of 

other locally available flora, which included plants with edible seeds and tubers. The presence of a 

large quantity of charred hazel nutshell fragments and calcined bone – especially that of fish – 

suggests that processing activities such as roasting or smoking were taking place at the site. The 

vast amount of unburnt fish bone from Tràigh an Teampuill indicates that other methods of fish 

processing were also conducted on the peninsula. The function of the scooped feature at this site 

remains unknown, however it is interesting that the ash-clay primary deposit is replicated at 

another late Mesolithic site on the mainland, suggesting a deliberate act of lining the scoop. 

On Lewis there is a specific and intensive focus on the exploitation of young saithe throughout the 

600 years of Mesolithic occupation on the Cnip headland and at Pabaigh Mòr. The various sites 

indicate that there was a targeted and selective catch of first year fish during the seasons in which 

they shoal inshore. The most intensive periods of activity at Tràigh na Beirigh 1 were late spring and 

mid-winter, whereas at Tràigh na Beirigh 2 the focus was largely on mid-winter fishing; springtime 

fishing is evidenced at Pabaigh Mòr. The presence of charred hazel nutshell at Tràigh na Beirigh 1, 

2, and 9 potentially indicates occupation during autumn, however dried nuts may have been 

consumed at any time of the year. At all of the shell midden sites there was also extensive 

exploitation of the littoral zone with limpets, periwinkles/dogwhelk, razor clam, and crustacean 

primarily targeted. The discrete nature of some of the shell deposits points to evidence for single 

episodes of discard. Thus far, the only evidence for the procurement of terrestrial resources at 

these sites is represented by a number of hare bone and charred hazel nutshell fragments. 

Small assemblages of lithics were recovered from the relic ground surfaces below the main midden 

formations. When combined with the presence of a number of negative features at Tràigh na 

Beirigh 1, including post-holes, there is clear evidence for anthropogenic activity at the sites prior 

to the formation of the middens deposits. However, in the absence of any dates from these contexts, 

no comment can be made as to the relationship between the stratigraphically earlier activities and 

the middens. The apparent deliberate deposition of the perforated oyster shell at the interface 

between the relic ground surface and the shell midden may be interpreted as an act that extends 
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beyond function. This could also apply to the construction of the middens themselves, which may 

represent more meaningful activities than the simple discard of food waste. The terminal-

Mesolithic interment of an individual into the midden at Tràigh na Beirigh 9 certainly attests to 

ritual activity, and potential re-use of the site beyond the traditional end of the Mesolithic. 

The flake-based, ad hoc nature of the lithic assemblage, coupled with a dearth of formally 

recognisable tools, offers little insight into the relationship between subsistence activities and the 

means of processing food at these sites. Microliths have long been associated with projectile 

technology for hunting ‘big game’. Whilst this interpretation no longer stands in isolation, the 

overall scarcity of microliths, or associated blade manufacture at any of the sites, and the absence 

of definitive evidence for large terrestrial herbivores in the region makes for a striking correlation. 

As such, the lithic assemblages of the Western Isles Mesolithic are largely representative of an 

expedient, maintainable technology that was utilised for the immediate processing of seasonally 

available, medium-to-low ranked, but high-return resources. The lithics would therefore have 

played a direct role in the subsistence economy. However, it is also likely that the lithics at these 

sites were intended for “the production of the means of production” (Costa et al. 2005:30); the 

working of organic materials such as wood and plant fibres to produce nets, traps, baskets, and 

lines, all of which could have been successfully used in fishing, trapping, and snaring the faunal 

species exploited at these sites, without the need for a complex stone tool technology. Furthermore, 

the bone points recovered from Tràigh an Teampuill may have functioned as needles or awls in 

fixing nets or, indeed, clothing. Without conducting residue or use-wear analysis, however, it 

cannot be directly determined how the lithic assemblage was utilised in the hunting, gathering, and 

fishing activities of these Mesolithic sites. 

On the whole, the evidence that has been comprehensively synthesised in this thesis indicates that 

the Mesolithic inhabitants of the Western Isles of Scotland were logistically organised communities, 

adaptively combining both immediate- and delayed-return subsistence practices. By drawing upon 

ethnographic models of settlement patterning and resource scheduling it is evident that logistic 

organisation is inferred through low tool diversity, the absence of caches, a low number of 

exhausted tools, and embedded procurement of locally available raw materials. The shell midden 

sites also attest to specialised activity areas frequented by task-groups on a short term, seasonal 

basis. One issue with this interpretation is the notable absence of any definitive home-base type 

site. Whilst many of the resources present at Northton could be immediately consumed, there is 

also evidence for delayed-return strategies. The discard of microliths for example, suggests an 

element of ‘gearing up’; the extensive processing of hazel nuts and the wide faunal diversity may 

also indicate a more sustained period of residence. The implied investment in a fixed fish trap 

capable of returning the diverse catch, and the requirement of boats to reach the Western Isles 
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also attests to this. The occupation of these productive coastal zones, and the evidence to suggest 

that fish and hazelnuts from these sites may have been processed for storage, could have supported 

residential groups, who may have inhabited these areas for several seasons. Whilst open-air 

middens appear inherently functional, the monumentality of their presence cannot be overlooked 

– they are very visual statements of occupied place. The burial of the individual at Tràigh na Beirigh 

9 is another line of evidence that may indicate a conscious perception of permanence and belonging 

(Goldstein 1981; Pardoe 1988; Saxe 1970). 

QIII. Are the Western Isles sites representative of the Scottish Mesolithic, and how do they fit 

within the Mesolithic of the north-east Atlantic façade? 

The review of the current understanding of the Mesolithic in western Scotland, presented in 

Chapter Two, concluded that after several decades of intensive and holistic investigations our 

knowledge of the Mesolithic in the region was “no longer as ‘dull and impoverished’ as traditionally 

perceived”. Nor however, is it as bright and rich as we may like. The number of Mesolithic sites 

containing stratified, dated, and preserved faunal remains totals 28, just 8% of the Mesolithic sites 

and artefact scatters in western Scotland. The number of newly discovered and securely dated sites 

with Mesolithic occupation from the Western Isles totals six – a little over a fifth of that number13. 

In this respect, the known Mesolithic of the Western Isles is therefore not representative of the  

Scottish Mesolithic – it is something far more exceptional. 

The use of locally available raw materials in the Western Isles fits within a general trend in the Later 

Mesolithic of the Atlantic seaboard that may have been precipitated by climatic anomalies towards 

the end of the 7th millennium cal. BC. In Ireland and Norway there is a clear shift away from a 

reliance on high quality flint from the coastal zone, towards a greater uptake in a variety of different 

raw material types. Whilst in Norway this does not appear to have any palpable effect on the lithic 

technology – the true microlithic technique does not feature significantly in the Mesolithic of the 

south-west of the country – the decline of the microlithic tradition in Ireland is innately connected 

to this. As such, the remarkable lack of microliths in the Later Mesolithic, both in the Western Isles 

and Ireland, is a unique feature along the western Atlantic façade. 

The commonality of an expedient technology in Ireland (in the form of Bann flakes), and the ad hoc 

reduction of quartz in the Western Isles to produce immediately utilisable flakes, may be connected 

to the absence of indigenous large terrestrial herbivores on these islands. Niche construction during 

the Mesolithic is demonstrated through the introduction of wild boars to Ireland, and although 

                                                           
13 This excludes the undated sites of Tràigh na Beirigh 3, Tràigh na Beirigh 4, and DLS’13 #30, which is purely 
palaeoenvironmental. Inclusion of Tràigh na Beirigh 3 and Tràigh na Beirigh 4 has no effect on the total 
percentage of shell middens within the overall dataset, which remains at 8%, but raises the contribution of 
Western Isles sites to 27% of this. 
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there is tentative evidence for the presence of red deer at Tràigh an Teampuill, such deliberate 

management of resources cannot yet be verified. The evidence for the movement of red deer 

between islands of the Inner Hebrides is restricted to the presence of meat-bearing elements or 

elements most conducive to tool manufacture. Any red deer remains in the Western Isles 

Mesolithic remain likely to be an imported commodity. 

The occurrence of ‘exotic’ imported resources such as red deer antler, baked mudstone, limestone, 

and possibly flint connects the inhabitants of the Western Isles within social networks that either 

facilitated access to directly procure the material from its source, or relationships that involved 

exchange. The movement of localised raw materials between the islands of the Inner Hebrides is 

paralleled on a much greater scale in the Late Mesolithic of south-west Norway. These social 

networks would have been vital during the colonisation of the Western Isles, which appears to have 

been delayed by over a thousand years, when compared to the earliest evidence for settlement in 

the Inner Hebrides at Crait Dubh. Both Northton and Mount Sandel represent the earliest evidence 

for Mesolithic settlement in their respective regions, in the centuries before 7000 cal. BC. A number 

of possible reasons for the delayed colonisation of Ireland were outlined in Chapter Three that are 

equally applicable to western Scotland. It is most likely that the “elaborate marine relations”, which 

facilitated the successful colonisation of western Norway three millennia earlier, were not 

sufficiently developed to ensure safe passage across the formidable open waters of the Irish Sea 

and The Minch until late in the 8th millennium cal. BC. 

The coastally adapted subsistence strategy of the Western Isles is paralleled throughout western 

Scotland and the Atlantic seaboard. Comparable open air sites to Northton and Tràigh an Teampuill 

have recently been identified on Islay and Coll, incorporating a broad subsistence base of both 

terrestrial and marine resources, like those well evidenced in Ireland and the inner coastal zone of 

south-west Norway. It is possible that DLS’13 #30 represents the activities of Mesolithic individuals 

in the interior of the Western Isles, although this is not certain. The open air shell middens of Lewis 

and Pabaigh Mòr, and the associated specialised exploitation of marine resources at these sites, 

are a phenomenon that is echoed across the Mesolithic Atlantic coastal diaspora. 

Overall, the archaeological record for the Mesolithic in the Western Isles forms part of a body of 

evidence that is in an unprecedented minority in western Scotland. Whilst there are tentative 

indications for the development of insular traits and traditions, the evidence accords well with 

broad trends of hunter-gatherer coastal settlement and subsistence throughout the north-east 

Atlantic façade. 
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10.2. Future Work 

The Mesolithic of the Western Isles of Scotland is, arguably, one of the most significant discoveries 

in Britain since the turn of the millennium. It has expanded the Mesolithic of the Atlantic seaboard 

to its westernmost extent – to the very edge of Europe – and has filled a substantial gap in the 

archaeological record. In filling this gap, however, a plethora of issues have been subsequently 

raised. 

The most pertinent issue is completing the post-excavation analysis, principally of the faunal and 

floral remains, to ensure a complete and accurate picture of the resources that were being 

exploited at the sites. This will enable the sites to be tied more securely into models of hunter-

gatherer subsistence in the region, and understand modes of settlement, such as seasonal or year-

round occupation, more clearly. One important aspect of this that requires elucidation is the 

apparent absence of native large terrestrial game in the Western Isles, in particular red deer. If so, 

this would infer deliberate niche construction by Mesolithic inhabitants by importing deer to the 

Western Isles, in a similar manner to the introduction of wild boar to Ireland. This would have 

significant ramifications for our understanding of the relationship between hunter-gatherers and 

deliberate economic management strategies. 

Furthermore, there is substantial scope to return to the Western Isles and continue fieldwork there. 

With the exception of Tràigh na Beirigh 1, only a very small sample of material has been excavated 

from the sites discussed in this thesis. It must be stressed that this thesis has been written during 

the on-going post-excavation process of the first Mesolithic sites in the Western Isles of Scotland. 

As such, the interpretations and conclusions herein are based on a very small dataset. The recovery 

of more data through further excavation and analysis could make the interpretations of this thesis 

more robust, or dispel them entirely once the project has been completed. 

With regard to the lithic analysis in particular, it would be pertinent to continue any future 

excavation with a strategy that would facilitate a greater recording and recovery rate of lithics in 

situ. This would enable a greater understanding of the spatial distribution of lithic debris throughout 

the sites, for example potentially identifying areas of working. The recovery of a higher proportion 

of lithic material in situ, rather than during post-excavation after the processing of samples for 

environmental remains, would also increase the likelihood of conducting successful use-wear and 

residue analysis. By conducting such analysis, this could further corroborate the interpretation that 

ad hoc quartz flakes were the primary technology in use in this region.  

This raises the question of insularity and the nature of contact between other regions. Whilst there 

is very clear evidence for contact between Northton and the Inner Hebrides, both in terms of raw 

material transport and technological tradition, this is less clear in the later dated sites. In 2002 Finlay, 
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Warren, and Wickham-Jones recognised that “The microlith has been integral, as a lithic signature, 

to an understanding of the Mesolithic, but the time is ripe to consider its constraints as the 

dominant leitmotif.” (Finlay et al. 2002:108; Warren 2015a; Wickham-Jones 2004a). In the face of 

ever-increasing evidence for the lack of microliths in the latter part of the Mesolithic since then, 

our current understanding of microlith use in the Mesolithic is an issue which is overdue to be 

addressed. This is especially pertinent in the Western and Northern Isles where microlithic evidence 

for the Mesolithic is rare, yet hundreds of undiagnostic lithic scatters are known (Gregory et al. 

2005:948; Saville 1996; Wickham-Jones & Firth 2000), and in light of the documented absence of a 

microlithic tradition in the Later Mesolithic of Ireland and the Isle of Man. 

The methodology employed in identifying the Mesolithic sites along the coast was tested inland, 

following the success of similar interior surveys in Scotland, North Yorkshire, and Norway. The 

identification of Mesolithic-age palaeoenvironmental material at DLS’13 #30 proves that this is 

clearly a methodology that works, despite the fact anthropogenic activity cannot be verified. With 

time, resources, and funding this methodology can be employed in surveying to extensive tracts of 

the Scottish coastline where the Mesolithic has not yet been identified – primarily in the more 

southerly islands of the Western Isles, and the substantial tract of coast in the northern Highland 

region between Torridon and Cape Wrath. Employing the methodology that has proved successful 

in other inland regions is equally important. The Mesolithic sites of the Western Isles have made a 

major contribution to the number of known sites in the region with faunal preservation. However, 

they continue to reinforce the coastal bias of this dataset. The discovery of Storakaig in the interior 

of Islay has demonstrated that if conditions are favourable, the preservation of a Mesolithic faunal 

assemblage in the interior is possible (Mithen & Wicks 2011c; 2012; Wicks et al. 2014). It is 

imperative that more interior sites with faunal preservation are to be located in order to fully 

understand Mesolithic subsistence practices. 

Continued work on a detailed radiocarbon dating program would help further resolve the 

chronology and formation processes of these sites. Understanding the relationship between the 

evidence for activity below the midden deposits, and the formation of the midden deposits 

themselves during the centuries leading up to the traditional end of hunter-gatherer subsistence, 

is one instance where this would be particularly insightful. Thus, another significant issue is that of 

a delayed Mesolithic-Neolithic transition in the region. In 1954, Lacaille recognised that: 

“It has been indicated that the true Mesolithic cultures spread very slowly, and gave rise to 

regional growths along the much indented west coast and adjacent islands from Kintyre 

northward. Comparable retardation and developments are illustrated in the diffusion of later 

strains in the same area of distribution, and appear in the mixed industries of the long-

persisting food-collecting economy that is clearly evidenced at coastal sites…Intermediate 
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localities [of the western seaboard] enable us to trace the spread of the most primitive 

expressions of culture, to assess contacts and survivals of ancient industrial traditions, and 

to conclude that the Stone Age lasted a long time on the periphery of the Highland Zone of 

Britain” (Lacaille 1954:288). 

The burgeoning evidence for a general absence of formal tools during the Mesolithic of the 

region that persisted into Neolithic (Pirie forthcoming); the unequivocal continuing exploitation 

of wild plants (Bishop et al. 2009; Bishop et al. 2014b); and the significant contribution of 

marine resources to the diet of the individual buried at Tràigh na Beirigh 9 all suggest that the 

Mesolithic way of life endured on the islands long beyond the time farming was present in large 

parts of mainland Britain. Lacaille’s synthesis still stands over 60 years on.
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Appendix 1 Catalogue of Mesolithic Sites Containing Lithic Material (to June 2016) in Western Scotland and 

the Hebrides 

Table 47. Catalogue of Mesolithic sites containing lithic material (to June 2016) in Western Scotland and the Hebrides 

Site Name Location NGR Flint Chert 

Blood- 

stone 

Pitch- 

stone 
Mud-
stone Quartz 

Lime-
stone 

Other 

Raw 

Material 
Initial 

Identification 
Subsequent 

Interpretation References 

Albyn Distillery Argyll NR715209 Y     Y  Schistose 
Excavation 

(intentional) Lithic scatter 

(Lacaille 1954; 
McCallien & Lacaille 

1941) 

Arinarach Hill Argyll NR722150 Y        

Excavation 
(accidental) Isolated finds (Siggins 1991) 

Balaghoun Argyll NR989975 Y        

Excavation 
(accidental) Isolated find (Webb 2007) 

Carding Mill Bay Argyll NM847293      Y   

Excavation 
(accidental) Shell midden 

(Connock 1990; 
Connock et al. 1992) 

Cave of the Crags Argyll NM822175 Y        

Excavation 
(intentional) Lithic scatter (Coles 1963) 

Clachbreck Argyll NR765759 Y        

Surface 
collection Lithic scatter (Campbell 1962) 

Dalaruan Argyll NR717211 Y        

Excavation 
(accidental) Lithic scatter (Lacaille 1954) 

Distillery Cave Argyll NM859301 Y        

Excavation 
(accidental) Shell midden 

(Anderson 1895; 
Turner 1895) 

Druimvargie Argyll NM857296 Y        

Excavation 
(accidental) Shell midden (Anderson 1898) 

Kilmore Argyll NM881252 Y   Y  Y   

Excavation 
(intentional) Lithic scatter (Bonsall et al. 2009) 

Lange Links Argyll NR674248 Y     Y  Schistose 
Surface 

collection Lithic scatter (Lacaille 1954) 

Lón Mór Argyll NM853284 Y     Y   

Excavation 
(intentional) Lithic scatter (Bonsall et al. 1993) 
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Site Name Location NGR Flint Chert 

Blood- 

stone 

Pitch- 

stone 
Mud-
stone Quartz 

Lime-
stone 

Other 

Raw 

Material 
Initial 

Identification 
Subsequent 

Interpretation References 

              

Low Nerabus Argyll NR225551 Y        

Excavation 
(intentional) 

Occupation 
deposit (Ellis 2014) 

New Peninver Farm Argyll NR758250 Y   Y  Y  Hematite 
Excavation 

(intentional) Lithic scatter (Baker 2013) 

MacArthur's Cave Argyll NM859304 Y        

Excavation 
(accidental) Shell midden (Anderson 1895) 

Macharioch Field 1 Argyll NR738094 Y     Y   Field-walking 

Lithic scatter; 
subsequently 

excavated 
(Cummings & 

Robinson 2007) 

Machribeg Argyll NR687083 Y        Field-walking Lithic scatter 
(Cummings & 

Robinson 2007) 

Mackay Cave Argyll NM859305 Y        

Excavation 
(accidental) 

Occupation 
deposit 

(Anderson 1895; 
Turner 1895) 

Millknowe Argyll NR715211 Y        

Excavation 
(accidental) Lithic scatter (Lacaille 1954) 

Raschoille Cave Argyll NM854288        

No raw 
material 

information 
Excavation 
(accidental) Shell midden (Connock 1985) 

Rusehill, Glenbarr Argyll NR666377 Y        

Surface 
collection Lithic scatter (Purvis 2002) 

Springbank 
Distillery Argyll NR718204 Y        

Excavation 
(accidental) Lithic scatter (Scott 1956) 

Sron-a-Bruic, 
Minard Argyll NR958935 Y        

Surface 
collection Lithic scatter (Gladwin 1993) 

Tiretigan Cave Argyll NR717611 Y     Y   

Excavation 
(intentional) 

Occupation 
deposit (Coles 1961; 1983) 

Auchareoch Arran NR995247 Y   Y Y Y   

Excavation 
(accidental) 

Lithic scatter; 
subsequently 

excavated 
(Affleck et al. 1985; 
Affleck et al. 1988) 

Bridge Farm Arran NR926321 Y   Y     

Excavation 
(intentional) Lithic scatter 

(Baker 1999; Ballin-
Smith et al. 1999) 
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Site Name Location NGR Flint Chert 

Blood- 

stone 

Pitch- 

stone 
Mud-
stone Quartz 

Lime-
stone 

Other 

Raw 

Material 
Initial 

Identification 
Subsequent 

Interpretation References 

Kildonan Arran NS031208 Y   Y  Y   Field-walking Lithic scatter (Gorman et al. 1995a) 

Knockenkelly 12 Arran NS039276 Y   Y     

Surface 
collection Lithic scatter 

(Allen & Edwards 
1987) 

Knockenkelly 15 Arran NS036278 Y   Y     

Surface 
collection Lithic scatter 

(Allen & Edwards 
1987) 

Lamlash Arran NS020310 Y Y  Y  Y   

Excavation 
(intentional) Lithic scatter 

(Ballin-Smith et al. 
1999) 

Machrie Arran NR898329 Y       

Quartzite 

hammer- 

stones Field-walking Lithic scatter 

(Gorman et al. 1993a; 
1993b; Gorman et al. 

1995b) 

Machrie Moor Arran NR905315         

Palaeo-
environmental 

core N/A 

(Robinson 1983a; 
1983b; Robinson & 

Dickson 1988) 

Machrie North Test 
Pit 0610 Arran NR910355 Y   Y  Y   

Excavation 
(intentional) Lithic scatter (Finlay 1997) 

Moss Farm Site 1 Arran NR912323        

No raw 
material 

information 
Excavation 

(intentional) Lithic scatter (Haggarty 1991) 

Moss Farm Site 11 Arran NR912324        

No raw 
material 

information 
Excavation 

(intentional) Lithic scatter (Haggarty 1991) 

Borve Benbecula NF769498         

Palaeo-
environmental 

core N/A (Edwards et al. 2005) 

Glecknabae Bute NS007682 Y        

Surface 
collection Isolated find (Cormack 1986a) 

Little Kilchattan Bute NS105565 Y        

Surface 
collection Lithic scatter (Cormack 1986b) 

St Blane's Church Bute NS099531        Agate Unknown Lithic scatter (McFadzean 1987) 

The Plan Bute NS092527 Y   Y     Field-walking Lithic scatter (Finlay 2004) 
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Site Name Location NGR Flint Chert 

Blood- 

stone 

Pitch- 

stone 
Mud-
stone Quartz 

Lime-
stone 

Other 

Raw 

Material 
Initial 

Identification 
Subsequent 

Interpretation References 

Fiskary Bay Coll NM211549        

No raw 
material 

information 
Surface 

collection 

Lithic scatter; 
subsequently 

excavated 

(Mithen et al. 2007a; 
Mithen et al. 2007d; 

Mithen & Wicks 
2009) 

Rubha Sgor-innis Coll NM273638 Y       

Bevelled 
stone pebbles 

Surface 
collection Lithic scatter (Ritchie et al. 1978) 

Baleromindubh 2 Colonsay NR390910 Y     Y   

Excavation 
(intentional) Lithic scatter (Marshall 2000a) 

Baleromindubh 4 Colonsay NR392914 Y        

Excavation 
(intentional) Lithic scatter (Marshall 2000a) 

Baleromindubh 5 Colonsay NR390924 Y   Y    Agate 
Excavation 

(intentional) Lithic scatter (Marshall 2000a) 

Loch Cholla Colonsay NR382917         

Palaeo-
environmental 

core N/A 
(Andrews in Mellars 

1987) 

Machrins 3 Colonsay NR373933 Y     Y   Field-walking Lithic scatter (Mithen 2000b) 

Machrins A Colonsay NR371933 Y        Field-walking Lithic scatter (Mithen 1989b) 

Scalasaig 2 Colonsay NR391942 Y     Y   

Excavation 
(intentional) Lithic scatter (Mithen 2000b) 

Scalasaig Hotel Colonsay NR394940 Y        Field-walking Lithic scatter (Mithen 1989d) 

Staosnaig Colonsay NR387932 Y Y  Y  Y  

Rock crystal, 
siltstone Field-walking 

Lithic scatter; 
subsequently 

excavated (Mithen et al. 2000a) 

Aird 
Dumfries & 
Galloway NX089606 Y   Y     

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Airlour 
Dumfries & 
Galloway NX344428 Y        

Surface 
collection Lithic scatter (Coles 1964) 

Auchenmalg 
Dumfries & 
Galloway NX233521 Y        

Surface 
collection Lithic scatter 

(Coles 1964; Saville 
2004) 

Balgown 
Dumfries & 
Galloway NX118422 Y        

Surface 
collection Lithic scatter (Coles 1964) 
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Site Name Location NGR Flint Chert 

Blood- 

stone 

Pitch- 

stone 
Mud-
stone Quartz 

Lime-
stone 

Other 

Raw 

Material 
Initial 

Identification 
Subsequent 

Interpretation References 

Balmaclellan 
Dumfries & 
Galloway NX639792 Y Y       

Surface 
collection Lithic scatter (Ansell 1971) 

Bargrennan White 
Cairn 

Dumfries & 
Galloway NX352783        

No raw 
material 

information 
Excavation 

(intentional) Lithic scatter 
(Cummings & Fowler 

2005) 

Barhobble 

Dumfries & 

Galloway NX310494 Y       

Coarse stone 
bevel ended 

tools 
Excavation 

(intentional) Isolated finds (Cormack 1995) 

Barmore Moss 
Dumfries & 
Galloway NX280600        

No raw 
material 

described in 
DES, 

CANMORE 
site type 

states 'flint 
scatter' 

Excavation 
(intentional) Lithic scatter (Bain 1995) 

Barsalloch 
Dumfries & 
Galloway NX343421 Y        

Excavation 
(intentional) Lithic scatter 

(Cormack 1967; 
1968a; 1969a) 

Black Water of Dee 
Dumfries & 
Galloway NX501793 Y        

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Bladnoch 
Dumfries & 
Galloway NX418540 Y        

Surface 
collection Lithic scatter (Cormack 1985a) 

Blairbuy 
Dumfries & 
Galloway NX365411 Y        

Surface 
collection Lithic scatter (Coles 1964) 

Bogrie 
Dumfries & 
Galloway NX816849 Y        Unknown Isolated find (Truckell 1974)  

Borron Point 
Dumfries & 
Galloway NX998581 Y Y       

Surface 
collection Lithic scatter (Truckell 1973) 

Buittle Castle Bailey 
Dumfries & 
Galloway NX819616        

No raw 
material 

information 
Excavation 

(intentional) Lithic scatter (Penman 1994; 1995) 

Carsethorn A 
Dumfries & 
Galloway NX992599 Y        Unknown Isolated find (Truckell 1974) 
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Site Name Location NGR Flint Chert 

Blood- 

stone 

Pitch- 

stone 
Mud-
stone Quartz 

Lime-
stone 

Other 

Raw 

Material 
Initial 

Identification 
Subsequent 

Interpretation References 

Carsethorn B 
Dumfries & 
Galloway NX985602 Y        Unknown Isolated find (Anonymous 1976) 

Carsethorn Beach 
Dumfries & 
Galloway NX988601 Y Y       Unknown Lithic scatter? (Anonymous 1975) 

Chippermore Fort 
Dumfries & 
Galloway NX296483 Y       

Coarse stone 
BET Unknown Lithic scatter? (Truckell 1955) 

Clatteringshaws 
Loch A 

Dumfries & 
Galloway NX552777 Y        

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Clatteringshaws 
Loch B 

Dumfries & 
Galloway NX554777 Y        

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Clatteringshaws 
Loch C 

Dumfries & 
Galloway NX538767 Y        

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Clatteringshaws 
Loch D 

Dumfries & 
Galloway NX539767 Y        

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Clatteringshaws 
Loch E 

Dumfries & 
Galloway NX536754 Y        

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Clatteringshaws 
Loch F 

Dumfries & 
Galloway NX536753 Y        

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Clatteringshaws 
Loch G 

Dumfries & 
Galloway NX537754 Y        

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Clatteringshaws 
Loch H 

Dumfries & 
Galloway NX537753 Y        

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Clatteringshaws 
Loch I 

Dumfries & 
Galloway NX531778 Y Y       

Surface 
collection Lithic scatter (Affleck 1984a) 

Clatteringshaws 
Loch J 

Dumfries & 
Galloway NX542770         

Palaeo-
environmental 

core N/A (Birks 1975) 

Cooran Lane 
Dumfries & 
Galloway NX469828         

Palaeo-
environmental 

core N/A (Birks 1975) 

Cowcorse Farm 
Dumfries & 
Galloway NX948564 Y Y       

Surface 
collection Lithic scatter (Williams 1968) 
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Site Name Location NGR Flint Chert 

Blood- 

stone 

Pitch- 

stone 
Mud-
stone Quartz 

Lime-
stone 

Other 

Raw 

Material 
Initial 

Identification 
Subsequent 

Interpretation References 

Cruggleton 
Dumfries & 
Galloway NX480425 Y        Field-walking Lithic scatter (Cormack 1983a) 

Drummore 
Dumfries & 
Galloway NX137367        

No raw 
material 

information  Unknown Lithic scatter? (Cormack 1964b) 

Gillespie 
Dumfries & 
Galloway NX248517 Y        

Surface 
collection Lithic scatter (Cormack 1965a) 

Gillfoot 
Dumfries & 
Galloway NX979560 Y Y  Y     

Surface 
collection Lithic scatter (Cormack 1965b) 

Grennan 
Dumfries & 
Galloway NX127394 Y        

Surface 
collection Lithic scatter (Cormack 1969b) 

Innerwell 
Dumfries & 
Galloway NX477493        

No raw 
material 

information  Unknown Lithic scatter? (Cormack 1964b) 

73-75 Irish Street 
Dumfries & 
Galloway NX971759  Y       

Excavation 
(intentional) Lithic scatter 

(Cachart 1989; 
Mackenzie 1995; 

1996; 2002) 

Isle Farm 
Dumfries & 
Galloway NX484370 Y        

Surface 
collection Lithic scatter 

(Coles 1964; Truckell 
1963) 

Kilfillan A 
Dumfries & 
Galloway NX203543 Y        

Surface 
collection Lithic scatter (McCracken 1967) 

Kilfillan B 
Dumfries & 
Galloway NX469466 Y        

Surface 
collection Lithic scatter (Cormack 1984) 

Kilfillan C 
Dumfries & 
Galloway NX205541 Y        

Surface 
collection Lithic scatter (Coles 1964) 

Kirkguneon Parish 
Dumfries & 
Galloway NX846666 Y Y       

Surface 
collection 

Lithic scatter; 
subsequently 

excavated (Cunningham 1984) 

Kirkmabreck 
Dumfries & 
Galloway NX106476 Y        

Surface 
collection Lithic scatter (Coles 1964) 

Loch Arthur 
Dumfries & 
Galloway NX903690 Y        

Excavation 
(intentional) Isolated find (Williams 1967a) 
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Site Name Location NGR Flint Chert 

Blood- 

stone 

Pitch- 

stone 
Mud-
stone Quartz 

Lime-
stone 
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Loch Dee 
Dumfries & 
Galloway NX472790 Y Y       Unknown Lithic scatter (Affleck 1984b) 

Loch Dungeon 
Dumfries & 
Galloway NX523845         

Palaeo-
environmental 

core N/A (Birks 1975) 

Loch Grannoch A 
Dumfries & 
Galloway NX548714 Y        

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Loch Grannoch B 
Dumfries & 
Galloway NX547713 Y        

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Loch Grannoch C 
Dumfries & 
Galloway NX546713 Y        

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Loch Grannoch D 
Dumfries & 
Galloway NX545711 Y        

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Loch Grannoch E 
Dumfries & 
Galloway NX540684 Y        

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Loch Grannoch F 
Dumfries & 
Galloway NX541695 Y        

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Lochfoot School 
Dumfries & 
Galloway NX898737 Y        

Surface 
collection Isolated find (Anonymous 1968a) 

Low Balyett 
Dumfries & 
Galloway NX085615 Y        

Surface 
collection Lithic scatter (Coles 1964) 

Low Clone North 
Dumfries & 
Galloway NX334453 Y        

Surface 
collection Lithic scatter (Coles 1964) 

Low Clone South 
Dumfries & 
Galloway NX334450 Y     Y   

Surface 
collection 

Lithic scatter; 
subsequently 

excavated 

(Coles 1964; Cormack 
1965c; Cormack & 

Coles 1968) 

Luce Sands A 
Dumfries & 
Galloway NX140555 Y        

Surface 
collection Lithic scatter (Truckell 1962) 

Luce Sands B 
Dumfries & 
Galloway NX138556 Y        

Surface 
collection Lithic scatter 

(Anonymous 1968b; 
Coles 1964) 
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Maxwellfield 
Dumfries & 
Galloway NX980560 Y Y    Y   

Surface 
collection Lithic scatter 

(Blackett 1967; 
Cormack 1964a; 

1965d) 

McCulloch's Castle 
Dumfries & 
Galloway NX997577 Y Y    Y   

Surface 
collection Lithic scatter (Blackett 1967) 

Millhill 
Dumfries & 
Galloway NX964762  Y       

Surface 
collection Isolated finds (Williams 1966a) 

Monreith 
Dumfries & 
Galloway NX364406 Y        

Surface 
collection Lithic scatter (Cormack 1968b) 

Morrach 
Dumfries & 
Galloway NX473353 Y        

Surface 
collection Lithic scatter (Coles 1964) 

Moss Raploch 
Dumfries & 
Galloway NX554776 Y        

Surface 
collection Lithic scatter 

(Ansell & Conary 
1974) 

Mossyard 
Dumfries & 
Galloway NX551523 Y        

Surface 
collection Lithic scatter (Cormack 1964a) 

Mote of Mark 
Dumfries & 
Galloway NX845540 Y        Unknown Lithic scatter? (Truckell 1963) 

Motte of Ur 
Dumfries & 
Galloway NX815647 Y        

Surface 
collection Isolated find (Williams 1966b) 

Mull Glen 
Dumfries & 
Galloway NX137315        

No raw 
material 

information Unknown Lithic scatter? (Cormack 1964b) 

Newton 
Dumfries & 
Galloway NX555531 Y        

Surface 
collection Lithic scatter (Cormack 1964a) 

North Barsalloch 
Dumfries & 
Galloway NX344419 Y        

Surface 
collection Lithic scatter (Cormack 1969a) 

Pate's Port 
Dumfries & 
Galloway NX344422 Y        

Surface 
collection Lithic scatter (Coles 1964) 

Polmaddie Farm 
Dumfries & 
Galloway NX601883 Y        Unknown Lithic scatter? (Anonymous 1975) 

Portankill 
Dumfries & 
Galloway NX138325 Y        

Surface 
collection Lithic scatter (Cormack 1982a) 
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Portyerrock 
Dumfries & 
Galloway NX473390 Y        

Surface 
collection Lithic scatter (Cormack 1985b) 

Powillimount 
Dumfries & 
Galloway NX990668 Y Y    Y   

Surface 
collection Lithic scatter 

(Blackett 1967; 
Cormack 1964a) 

Shaddock 
Dumfries & 
Galloway NX476397 Y        

Surface 
collection Lithic scatter (Coles 1964) 

Sheddock 
Dumfries & 
Galloway NX477392 Y        

Surface 
collection Lithic scatter 

(Cormack 1982b; 
1983b) 

Sinniness 
Dumfries & 
Galloway NX228518 Y        

Surface 
collection Isolated find (Coles 1964) 

Smeeton 
Dumfries & 
Galloway NX635920 Y Y       

Surface 
collection Lithic scatter (Ansell 1969d) 

Smittons 
Dumfries & 
Galloway NX635918 Y Y       

Excavation 
(intentional) 

Occupation 
deposit (Affleck 1983) 

Snibe Bog 
Dumfries & 
Galloway NX468810         

Palaeo-
environmental 

core N/A (Birks 1972) 

Stairhaven North 
Dumfries & 
Galloway NX209540 Y        

Surface 
collection Lithic scatter (Coles 1964) 

Stairhaven South 
Dumfries & 
Galloway NX208539 Y        

Surface 
collection Lithic scatter (Coles 1964) 

Stony Park 
Dumfries & 
Galloway NX989574 Y Y    Y   

Surface 
collection Lithic scatter (Blackett 1967) 

Stroangassel 
Dumfries & 
Galloway NX605874 Y Y       

Surface 
collection Lithic scatter (Ansell 1967) 

Stroanpatrick 
Dumfries & 
Galloway NX635917 Y Y       

Excavation 
(intentional) Lithic scatter (Ansell 1966) 

Tallowquhairn 
Dumfries & 
Galloway NX996587 Y Y    Y   

Surface 
collection Lithic scatter 

(Blackett 1967; 
Cormack 1965e) 

Terally A 
Dumfries & 
Galloway NX120410 Y        

Excavation 
(intentional) Lithic scatter (Livens 1956b) 
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Terally B 
Dumfries & 
Galloway NX123409 Y        

Surface 
collection Lithic scatter (Coles 1964) 

Torrs Warren Site J 
Dumfries & 
Galloway NX150550 Y        Unknown Isolated find (Cowie 1996) 

Water of Ken A 
Dumfries & 
Galloway NX635751 Y        

Excavation 
(accidental) Lithic scatter (Edwards et al. 1983) 

Water of Ken B 
Dumfries & 
Galloway NX611806 Y        

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Water of Ken C 
Dumfries & 
Galloway NX613808 Y        

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Water of Ken D 
Dumfries & 
Galloway NX606849 Y        

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Water of Ken E 
Dumfries & 
Galloway NX607852 Y        

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Water of Ken F 
Dumfries & 
Galloway NX606853 Y        

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Water of Ken G 
Dumfries & 
Galloway NX606854 Y        

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Water of Ken H 
Dumfries & 
Galloway NX603875 Y        

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Water of Ken I 
Dumfries & 
Galloway NX605876 Y        

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Water of Ken J 
Dumfries & 
Galloway NX618902 Y        

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Water of Ken K 
Dumfries & 
Galloway NX619902 Y        

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Water of Ken L 
Dumfries & 
Galloway NX621901 Y        

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Water of Ken M 
Dumfries & 
Galloway NX622902 Y        

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Water of Ken N 
Dumfries & 
Galloway NX638909 Y        

Surface 
collection Lithic scatter (Edwards et al. 1983) 
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Water of Ken O 
Dumfries & 
Galloway NX639909 Y        

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Water of Ken P 
Dumfries & 
Galloway NX634918 Y        

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Water of Ken Q 
Dumfries & 
Galloway NX635921 Y        

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Water of Ken R 
Dumfries & 
Galloway NX633933 Y        

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Water of Ken S 
Dumfries & 
Galloway NX635935 Y        

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Water of Ken T 
Dumfries & 
Galloway NX637947 Y        

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Water of Ken U 
Dumfries & 
Galloway NX638948 Y        

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Black Craig 

East 

Ayrshire NX496954 Y Y       

Surface 
collection Lithic scatter (Ansell 1969b) 

Donald's Isle 

East 

Ayrshire NX495965 Y Y       

Surface 
collection Lithic scatter (Ansell 1969a) 

Loch Doon A 

East 

Ayrshire NS477013 Y Y       

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Loch Doon B 

East 

Ayrshire NS478012 Y Y       

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Loch Doon C 

East 

Ayrshire NX495995 Y Y       

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Loch Doon D 

East 

Ayrshire NX496997 Y Y       

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Loch Doon E 

East 

Ayrshire NX496998 Y Y       

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Loch Doon F 

East 

Ayrshire NX498998 Y Y       

Surface 
collection Lithic scatter (Edwards et al. 1983) 
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Loch Doon G 

East 

Ayrshire NX499996 Y Y       

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Loch Doon H 

East 

Ayrshire NX494964 Y Y       

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Loch Doon I 

East 

Ayrshire NX485949 Y Y       

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Loch Doon J 

East 

Ayrshire NX484948 Y Y       

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Loch Doon K 

East 

Ayrshire NX483947 Y Y       

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Loch Doon L (Starr) 

East 

Ayrshire NX479941 Y Y       

Surface 
collection Lithic scatter 

(Ansell 1968c; 
Edwards et al. 1983) 

Loch Doon M 

East 

Ayrshire NX481941 Y Y       

Surface 
collection Lithic scatter 

(Ansell 1968a; 
Edwards et al. 1983) 

Loch Doon N 

East 

Ayrshire NX483939 Y Y       

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Loch Doon O 

East 

Ayrshire NX483937 Y Y       

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Loch Doon P 

East 

Ayrshire NX484936 Y Y       

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Loch Doon Q 

East 

Ayrshire NX482927 Y Y       

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Loch Doon R 

East 

Ayrshire NX482928 Y Y       

Surface 
collection Lithic scatter (Edwards et al. 1983) 

Loch Doon S 

East 

Ayrshire NS482016 Y Y       

Surface 
collection Lithic scatter (Affleck 1984c) 

Loch Doon Starr 1a 

East 

Ayrshire NX483939 Y Y       

Surface 
collection 

Lithic scatter; 
subsequently 

excavated 
(Affleck 1984d; 

1985a) 
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Loch Doon Starr 1b 

East 

Ayrshire NX488933 Y Y       

Surface 
collection Lithic scatter (Affleck 1985b) 

Loch Doon Starr 1c 

East 

Ayrshire NX483929 Y Y       

Surface 
collection Lithic scatter (Affleck 1985a) 

Loch Doon T 

East 

Ayrshire NS483004 Y Y      Agate Unknown Lithic scatter? 
(McFadzean et al. 

1984b) 

Loch Head A 

East 

Ayrshire NX486932 Y Y       

Surface 
collection Lithic scatter (Ansell 1968a) 

Loch Head B 

East 

Ayrshire NX486935 Y Y       

Surface 
collection Lithic scatter (Ansell 1968a) 

Loch Head C 

East 

Ayrshire NX484929 Y Y       

Surface 
collection Lithic scatter 

(Ansell 1968a; 
Edwards et al. 1983) 

Loch Head D 

East 

Ayrshire NX485930 Y Y       

Surface 
collection Lithic scatter (Ansell 1969c) 

Portmark A 

East 

Ayrshire NX493950        

No raw 
material 

information Unknown Lithic scatter? (Ansell 1968b) 

Portmark B 

East 

Ayrshire NX488939        

No raw 
material 

information Unknown Lithic scatter? (Ansell 1968b) 

Portmark C 

East 

Ayrshire NX487935        

No raw 
material 

information Unknown Lithic scatter? (Ansell 1968b) 

Starr A 

East 

Ayrshire NX482939        

No raw 
material 

information Unknown Lithic scatter? (Ansell 1968c) 

Starr B 

East 

Ayrshire NX483937        

No raw 
material 

information Unknown Lithic scatter? (Ansell 1968c) 
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Starr C 

East 

Ayrshire NX484931        

No raw 
material 

information Unknown Lithic scatter? (Ansell 1968c) 

Kallin Grimsay NF875535         

Palaeo-
environmental 

core N/A (Edwards et al. 2005) 

Tràigh an Teampuill Harris NF973913 Y    Y Y   

Excavation 
(intentional) 

Occupation 
deposit 

(Blake et al. 2012b; 
Church et al. 2012a; 

2013a; Piper & 
Church 2015) 

Northton Harris NF975912 Y    Y Y  Hornfels 
Excavation 

(intentional) 
Occupation 

deposit 

(Bishop et al. 2012a; 
Bishop et al. 2011a; 

2011b; 2012b; 
Gregory et al. 2005) 

Acharn Farm A Highland NM697504 Y Y Y  Y Y  

Quartzite, 
granite 

Surface 
collection Lithic scatter 

(Rich Gray 1977; 
Thornber 1974a)  

Acharn Farm B Highland NM697501 Y  Y  Y Y  Quartzite 
Surface 

collection Lithic scatter (Rich Gray 1977) 

Applecross Manse Highland NG710457 Y  Y   Y   

Surface 
collection 

Lithic scatter; 
subsequently 

excavated 
(Hardy & Wickham-

Jones 2009a) 

Baile Mhargait, 
Invernavar Highland NC700614 Y       Chalcedony 

Surface 
collection Lithic scatter 

(Wickham-Jones & 
Firth 1990) 

Barr River Highland NM615564 Y   Y    

Tachylyte, 
silicified bole, 

silicified 
sediment 

Surface 
collection 

Lithic scatter; 
subsequently 

excavated (Mercer 1979) 

Bruach na Maorach Highland NM643675 Y     Y   

Surface 
collection Lithic scatter (Lacaille 1954) 

Cul na Croise/ 
Drynan Bay Highland NM622698 Y     Y   

Surface 
collection Lithic scatter (Lacaille 1954) 
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Dahl Lay-by Highland NM792683 Y  Y   Y   

Surface 
collection 

Lithic scatter; 
subsequently 

excavated (Pollard 1993) 

Fearnmore 1 Highland NG724608 Y  Y  Y Y   Field-walking 

Lithic scatter; 
subsequently 

excavated 
(Hardy & Wickham-

Jones 2009a) 

Kentra Bay Highland NM645676 Y  Y      Unknown Lithic scatter (Thornber 1974b) 

Kinlochaline 
Cottages Highland NM692477 Y        

Excavation 
(accidental) Lithic scatter (Robertson 2004) 

Loch Doilean Highland NM792682 Y  Y   Y  

Other exotic 
stone 

Excavation 
(intentional) Lithic scatter (Ellis 2015) 

Lub Dubh Aird 1 Highland NG872550 Y     Y   

Surface 
collection 

Lithic scatter; 
subsequently 

excavated 
(Hardy 2014; Hardy et 

al. 2013) 

Lub Dubh Aird 2 Highland NG871550 Y     Y   

Surface 
collection 

Lithic scatter; 
subsequently 

excavated 
(Hardy 2014; Hardy et 

al. 2013) 

Lub Dubh Aird 3 Highland NG873549 Y     Y   

Surface 
collection 

Lithic scatter; 
subsequently 

excavated 
(Hardy 2014; Hardy et 

al. 2013) 

Lub Dubh Aird 4 Highland NG869552 Y     Y   

Surface 
collection 

Lithic scatter; 
subsequently 

excavated 
(Hardy 2014; Hardy et 

al. 2013) 

Redpoint Highland NG726685 Y Y Y  Y Y   

Surface 
collection 

Lithic scatter; 
subsequently 

excavated 
(Hardy & Wickham-

Jones 2009a) 

Rubh' An Achaidh 
Mhoir Highland NM663922 Y     Y   Unknown Lithic scatter? (Lacaille 1951) 

Sand Highland NG684493 Y Y Y  Y Y  

Agate, rock 
crystal, jasper 

Excavation 
(intentional) Shell midden 

(Cressey et al. 2001c; 
Finlayson et al. 
1999a; Hardy & 

Wickham-Jones 2001; 
2009b) 



 

 

4
52

 

Site Name Location NGR Flint Chert 

Blood- 

stone 

Pitch- 

stone 
Mud-
stone Quartz 

Lime-
stone 

Other 

Raw 

Material 
Initial 

Identification 
Subsequent 

Interpretation References 

Sanna Bay Highland NM443691 Y  Y      

Surface 
collection Lithic scatter (Crerar 1961) 

Shieldaig Highland NG816523 Y   Y  Y   

Excavation 
(accidental) Lithic scatter 

(Birch 2013; Hardy & 
Wickham-Jones 

2009a; Walker 1973; 
Walker & Jardine 

1974) 

Shieldaig (new) Highland NG812558 Y        

Surface 
collection Lithic scatter (Hardy 2015) 

Smoo Cave Highland NC418671      Y   

Excavation 
(intentional) 

Occupation 
deposit 

(Kiellar 1972; Pollard 
1992) 

Inchmarnock 
Inch-

marnock NS023596 Y        

Excavation 
(intentional) Isolated find (Conolly 2005) 

Relig Odhran Iona NM285245 Y        

Excavation 
(intentional) Lithic scatter (Barber 1979) 

Aoradh Islay NR275675 Y     Y   Field-walking 

Lithic scatter; 
subsequently 

excavated (Mithen et al. 2000f) 

Black Park Quarry Islay NR288638        

No raw 
material 

information 
Surface 

collection Lithic scatter (Mithen et al. 2000c) 

Bolsay Farm Islay NR227571 Y   Y  Y   

Surface 
collection 

Lithic scatter; 
subsequently 

excavated 

(Mithen 1990a; 1992; 
Mithen et al. 1992; 

Mithen et al. 2000d; 
Newall 1962b; Newall 

& Newall 1961a) 

Bowmore 16 Islay NR330612 Y        Field-walking Lithic scatter (Mithen et al. 2000c) 

Bowmore 4 Islay NR328611 Y        Field-walking Lithic scatter (Mithen et al. 2000c) 

Bowmore 9 Islay NR308570 Y        Field-walking 

Lithic scatter; 
subsequently 

excavated (Mithen et al. 2000e) 
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Bowmore10 Islay NR321602 Y        Field-walking 

Lithic scatter; 
subsequently 

excavated (Mithen et al. 2000e) 

Bridgend 1 Islay NR345636        

No raw 
material 

information Field-walking Lithic scatter (Mithen et al. 2000c) 

Bridgend 11 Islay NR347646 Y        Field-walking Lithic scatter (Mithen et al. 2000c) 

Bridgend 14 Islay NR355648 Y        Field-walking Lithic scatter (Mithen et al. 2000c) 

Bridgend 5 Islay NR345632        

No raw 
material 

information Field-walking Lithic scatter (Mithen et al. 2000c) 

Bridgend 7 Islay NR357643        

No raw 
material 

information Field-walking Lithic scatter (Mithen et al. 2000c) 

Bridgend 9 Islay NR350641 Y        Field-walking Lithic scatter (Mithen et al. 2000c) 

Cill Michael Islay NR243569 Y        

Surface 
collection Lithic scatter 

(Newall 1962a; 
Newall & Newall 

1961b)  

Cnoc Seannda Islay NR391684 Y        

Excavation 
(intentional) Lithic scatter (Caldwell 1997) 

Coulererach Islay NR209654 Y     Y   

Surface 
collection; 

Palaeo-
environmental 

core 

Lithic scatter; 
subsequently 

excavated 
(Mithen & Finlay 

2000) 

Gleann Mor Site A Islay NR234582 Y   Y  Y   

Surface 
collection 

Lithic scatter; 
subsequently 

excavated 

(Mithen 1989a; 
1990b; Mithen & 
Finlayson 2000a) 

Gruinart 13 Islay NR284705        

No raw 
material 

information Field-walking Lithic scatter (Mithen et al. 2000c) 

Gruinart 7 Islay NR280670 Y        Field-walking Lithic scatter (Mithen et al. 2000c) 
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Kiells 3 Islay NR420686        

No raw 
material 

information Field-walking Lithic scatter (Mithen et al. 2000c) 

Kilchiarain Road 
Stone Quarry A Islay NR233582 Y        

Surface 
collection Lithic scatter 

(Davies 1970; Newall 
1959; 1960)  

Kilchiarain Road 
Stone Quarry B Islay NR233585 Y        

Surface 
collection Lithic scatter (Newall 1960) 

Kilchiarain Road 
Stone Quarry C Islay NR235582 Y        

Surface 
collection Lithic scatter (Newall 1960) 

Kilchiarain Road 
Stone Quarry D Islay NR239582 Y        

Surface 
collection Lithic scatter (Newall 1960) 

Kilchiarain Road 
Stone Quarry E Islay NR232585 Y        

Surface 
collection Lithic scatter (Newall 1960) 

Kilellan Farm Islay NR286721 Y        

Excavation 
(intentional) Lithic scatter 

(Burgess 1973; 
Mithen et al. 2000c) 

Kindrochid Islay NR234685 Y   Y  Y   

Surface 
collection 

Lithic scatter; 
subsequently 

excavated 
(Marshall & Mithen 

2000) 

Kindrochid 4 Islay NR231686        

No raw 
material 

information 
Surface 

collection Lithic scatter (Mithen et al. 2000c) 

Kindrochid area 2 Islay NR238667 Y        Field-walking Lithic scatter (Mithen et al. 2000c) 

Kindrochid area 3 Islay NR214681 Y        Field-walking Lithic scatter (Mithen et al. 2000c) 

Kindrochid ditch Islay NR232687        

No raw 
material 

information 
Surface 

collection Lithic scatter (Mithen et al. 2000c) 

Loch a'Bhogaidh Islay NR225576         

Palaeo-
environmental 

core N/A 
(Edwards & Berridge 
1994; Sugden 1999) 

Loch Gorm 1 Islay NR248649 Y     Y   Field-walking Lithic scatter (Mithen et al. 2000e) 

Loch Gorm 10 Islay NR229641 Y     Y   Field-walking Lithic scatter (Mithen et al. 2000c) 
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Interpretation References 

Loch Gorm 2 Islay NR218637 Y        Field-walking Lithic scatter (Mithen et al. 2000e) 

Loch Gorm 5 Islay NR211676 Y        Field-walking Lithic scatter (Mithen et al. 2000c) 

Loch Gorm 9 Islay NR243647 Y     Y   Field-walking Lithic scatter (Mithen et al. 2000c) 

Loch Gorm A Islay NR216646         

Palaeo-
environmental 

core N/A (Bunting et al. 2000) 

Loch Gorm B Islay NR227666         

Palaeo-
environmental 

core N/A (Bunting et al. 2000) 

Mulindry 10 Islay NR373588        

No raw 
material 

information Field-walking Lithic scatter (Mithen et al. 2000c) 

Newton Islay NR342626 Y        

Excavation 
(intentional) Lithic scatter 

(McCullagh et al. 
1989) 

Port Charlotte Islay NR253585 Y        

Surface 
collection Lithic scatter (Newall 1960) 

Port Charlotte 3 Islay NR260604 Y        

Surface 
collection Lithic scatter (Mithen et al. 2000e) 

Rockside Islay NR216636 Y        Field-walking 

Lithic scatter; 
subsequently 

excavated 

(Lowe & Dalland 
1996; Mithen et al. 

2000b) 

Rubha Port an t-
Seilich Islay NR430675 Y     Y   

Surface 
collection 

Lithic scatter; 
subsequently 

excavated 

(Mithen et al. 2010a; 
Mithen & Wicks 

2011b; 2014) 

Scarrabus Islay NR348653        

No raw 
material 

information 
Surface 

collection Lithic scatter (Mithen et al. 2000c) 

Sorn Valley Islay NR345620         

Palaeo-
environmental 

core N/A 

(Andrews in 
McCullagh et al. 

1989) 
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stone 
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Lime-
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Raw 
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Initial 
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Storakaig Islay NR396626 Y     Y   

Surface 
collection 

Lithic scatter; 
subsequently 

excavated 

(Mithen et al. 2010b; 
Mithen & Wicks 

2010; 2011c; 2012; 
Wicks & Mithen 

2013) 

Carn Southern 
Raised Beach Jura NR684937 Y     Y   

Excavation 
(intentional) Lithic scatter (Searight 1990) 

Glenbatrick 
Waterhole Jura NR518798 Y   Y  Y   

Excavation 
(intentional) Lithic scatter (Mercer 1974) 

Glengarrisdale Jura NR647968 Y        

Excavation 
(intentional) Lithic scatter 

(Brabin 1984; Mercer 
& Searight 1986) 

Kinuachdrach Jura NR706988 Y        

Surface 
collection Lithic scatter (Campbell 1965) 

Lealt Bay Jura NR662902 Y     Y   

Excavation 
(intentional) Lithic scatter (Mercer 1968) 

Lussa Bay Jura NR643868 Y        Field-walking Lithic scatter 
(Mercer 1969; 
Searight 1993) 

Lussa River Jura NR644873 Y     Y   

Excavation 
(intentional) Lithic scatter (Mercer 1971) 

Lussa Wood Jura NR644874 Y   Y  Y  

Brownstone 
and quartz 

crystal 
Excavation 

(intentional) Lithic scatter (Mercer 1980) 

North Carn Jura NR685939 Y     Y   

Excavation 
(intentional) Lithic scatter (Mercer 1972) 

Aird Calanais Lewis NB206335         

Palaeo-
environmental 

sample N/A (O’Brien et al. 2009) 

Callanish Lewis NB209332         

Palaeo-
environmental 

core N/A (Bohncke 1988) 

DLS’13 #30 Lewis NB374464         

Palaeo-
environmental 

sample N/A 
(Piper et al. 2014; 

2015) 
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Pabaigh Mòr South Lewis NB104372      Y   

Excavation 
(intentional) Shell midden 

(Church & Rowley-
Conwy 2014) 

Tràigh na Beirigh Lewis NB100362 Y     Y   

Excavation 
(intentional) Shell midden 

(Blake et al. 2012a; 
Church et al. 2012b; 
Church et al. 2013b; 

Piper & Church 2014) 

Tràigh na Beirigh 2 Lewis NB100363      Y   

Excavation 
(intentional) Shell midden (Bishop et al. 2014a) 

Tràigh na Beirigh 9 Lewis NB100364      Y   

Excavation 
(intentional) Shell midden 

(Snape-Kennedy et al. 
2014) 

Crait Dubh/Creit 
Dhu Mull NM408531        

No raw 
material 

information 
Surface 

collection 

Lithic scatter; 
subsequently 

excavated 

(Mithen et al. 2006; 
Mithen & Wicks 

2011a) 

Croig Mull NM401539        

No raw 
material 

information 
Surface 

collection 

Lithic scatter; 
subsequently 

excavated 

(Mithen et al. 2007b; 
Mithen & Wicks 

2010) 

Loch an t-Suidhe Mull NM371215         

Palaeo-
environmental 

core N/A (Sugden 1999) 

Mull - various 
locations Mull NM500300 Y        Field-walking Lithic scatter (Anonymous 1993a) 

Suidhe Mull NM371216        

No raw 
material 

information 
Excavation 

(intentional) 
Occupation 

deposit (Ellis 2009) 

Tenga Mull NM512458        

No raw 
material 

information 
Excavation 
(accidental) Lithic scatter (Mithen et al. 2007b) 

Torr Daraich Mull NM451404 Y        

Surface 
collection Isolated find (Anonymous 1993b) 

Dreghorn A 
North 

Ayrshire NS345373 Y        Unknown Lithic scatter? (Anonymous 1976) 

Dreghorn B 
North 

Ayrshire NS353375 Y        Unknown Lithic scatter? (Anonymous 1976) 



 

 

4
58

 

Site Name Location NGR Flint Chert 

Blood- 

stone 

Pitch- 

stone 
Mud-
stone Quartz 

Lime-
stone 

Other 

Raw 

Material 
Initial 

Identification 
Subsequent 

Interpretation References 

Glenhead Farm 
North 

Ayrshire NS215455 Y        

Surface 
collection Isolated find (Macneill 1965c) 

Kilwinning 
North 

Ayrshire NS324425 Y        Unknown Lithic scatter? (Anonymous 1976) 

Portencross 
North 

Ayrshire NS181489 Y     Y   

Surface 
collection Lithic scatter (Macneill 1973) 

Seamill A 
North 

Ayrshire NS208465 Y             
Surface 

collection Lithic scatter (Macneill 1973) 

Seamill B 
North 

Ayrshire NS195480 Y       Y     
Surface 

collection Lithic scatter (Macneill 1973) 

Shewalton Moor 
North 

Ayrshire NS332367 Y     Y  

Jasper, 
chalcedony 

Surface 
collection Lithic scatter 

(Lacaille 1930; 
Macneill 1965d; 
Williams 1967b) 

Stevenson 
North 

Ayrshire NS280425 Y        Unknown Lithic scatter? (Anonymous 1976) 

West Kilbride A 
North 

Ayrshire NS199504 Y               
Surface 

collection Lithic scatter (Macneill 1973) 

West Kilbride B 
North 

Ayrshire NS202506 Y               
Surface 

collection Lithic scatter (Macneill 1973) 

West Kilbride C 
North 

Ayrshire NS202508 Y               
Surface 

collection Lithic scatter (Macneill 1973) 

West Kilbride D 
North 

Ayrshire NS187513 Y               Unknown Lithic scatter? (Anonymous 1976) 

West Kilbride E 
North 

Ayrshire NS198506 Y               Unknown Lithic scatter? (Anonymous 1976) 

Caisteal nan Gillean 
I Oronsay NR358879 Y       

Stone, bone & 
antler 'limpet 

scoops' 
Excavation 

(intentional) Shell midden (Mellars 1987) 

Caisteal nan Gillean 
II Oronsay NR358880 Y       

Stone, bone & 
antler 'limpet 

scoops' 
Excavation 

(intentional) Shell midden (Mellars 1987) 
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Cnoc Coig Oronsay NR360885 Y     Y  

Stone 'limpet 
scoops' 

Excavation 
(intentional) Shell midden (Mellars 1987) 

Cnoc Sligeach Oronsay NR372890 Y       

Stone 'limpet 
scoops' 

Excavation 
(intentional) Shell midden (Mellars 1971; 1987) 

Priory Midden Oronsay NR347889        

No raw 
material 

information 
Excavation 

(intentional) Shell midden 
(Jardine 1973; Mellars 

1987) 

Clachan Harbour Raasay NG554364     Y   Skye tuff 
Excavation 

(intentional) Lithic scatter (Ballin et al. 2011) 

North Bay Raasay NG546367        

No raw 
material 

information 
Excavation 

(intentional) 
Occupation 

deposit (Wildgoose 2004) 

Bishopton 
Renfrew-

shire NS433725 Y        

Surface 
collection Lithic scatter (Macneill et al. 1994) 

Renfrew 
Renfrew-

shire NS517666        

No raw 
material 

information. 
Stone mace-

head 
Surface 

collection Isolated find (Scott 1958) 

Bealach a'Braigh 
Bhig Rum NM340990 Y        

Surface 
collection Isolated find (Saville 2008) 

Kinloch Farm Fields Rum NM401998 Y  Y Y  Y Y 

Agate - only 
flint and 

bloodstone 
artefacts 
analysed 

Surface 
collection; 

Palaeo-
environmental 

core 

Lithic scatter; 
subsequently 

excavated 

(Wickham-Jones 
1990c; Wickham-

Jones & Pollock 1985; 
1986; Wickham-Jones 

et al. 1984) 

Risga Risga NM611599 Y     Y   

Excavation 
(intentional) Shell midden 

(Atkinson et al. 1993; 
Pollard et al. 1994; 

1996) 

Scalpay 6a Scalpay NG587293 Y  Y  Y Y  

Pumice, 
volcanic glass Field-walking 

Lithic scatter; 
subsequently 

excavated 
(Hardy & Wickham-

Jones 2009a) 
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Scalpay 7 Scalpay NG590289 Y  Y   Y   Field-walking Lithic scatter 
(Hardy & Wickham-

Jones 2009a) 

Scalpay 8 Scalpay NG589293 Y  Y      

Excavation 
(intentional) Lithic scatter 

(Hardy & Wickham-
Jones 2009a) 

An Corran A Skye NG490685 Y        

Excavation 
(accidental) Shell midden 

(Hardy & Wickham-
Jones 2009a; Saville 
1998a; Saville et al. 

2012b; Saville & 
Miket 1994b; 1994a) 

An Corran C Skye NG487684 Y    Y Y  Volcanic glass Field-walking Lithic scatter 
(Hardy & Wickham-
Jones 2002a; 2009a)  

An Corran E Skye NG489683 Y  Y  Y Y   Field-walking Lithic scatter 
(Hardy & Wickham-

Jones 2009a) 

An Corran F Skye NG486682 Y    Y    Field-walking Lithic scatter 
(Hardy & Wickham-

Jones 2009a) 

Camas Daraich Skye NG567000   Y  Y   

Coarse stone, 
pumice 

Excavation 
(accidental) Lithic scatter 

(Birch et al. 2001; 
Cressey 2002; Cressey 

et al. 2001a; 
Wickham-Jones & 

Hardy 2004a) 

Kati's Bay Skye NG256425   Y  Y Y  

Chalcedony, 
agate, rock 

crystal 
Surface 

collection 

Lithic scatter; 
subsequently 

excavated 
(Kozikowski et al. 

1999) 

Loch a Sguirr 1 Skye NG608528 Y    Y Y   

Excavation 
(intentional) Shell midden 

(Hardy & Wickham-
Jones 2009a) 

Ballantrae A 
South 

Ayrshire NX087818 Y        

Surface 
collection Lithic scatter 

(Edgar 1939; Lacaille 
1945; Macneill 

1965a) 

Ballantrae B 
South 

Ayrshire NX084814 Y        

Surface 
collection Lithic scatter (Macneill 1965a) 

Bower Hill 
South 

Ayrshire NS282182 Y        

Surface 
collection Lithic scatter (Macneill 1973) 
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Crossraguel Abbey 
South 

Ayrshire NS273085 Y   Y     

Surface 
collection Lithic scatter (Macneill 1965b) 

Culzean Bay 
South 

Ayrshire NS246118 Y        Field-walking Lithic scatter (Addyman 1998) 

Dowhill Farm 
South 

Ayrshire NS204035 Y        

Surface 
collection Lithic scatter (Macneill 1973) 

Dunure A 
South 

Ayrshire NS249144 Y        

Surface 
collection Isolated find (Macneill 1973) 

Dunure B 
South 

Ayrshire NS258166 Y        

Surface 
collection Lithic scatter (Macneill 1973) 

Dunure C 
South 

Ayrshire NS262171 Y        Unknown Lithic scatter? (Anonymous 1976) 

Dunure D 
South 

Ayrshire NS249129 Y        Unknown Lithic scatter? (Anonymous 1976) 

Enoch Farm 
South 

Ayrshire NX204987 Y        

Surface 
collection Lithic scatter (Macneill 1973) 

Girvan A 
South 

Ayrshire NS223001 Y        Unknown Lithic scatter? (Anonymous 1976) 

Girvan B 
South 

Ayrshire NX199997 Y        Unknown Lithic scatter? (Anonymous 1976) 

Girvan C 
South 

Ayrshire NX200997 Y        Unknown Lithic scatter? (Anonymous 1976) 

Girvan D 
South 

Ayrshire NS209000 Y        Unknown Lithic scatter? (Anonymous 1976) 

Girvan E 
South 

Ayrshire NX210998 Y        Unknown Lithic scatter? (Anonymous 1976) 

Girvan F 
South 

Ayrshire NX209993 Y        Unknown Lithic scatter? (Anonymous 1976) 

Girvan G 
South 

Ayrshire NX213996 Y        Unknown Lithic scatter? (Anonymous 1976) 

Girvan H 
South 

Ayrshire NX214997 Y        Unknown Lithic scatter? (Anonymous 1976) 
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Girvan Mains 
South 

Ayrshire NX192991        

Limpet scoop 
of fine-
grained 

igneous rock 
Excavation 

(intentional) Isolated find 
(St Joseph & Maxwell 

1982) 

Girvan Mains Farm 
A 

South 
Ayrshire NX186988 Y        

Surface 
collection Lithic scatter (Macneill 1973) 

Girvan Mains Farm 
B 

South 
Ayrshire NX192999 Y        

Surface 
collection Lithic scatter (Macneill 1973) 

Girvan Mains Farm 
C 

South 
Ayrshire NS195000 Y        

Surface 
collection Lithic scatter (Macneill 1973) 

Greenan 
South 

Ayrshire NS314187        

No raw 
material 

information 
Excavation 

(intentional) Lithic scatter (Engl 2011; 2012) 

Knockdolian 
South 

Ayrshire NX121850 Y        

Surface 
collection Isolated find (Wright 2013) 

Maidens 
South 

Ayrshire NS210075 Y        

Surface 
collection Lithic scatter (Macneill 1973) 

Monkton A 
South 

Ayrshire NS350280        

No raw 
material 

information Field-walking Lithic scatter (Cameron 2001) 

Monkton B 
South 

Ayrshire NS354282 Y        Unknown Lithic scatter? (Anonymous 1976) 

Prestwick A 
South 

Ayrshire NS377259 Y        Unknown Lithic scatter? (Anonymous 1976) 

Prestwick B 
South 

Ayrshire NS369261 Y        Unknown Lithic scatter? (Anonymous 1976) 

Turnberry Hotel 
Outdoor Pursuits 

Centre 
South 

Ayrshire NS207065        

No raw 
material 

information 
Excavation 

(intentional) Lithic scatter (MacGregor 2002) 

Avondale Parish A 
South 

Lanarkshire NS612346        

Agate 
microlith Unknown Isolated find 

(McFadzean et al. 
1984a) 
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Brown Hill 
South 

Lanarkshire NS678337        

No raw 
material 

information Unknown Lithic scatter 
(McFadzean et al. 

1984a) 

Carmichael Church 
South 

Lanarkshire NS924383        

No raw 
material 

information Field-walking 

Lithic scatter; 
subsequently 

excavated (Lelong et al. 1999) 

Charleston Farm 
South 

Lanarkshire NS917418  Y       Field-walking Lithic scatter (Archer 2001) 

Coom Rig (Daer 
Valley) Site 84 

South 
Lanarkshire NS952103 Y Y       

Surface 
collection 

Lithic scatter; 
subsequently 

excavated (Ward 2006a) 

Coom Rig (Daer 
Valley) Site 85 

South 
Lanarkshire NS951102 Y Y       

Surface 
collection 

Lithic scatter; 
subsequently 

excavated (Ward 2006b) 

Crookedstane Farm 
South 

Lanarkshire NS969161 Y Y       

Excavation 
(intentional) Lithic scatter (Anonymous 1991) 

Daer Reservoir 3, 
Crawford 

South 
Lanarkshire NS975078 Y        

Surface 
collection 

Lithic scatter; 
subsequently 

excavated (Ward 2001) 

Daer Reservoir 1, 
Crawford 

South 
Lanarkshire NS986082 Y Y      Siltstone 

Surface 
collection 

Lithic scatter; 
subsequently 

excavated (Ward 1995; 1997) 

Daer Reservoir 2, 
Crawford 

South 
Lanarkshire NS984080  Y       

Surface 
collection 

Lithic scatter; 
subsequently 

excavated (Ward 1997) 

Daer Reservoir O 
South 

Lanarkshire NS968071  Y       

Surface 
collection 

Lithic scatter; 
subsequently 

excavated (Ward 2001; 2004) 

Glentaggart 
South 

Lanarkshire NS798266  Y      Chalcedony 
Excavation 

(intentional) Lithic scatter 

(Ballin & Johnson 
2005; Mitchell 2002; 
Mitchell & Neighbour 

2003) 
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Hare Hill/Climpy 
South 

Lanarkshire NS922546  Y       

Excavation 
(intentional) Lithic scatter (Duncan 1997) 

Lanark Racecourse 
South 

Lanarkshire NS901429  Y       

Surface 
collection Isolated find (Archer 1985) 

Midlinbank Farm 
South 

Lanarkshire NS663409 Y Y      Agate Unknown Lithic scatter 
(McFadzean et al. 

1984a) 

Shieloans 
South 

Lanarkshire NS627365  Y      Agate Unknown Lithic scatter 
(McFadzean et al. 

1984a) 

Snabe Gravel Pit 
South 

Lanarkshire NS648387  Y      Agate Unknown Lithic scatter 
(McFadzean et al. 

1984a) 

Loch Airigh na h-
Aon Oidhche South Uist NF796257         

Palaeo-
environmental 

core N/A (Edwards et al. 1995) 

Loch an t-Sil South Uist NF736235         

Palaeo-
environmental 

core N/A (Edwards et al. 1995) 

Loch Lang South Uist NF806295         

Palaeo-
environmental 

core N/A (Bennett et al. 1990) 

North Locheynort South Uist NF775293         

Palaeo-
environmental 

core N/A (Edwards 1990) 

Peninerine South Uist NF737353         

Palaeo-
environmental 

core N/A (Edwards et al. 1995) 

Balephuil Bay Tiree NL946407        

No raw 
material 

information 
Surface 

collection Lithic scatter (Mithen et al. 2007c) 

Ballevullin Tiree NL950460 Y        

Excavation 
(intentional) Isolated find 

(Livens 1956a; 
MacKie 1963) 

A'Chrannag 1 Ulva NM432391         

Palaeo-
environmental 

core N/A (Sugden 1999) 
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A'Chrannag 2 Ulva NM432389         

Palaeo-
environmental 

core N/A (Sugden 1999) 

Ulva Cave Ulva NM431384 Y  Y? Y  Y  

Some raw 
material may 
be intrusive 

Excavation 
(intentional) 

Occupation 
deposit 

(Bonsall et al. 1991; 
Bonsall et al. 1992; 
Bonsall et al. 1994; 

Pickard 2013; Russell 
et al. 1995) 
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Appendix 2 Catalogue of Radiocarbon Dated Mesolithic Sites (to June 2016) in Western Scotland and the 

Hebrides 

Table 48. Catalogue of radiocarbon dated Mesolithic sites (to June 2016) in Western Scotland and the Hebrides 

Site Name Location Material Description 
Laboratory 

No. Date BP 
Cal. BC 
(95.4%) d13C References 

Carding Mill 
Bay Argyll Antler 

A bevel-ended antler artefact recovered from a shell 
midden OxA-3740 5190±85 4236-3796 -20.5 

(Bonsall & Smith 1992; Hedges et 
al. 1993) 

Carding Mill 
Bay Argyll Marine shell 

Shells (Patella sp.) recovered from context XIV - an early 
shell midden layer GU-2898 5410±60 4080-3691   

(Connock et al. 1992; Wicks et al. 
2014) 

Carding Mill 
Bay Argyll Marine shell 

Shells (Patella sp.) recovered from context XV - an early 
shell midden layer GU-2899 5440±50 4140-3750   

(Connock et al. 1992; Wicks et al. 
2014) 

Druimvargie Argyll 
Bone 

(mammal?) 
A bevel-ended bone artefact (HL416) recovered from a 
midden OxA-4608 8340±80 7596-7177 -22.1 

(Bonsall et al. 1995; Hedges et al. 
1990; Hedges et al. 1998) 

Druimvargie Argyll 
Bone 

(mammal?) 
A bevel-ended bone artefact (HL424) recovered from a 
midden OxA-4609 7890±80 7042-6600 -22.6 

(Bonsall et al. 1995; Hedges et al. 
1998) 

Druimvargie Argyll 
Bone 

(mammal?) A uniserial barbed bone point recovered from a midden OxA-1948 7810±90 7028-6467 -21 
(Bonsall & Smith 1989; Hedges et 
al. 1990) 

Lón Mór Argyll 
Hazel 

nutshell 

Nutshell recovered from an organic-rich horizon 
containing lithic artefacts, burnt bone, charcoal, and 
charred hazel nutshell AA-8793 7385±60 6395-6095   (Bonsall et al. 1993) 

Low Nerabus Argyll Wood 
Willow recovered from occupation deposit comprising two 
postholes, two gullies, and two pit hearths Unknown - 7194-7069   (Ellis 2014) 

MacArthur's 
Cave Argyll Antler 

A biserial barbed antler point recovered from a shell 
midden OxA-1949 6700±80 5728-5489 -21 

(Bonsall & Smith 1989; Hedges et 
al. 1990) 

Raschoille Argyll 
Mammal 

bone 
A bevel-ended bone artefact (red deer metapodial) 
recovered from lower deposits in a cave OxA-8398 7480±75 6469-6216 -21.6 

(Ashmore in Bronk Ramsey et al. 
2002; Bonsall 1999) 

Raschoille Argyll 
Hazel 

nutshell Hazel nutshell recovered from lower deposits in a cave OxA-8439 7250±55 6225-6021 -25.1 
(Ashmore in Bronk Ramsey et al. 
2002; Bonsall 1999) 

Raschoille Argyll 
Mammal 

bone 
A bevel-ended bone artefact (red deer metatarsal) 
recovered from lower deposits in a cave OxA-8535 7265±80 6352-5990 -21.4 

(Ashmore in Bronk Ramsey et al. 
2002; Bonsall 1999) 

Auchareoch Arran 
Hazel 

nutshell Nutshell recovered from a platform fire-spot OxA-1599 7300±90 6373-6015 -26 
(Affleck et al. 1988; Hedges et al. 
1989) 

Auchareoch Arran 
Wood 

charcoal 
Charcoal (oak) recovered from west quarry face; 
stratigraphic integrity less than satisfactory OxA-1600 7870±90 7046-6515 -26 

(Affleck et al. 1988; Hedges et al. 
1989) 
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Auchareoch Arran 
Hazel 

nutshell Nutshell recovered from south quarry pit OxA-1601 8060±90 7303-6692 -26 
(Affleck et al. 1988; Hedges et al. 
1989) 

Fiskary Bay Coll 
Hazel 

nutshell 

Nutshell recovered from the upper levels of a beach sand 
overlain by mid- to late Holocene coastal sediments; also 
see Beta-251109, Beta-251111-251113, Beta-251115 and 
Beta-234855 Beta-251114 7460±50 6425-6236 -22.9 (Wicks et al. 2014) 

Fiskary Bay Coll 
Hazel 

nutshell 

Nutshell recovered from the upper levels of a beach sand 
overlain by mid- to late Holocene coastal sediments; also 
see Beta-251109, Beta-251111, Beta-251112-Beta-251115 
and Beta-234855 Beta-251111 7470±50 6429-6240 -23.9 (Wicks et al. 2014) 

Fiskary Bay Coll 
Hazel 

nutshell 

Nutshell recovered from the upper levels of a beach sand 
overlain by mid- to late Holocene coastal sediments; also 
see Beta-251111-251115 and Beta-234855 Beta-251109 7730±60 6557-6457 -25.1 (Wicks et al. 2014) 

Fiskary Bay Coll 
Hazel 

nutshell 

Nutshell recovered from the upper levels of a beach sand 
overlain by mid- to late Holocene coastal sediments; also 
see Beta-251109, Betal-251111, Beta-251113-Beta-251115 
and Beta-234855 Beta-251112 7760±50 6678-6477 -24.4 (Wicks et al. 2014) 

Fiskary Bay Coll 
Hazel 

nutshell 

Nutshell recovered from the upper levels of a beach sand 
overlain by mid- to late Holocene coastal sediments; also 
see Beta-251109, Beta-251111-Beta-251112, Beta-251114-
Beta-251115 and Beta-234855 Beta-251113 8070±50 7181-6819 -25.3 (Wicks et al. 2014) 

Fiskary Bay Coll 
Hazel 

nutshell 

Nutshell recovered from the upper levels of a beach sand 
overlain by mid- to late Holocene coastal sediments; also 
see Also see Beta-251109 and Beta-251111-Beta-251115 Beta-234855 8200±50 7351-7066 -26.1 (Wicks et al. 2014) 

Staosnaig Colonsay 
Hazel 

nutshell 
Nutshell recovered from Spit 1 in shallow pit F24 primarily 
containing hazel nutshells AA-21619 7760±55 6683-6473 -24.8 (Mithen 1997b) 

Staosnaig Colonsay 
Hazel 

nutshell 
Nutshell recovered from Spit 4 in shallow pit F24 primarily 
containing hazel nutshells. REDATED (AA-26227) AA-21620 7040±55 6020-5792 -25.5 (Mithen 1997b) 

Staosnaig Colonsay 
Hazel 

nutshell 
Nutshell recovered from Spit 2 in shallow pit F24 primarily 
containing hazel nutshells AA-21621 7780±55 6747-6473 -25.6 (Mithen 1997b) 

Staosnaig Colonsay 
Hazel 

nutshell 
Nutshell recovered from Spit 3 in shallow pit F24 primarily 
containing hazel nutshells AA-21622 7660±55 6610-6428 -25.7 (Mithen 1997b) 

Staosnaig Colonsay 
Hazel 

nutshell 
Nutshell recovered from Spit 2 in shallow pit F24 primarily 
containing hazel nutshells AA-21623 7665±55 6611-6431 -27.6 (Mithen 1997b) 

Staosnaig Colonsay 
Hazel 

nutshell 
Nutshell recovered from Spit 2 in shallow pit F24 primarily 
containing hazel nutshells AA-21624 7935±55 7040-6661 -25.1 (Mithen 1997b) 
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Staosnaig Colonsay 
Hazel 

nutshell 

Nutshell recovered from lower fill C57 in stone-lined pit 
F41, 2m from shallow pit (AA-21619 to AA-21624); also see 
AA-21626 AA-21625 7780±55 6747-6473 -25.5 (Mithen 1997b) 

Staosnaig Colonsay 
Hazel 

nutshell 
Nutshell from upper fill C42 of stone-lined pit F41; also see 
AA-21625 AA-21626 7480±55 6437-6240 -26.6 (Mithen 1997b) 

Staosnaig Colonsay 
Hazel 

nutshell Nutshell from C48 in small pit F49 AA-21627 8110±60 7320-6831 -25.1 (Mithen 1997b) 

Staosnaig Colonsay 
Hazel 

nutshell 
Nutshell from upper fill C31 of pebble-filled amorphous 
feature F30 interpreted as a post-hole/pit AA-21629 5415±60 4360-4055 -23.4 (Mithen 1997b) 

Staosnaig Colonsay 
Hazel 

nutshell 

Nutshell recovered from C17 at the base of shallow pit F24 
primarily containing hazel nutshells; also see AA-21619 to 
AA-21624 and AA-26227 Q-3278 7720±110 7022-6381   (Mithen et al. 2000a) 

Staosnaig Colonsay 
Hazel 

nutshell 

Nutshell recovered from Spit 4 in shallow pit F24 primarily 
containing hazel nutshells; also see AA-21619 to AA-21624 
and Q-3278. REDATED AA-21620 AA-26227 7420±65 6432-6102   (Mithen et al. 2000a) 

Barsalloch 
Dumfries and 

Galloway 
Wood 

charcoal 
A layer of wood charcoal (no species specified) recovered 
from square H7 below a stone setting GaK-1601 6000±110 5216-4618   (Cormack 1970) 

Cumstoun 
Dumfries and 

Galloway Antler 
A biserial antler barbed point recovered from the bed of 
the River Dee, isolated find OxA-3735 6665±70 5706-5484 -21.4 

(Bonsall & Smith 1992; Hedges et 
al. 1993; Lacaille 1954) 

Smittons 
Dumfries and 

Galloway 
Hazel 

nutshell Nutshell recovered from a fire spot in Trench T1 OxA-1595 6260±80 5464-5003 -26 
(Hedges et al. 1989; Tolan-Smith 
2008) 

Smittons 
Dumfries and 

Galloway 
Hazel 

nutshell Nutshell recovered from a fire spot in Trench T3 OxA-1594 5470±80 4464-4057 -26 
(Hedges et al. 1989; Tolan-Smith 
2008) 

Starr 1 East Ayrshire 
Wood 

charcoal 
Charcoal (Corylus) recovered from a fire spot  38m south 
of the 1989 trench 2 OxA-1596 6230±80 5370-4981 -26 

(Hedges et al. 1989; Tolan-Smith 
2008) 

Cramond Edinburgh 
Hazel 

nutshell 

Recovered from CR95/1066 from context 1431, fill of 
scoop 1432, cut into the N side of pit 1430, sealed by 
context 1409 OxA-10180 9250±60 8621-8308 -26.03 

(Ashmore in Bronk Ramsey et al. 
2002; Lawson 2001) 

Cramond Edinburgh 
Hazel 

nutshell Recovered from CR95/291 from context 1409 OxA-10145 9230±50 8596-8302 -24.89 
(Ashmore in Bronk Ramsey et al. 
2002; Lawson 2001) 

Cramond Edinburgh 
Hazel 

nutshell 
Recovered from CR95/958 from context 1426, level K, fill 
of pit 1430 OxA-10179 9130±65 8542-8247 -23.95 

(Ashmore in Bronk Ramsey et al. 
2002; Lawson 2001) 

Cramond Edinburgh 
Hazel 

nutshell 
Recovered from CR95/956 from context 1426, level M, fill 
of pit 1430 OxA-10178 9105±65 8537-8229 -23.34 

(Ashmore in Bronk Ramsey et al. 
2002; Lawson 2001) 

Cramond Edinburgh 
Hazel 

nutshell 
Recovered from CR95/74 from context 1409, sealing pits 
below and sealed by possible topsoil OxA-10143 9150±45 8532-8278 -23.48 

(Ashmore in Bronk Ramsey et al. 
2002; Lawson 2001) 

Cramond Edinburgh 
Hazel 

nutshell 
Recovered from CR95/283 from context 1402; fill of 
truncated pit 1425 sealed by context 1409 OxA-10144 9110±60 8532-8236 -23.09 

(Ashmore in Bronk Ramsey et al. 
2002; Lawson 2001) 
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Northton Harris 
Hazel 

nutshell 

Nutshell (Sample A - AMS26) recovered from context 5 in a 
possible occupation horizon (context 7) sealed by context 
10 which may also represent an occupation layer 
associated with  the Neolithic 1 phase of the site; also see 
AA-50333 and AA-50334 AA-50332 7525±80 6560-6226 -24.4 (Gregory 2003) 

Northton Harris 
Hazel 

nutshell 

Nutshell (Sample B - AMS27) recovered from context 5 in a 
possible occupation horizon (context 7) sealed by context 
10 which may also represent an occupation layer 
associated with  the Neolithic 1 phase of the site; also see 
AA-50332 and AA-50334 AA-50333 7395±45 6396-6104 -23.7 (Gregory 2003) 

Northton Harris 
Hazel 

nutshell 

Nutshell (Sample C - AMS28) recovered from context 5 in a 
possible occupation horizon (context 7) sealed by context 
10 which may also represent an occupation layer 
associated with  the Neolithic 1 phase of the site; also see 
AA-50332 and AA-50333 AA-50334 7420±45 6403-6220 -24.1 (Gregory 2003) 

Northton Harris 
Hazel 

nutshell 

Nutshell (Sample D - AMS29) recovered from context 7 in a 
possible anthropogenic horizon above natural boulder clay 
and sealed by context 5; also see AA-50336 AA-50335 7980±50 7051-6700 -24 (Gregory 2003) 

Northton Harris 
Hazel 

nutshell 

Nutshell (Sample E - AMS30) recovered from context 7 in a 
possible anthropogenic horizon above natural boulder clay 
and sealed by context 5; also see AA-50335 AA-50336 7925±55 7032-6659 -26.3 (Gregory 2003) 

Northton Harris 
Hazel 

nutshell Nutshell recovered from an old ground surface (014) SUERC-33736 7470±30 6417-6251 -23.5 
(Bishop et al. 2012a; Bishop et al. 
2011a; Church pers. comm.) 

Northton Harris 
Hazel 

nutshell Nutshell recovered from an old ground surface (014) SUERC-33737 7440±30 6391-6241 -23.3 
(Bishop et al. 2012a; Bishop et al. 
2011a; Church pers. comm.) 

Northton Harris 
Hazel 

nutshell Nutshell recovered from an old ground surface (014) SUERC-34911 7460±40 6416-6241 -25 
(Bishop et al. 2012a; Bishop et al. 
2011a; Church pers. comm.) 

Northton Harris 
Hazel 

nutshell Nutshell recovered from an old ground surface (014) SUERC-34912 7400±40 6395-6121 -21.9 
(Bishop et al. 2012a; Bishop et al. 
2011a; Church pers. comm.) 

Tràigh an 
Teampuill Harris 

Hazel 
nutshell Nutshell recovered from an old ground surface (003) SUERC-38832 6750±30 5713-5624 -23.2 

(Blake et al. 2012b; Church pers. 
comm.) 

Tràigh an 
Teampuill Harris 

Hazel 
nutshell Nutshell recovered from an old ground surface (003) SUERC-38833 6690±30 5662-5556 -23.8 

(Blake et al. 2012b; Church pers. 
comm.) 

Tràigh an 
Teampuill Harris 

Hazel 
nutshell Nutshell recovered from a shell midden (007) SUERC-38834 6525±30 5557-5386 -27.3 

(Blake et al. 2012b; Church pers. 
comm.) 

Tràigh an 
Teampuill Harris 

Hazel 
nutshell Nutshell recovered from a shell midden (007) SUERC-38838 6735±30 5715-5576 -24.9 

(Blake et al. 2012b; Church pers. 
comm.) 
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Sand Highland 
Mammal 

bone 

A bevel-ended bone artefact (N62) recovered from sample 
B24A NE Spit 8 - a loose unconsolidated limpet midden 
(013) overlying a rock fall and covered by crushed shell 
and turf 

OxA-12096 
(OxA-10152) 8470±90 7703-7309 -22.12 

(Ashmore in Bronk Ramsey et al. 
2002; Hardy & Wickham-Jones 
2001) 

Sand Highland Antler 
A piece of antler (Sample 9/8) recovered from Spit 8 at the 
outer edge of a midden; also see OxA-9281 and OxA-9343 OxA-9280 7520±50 6461-6253 -21.75 

(Ashmore in Bronk Ramsey et al. 
2002; Cressey et al. 2001c) 

Sand Highland 
Mammal 

bone 
A bevel-ended bone artefact recovered from Spit 8 at the 
outer edge of a midden; also see OxA-9280 and OxA-9343 OxA-9281 7715±55 6643-6462 -21.31 

(Ashmore in Bronk Ramsey et al. 
2002; Cressey et al. 2001c) 

Sand Highland 
Mammal 

bone 
A bevel-ended bone artefact (N18) recovered from Spit 7 
of a midden OxA-9282 7545±50 6477-6257 -20.83 

(Ashmore in Bronk Ramsey et al. 
2002; Cressey et al. 2001c) 

Sand Highland 
Wood 

charcoal 

A piece of charcoal (birch), (Sample 9/8) recovered from 
Spit 8 at the outer edge of a midden; also see OxA-9281 
and OxA-9280 OxA-9343 7765±50 6679-6479 -24.60 

(Ashmore in Bronk Ramsey et al. 
2002; Cressey et al. 2001c) 

Sand Highland 
Mammal 

bone 

A bevel-ended bone artefact (N60) recovered from sample 
B24B NE Spit 7 - a loose unconsolidated limpet midden 
(013) overlying a rock fall and covered by crushed shell 
and turf 

OxA-16487 
(OxA-10175) 7666±45 6596-6441   

(Ashmore in Bronk Ramsey et al. 
2002; Sheridan & Higham 2007) 

Sand Highland 
Mammal 

bone 

A bevel-ended bone artefact recovered from sample A1B 
NE Spit 9 - a shell-free organic midden (022) overlying a 
sterile palaeosol and covered by the main shell midden 

OxA-16488 
(OxA-10176) 6497±44 5542-5365   

(Ashmore in Bronk Ramsey et al. 
2002; Sheridan & Higham 2007) 

Sand Highland 
Mammal 

bone 

A bevel-ended bone artefact recovered from sample A2B 
SW Spit 10 - a shell-free organic midden (022) overlying a 
sterile palaeosol and covered by the main shell midden 

OxA-16489 
(OxA-10177) 6343±43 5466-5221   

(Ashmore in Bronk Ramsey et al. 
2002; Sheridan & Higham 2007) 

Bolsay Farm Islay 
Wood 

charcoal 
Charcoal (Corylus) recovered from Trench 2, context 4 
(underlies context 5); also see AA-21633 AA-21632 7400±55 6412-6101 -24.3 (Mithen 1997a) 

Bolsay Farm Islay 
Wood 

charcoal 
Charcoal (Alnus) recovered from Trench 2, context 4 
(underlies context 5); also see AA-21632 AA-21633 6810±55 5808-5623 -26.2 (Mithen 1997a) 

Bolsay Farm Islay 
Wood 

charcoal 
Bulk sample of charcoal (no species specified) recovered 
from Trench 1, context 16 (pit fill) Q-3219 7250±145 6425-5847   (Mithen et al. 2000d) 

Coulererach Islay 
Wood 

charcoal 

Charcoal (no species specified) recovered from the base of 
a peat monolith from the lower artefact bearing horizon in 
Trench 1, sealed by peat OxA-4924 7530±80 6561-6228 -26.4 

(Bunting et al. 2000; Mithen & 
Finlay 2000) 

Gleann Mor Islay 
Wood 

charcoal 
Charcoal (no species specified) recovered from Trench 1, 
spit 2; high risk of contamination likely Beta-32228 7100±125 6222-5737   (Mithen & Finlayson 2000a) 

Newton Islay 
Hazel 

nutshell Nutshell recovered from the surface layer in F35, Area 2 GU-1953 7765±225 7305-6216   (McCullagh et al. 1989) 

Newton Islay 
Hazel 

nutshell Nutshell recovered from the basal layer in F35, Area 2 GU-1954 7805±90 7027-6464   (McCullagh et al. 1989) 
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Rockside Islay 
Wood 

charcoal 
Charcoal (no species specified) recovered from exposed 
section of Trench 1, context 10 (below contexts 8 and 9) Beta-37624 6800±40 5741-5631 -25 (Mithen et al. 2000b) 

Rubha Port 
an t-Seilich Islay 

Hazel 
nutshell 

Nutshell recovered from c.177 exposed at the base of 
Test-pit 0/15 that was shown to overlie bedrock Beta-288425 7010±50 5998-5775 -23.4 (Wicks et al. 2014) 

Rubha Port 
an t-Seilich Islay 

Hazel 
nutshell 

Nutshell recovered from c.34 exposed at the base of Test-
pit 0/10 that was shown to overlie bedrock Beta-288424 7540±40 6467-6266 -24.3 (Wicks et al. 2014) 

Rubha Port 
an t-Seilich Islay 

Hazel 
nutshell 

Nutshell recovered from c.132 exposed at the base of test-
pit 10/5 that was shown to overlie bedrock Beta-288428 7660±40 6591-6444 -21.6 (Wicks et al. 2014) 

Rubha Port 
an t-Seilich Islay 

Hazel 
nutshell 

Nutshell recovered from c.153 exposed at the base of 
Test-pit 0/5 that was shown to overlie bedrock Beta-288423 7820±40 6774-6530 -25 (Wicks et al. 2014) 

Rubha Port 
an t-Seilich Islay 

Hazel 
nutshell 

Nutshell recovered from c.166 exposed at the base of test-
pit 5/0 that was shown to overlie bedrock Beta-288426 8230±40 7447-7082 -25.1 (Wicks et al. 2014) 

Rubha Port 
an t-Seilich Islay 

Hazel 
nutshell 

Nutshell recovered from c.142 exposed at the base of test-
pit 5/15 that was shown to overlie bedrock Beta-288427 8240±40 7451-7084 -24.8 (Wicks et al. 2014) 

Storakaig Islay 
Hazel 

nutshell 
Nutshell recovered from exposed section in ditch upthrow 
upon identification of the site in 2009, likely context 106 Beta-264734 5350±50 4327-4048 23.9 (Wicks et al. 2014) 

Storakaig Islay 
Hazel 

nutshell 
Nutshell recovered from context 106 grid square J2; also 
see Beta-288430 Beta-288431 5130±40 4037-3800 -23.3 (Wicks et al. 2014) 

Storakaig Islay 
Hazel 

nutshell Nutshell recovered from context 106 in grid square A4 Beta-307787 5540±40 4456-4335 -21.3 (Wicks et al. 2014) 

Storakaig Islay 
Hazel 

nutshell Nutshell recovered from context 106 in grid square C12 Beta-307788 5250±40 4230-3973 -24.3 (Wicks et al. 2014) 

Glenbatrick 
Waterhole Jura 

Wood 
charcoal Charcoal (Quercus) recovered from the fill of a trough  GX-2564 5045±215 4335-3374   (Mercer 1974) 

Lussa Wood 1 Jura 
Wood 

charcoal 
Charcoal (hawthorn) recovered from the base of the NE 
stone ring SRR-160 8194±350 8197-6430   (Mercer 1980) 

Lussa Wood 1 Jura 
Wood 

charcoal 
Charcoal (hawthorn and ?maple) recovered from the 
centre and SW stone rings SRR-159 7963±200 7451-6459   (Mercer 1980) 

North Carn Jura 
Wood 

charcoal 
Bulk sample of charcoal (no species specified) recovered 
from a stone setting SRR-161 7414±80 6431-6096   (Mercer 1972) 

DLS'13 #30 Lewis Charcoal Charred deciduous roundwood fragment (Calluna sp.) SUERC-55370 5583±27 4460-4355 -26.8 (Piper et al. 2015) 

Tràigh na 
Beirigh 1 Lewis 

Hazel 
nutshell Nutshell recovered from a shell midden (008) SUERC-33731 5415±30 4341-4233 -27.4 

(Blake et al. 2012a; Church pers. 
comm.) 

Tràigh na 
Beirigh 1 Lewis 

Hazel 
nutshell Nutshell recovered from a shell midden (008) SUERC-33732 5415±30 4341-4233 -26.9 

(Blake et al. 2012a; Church pers. 
comm.) 

Tràigh na 
Beirigh 1 Lewis 

Hazel 
nutshell Nutshell recovered from a shell midden (008) SUERC-34902 5355±35 4325-4053 -26 

(Blake et al. 2012a; Church pers. 
comm.) 
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Tràigh na 
Beirigh 1 Lewis 

Hazel 
nutshell Nutshell recovered from a shell midden (008) SUERC-34903 5280±35 4233-3994 -27.9 

(Blake et al. 2012a; Church pers. 
comm.) 

Tràigh na 
Beirigh 2 Lewis 

Hazel 
nutshell Nutshell recovered from a shell midden (005) SUERC-44850 5687±18 4549-4462 -24.5 Church pers. comm. 

Tràigh na 
Beirigh 2 Lewis 

Hazel 
nutshell Nutshell recovered from a shell midden (005) SUERC-44854 5677±23 4548-4457   Church pers. comm. 

Tràigh na 
Beirigh 2 Lewis 

Hazel 
nutshell Nutshell recovered from a shell midden (005) SUERC-44855 5654±23 4542-4450   Church pers. comm. 

Tràigh na 
Beirigh 2 Lewis 

Hazel 
nutshell Nutshell recovered from a shell midden (005) SUERC-44856 5692±23 4582-4459   Church pers. comm. 

Tràigh na 
Beirigh 9 Lewis 

Hazel 
nutshell Nutshell recovered from old ground surface deposit (006) SUERC-55365 5372±26 4330-4071 -24.7 Church pers. comm. 

Tràigh na 
Beirigh 9 Lewis 

Hazel 
nutshell Nutshell recovered from old ground surface deposit (006) SUERC-55366 5297±27 4233-4044 -25.8 Church pers. comm. 

Tràigh na 
Beirigh 9 Lewis Human bone Tooth recovered from burial within shell midden (005) SUERC-56982 5143±33 3892-3539 -15.2 Church pers. comm. 

Crait Dubh Mull 
Hazel 

nutshell 
Nutshell recovered from black organic-rich fill of a linear 
feature Beta-221402 7830±80 7028-6481 -26.4 (Wicks et al. 2014) 

Crait Dubh Mull 
Wood 

charcoal 

Wood charcoal (unidentified) twig recovered from black 
organic-rich spread of cultural material which overlies the 
linear feature Beta-288420 7900±40 7027-6646 -25.5 (Wicks et al. 2014) 

Crait Dubh Mull 
Hazel 

nutshell 
Nutshell recovered from fill of intercutting pit complex 
denoting initial phase of activity Beta-288421 9080±40 8419-8233 -29.3 (Wicks et al. 2014) 

Suidhe Mull 
Wood 

charcoal Charcoal (Quercus) from fill of a lined pit 
SUERC-18896  
(GU-16717) 5845±30 4791-4615   (Ellis 2009) 

Shewalton 
North 

Ayrshire Antler A biserial barbed antler point, isolated find OxA-1947 5840±80 4901-4499 -21 
(Bonsall & Smith 1989; Hedges et 
al. 1990) 

Caisteal Nan 
Gillean I Oronsay 

Wood 
charcoal 

Charcoal (no species specified) recovered from Trench C, 
layer 3 (overlying layer 4); also see Q-3010 Q-3011 5450±50 4446-4081   (Switsur & Mellars 1987) 

Caisteal Nan 
Gillean I Oronsay 

Wood 
charcoal 

Charcoal (no species specified) recovered from Trench C, 
layer 3 (overlying layer 4); also see Q-3011 Q-3010 5485±50 4449-4247   (Switsur & Mellars 1987) 

Caisteal Nan 
Gillean I Oronsay 

Wood 
charcoal 

Charcoal (no species specified) recovered from Trench C, 
layer 4 (upper) Q-3009 6035±70 5207-4771   (Switsur & Mellars 1987) 

Caisteal Nan 
Gillean I Oronsay 

Wood 
charcoal 

Charcoal (no species specified) recovered from Trench C, 
layer 4 (base); also see Q-3008 Q-3007 6120±80 5291-4842   (Switsur & Mellars 1987) 

Caisteal Nan 
Gillean I Oronsay 

Wood 
charcoal 

Charcoal (no species specified) recovered from Trench C, 
layer 4 (base); also see Q-3007 Q-3008 6190±80 5321-4938   (Switsur & Mellars 1987) 
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Caisteal Nan 
Gillean II Oronsay 

Wood 
charcoal 

Charcoal (no species specified) recovered from Trench P, 
layer 3 (overlies layer 4) Birm-346 5150±380 4842-3024   (Switsur & Mellars 1987) 

Caisteal Nan 
Gillean II Oronsay 

Wood 
charcoal 

Charcoal (no species specified) recovered from Trench P, 
layer 4 (basal layer); also see Q-1355 and Birm-348a/b/c Birm-347 5450±140 4581-3970   (Switsur & Mellars 1987) 

Caisteal Nan 
Gillean II Oronsay 

Wood 
charcoal 

Charcoal (no species specified) recovered from Trench P, 
layer 4 (basal layer); also see Birm-347 and Birm-348a/b/c Q-1355 5460±65 4455-4072   (Switsur & Mellars 1987) 

Caisteal Nan 
Gillean II Oronsay Marine shell 

Outer fraction of Patella sp. recovered from Trench P, 
layer 4 (basal layer); also see Birm-347 and Q-1355 Birm-348C 5570±140 

4410-3950 

  
(Switsur & Mellars 1987; Wicks et 
al. 2014) 

Caisteal Nan 
Gillean II Oronsay Marine shell 

Middle fraction of Patella sp. recovered from Trench P, 
layer 4 (basal layer); also see Birm-347 and Q-1355 Birm-348B 5720±140   

(Switsur & Mellars 1987; Wicks et 
al. 2014) 

Caisteal Nan 
Gillean II Oronsay Marine shell 

Inner fraction of Patella sp. recovered from Trench P, layer 
4 (basal layer); also see Birm-347 and Q-1355 Birm-348A 5850±310   

(Switsur & Mellars 1987; Wicks et 
al. 2014) 

Caisteal Nan 
Gillean II Oronsay Human bone Bone recovered from Trench P/N, layer 1/2 unit 4 OxA-8005 5480±55 4330-3990 -16 

(Bronk Ramsey et al. 2000; 
Richards & Sheridan 2000; Wicks 
et al. 2014) 

Cnoc Coig Oronsay 
Wood 

charcoal 

Charcoal (no species specified) recovered from Trench A, 
Unit 3 Phase 3 deposits, although may have been mixed 
with Phase 2 material; also see Q-1351, Q1353 and Q-1354 Q-1352 5430±130 4518-3976   (Switsur & Mellars 1987) 

Cnoc Coig Oronsay 
Wood 

charcoal 
Charcoal (no species specified) recovered from Trench E, 
Unit 2 Phase 3 deposits; also see Q1352, Q353 and Q1354 Q-1351 5495±75 4501-4076   (Switsur & Mellars 1987) 

Cnoc Coig Oronsay 
Wood 

charcoal 

Charcoal (no species specified) recovered from Trench E, 
Unit 6 Phase 3 deposits; also see Q-1351, Q-1352 and Q-
1353 Q-1354 5535±140 4689-4048   (Switsur & Mellars 1987) 

Cnoc Coig Oronsay 
Wood 

charcoal 

Charcoal (no species specified) recovered from Trench E, 
Unit 8 Phase 3 deposits; also see Q-1351, Q-1352 and Q-
1354 Q-1353 5645±80 4683-4346   (Switsur & Mellars 1987) 

Cnoc Coig Oronsay 
Wood 

charcoal 
Charcoal (no species specified) recovered from Square N4 
Pre-midden layer; also see Q-3006 Q-3005 5650±60 4652-4354   (Switsur & Mellars 1987) 

Cnoc Coig Oronsay 
Wood 

charcoal 
Charcoal (no species specified) recovered from Square 04 
pre-midden layer; also see Q-3005 Q-3006 5675±60 4682-4369   (Switsur & Mellars 1987) 

Cnoc Coig Oronsay Human bone 
Bone recovered from square H13, unit 4 Phase 3 deposits; 
also see Q-1351, Q-1352, Q-1353, Q-1354 and OxA-8014 OxA-8019 5615±45 4534-4356 -12.4 

(Bronk Ramsey et al. 2000; 
Richards & Sheridan 2000)  

Cnoc Coig Oronsay Human bone 
Bone recovered from square I13, unit 4 Phase 3 deposits; 
also see Q1351, Q-1352, Q-1353, Q-1354 and OxA-8019 OxA-8014 5495±55 4454-4249 -12 

(Bronk Ramsey et al. 2000; 
Richards & Sheridan 2000) 

Cnoc Coig Oronsay Human bone Bone recovered from square I5, unit 4 Phase 1 deposits OxA-8004 5740±65 4765-4450 -12.4 
(Bronk Ramsey et al. 2000; 
Richards & Sheridan 2000) 

Cnoc Sligeach Oronsay Charcoal 
Charcoal (no species specified - "composite sample") 
recovered from Trench B, layer 7 - upper part of midden BM-670 5426±159 4669-3945   (Jardine 1977) 
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Priory 
Midden Oronsay Charcoal 

Charcoal (no species specified) recovered from control 
trench layer 7 which abuts layers 9/10 Q-3004 5470±50 4349-4326   (Switsur & Mellars 1987) 

Priory 
Midden Oronsay Charcoal 

Charcoal (no species specified) recovered from control 
trench layer 9/10 which abuts layer 7 and overlies level 18 Q-3003 5510±50 4359-4339   (Switsur & Mellars 1987) 

Priory 
Midden Oronsay Charcoal 

Charcoal (no species specified) recovered from control 
trench layer 18 which overlies level 19 Q-3002 5717±50 4586-4501   (Switsur & Mellars 1987) 

Priory 
Midden Oronsay Charcoal 

Charcoal (no species specified) recovered from control 
trench layer 19 (basal layer); also see Q-3001 Q-3000 5825±50 4722-4686   (Switsur & Mellars 1987) 

Priory 
Midden Oronsay Charcoal 

Charcoal (no species specified) recovered from control 
trench layer 19 (Basal layer); also see Q-3000 Q-3001 5870±50 4781-4715   (Switsur & Mellars 1987) 

Pabaigh Mòr 
South Pabaigh Mòr 

Hazel 
nutshell Nutshell recovered from shell midden (002) SUERC-55363 8098±28 7167-7156 -26.3 Church pers. comm. 

Pabaigh Mòr 
South Pabaigh Mòr 

Hazel 
nutshell Nutshell recovered from shell midden (002) SUERC-55364 5670±28 4576-4449 -26.1 Church pers. comm. 

Loch a Sguirr Raasay 
Mammal 

bone 

A bevel-ended bone artefact (N25) recovered from spit 2 
from midden layers at the rear of a rockshelter; spit is 
higher than OxA-9254 OxA-9255 7245±55 6622-6020 -21.63 

(Ashmore in Bronk Ramsey et al. 
2002; Cressey et al. 2001b) 

Loch a Sguirr Raasay 
Wood 

charcoal 

Charcoal (birch), (1/3) recovered from Spit 3 from midden 
layers at the rear of a rockshelter; spit is higher than OxA-
9254 OxA-9305 7620±75 6640-6272 -26.58 

(Ashmore in Bronk Ramsey et al. 
2002; Cressey et al. 2001b) 

Risga Risga Antler 
A bevel-ended antler artefact recovered from a shell 
midden OxA-3737 5875±65 4906-4555 -20.6 

(Bonsall & Smith 1992; Hedges et 
al. 1993) 

Risga Risga Antler 
A distal fragment of a biserial red deer antler mattock 
associated with a barbed point OxA-2023 6000±90 5207-4705   

(Bonsall & Smith 1992; Hedges et 
al. 1993) 

Kinloch Rum 
Hazel 

nutshell 
Nutshell recovered from fill of pit feature AD 5; also see 
GU-1874 GU-1873a 8590±95 

7590-7360 
-24.9 (Cook & Scott 1990) 

Kinloch Rum 
Hazel 

nutshell 
RECOUNTED Nutshell recovered from fill of pit feature AD 
5 GU-1873b 8360±70   (Cook & Scott 1990) 

Kinloch Rum 
Hazel 

nutshell 
Nutshell recovered from the lower fill of a truncated pit 
feature AJ 2 GU-2040a 8560±75 

7596-7518 
-25.1 (Cook & Scott 1990) 

Kinloch Rum 
Hazel 

nutshell 
RECOUNTED Nutshell recovered from the lower fill of a 
truncated pit feature AJ 2 GU-2040b 8490±50   (Cook & Scott 1990) 

Kinloch Rum 
Hazel 

nutshell 
Nutshell recovered from fill of pit feature AD 5; also see 
GU-1873 GU-1874a 8515±190 

7572-7032 
-23.8 (Cook & Scott 1990) 

Kinloch Rum 
Hazel 

nutshell 
RECOUNTED Nutshell recovered from fill of pit feature AD 
5; also see GU-1873 GU-1874b 8060±150   (Cook & Scott 1990) 

Kinloch Rum 
Hazel 

nutshell Nutshell recovered from structural feature BA S2 GU-2150 8310±150 7608-6838 -25.7 (Cook & Scott 1990) 
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Kinloch Rum 
Hazel 

nutshell Nutshell recovered from fill of pit feature BA 1 GU-2146 8080±50 7283-6822 -25 (Cook & Scott 1990) 

Kinloch Rum 
Hazel 

nutshell 
Nutshell recovered from part of a pit complex further 
investigated in trench BA; also see GU-2149 GU-2039a 7925±65 

7024-6639 

-25.3 (Cook & Scott 1990) 

Kinloch Rum 
Hazel 

nutshell 
RECOUNTED Nutshell recovered from part of a pit complex 
further investigated in trench BA; also see GU-2149 GU-2039b 7860±50   (Cook & Scott 1990) 

Kinloch Rum 
Hazel 

nutshell 
Nutshell recovered from hollow feature BA 10 sealed by 
dumps on the edge of the burn; TPQ for the dumps GU-2147a 7880±70 

7031-6679 
-25.1 (Cook & Scott 1990) 

Kinloch Rum 
Hazel 

nutshell 

RECOUNTED Nutshell recovered from hollow feature BA 
10 sealed by dumps on the edge of the burn; TPQ for the 
dumps GU-2147b 7950±50   (Cook & Scott 1990) 

Kinloch Rum 
Hazel 

nutshell Nutshell recovered from fill of pit feature BA 3 GU-2145a 7850±50 
7004-6633 

-25 (Cook & Scott 1990) 

Kinloch Rum 
Hazel 

nutshell 
RECOUNTED Nutshell recovered from fill of pit feature BA 
3 GU-2145b 7900±50   (Cook & Scott 1990) 

Kinloch Rum 
Wood 

charcoal 
Charcoal (no species specified) recovered from the fill of 
pit complex feature BA 4/5; also see GU-2039 GU-2149a 7570±50 

6483-6394 

-25.3 (Cook & Scott 1990) 

Kinloch Rum 
Wood 

charcoal 

RECOUNTED Charcoal (no species specified) recovered 
from the fill of pit complex feature BA 4/5; also see GU-
2039 GU-2149b 7600±50   (Cook & Scott 1990) 

An Corran Skye 
Mammal 

bone 

Burnt animal bone (ruminant) recovered from the basal 
layer of red clay (C41); potential mixing of later intrusions; 
see OxA-4994 for earlier date of context above; excluded 
by Wicks et al 2014 as too unreliable due to burning and 
chronologically/stratigraphically inconsistent AA-27746 6420±75 5518-5227 -22.8 

(Saville 1998a; Saville et al. 
2012b) 

An Corran Skye 
Mammal 

bone 

A bevel-ended bone artefact (deer metatarsus) recovered 
from the main shell midden (mostly of limpet shells) at the 
rear of the rock shelter (C36); also see AA-29316 AA-29315 5190±55 4229-3807 -21.3 

(Saville 1998a; Saville et al. 
2012b) 

An Corran Skye 
Mammal 

bone 

A broken bevel-ended bone artefact (ruminant long-bone) 
recovered from the main shell midden (mostly of limpet 
shells) at the rear of the rock shelter (C36); also see AA-
29315 AA-29316 6215±60 5312-5019 -20.6 

(Saville 1998a; Saville et al. 
2012b) 

An Corran Skye 
Mammal 

bone 

A bevel-ended bone artefact (deer metatarsus) recovered 
from the base of the main shell midden (C36 base); very 
disturbed stratigraphy OxA-4994 7590±90 6607-6247 -21.6 

(Bronk Ramsey et al. 2000; Saville 
1998a; Saville et al. 2012b) 

An Corran Skye 
Mammal 

bone 
Animal bone (pig - rib) ACO143 recovered from 
bioturbated midden deposits (C36) OxA-13551 7485±55 6440-6210 -21.5 

(Bronk Ramsey et al. 2009; Saville 
et al. 2012b) 
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An Corran Skye 
Mammal 

bone 
Animal bone (Bos taurus) ACO132 recovered from 
bioturbated midden deposits (C36) OxA-14751 7555±45 6480-6265 -22.3 

(Bronk Ramsey et al. 2009; Saville 
et al. 2012b) 

An Corran Skye 
Mammal 

bone 
Animal bone (Bos taurus) ACO178 recovered from 
bioturbated midden deposits (C36) OxA-14752 7595±50 6587-6379 -22 

(Bronk Ramsey et al. 2009; Saville 
et al. 2012b) 

An Corran Skye 
Mammal 

bone 
Animal bone (Bos taurus) ACO713 recovered from 
bioturbated midden deposits (C34) OxA-14753 7525±45 6462-6256 -21.6 

(Bronk Ramsey et al. 2009; Saville 
et al. 2012b) 

Camas 
Daraich Skye 

Hazel 
nutshell 

Nutshell (Sample 5) recovered from B3 SW C8 a black layer 
in a scoop high in fuel ash and lithics OxA-9782 7670±55 6612-6434 -24.17 

 (Ashmore in Bronk Ramsey et al. 
2002; Cressey et al. 2001a; 
Wickham-Jones & Hardy 2004a) 

Camas 
Daraich Skye 

Hazel 
nutshell 

Nutshell (Sample 6) recovered from B3 NW C8 a black 
layer in a scoop rich in lithics OxA-9783 7985±50 7057-6701 -25.07 

(Cressey et al. 2001a; Wickham-
Jones & Hardy 2004a) 

Camas 
Daraich Skye 

Hazel 
nutshell 

Nutshell (CD 15(B)) recovered from B1 SE C10 a possible 
hearth under a series of layers rich in fuel ash OxA-9784 7545±55 6481-6251 -25.37 

(Cressey et al. 2001a; Wickham-
Jones & Hardy 2004a) 

Camas 
Daraich Skye 

Hazel 
nutshell 

Nutshell CD 15(A) recovered from B1 SE C10 a possible 
hearth overlain by more fuel deposits OxA-9971 7575±75 6591-6254 -27.41 

(Cressey et al. 2001a; Wickham-
Jones & Hardy 2004a) 

Coom Rig 
(Daer Valley) 

Site 84 
South 

Lanarkshire 
Wood 

charcoal 
Charcoal (hazel) recovered from pit 6 East containing 
charcoal and Mesolithic chert SUERC-6829 5390±35 4338-4072 -25.6 (Ward 2006a) 

Daer 
Reservoir 1, 

Crawford 
South 

Lanarkshire 
Wood 

charcoal 

Charcoal (Pomoideae) recovered from a pit in the 
Mesolithic flint-knapping site reported in DES 1995:87 and 
DES 1997:75 AA-30354 9075±80 8544-7985 -26.7 (Ward 1998a) 

Daer 
Reservoir 2, 

Crawford 
South 

Lanarkshire 
Wood 

charcoal 
Charcoal (Birch) recovered from a pit in the Mesolithic flint 
knapping site reported in DES 1995:87 and DES 1997:75 AA-30355 8055±75 7285-6695 -25.1 (Ward 1998b) 

Daer 
Reservoir 3, 

Crawford 
South 

Lanarkshire 
Wood 

charcoal 
Charcoal (Hazel), sample 002 recovered from a deposit/pit 
containing charcoal and flint on Site No. 3 AA-43004 5355±45 4327-4052 -25.9 (Ward 2001) 

Ulva Cave Ulva Marine shell 
Inner fraction of Patella sp. shells recovered from Area C: 
basal 5-10cm of midden deposit, also see GU-2601 GU-2600 8060±50 

6800-6460 
  

(Bonsall et al. 1992; Wicks et al. 
2014) 

Ulva Cave Ulva Marine shell 
Outer fraction of Patella sp. shells recovered from basal 
10cm of midden deposit; also see GU-2600 GU-2601 8020±50   

(Bonsall et al. 1992; Wicks et al. 
2014) 

Ulva Cave Ulva Marine shell 
Inner fraction of Patella sp. shells recovered from Area C: 
top 10cm of midden deposit; also see GU-2603 GU-2602 6090±50 

4700-4400 
  

(Bonsall et al. 1992; Hedges et al. 
1993 ; Wicks et al. 2014) 

Ulva Cave Ulva Marine shell 
Outer fraction of Patella sp. shells recovered from top 
10cm of midden deposit; also see GU-2602 GU-2603 5930±50   

(Bonsall et al. 1992; Wicks et al. 
2014) 

Ulva Cave Ulva Antler 
A bevel-ended antler artefact (red deer) recovered from 
Area C: upper part of midden OxA-3738 5750±70 4770-4454 -23.6 

(Bonsall & Smith 1992; Bonsall et 
al. 1994; Hedges et al. 1993) 
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Appendix 3 Northton Lithic Catalogue 

Table 49. Northton 2010 Phase 3 coarse stone tools 

ID No. 
Context 

No. Raw Material 

Raw 
Material 
Variety Typology 

Length 
(mm) Width (mm) 

Thickness 
(mm) Notes 

SF16 3 Quartz Milky Manuport 46.93 32.46 16.59 Rounded cobble 

SF23 9 Gneiss   Manuport 157.00 121.39 77.59 Sub-rounded cobble 

SF24 9 Gneiss   Manuport 127.22 64.28 38.59 Sub-rounded cobble 

SF59 9 Gneiss   Manuport 42.14 40.17 17.78 Smooth, rounded pebble 

SF67b 9 Quartz 
Quartz-
feldspar Manuport 55.15 46.86 30.79 Rounded cobble 

SF67c 9 Quartz 
Quartz-
feldspar Manuport 61.68 50.02 37.93 Sub-rounded cobble 

SF67d 9 Quartz 
Quartz-
feldspar Manuport 55.52 39.13 24.41 Sub-angular cobble 

SF67e 9 Gneiss   Manuport 55.06 51.99 25.24 Rounded cobble 

SF67f 9 Metabasalt   Manuport 49.28 45.13 25.08 Rounded cobble 

SF67g 9 Gneiss   Manuport 63.02 61.97 35.67 Rounded cobble 

SF67h 9 Gneiss   Manuport 58.65 42.3 27.39 Sub-rounded cobble 

SF67i 9 Gneiss   Manuport 57.3 44.54 27.09 Sub-rounded cobble 

SF67j 9 Gneiss   Manuport 63.49 48.08 32.17 Sub-rounded cobble 

SF95g 9 Gneiss   Manuport 51.10 48.75 26.87 Sub-rounded pebble 

SF98 9 Unknown Igneous Manuport 59.16 59.90 26.37 Smooth and rounded cobble, broken in half 

SF99 9 Gneiss   Manuport 70.71 63.73 53.82 Rounded cobble, some pitting on one face - possible percussion damage 

L517 3 Feldspar   Hammerstone 44.40 57.30 27.60 
Probable hammerstone; semi-circular shape - break c.135° to flat plane; some 
pitting 

L595 3 Gneiss   Manuport 79.31 53.86 19.54 Fracture appears natural; opposing surface smooth - appears worn 
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Table 50. Northton 2010 Phase 3 cores and anvil 

ID No. 
Context 

No. Raw Material 

Raw 
Material 
Variety Typology 

Length 
(mm) 

Weight 
(g) Cortex 

Flake 
Removal 

Count 
Flake Removal 

Sequence 
Platform 

Preparation Notes 

SF17 14 Flint   Core 18.60 2.27 P 5 Bidirectional Unprepared Cortex rounded - pebble 

SF22 9 Gneiss   Anvil 112.50 746.50 P 7 Multidirectional Unprepared   

SF38 9 Quartz Milky Core 31.50 24.69 P 3 Unidirectional Unprepared 
Cortex rounded - pebble; possibly 
burnt 

SF40 9 Mudstone   Core 12.67 0.87 A 5 Bidirectional Unprepared   

SF48 9 Quartz 

Greasy-
fine 

grained Core 48.17 17.99 A 7 Multidirectional Simple/lost   

SF56 9 Quartz Milky Core 27.60 34.65 P 2 Multidirectional Simple 

Cortex flat and pink - block; single 
flake struck from cortical side then 
rotated 90 degrees and flake scar 
used as a platform, flake removed, 
rotated again 

SF58 9 Quartz Milky Core 30.37 9.28 P 1 Unidirectional Unprepared 
Cortex smooth, flat and frosted - 
block/plate 

SF60 9 Quartz Milky Core 23.80 15.84 P 3 Multidirectional Unprepared 

Cortical surface used as a single 
platform; cortex flat and frosted - 
block/plate 

SF63 9 Chalcedony   Core 21.06 5.04 A 1 Unidirectional Unprepared Very rounded and rolled - pebble 

SF67a 9 Quartz Milky Core 63.80 180.68 P 4 Multidirectional Unprepared Cortex smooth and rounded - pebble 

SF77 9 Quartz Milky Core 58.70 69.36 P 5 Multidirectional Simple Cortex smooth and flat - block/plate 

SF85b 9 Quartz Milky Core 58.70 70.13 P 4 Multidirectional 
Unprepared/ 

lost Cortex smooth and rounded - pebble 

SF91 9 Gneiss   Core tool 94.50 342.93 A 6 Unidirectional Unprepared Possible chopper 

SF95a 9 Quartz 

Greasy-
fine 

grained Core 30.71 12.33 P 3 Multidirectional 
Unprepared/ 

lost Cortex smooth and rounded - pebble 

SF95d 9 Quartz Milky Core 35.40 40.23 P 2 Multidirectional Simple/lost Cortex smooth and rounded - pebble 

SF95i 9 Quartz Milky Core 37.20 103.51 P 4 Multidirectional 
Unprepared/ 

simple 
Cortex smooth and flat - likely 
block/plate 

SF95j 9 Quartz Milky Core 52.30 109.83 P 6 Multidirectional Simple/lost Cortex smooth and flat - block/plate 
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SF95k 9 Quartz Quartzite Core 81.60 141.16 P 6 Multidirectional Simple/lost Cortex smooth and rounded - pebble 

SF95n 9 Quartz Milky Core 38.20 20.54 P 3 Multidirectional Unprepared Cortex smooth and rounded - pebble 

SF95s 9 Quartz Milky Core 21.29 5.84 P 6 Multidirectional Simple/lost Cortex smooth and rounded - pebble 

L58 9 Mudstone   Core 21.00 1.55 P 4 Multidirectional Lost Cortex flat and weathered - outcrop? 

L187 9 Quartz 

Greasy-
fine 

grained Core 23.75 3.67 A 6 Multidirectional Lost   

L385 9 Quartz 
Milky-fine 

grained Core 10.71 0.48 P 3 Multidirectional 
Unprepared/ 

lost Cortex smooth and rounded - pebble 

L415 9 Quartz Milky Core 11.60 0.30 P 3 Multidirectional 
Unprepared/ 

lost Cortex smooth and flat - likely pebble 

L439 9 Quartz Greasy Core 31.90 7.63 P 3 Unidirectional Unprepared Cortex smooth and rounded - pebble 

L460 9 Quartz 
Milky-fine 

grained Core 13.90 0.92 P 2 Multidirectional 
Unprepared/ 

lost Cortex smooth and rounded - pebble 

L483 9 Quartz Milky Core 18.90 1.62 P 3 Multidirectional 
Unprepared/ 

lost Cortex flat and frosted - block/plate 

L486 9 Quartz 
Milky-rock 

crystal Core 17.40 1.09 P 3 Unidirectional Simple Cortex flat - likely block/plate 

L503 9 Quartz Milky Core 16.70 3.56 P 3 Multidirectional Unprepared 
Cortex smooth and rounded - pebble; 
characteristics of a 'split cobble core' 

L507 9 Quartz Greasy Core 30.00 23.62 P 4 Multidirectional 
Unprepared/ 

lost Cortex smooth and flat - pebble 

L509 9 Quartz 
Fine 

grained Core 66.70 68.17 P 6 Multidirectional 
Unprepared/ 

lost 
Cortex smooth and rounded - pebble; 
characteristics of a 'split cobble core' 

L516 14 Quartz Milky Core 15.10 1.17 P 2 Multidirectional 
Unprepared/ 

simple Cortex smooth and rounded - pebble 

L557 14 Quartz Milky Core 59.80 45.73 P 2 Multidirectional 
Unprepared/ 

lost Cortex flat and frosted - block/plate 

L643 9 Quartz Milky Core 26.88 6.48 P 3 Bidirectional Simple/lost 

Cortex flat - block/plate; bidirectional 
removals but not indicative of bipolar 
reduction; absent platform 
preparation due to breakage 

L648 9 Quartz Quartzite Core 51.32 40.74 P 2 Multidirectional 
Unprepared/ 

lost Cortex rounded and flat - pebble 
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Table 51. Northton 2010 Phase 4 cores 

ID No. 
Context 

No. Raw Material 

Raw 
Material 
Variety Typology 

Length 
(mm) 

Weight 
(g) Cortex 

Flake 
Removal 

Count 
Flake Removal 

Sequence 
Platform 

Preparation Notes 

L163 16 Flint   Core 18.30 2 A 8 Bidirectional Unprepared   

L164 16 Flint   Core 11.60 0.44 A 11 Bidirectional Unprepared   

L559 16 Quartz Milky Core 34.20 18.12 P 4 Multidirectional Unprepared Cortex flat and frosted - block/plate 

L578 17 Quartz Milky Core 44.20 38.84 P 4 Multidirectional 
Unprepared/l

ost Cortex flat and frosted - block/plate 

L625 16 Quartz Milky Core 29.76 17.81 P 6 Multidirectional Simple Cortex flat and smooth - block/plate 

 

Table 52. Northton 2010 Phase 3 flakes and small fraction flakes 

ID No. 
Context 

No. Raw Material 

Raw 
Material 
Variety Typology 

Length 
(mm) 

Width 
(mm) 

Thick-
ness 
(mm) 

Cortex 
% 

Platform 
Type 

Platform 
Width 
(mm) 

Platform 
Depth 
(mm) 

Dorsal 
Flake 
Scar 

Count 

Dorsal 
Flake 
Scar 

Pattern 
Break-

age Notes 

SF1 3 Flint   Flake 33.20 27.20 4.10               

Archived for 
residue/microwear 
analysis 

SF2 14 Quartz   Flake 43.30 50.10 9.40               

Archived for 
residue/microwear 
analysis 

SF4 14 Mudstone   Flake 21.40 18.20 9.20 0 Absent     2 Indet P   

SF18 3 Quartz Milky Flake 23.50 22.10 12.00 0 Broken     2 Uni P   

SF19 14 Mudstone   Flake 27.10 24.90 8.70 <50 Plain 14.4 8.2 3 Multi P Cortex weathered 

SF21 14 Quartz   Flake 34.20 45.20 15.20               

Archived for 
residue/microwear 
analysis 

SF25 9 Mudstone   Flake core 16.10 15.00 5.70 0 Plain 5.7 5.8 4 Multi A 

Further flake removal 
from the ventral face 
and same platform, 
refits with SF26 

SF26 9 Mudstone   Flake 24.20 18.20 2.70 0 Absent     3 Multi A 
Flaked flake spall, 
refits with SF25 
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SF27 9 Quartz Greasy Flake 31.40 8.90 8.10 0 Absent     1 Uni P 
Edge damage 
resembles retouch 

SF28 9 Quartz Greasy Flake 28.10 40.40 7.80 0 Absent     1 Uni P   

SF29 9 Quartz   Flake 30.80 39.20 14.60               

Archived for 
residue/microwear 
analysis 

SF30 9 Quartz Milky Flake 14.70 11.70 2.50 0 Absent     1 Uni P   

SF31 9 Quartz Milky Flake 18.20 25.60 5.50 0 Plain 16.1 3 2 Indet P   

SF32 9 Quartz Milky Flake 12.00 17.30 5.60 0 Broken     4 Multi A   

SF33 9 Gneiss   Flake 23.60 18.30 8.90 <50 Broken     4 Multi A Cortex weathered 

SF34 9 Flint   Flake 15.70 11.10 5.20 <50 Absent     4 Multi P 
Only inner cortex 
present 

SF36 9 Flint   Flake 20.40 9.70 4.50 0 Plain 3.2 2.2 1 Uni P 

Parallel snap from 
previous flake 
removal created 
platform 

SF37 9 Flint   Flake 10.10 12.50 5.50 0 Plain 9.6 4.4 1 Uni P   

SF39 9 Quartz 
Fine 

grained Flake 27.80 18.60 5.70 0 Broken     1 Uni P   

SF42 9 Quartz 
Fine 

grained Flake 36.99 15.15 12.25 100 Broken     N/A N/A P 

Cortex smooth and 
frosted - weathered 
block 

SF43 9 Quartz Milky Flake 20.00 28.00 7.10 >50 Broken     1 Uni P 
Cortex flat and 
frosted - block/plate 

SF44 9 Quartz Milky Flake 22.64 24.64 8.30 <50 Broken     2 Multi P 
Cortex flat and 
frosted - block/plate 

SF45 9 Quartz Milky Flake 22.00 20.00 7.70 >50 Plain 11.62 5.47 1 Uni P 
Cortex smooth and - 
pebble 

SF46 9 Quartz   Flake 30.20 29.70 9.80               

Archived for 
residue/microwear 
analysis 

SF47 9 Quartz 

Greasy-
fine 

grained Flake 19.50 8.72 5.93 >50 Broken     1 Uni P 
Cortex smooth and 
rounded - pebble 

SF49 9 Quartz 
Fine 

grained Flake 13.70 20.10 5.80 <50 Plain 12.8 4.4 2 Uni P 
Cortex weathered - 
outcrop? 
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SF50 9 Quartz Greasy Flake 18.00 14.20 4.80 0 Plain 10.5 2.4 4 Multi P   

SF51 9 Quartz Milky Flake 10.80 10.10 3.70 0 Absent     3 Indet P   

SF52 9 Quartz Milky Flake 17.40 16.40 5.50 0 Plain 9 2.7 3 Indet P   

SF53 9 Quartz Milky Flake 36.00 12.46 10.60 0 Broken     1 Uni P   

SF55a 9 Quartz 
Milky-rock 

crystal Flake 10.50 6.70 2.50 0 Plain 3.3 2.1 2 Multi P   

SF55b 9 Quartz 
Fine 

grained Flake 17.70 27.60 5.50 >50 Absent     1 Uni P 
Cortex flat and 
frosted - block/plate 

SF57 9 Quartz Milky Flake 20.20 16.70 11.10 <50 Broken     1 Uni P 
Cortex flat and 
frosted - block/plate 

SF62 9 Flint   Flake 11.10 6.00 3.50 0 Broken     2 Multi P   

SF68 9 Flint   Flake 14.30 13.60 4.40 <50 Broken     4 Multi P 

Flaked flake spall; 
cortex smooth - 
pebble 

SF69 9 Quartz Milky Flake 31.70 15.50 10.00 0 Broken     1 Uni P   

SF71 9 Quartz   Flake 58.40 63.90 24.80               

Archived for 
residue/microwear 
analysis 

SF72 9 Quartz Milky Flake 19.10 35.80 9.70 <50 Absent     3 Multi P 

Not enough cortex 
present to ascertain 
probable source 

SF74 9 Quartz Milky Flake 28.40 21.40 12.00 <50 Plain 7.8 5.6 3 Multi P 
Cortex flat and 
frosted - block/plate 

SF75 9 Quartz   Flake 29.00 30.20 9.30               

Archived for 
residue/microwear 
analysis 

SF76 9 Flint   Flake 23.00 13.60 9.70 100 Broken     N/A N/A A 

Two ventral faces 
created through 
bipolar reduction; 
cortex smooth and 
rounded - pebble 

SF78 9 Mudstone   Blade 20.60 14.00 3.40 <50 Broken     2 Multi P 

Broken blade, not 
enough cortex to 
ascertain probable 
source 

SF81 9 Carbonate   Flake 27.10 18.40 7.40 0 Absent     3 Multi A   
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SF82 9 Quartz Milky Flake 24.90 14.60 4.40 0 Broken     1 Uni P 

Cortex flat and 
micaceous - 
block/plate 

SF83 9 Quartz Milky Flake 22.60 9.3 6.10 0 Absent     1 Uni P   

SF84 9 Quartz Milky Flake 11.30 17.20 12.90 0 Plain 21.2 11.2 3 Multi P   

SF85a 9 Pegmatite   Flake 27.40 26.70 13.50 >50 Plain 20.8 11.2 1 Uni P   

SF85c 9 Quartz Milky Flake 29.10 26.00 15.30 >50 Absent     1 Uni P 
Cortex smooth and 
rounded - pebble 

SF85d 9 Quartz Milky Flake 26.50 23.70 10.10 0 Absent     2 Uni P   

SF85e 9 Quartz Milky Flake 19.30 28.60 10.80 <50 Broken     2 Uni P 
Cortex smooth and 
rounded - pebble 

SF85f 9 Quartz 

Greasy-
fine 

grained Flake 35.07 13.34 10.02 0 Broken     2 Multi P   

SF86 9 Quartz 

Greasy-
fine 

grained Flake 11.00 12.00 8.27 >50 Plain 8.86 8.27 1 Uni A 
Cortex flat and 
frosted - block/plate 

SF88 9 Quartz Milky Flake 34.80 46.20 8.70 0 Broken     1 Uni P   

SF89 9 Quartz Milky Flake 18.90 23.40 6.50 <50 Broken     1 Uni P 

Cortex is flat and 
another raw material 
- outcrop 

SF92 9 Quartz Milky Flake 30.69 29.61 11.10 0 Plain 14.40 5.32 4 Multi P 

Further flake 
removed from same 
platform 

SF94 9 Flint   Flake 16.90 15.20 1.30 0 Broken     2 Uni P Flaked flake spall   

SF95b 9 Quartz   Flake 24.20 30.60 6.20               

Archived for 
residue/microwear 
analysis 

SF95c 9 Quartz 

Greasy-
fine 

grained Flake 33.00 40.40 18.90 100 Broken     N/A N/A P 
Cortex smooth and 
rounded - pebble 

SF95e 9 Quartz Milky Flake 38.84 38.49 18.54 >50 Broken     1 Uni P 
Cortex smooth and 
rounded - pebble 

SF95f 9 Quartz 

Greasy-
fine 

grained Flake 33.70 21.60 6.70 100 Broken     N/A N/A P 
Cortex smooth and 
rounded - pebble 



 

 

4
84

 

SF95h 9 Quartz 

Greasy-
fine 

grained Flake 14.20 24.90 4.80 >50 Absent     1 Uni P 
Cortex flat and 
frosted - block/plate 

SF95l 9 Quartz 

Greasy-
fine 

grained Flake 30.30 15.42 8.29 0 Absent     1 Uni A   

SF95m 9 Quartz 

Greasy-
fine 

grained Flake core 31.09 11.08 5.84 0 Broken     3 Multi P 

Broken lateral edge 
used as a platform to 
remove a further 
flake in the dorsal 
side 

SF95o 9 Quartz Milky Flake 37.50 37.10 15.90 <50 Absent     1 Uni P 
Cortex flat and 
frosted - block/plate 

SF95p 9 Quartz 

Greasy-
fine 

grained Flake 17.40 21.50 10.70 0 Absent     2 Indet P   

SF95q 9 Quartz 

Greasy-
fine 

grained Flake 24.00 9.50 5.40 <50 Absent     1 Uni P 
Cortex smooth and 
rounded - pebble 

SF95r 9 Quartz 

Greasy-
fine 

grained Flake core 22.92 14.61 8.78 <50 Absent     2 Multi P 

One dorsal scar used 
as platform for 
further removal; 
cortex smooth and 
rounded – pebble 

SF95t 9 Quartz 

Greasy-
fine 

grained Flake 29.67 14.90 10.15 0 Absent     2 Multi P   

SF102 9 Mudstone   Flake 26.80 36.20 6.00               

Archived for 
residue/microwear 
analysis 

SF103b 9 Mudstone   Flake 27.00 16.70 4.30 0 Broken     2 Uni P   

SF103c 9 Quartz 

Greasy-
fine 

grained Flake 14.40 13.20 3.90 0 Absent     1 Uni P   

SF103d 9 Mudstone   Flake 25.01 23.31 5.90 0 Absent     1 Uni P   

SF103e 9 Mudstone   Flake 22.20 19.70 7.90 <50 Absent     3 Uni A 
Cortex flat and 
weathered 
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SF103f 9 Quartz 

Greasy-
fine 

grained Flake 16.90 23.30 6.80 >50 Plain 3.9 2.2 2 Uni A 
Cortex flat and 
frosted - block/plate 

SF103g 9 Quartz 
Fine 

grained Flake 27.80 24.50 5.20 0 Plain 18.14 4.99 1 Uni P   

SF103i 9 Quartz Milky Blade 20.10 11.70 2.80 0 Plain 7.8 2.7 2 Uni P   

SF103k 9 Quartz 
Milky-rock 

crystal Flake 12.17 9.40 2.05 0 Broken     2 Indet P   

SF103l 9 Quartz 

Greasy-
fine 

grained Flake 15.50 10.20 3.00 0 Broken     1 Uni P 

Flake removal scar on 
dorsal, snap used as a 
platform? 

L4 9 Mudstone   Flake 14.10 12.70 1.80 0 Broken     3 Multi P   

L5 9 Mudstone   Flake 10.80 7.70 2.60 0 Plain 5.2 2.5 2 Multi A   

L6 9 Mudstone   Flake 16.50 16.60 5.80 0 Broken     4 Multi A   

L7 9 Mudstone   Flake 11.46 9.67 3.90 0 Plain 6.34 3.05 3 Multi P   

L8 9 Mudstone   Flake 17.10 19.40 2.60 0 Broken     2 Multi P   

L9 9 Mudstone   Flake 12.30 12.80 2.90 0 Broken     1 Uni P   

L10 9 Mudstone   Flake 12.00 8.00 3.00 0 Broken     2 Multi A   

L11 9 Mudstone   Flake 11.80 16.60 1.30 0 Absent     1 Uni P 
Distal end of broken 
flake 

L13 9 Mudstone   Flake 10.90 14.40 4.10 <50 Plain 11.9 6.3 3 Multi P Cortex weathered 

L14 9 Mudstone   Flake 10.80 15.10 4.40 <50 Broken     3 Multi A 

Not enough cortex 
present to ascertain 
probable source 

L15 9 Mudstone   Flake 13.60 8.90 2.40 <50 Broken     2 Multi P Cortex weathered 

L16 9 Mudstone   Flake 11.80 11.40 1.90 0 Broken     1 Uni P   

L17 9 Mudstone   Flake 16.40 11.60 3.50 0 Broken     3 Multi A   

L19 9 Mudstone   Flake 10.30 10.20 3.30 <50 Plain 5.3 1.6 2 Uni P 

Not enough cortex 
present to ascertain 
probable source 

L44 9 Mudstone   Flake 14.60 8.40 4.80 0 Broken     3 Multi A   

L45 9 Unknown Igneous Flake 11.50 9.70 2.20 0 Broken     1 Uni P   

L47 9 Mudstone   Flake 18.00 10.40 4.50 <50 Absent     2 Multi A Cortex weathered 
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L49 9 Mudstone   Flake 14.80 9.30 6.50 0 Broken     3 Multi A   

L53 9 Mudstone   Flake 10.35 5.65 3.82 <50 Broken     2 Multi P 
Cortex flat and 
weathered - outcrop? 

L57 9 Mudstone   Flake 15.70 5.00 2.20 0 Absent     2 Indet P   

L59 9 Flint   Flake 21.40 9.40 3.30 0 Broken     6 Multi P   

L60 9 Flint   Flake 20.20 22.60 3.70 >50 Broken     1 Uni A 
Cortex smooth and 
rounded - pebble 

L61 9 Flint   Flake 14.10 9.40 5.90 <50 Plain 7.6 2.2 2 Multi A 
Cortex smooth and 
rounded - pebble 

L62 9 Flint   Flake 14.80 9.80 4.10 0 Broken     3 Multi P   

L64 9 Flint   Flake 16.80 20.90 3.10 0 Plain 12.8 3.1 2 Indet P   

L67 9 Flint   Flake 18.30 7.80 4.40 0 Absent     3 Multi P   

L69 9 Flint   Flake 10.60 12.06 3.00 0 Broken     2 Multi P   

L70 9 Flint   Flake 10.50 12.20 2.40 0 Plain 3.2 0.8 1 Uni P   

L73 9 Flint   Flake 13.80 10.67 4.30 0 Broken     1 Uni P   

L74 9 Flint   Flake 12.70 9.40 2.50 0 Broken     2 Multi A   

L75 9 Flint   Flake 13.96 10.48 2.57 0 Broken     1 Uni A Burnt 

L76 9 Flint   Flake 11.60 7.00 1.00 0 Absent     2 Uni P   

L78 9 Flint   Flake 11.40 8.40 2.40 0 Broken     3 Multi P   

L80 9 Flint   Flake 16.00 4.70 2.90 0 Broken     2 Multi P Burnt 

L81 9 Flint   Flake 13.20 5.50 2.40 <50 Crushed     2 Uni P 
Cortex smooth - likely 
pebble 

L112 9 Flint   Flake 12.30 5.40 2.40 0 Broken     2 Uni P   

L115 9 Flint   Flake 11.60 3.50 4.60 0 Absent     2 Multi P   

L118 9 Flint   Flake 10.90 4.90 2.70 <50 Broken     4 Multi A 
Only inner cortex 
present 

L120 14 Mudstone   Flake 10.90 14.50 3.80 0 Plain 6.3 1.7 4 Multi A   

L122 14 Mudstone   Flake 12.70 10.20 2.90 0 Plain 6.5 2.9 3 Multi A   

L124 14 Mudstone   Flake 17.50 9.80 5.10 0 Broken     6 Multi A Burnt 

L125 14 Mudstone   Flake 13.64 13.18 4.50 <50 Broken     2 Multi P Cortex weathered 
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L126 14 Mudstone   Flake 11.70 10.80 3.50 0 Absent     3 Multi P   

L129 14 Flint   Flake 11.40 8.10 0.90 0 Absent     2 Multi P   

L130 14 Flint   Flake 10.50 8.70 1.50 0 Absent     1 Uni P   

L168 9 Quartz Greasy Flake 15.40 13.90 2.80 0 Broken     3 Multi P   

L169 9 Quartz 
Fine 

grained Flake 17.80 14.00 5.00 0 Plain 9.4 3.9 3 Multi A   

L170 9 Quartz Milky Flake 23.54 15.70 3.80 <50 Broken     1 Uni P 
Cortex is flat and 
smooth - pebble? 

L171 9 Quartz 

Greasy-
fine 

grained Flake 10.90 17.10 3.10 0 Plain 14.1 3.2 1 Uni P   

L172 9 Quartz Milky Flake 11.00 10.60 2.40 >50 Broken     1 Uni A 
Cortex flat - likely 
block/plate 

L173 9 Quartz 

Greasy-
fine 

grained Flake 10.60 17.90 3.20 0 Plain 12.6 3.2 1 Uni P   

L174 9 Quartz Milky Flake 17.50 10.20 6.10 >50 Broken     1 Uni A 
Cortex flat and 
square - block/plate 

L175 9 Quartz Milky Flake 10.00 18.00 3.40 100 Plain 7.5 3.4 N/A N/A A 
Cortex smooth and 
rounded - pebble 

L176 9 Quartz 
Milky-rock 

crystal Flake 13.20 11.00 4.00 0 Broken     1 Uni A   

L177 9 Quartz Milky Flake 15.40 23.90 3.00 0 Broken     1 Uni P 

Further flake 
removed from dorsal 
face from same 
platform; refits with 
L178 

L178 9 Quartz Milky Flake 10.50 15.10 1.80 0 Absent     1 Uni P Refits with L177 

L179 9 Quartz Milky Flake 14.60 9.70 2.60 0 Broken     1 Uni P Flaked flake spall   

L180 9 Quartz Milky Flake 13.50 11.60 2.40 0 Broken     2 Uni A Flaked flake spall   

L182 9 Quartz Milky Flake 13.18 8.90 2.04 0 Absent     1 Uni P   

L188 9 Quartz 

Greasy-
fine 

grained Flake 19.40 14.80 5.20 0 Absent     2 Uni P   

L189 9 Quartz Milky Flake 11.20 11.80 3.30 0 Broken     2 Uni P   
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L190 9 Quartz Milky Flake 10.70 13.60 4.10 0 Plain 8.3 4.1 1 Uni P   

L193 9 Quartz 
Milky-rock 

crystal Flake 16.90 8.50 3.50 <50 Broken     3 Multi P 

Not enough cortex 
present to ascertain 
probable source 

L196 9 Quartz 
Milky-fine 

grained Flake 10.60 8.70 1.90 0 Plain 5.4 1.4 1 Uni A   

L197 9 Quartz 

Greasy-
fine 

grained Flake 12.40 13.20 4.40 <50 Broken     2 Multi P 
Cortex is smooth - 
pebble 

L198 9 Quartz Milky Flake 10.30 10.00 3.20 0 Broken     3 Multi P   

L199 9 Quartz Milky Flake 12.50 13.70 4.10 <50 Cortical 4.1 9.1 1 Uni P 
Cortex smooth and 
rounded - pebble 

L200 9 Quartz 
Fine 

grained Flake 26.10 26.20 6.60 0 Broken     2 Multi P   

L201 9 Quartz Greasy Flake 19.20 22.40 5.50 0 Broken     2 Multi P   

L202 9 Quartz Milky Flake 11.60 5.90 3.40 0 Broken     1 Uni P   

L203 9 Quartz Milky Flake 13.60 6.30 5.00 0 Broken     1 Uni A   

L204 9 Quartz 
Fine 

grained Flake 12.20 18.60 11.20 <50 Cortical 16.2 8.1 2 Multi P 
Cortex smooth and 
rounded - pebble 

L205 9 Quartz Milky Flake 27.30 12.00 9.00 0 Broken     2 Bi P 
Characteristics of a 
'split cobble core' 

L206 9 Quartz 

Fine 
grained-
feldspar Flake 12.70 7.80 4.80 0 Broken     1 Uni A Possibly burnt 

L207 9 Quartz 

Fine 
grained-
feldspar Flake 12.89 8.97 3.68 0 Broken     1 Uni P Possibly burnt 

L208 9 Quartz 

Fine 
grained-
feldspar Flake 15.90 11.30 3.50 0 Absent     1 Uni A Possibly burnt 

L209 9 Quartz 
Fine 

grained Flake 12.10 10.70 2.10 0 Absent     1 Uni P   

L212 9 Quartz 
Fine 

grained Flake 11.30 8.90 2.30 0 Broken     1 Uni P   

L213 9 Quartz Milky Flake 14.70 16.40 5.80 0 Plain 8.4 3.4 2 Multi P   
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L215 9 Quartz 
Fine 

grained Flake 11.90 9.50 2.50 0 Plain 3.4 1.6 3 Uni P   

L216 9 Quartz 
Rock 

crystal Flake 12.90 8.90 2.40 0 Broken     1 Uni A   

L218 9 Quartz 
Milky-fine 

grained Flake 10.70 8.80 1.60 0 Broken     1 Uni P   

L224 9 Quartz 

Greasy-
fine 

grained Flake 21.60 15.10 3.50 0 Broken     1 Uni P   

L225 9 Quartz 
Milky-rock 

crystal Flake 11.10 12.60 3.10 <50 Broken     1 Uni A 
Cortex flat and 
frosted - block/plate 

L226 9 Quartz 
Fine 

grained Flake 11.50 8.50 2.30 0 Broken     1 Uni A   

L229 9 Quartz Milky Flake 11.50 13.00 3.80 0 Broken     2 Multi P   

L230 9 Quartz Milky Flake 10.62 15.85 3.00 0 Broken     2 Indet A   

L231 9 Quartz 

Greasy-
fine 

grained Flake 10.40 7.70 2.40 0 Broken     2 Multi P   

L232 9 Quartz Milky Flake 11.70 9.30 3.10 0 Broken     1 Uni P   

L234 9 Quartz Milky Flake 16.10 21.60 5.00 100 Broken     N/A N/A P 

Cortex smooth and 
rounded - pebble; 
characteristics of a 
'split cobble core' 

L235 9 Quartz Milky Flake 19.80 10.70 4.20 100 Plain 5.2 1.5 N/A N/A P 
Cortex smooth and 
rounded - pebble 

L237 9 Quartz 
Milky-fine 

grained Flake 12.40 9.50 2.80 0 Broken     1 Uni P   

L238 9 Quartz Milky Flake 16.00 18.80 4.30 <50 Plain 14.96 3.88 1 Uni P 
Cortex is smooth and 
rounded - pebble 

L239 9 Quartz Milky Flake 10.60 9.70 2.40 0 Broken     1 Uni A   

L244 9 Quartz Milky Flake 15.60 21.40 6.20 <50 Broken     1 Uni A 
Cortex flat and 
frosted - block/plate 

L246 9 Quartz Milky Flake 30.80 21.60 10.10 0 Broken     3 Uni P   

L247 9 Quartz Milky Flake 12.60 10.60 5.10 0 Broken     3 Multi P   

L251 9 Quartz 
Milky-fine 

grained Flake 14.10 8.80 1.90 0 Absent     2 Multi P   
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L252 9 Quartz Milky Flake 10.60 6.50 3.50 0 Broken     1 Uni P   

L255 9 Quartz 
Milky-rock 

crystal Flake 13.80 13.10 3.30 0 Broken     1 Uni A   

L256 9 Quartz 

Greasy-
fine 

grained Flake 15.40 13.40 6.20 0 Plain 12 6.5 3 Multi A   

L257 9 Quartz Milky Flake 14.10 14.20 4.80 0 Plain 8.5 3 2 Multi P   

L258 9 Quartz 
Milky-fine 

grained Flake 16.20 21.90 5.30 100 Broken     N/A N/A A 

Cortex smooth and 
rounded - pebble, 
also flat fracture 
planes along lateral 
edges 

L259 9 Quartz Milky Flake 22.40 36.60 20.20 100 Plain 32.7 20.2 N/A N/A A 

Cortex smooth and 
rounded - pebble, 
also flat fracture 
planes along lateral 
edges 

L260 9 Quartz Milky Flake 26.40 31.40 11.30 <50 Cortical 27.6 11.3 1 Uni P 
Cortex smooth and 
rounded - pebble 

L261 9 Quartz 

Greasy-
fine 

grained Flake 11.90 18.70 4.70 <50 Plain 11 4.1 2 Multi P 
Cortex smooth and 
flat - pebble 

L262 9 Quartz Milky Flake 11.50 14.60 9.40 <50 Plain 14.6 9.4 1 Uni P 
Cortex flat and 
frosted - block/plate 

L263 9 Quartz 
Fine 

grained Flake 16.80 15.50 4.80 <50 Absent     2 Multi P 

Not enough cortex 
present to ascertain 
probable source 

L264 9 Quartz Milky Flake 21.60 17.60 6.70 <50 Broken     1 Uni P 
Cortex flat and 
frosted - block/plate 

L265 9 Quartz 
Fine 

grained Flake 10.40 8.90 2.30 0 Plain 7.8 1.7 1 Uni A   

L266 9 Quartz Milky Flake 10.20 7.40 1.50 0 Absent     1 Uni P   

L268 9 Quartz Milky Flake 11.20 10.00 4.00 0 Broken     1 Uni P   

L269 9 Quartz Milky Flake 11.70 8.80 1.80 0 Broken     1 Uni A   

L270 9 Quartz 

Greasy-
fine 

grained Flake 13.50 11.40 6.40 0 Broken     2 Multi A   
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L271 9 Quartz 
Milky-rock 

crystal Flake 19.00 5.30 3.20 0 Broken     1 Uni P   

L273 9 Quartz 
Milky-rock 

crystal Flake 10.30 5.10 1.90 0 Broken     1 Uni A   

L278 9 Quartz Milky Flake 15.90 9.20 4.60 0 Broken     1 Uni A   

L279 9 Quartz 

Greasy-
fine 

grained Flake 19.20 24.50 6.80 0 Broken     2 Multi P   

L280 9 Quartz 

Greasy-
fine 

grained Flake 10.00 6.00 1.50 0 Broken     1 Uni P   

L282 9 Quartz Milky Flake 12.60 8.16 3.40 <50 Broken     1 Uni A 
Cortex flat and 
frosted - block/plate 

L288 9 Quartz 

Greasy-
fine 

grained Flake 13.66 10.71 3.06 0 Absent     1 Uni P   

L297 9 Quartz Milky Flake 12.40 12.00 5.40 0 Broken     3 Uni P   

L298 9 Quartz 
Fine 

grained Flake 11.50 10.60 2.30 0 Absent     1 Uni P   

L299 9 Quartz Milky Flake 13.00 8.60 5.30 0 Broken     3 Multi A   

L302 9 Quartz 
Milky-fine 

grained Flake 11.00 8.20 4.40 <50 Absent     2 Multi A 

Not enough cortex 
present to ascertain 
probable source 

L304 9 Quartz 

Greasy-
fine 

grained Flake 10.90 7.80 3.20 0 Broken     2 Multi P   

L308 9 Quartz 
Fine 

grained Flake 11.30 14.60 2.50 100 Absent     N/A N/A P 
Cortex smooth and 
flat - pebble 

L310 9 Quartz Milky Flake 11.60 9.10 2.80 >50 Absent     1 Uni P 
Cortex flat - 
block/plate 

L314 9 Quartz 
Milky-fine 

grained Flake 10.22 7.45 4.69 0 Broken     1 Uni P   

L315 9 Quartz 

Greasy-
fine 

grained Flake 11.76 8.19 2.53 >50 Absent     1 Uni P 
Cortex smooth and 
rounded - pebble 

L316 9 Quartz 
Milky-rock 

crystal Flake 14.20 6.63 3.81 0 Absent     1 Uni P   
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L318 9 Quartz 
Milky-
greasy Flake 10.40 8.70 6.50 <50 Cortical 8.6 6.5 2 Multi A 

Cortex flat and 
frosted - block/plate 

L319 9 Quartz 

Greasy-
fine 

grained Flake 11.80 11.30 2.30 0 Broken     1 Uni A   

L323 9 Quartz 
Fine 

grained Flake 15.10 6.60 10.40 <50 Cortical 6.2 7.4 2 Uni P 
Cortex smooth and 
rounded - pebble 

L324 9 Quartz Milky Flake 17.30 4.60 9.10 >50 Broken     1 Uni P 
Cortex flat and 
frosted - block/plate 

L331 9 Quartz 

Greasy-
fine 

grained Flake 10.10 7.80 3.30 0 Broken     1 Uni A   

L336 9 Quartz Milky Flake 12.20 12.50 2.10 0 Absent     1 Uni P   

L339 9 Quartz 

Greasy-
fine 

grained Flake 12.62 6.03 3.99 0 Broken     1 Uni A   

L342 9 Quartz 
Fine 

grained Flake 12.40 4.60 4.20 0 Broken     1 Uni P   

L346 9 Quartz Greasy Flake 11.70 13.40 3.40 0 Broken     2 Multi P   

L347 9 Quartz Milky Flake 10.30 11.10 3.40 0 Broken     2 Multi P   

L348 9 Quartz Milky Flake 11.72 5.77 1.90 0 Broken     2 Multi A   

L349 9 Quartz Milky Flake 10.15 6.75 3.47 0 Broken     1 Uni A   

L350 9 Quartz Greasy Flake 19.20 12.80 5.80 0 Broken     2 Multi P   

L354 9 Quartz 
Milky-
greasy Flake 10.90 8.30 3.50 0 Broken     3 Multi A   

L355 9 Quartz Milky Flake 11.21 6.49 2.40 0 Absent     1 Uni A   

L359 9 Quartz Milky Flake 10.30 9.40 4.60 0 Broken     3 Multi A 

Ventral side 
completely destroyed 
by shattering 

L360 9 Quartz Milky Flake 10.60 10.80 4.40 0 Broken     1 Uni P   

L366 9 Quartz Greasy Flake 15.20 14.00 6.90 <50 Absent     2 Multi P 
Cortex smooth and 
flat - pebble 

L367 9 Quartz Milky Flake 13.00 10.80 3.20 0 Absent     1 Uni P   

L372 9 Quartz Milky Flake 10.60 4.50 2.80 0 Broken     1 Uni P   
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L383 9 Quartz Milky Flake 12.30 5.70 3.10 <50 Broken     2 Multi A 
Cortex flat and 
frosted - block/plate 

L384 9 Quartz Greasy Flake 10.90 5.10 1.80 0 Broken     2 Multi P   

L387 9 Quartz 

Greasy-
fine 

grained Flake 10.50 11.40 4.00 0 Broken     1 Uni A   

L393 9 Quartz Milky Flake 10.53 5.59 2.54 0 Absent     1 Uni P   

L394 9 Quartz 
Milky-fine 

grained Flake 11.50 5.30 1.90 0 Broken     1 Uni A   

L395 9 Quartz Milky Flake 10.92 8.31 4.84 0 Broken     1 Uni A   

L402 9 Quartz Milky Flake 11.60 5.80 3.60 0 Broken     1 Uni A   

L404 9 Quartz Milky Flake 15.85 12.35 5.66 <50 Absent     1 Uni P 
Cortex smooth - 
pebble 

L410 9 Quartz 
Milky-rock 

crystal Flake 10.00 8.40 3.20 <50 Broken     2 Multi A 
Cortex flat and 
frosted - block/plate 

L412 9 Quartz 

Greasy-
fine 

grained Flake 14.70 7.70 3.10 0 Absent     1 Uni P   

L413 9 Quartz Milky Flake 11.75 7.45 3.24 0 Broken     2 Multi A   

L421 9 Quartz 
Fine 

grained Flake 10.00 9.90 3.00 >50 Broken     1 Uni P 
Cortex smooth and 
rounded - pebble 

L423 9 Quartz Greasy Flake 14.40 11.90 4.60 0 Broken     1 Uni P   

L424 9 Quartz Milky Flake 15.25 9.66 4.06 100 Absent     N/A N/A P 
Cortex smooth and 
rounded - pebble 

L429 9 Quartz 
Milky-fine 

grained Flake 10.90 12.70 3.00 100 Broken     N/A N/A P 
Cortex smooth and 
rounded - pebble 

L430 9 Quartz Greasy Flake 18.20 7.80 4.20 0 Broken     2 Multi P   

L431 9 Quartz Milky Flake 10.10 11.00 4.70 100 Broken     N/A N/A P 
Cortex flat and 
frosted - block/plate 

L432 9 Quartz 
Milky-rock 

crystal Flake 17.10 9.00 4.20 0 Broken     1 Uni A   

L433 9 Quartz 
Milky-fine 

grained Flake 11.30 5.20 3.20 100 Broken     N/A N/A P 
Cortex smooth and 
flat - pebble 
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L438 9 Quartz Milky Flake 21.90 15.00 7.40 100 Plain 11.6 7.5 N/A N/A A 

Cortex smooth and 
rounded - pebble; 
characteristics of a 
'split cobble core' 

L440 9 Quartz 
Milky-fine 

grained Flake 33.00 30.30 10.00 >50 Plain 11.2 3.7 1 Uni A 

Cortex smooth and 
rounded - pebble; 
characteristics of a 
'split cobble core' 

L445 9 Quartz Milky Flake 11.50 6.20 3.10 100 Broken     N/A N/A A 

Cortex rounded and 
frosted - weathered 
block? 

L449 9 Quartz Greasy Flake 11.50 6.90 1.90 100 Absent     N/A N/A P 
Cortex flat and 
frosted - block/plate 

L452 9 Quartz 
Milky-fine 

grained Flake 10.20 8.00 4.70 <50 Broken     1 Uni P 
Cortex smooth - likely 
pebble 

L453 9 Quartz 
Milky-rock 

crystal Flake 16.40 11.10 3.00 <50 Absent     1 Uni P 

Not enough cortex 
present to ascertain 
probable source 

L457 9 Quartz Greasy Flake 12.50 9.50 5.40 <50 Plain 5.00 2.20 3 Multi P 

Cortex smooth and 
rounded - pebble; 
characteristics of a 
'split cobble core' 

L466 9 Quartz Milky Flake 10.30 7.00 3.40 0 Broken     1 Uni P   

L468 9 Quartz 

Greasy-
fine 

grained Flake 11.70 10.12 2.53 0 Broken     1 Uni P   

L472 9 Quartz Milky Flake 10.70 14.90 3.50 <50 Broken     2 Multi P 
Cortex is flat and 
smooth - pebble 

L478 9 Quartz 
Milky-fine 

grained Flake 16.00 15.50 8.50 <50 Plain 15.6 8.6 2 Multi A 

Cortex smooth and 
rounded - pebble; 
Characteristics of a 
'split cobble core' 

L479 9 Quartz Milky Flake 14.03 12.10 4.93 <50 Broken     3 Multi A 
Cortex smooth and 
rounded - pebble 

L480 9 Quartz Greasy Flake 15.63 9.38 3.78 100 Absent     N/A N/A P 
Cortex flat and 
frosted - block/plate 
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L481 9 Quartz 
Fine 

grained 

Core 
rejuv-

enation 
flake 31.00 12.00 10.60 0 Broken     4 Multi A   

L482 9 Quartz 
Fine 

grained 

Core 
rejuv-

enation 
flake 33.10 9.30 9.60 <50 Broken     3 Multi A 

Cortex smooth and 
rounded - pebble 

L484 9 Quartz Milky Flake 15.40 15.20 3.70 0 Broken     1 Uni P   

L485 9 Quartz Milky Flake 12.70 8.60 3.00 100 Broken     N/A N/A P 
Cortex smooth and 
rounded - pebble 

L487 9 Quartz Milky Flake 15.50 17.20 6.40 100 Plain 10.9 6.4 N/A N/A P 

Cortex smooth and 
rounded - pebble; 
characteristics of a 
'split cobble core' 

L488 9 Quartz Milky Flake 11.93 15.75 5.61 100 Broken     N/A N/A P 
Cortex smooth and 
rounded - pebble 

L489 9 Quartz 
Milky-fine 

grained Flake 17.30 14.90 3.10 100 Broken     N/A N/A P 
Cortex smooth and 
rounded - pebble 

L491 9 Quartz Milky Flake 10.70 10.40 4.90 0 Broken     2 Multi P   

L492 9 Quartz Milky Flake 11.59 9.90 4.14 0 Broken     1 Uni P   

L493 9 Quartz 
Fine 

grained Flake 22.80 41.70 11.20 0 Absent     2 Multi P   

L494 9 Quartz Milky Flake 29.80 17.90 7.70 100 Broken     N/A N/A P 

Cortex rounded and 
frosted - weathered 
block? 

L495 9 Quartz Milky Flake 17.97 23.74 9.38 100 Broken     N/A N/A P 

Cortex rounded and 
frosted - weathered 
block? 

L496 9 Quartz Milky Flake 14.20 10.50 7.50 <50 Broken     1 Uni A 

Cortes smooth and 
rounded - pebble; 
characteristics of a 
'split cobble core' 

L497 9 Quartz Greasy Flake 16.49 9.25 3.65 0 Broken     1 Uni A   

L498 9 Quartz 
Milky-fine 

grained Flake 19.10 14.80 8.20 0 Broken     1 Uni P   
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L499 9 Quartz Milky Flake 17.39 21.37 10.25 <50 Cortical 17.48 10.26 1 Uni P 
Cortex flat and 
frosted - block/plate 

L500 9 Quartz Greasy Flake 19.10 16.30 8.20 0 Broken     1 Uni P 
Cortex smooth and 
rounded - pebble 

L501 9 Quartz 

Greasy-
fine 

grained Flake core 17.50 24.40 9.20 0 Broken     2 Uni P 

Further flake 
removed from the 
ventral face from the 
same platform 

L502 9 Quartz Milky Flake 18.80 27.30 12.40 0 Broken     1 Uni P   

L505 9 Quartz 

Greasy-
fine 

grained Flake 16.50 30.50 12.70 <50 Broken     2 Uni P 
Cortex flat and 
frosted - block/plate 

L506 9 Quartz Milky Flake 33.00 33.20 22.20 >50 Cortical 19.12 17.55 2 Multi A 

Cortex smooth and 
rounded - pebble; 
characteristics of a 
'split cobble core' 

L508 9 Feldspar   Flake 47.50 52.00 26.30 <50 Cortical 50.2 24.7 2 Multi P 
Cortex smooth and 
rounded - pebble 

L510 14 Quartz 
Fine 

grained Flake 18.10 18.70 9.50 0 Plain 16.6 9.5 3 Uni A   

L511 14 Quartz 
Milky-fine 

grained Flake 18.70 7.5 6.00 0 Absent     2 Indet P   

L513 14 Quartz Milky Flake 10.80 18.20 4.60 100 Absent     N/A N/A P 
Cortex smooth and 
rounded - pebble 

L515 14 Quartz 
Coarse 
grained Flake 24.40 15.30 8.40 100 Absent     N/A N/A P 

Cortex flat and 
frosted - block/plate 

L518 14 Quartz Milky Flake 15.30 27.70 9.90 100 Plain 25.4 10.9 N/A N/A P 

Cortex smooth and 
rounded - pebble; 
characteristics of a 
'split cobble core' 

L519 14 Quartz Milky Flake 19.80 17.90 9.70 >50 Plain 7.8 2.6 1 Uni A 
Cortex smooth and 
rounded - pebble 

L520 14 Quartz Milky Flake 19.30 8.20 3.80 0 Plain 6.8 4.2 1 Uni P   

L521 14 Quartz 
Milky-fine 

grained Flake 17.40 6.20 4.10 0 Broken     1 Uni P   

L522 14 Quartz 
Fine 

grained Flake 10.10 8.50 2.40 0 Broken     1 Uni A   
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L523 14 Quartz Milky Flake 13.00 10.20 7.40 0 Plain 8.5 4.5 2 Multi P   

L524 14 Quartz Milky Flake 11.40 6.90 2.20 0 Broken     1 Uni P   

L525 14 Quartz Milky Flake 16.30 10.60 3.40 0 Plain 3.1 1.7 2 Multi A   

L527 14 Quartz 

Coarse 
grained-
quartzite Flake 17.30 22.20 9.50 0 Broken     3 Multi P   

L534 14 Quartz Greasy Flake 15.90 8.50 6.00 0 Broken     3 Multi A   

L540 14 Quartz 
Milky-rock 

crystal Flake 10.40 5.90 3.30 0 Broken     2 Multi P   

L543 14 Quartz 
Milky-fine 

grained Flake 12.10 10.40 3.70 0 Broken     1 Uni P   

L544 14 Quartz Milky Flake 11.90 8.90 5.10 0 Broken     2 Uni P   

L545 14 Quartz Milky Flake 14.50 11.60 5.00 <50 Broken     N/A N/A P 

Dorsal face partly 
destroyed due to 
knapping shatter; 
cortex flat and 
frosted - block/plate 

L546 14 Quartz Milky Flake 11.40 7.00 5.80 100 Broken     N/A N/A P 
Cortex smooth and 
rounded - pebble 

L547 14 Quartz 

Greasy-
fine 

grained Flake 17.40 22.60 9.10 <50 Broken     1 Uni A 
Cortex flat and 
frosted - block/plate 

L553 14 Quartz 
Milky-rock 

crystal Flake 17.50 10.50 4.70 100 Broken     N/A N/A A 
Cortex smooth and 
rounded - pebble 

L554 14 Quartz 

Greasy-
fine 

grained Flake 14.20 12.00 3.20 0 Broken     1 Uni P   

L579 3 Quartz Milky Flake 25.63 26.52 11.29 0 Broken     2 Indet A   

L580 3 Mudstone   Flake 22.18 13.40 6.95 0 Broken     4 Multi P   

L583 3 Quartz Milky Flake 15.39 15.80 4.12 0 Absent     2 Multi P   
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L584 3 Quartz Milky Flake 17.07 22.67 4.57 0 Broken     1 Uni P 

Crushing around left 
lateral edge between 
platform and 
proximal end 
creating  a sub-round 
smooth edge; no 
evidence of retouch 

L585 3 Quartz 
Fine 

grained Flake 14.82 16.68 6.97 0 Broken     1 Uni A   

L589 3 Quartz Milky Flake 14.95 11.34 3.94 0 Absent     1 Uni P   

L590 3 Quartz 
Milky-rock 

crystal Flake 11.08 9.83 1.92 0 Absent     1 Uni P   

L591 3 Quartz Greasy Flake 11.86 7.04 1.50 0 Absent     1 Uni P   

L597 9 Quartz 
Milky-fine 

grained Flake 50.00 33.03 18.39 <50 Cortical 30.73 17.99 1 Uni P 

This piece has two 
ventral faces; cortex 
smooth and rounded 
- pebble 

L598 9 Quartz Milky Flake 11.88 16.83 4.69 >50 Broken     1 Uni P 
Cortex smooth and 
rounded - pebble 

L601 9 Quartz 
Milky-rock 

crystal Flake 11.11 8.15 3.27 0 Broken     2 Multi A   

L603 9 Quartz Milky Flake 10.13 7.07 2.80 0 Absent     2 Multi A   
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L605 9 Mudstone   Flake 16.44 24.53 3.62 <50 Absent     1 Uni A 

The platform for the 
dorsal removal is a 
flat area of cortex on 
the right lateral side 
of the flake, 
therefore this 
appears also as a 
ventral face; removal 
of L605 and 
subsequent 
shattering of its 
platform has 
destroyed part of the 
flake scar indicating it 
had been detached 
from a core prior to 
the final flake 
removal; cortex 
weathered 

L629 9 Flint   Flake 10.67 7.36 2.03 >50 Crushed     1 Uni P 

Cortex smooth and 
flat - pebble; partly 
burnt 

L630 9 Mudstone   Flake 11.23 7.33 2.08 0 Absent     2 Uni P   

L631 9 Mudstone   Flake 15.50 13.79 4.07 >50 Absent     1 Uni P 
Cortex weathered - 
outcrop? 

L632 9 Quartz 
Fine 

grained Flake 11.48 17.74 3.98 100 Cortical 14.35 3.81 N/A N/A A 
Cortex rounded - 
pebble 

L634 9 Quartz 
Coarse 
grained Flake 26.38 19.31 5.34 0 Crushed     3 Multi P   

L635 9 Quartz 
Rock 

crystal Flake 16.07 10.44 4.59 0 Broken     2 Multi P   

L637 9 Quartz 
Fine 

grained Blade 20.01 7.59 3.81 0 Absent     2 Uni P   

L639 9 Quartz 
Fine 

grained Flake 10.07 13.97 4.27 0 Crushed     3 Multi P   

L641 9 Quartz Milky Flake 19.66 13.41 9.82 0 Broken     4 Multi A   
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L645 9 Quartz Milky Flake 12.66 6.65 3.05 <50 Plain 6.63 3.05 1 Uni A 

Not enough cortex 
present to ascertain 
probable source 

L646 9 Quartz Greasy Flake 12.97 11.84 4.11 <50 Absent     2 Multi P 
Cortex smooth and 
rounded - pebble 

SF64 9 Flint   

Small 
fraction 

flake 8.90 13.30 2.70 0           P   

SF66 9 Flint   

Small 
fraction 

flake 9.60 8.60 2.10 0           P   

SF73 9 Quartz 

Greasy-
fine 

grained 

Small 
fraction 

flake 9.30 17.20 3.90 <50           P   

SF87 9 Mudstone   

Small 
fraction 

flake 9.80 10.40 3.10 <50           P   

SF93 9 Flint   

Small 
fraction 

flake 4.90 10.10 2.00 0           P   

SF103j 9 Unknown Igneous 

Small 
fraction 

flake 9.10 7.60 3.40 0           P   

L1 9 Mudstone   

Small 
fraction 

flake 9.20 11.90 2.10 0           P   

L2 9 Mudstone   

Small 
fraction 

flake 9.60 11.00 1.80 0           P   

L3 9 Mudstone   

Small 
fraction 

flake 8.00 12.10 1.20 0           P   

L12 9 Mudstone   

Small 
fraction 

flake 7.60 16.10 1.60 0           P 
Distal end of broken 
flake 

L18 9 Mudstone   

Small 
fraction 

flake 8.70 12.60 2.80 100           P 
Distal end of broken 
flake 
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L20 9 Mudstone   

Small 
fraction 

flake 5.70 10.50 1.60 0           P   

L21 9 Mudstone   

Small 
fraction 

flake 5.30 7.90 2.40 <50           A   

L22 9 Mudstone   

Small 
fraction 

flake 6.60 8.90 2.10 100           P   

L23 9 Mudstone   

Small 
fraction 

flake 6.80 8.50 1.30 0           P   

L24 9 Mudstone   

Small 
fraction 

flake 9.80 10.10 0.70 0           P   

L25 9 Mudstone   

Small 
fraction 

flake 8.20 9.40 3.20 0           P   

L26 9 Mudstone   

Small 
fraction 

flake 4.20 5.70 3.10 0           P   

L27 9 Mudstone   

Small 
fraction 

flake 9.90 6.60 2.60 0           P   

L28 9 Mudstone   

Small 
fraction 

flake 8.40 10.40 4.40 0           P   

L29 9 Mudstone   

Small 
fraction 

flake 8.10 6.20 1.60 0           P   

L30 9 Mudstone   

Small 
fraction 

flake 8.60 6.50 3.10 0           P   

L31 9 Mudstone   

Small 
fraction 

flake 4.00 6.60 4.10 0           P   
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L32 9 Mudstone   

Small 
fraction 

flake 5.60 8.50 3.20 0           P 
Distal end of broken 
flake 

L33 9 Mudstone   

Small 
fraction 

flake 6.70 7.70 1.20 0           P   

L34 9 Mudstone   

Small 
fraction 

flake 7.70 5.90 0.80 0           P   

L35 9 Mudstone   

Small 
fraction 

flake 8.80 5.90 0.90 0           P   

L36 9 Mudstone   

Small 
fraction 

flake 8.78 7.60 2.60 <50           P   

L37 9 Mudstone   

Small 
fraction 

flake 3.60 7.30 1.00 0           P   

L38 9 Mudstone   

Small 
fraction 

flake 6.40 5.60 1.50 0           A   

L39 9 Mudstone   

Small 
fraction 

flake 6.60 6.20 0.90 0           P Flaked flake spall 

L40 9 Mudstone   

Small 
fraction 

flake 6.50 6.00 1.40 0           A   

L41 9 Mudstone   

Small 
fraction 

flake 6.90 5.40 2.40 0           P   

L42 9 Mudstone   

Small 
fraction 

flake 5.70 5.10 2.40 0           P   

L43 9 Mudstone   

Small 
fraction 

flake 6.50 14.70 2.00 0           P   
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L46 9 Mudstone   

Small 
fraction 

flake 5.30 10.90 2.30 0           P Flaked flake spall   

L52 9 Mudstone   

Small 
fraction 

flake 9.20 8.37 4.19 0           P   

L54 9 Mudstone   

Small 
fraction 

flake 7.60 6.20 3.10 <50           P   

L63 9 Flint   

Small 
fraction 

flake 8.90 12.00 4.70 0           P   

L66 9 Flint   

Small 
fraction 

flake 9.20 16.60 2.00 <50           P   

L68 9 Flint   

Small 
fraction 

flake 8.60 11.30 3.40 0           P   

L71 9 Flint   

Small 
fraction 

flake 9.40 12.60 1.20 0           P Flaked flake spall   

L72 9 Flint   

Small 
fraction 

flake 9.90 8.70 2.60 <50           P   

L77 9 Flint   

Small 
fraction 

flake 9.00 11.70 0.80 0           P   

L82 9 Flint   

Small 
fraction 

flake 7.70 10.00 2.50 0           P   

L83 9 Flint   

Small 
fraction 

flake 7.80 9.00 2.00 <50           A   

L84 9 Flint   

Small 
fraction 

flake 8.00 9.20 1.10 0           P   
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L85 9 Flint   

Small 
fraction 

flake 6.70 7.90 1.50 0           P   

L86 9 Flint   

Small 
fraction 

flake 8.30 9.40 2.40 0           P   

L87 9 Flint   

Small 
fraction 

flake 4.10 10.90 1.90 >50           P   

L88 9 Flint   

Small 
fraction 

flake 8.00 7.50 1.50 <50           A   

L89 9 Flint   

Small 
fraction 

flake 6.20 7.80 1.90 <50           P   

L91 9 Flint   

Small 
fraction 

flake 8.90 9.10 2.00 0           P   

L92 9 Flint   

Small 
fraction 

flake 6.50 8.40 2.10 0           P   

L93 9 Flint   

Small 
fraction 

flake 8.60 7.30 1.60 <50           A   

L94 9 Flint   

Small 
fraction 

flake 7.80 5.70 1.10 0           P   

L95 9 Flint   

Small 
fraction 

flake 6.40 6.40 1.40 0           P   

L96 9 Flint   

Small 
fraction 

flake 6.10 5.70 1.80 0           A   

L97 9 Flint   

Small 
fraction 

flake 5.50 6.00 1.10 0           A   
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L98 9 Flint   

Small 
fraction 

flake 5.10 4.70 0.50 0           P   

L99 9 Flint   

Small 
fraction 

flake 8.60 9.40 1.80 <50           P   

L100 9 Flint   

Small 
fraction 

flake 6.50 6.90 0.80 0           P   

L102 9 Flint   

Small 
fraction 

flake 9.20 6.93 5.50 0           P   

L104 9 Flint   

Small 
fraction 

flake 7.10 6.40 4.40 100           P   

L105 9 Flint   

Small 
fraction 

flake 9.30 7.00 2.70 0           P   

L106 9 Mudstone   

Small 
fraction 

flake 6.70 3.90 1.90 100           P   

L107 9 Flint   

Small 
fraction 

flake 4.50 5.70 2.90 0           P   

L108 9 Flint   

Small 
fraction 

flake 5.60 7.30 2.70 100           P   

L109 9 Flint   

Small 
fraction 

flake 6.00 9.00 2.20 0           P   

L110 9 Flint   

Small 
fraction 

flake 8.30 5.70 1.90 <50           P   

L111 9 Flint   

Small 
fraction 

flake 4.80 8.10 1.20 100           P   
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L114 9 Flint   

Small 
fraction 

flake 6.90 9.60 2.10 0           P Burnt 

L116 9 Flint   

Small 
fraction 

flake 9.26 7.94 3.33 0           P Burnt 

L117 9 Flint   

Small 
fraction 

flake 6.80 5.90 2.20 <50           P   

L119 9 Flint   

Small 
fraction 

flake 7.50 6.20 3.50 <50           P   

L121 14 Mudstone   

Small 
fraction 

flake 7.00 10.80 3.00 0           P   

L123 14 Mudstone   

Small 
fraction 

flake 9.00 9.60 1.60 0           P Flaked flake spall 

L127 14 Mudstone   

Small 
fraction 

flake 7.70 9.40 3.00 <50           P   

L128 14 Flint   

Small 
fraction 

flake 9.50 11.60 2.60 0           A   

L131 14 Flint   

Small 
fraction 

flake 7.30 8.20 1.00 0           P Flaked flake spall 

L181 9 Quartz Milky 

Small 
fraction 

flake 5.50 16.80 4.00 <50           P Flaked flake spall   

L183 9 Quartz 
Fine 

grained 

Small 
fraction 

flake 7.20 7.50 1.80 0           P   

L184 9 Quartz Milky 

Small 
fraction 

flake 8.80 8.30 2.50 0           A   
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L185 9 Quartz Milky 

Small 
fraction 

flake 9.50 12.30 3.70 <50           P   

L186 9 Quartz Milky 

Small 
fraction 

flake 5.70 9.00 1.50 0           A   

L191 9 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 9.70 9.20 2.00 0           P   

L192 9 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 7.70 9.50 2.10 0           P   

L194 9 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 9.80 7.40 2.60 100           P   

L195 9 Quartz 

Greasy-
fine 

grained 

Small 
fraction 

flake 6.70 8.50 1.40 0           A Flaked flake spall   

L210 9 Quartz 

Greasy-
fine 

grained 

Small 
fraction 

flake 7.30 8.70 1.90 0           P   

L211 9 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 7.00 6.20 1.80 0           P   

L214 9 Quartz 
Milky-fine 

grained 

Small 
fraction 

flake 8.60 10.50 2.80 0           P Flaked flake spall   

L217 9 Quartz Milky 

Small 
fraction 

flake 9.80 7.30 2.10 0           P   

L219 9 Quartz 
Milky-fine 

grained 

Small 
fraction 

flake 9.70 10.00 3.20 0           P   

L220 9 Quartz Milky 

Small 
fraction 

flake 9.10 6.40 1.70 >50           P   
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L221 9 Quartz 
Milky-fine 

grained 

Small 
fraction 

flake 5.50 8.90 2.40 0           A   

L222 9 Quartz 
Fine 

grained 

Small 
fraction 

flake 9.10 13.40 2.20 0           P   

L223 9 Quartz 
Fine 

grained 

Small 
fraction 

flake 7.20 7.50 1.00 0           P   

L227 9 Quartz 
Fine 

grained 

Small 
fraction 

flake 8.00 7.30 1.40 0           P   

L228 9 Quartz 

Greasy-
fine 

grained 

Small 
fraction 

flake 7.40 6.60 1.20 0           P   

L233 9 Quartz 

Greasy-
fine 

grained 

Small 
fraction 

flake 5.80 8.90 1.70 0           P   

L236 9 Quartz 

Greasy-
fine 

grained 

Small 
fraction 

flake 8.00 11.90 3.00 0           P   

L240 9 Quartz Milky 

Small 
fraction 

flake 6.60 7.10 1.40 0           P   

L241 9 Quartz 
Fine 

grained 

Small 
fraction 

flake 6.80 6.80 1.80 0           P   

L242 9 Quartz 
Fine 

grained 

Small 
fraction 

flake 8.00 6.30 2.60 0           P   

L243 9 Quartz Milky 

Small 
fraction 

flake 7.80 8.50 0.90 >50           P   

L245 9 Quartz Milky 

Small 
fraction 

flake 9.00 8.30 1.50 100           A   



 

 

5
09

 

L248 9 Quartz 
Milky-fine 

grained 

Small 
fraction 

flake 9.10 7.40 2.90 0           P   

L249 9 Quartz 
Fine 

grained 

Small 
fraction 

flake 8.60 8.70 1.40 0           P   

L250 9 Quartz Greasy 

Small 
fraction 

flake 7.60 8.80 2.80 0           P   

L253 9 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 5.40 8.60 1.30 0           P   

L254 9 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 7.50 7.90 1.90 0           P   

L267 9 Quartz Milky 

Small 
fraction 

flake 9.40 6.40 1.20 0           P   

L272 9 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 6.30 6.80 1.70 0           A   

L274 9 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 7.30 9.60 1.90 0           P   

L275 9 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 9.70 8.10 2.40 <50           P   

L276 9 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 4.50 6.70 2.70 0           A   

L277 9 Quartz 

Greasy-
fine 

grained 

Small 
fraction 

flake 6.40 6.50 1.00 0           P   

L281 9 Quartz 

Greasy-
fine 

grained 

Small 
fraction 

flake 5.80 8.40 1.50 >50           P   
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L283 9 Quartz 

Greasy-
fine 

grained 

Small 
fraction 

flake 8.00 7.50 2.90 0           P   

L284 9 Quartz Milky 

Small 
fraction 

flake 9.30 5.65 2.28 >50           P   

L285 9 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 6.90 8.80 2.10 <50           P   

L286 9 Quartz Milky 

Small 
fraction 

flake 5.80 8.00 4.10 <50           P   

L287 9 Quartz 
Milky-fine 

grained 

Small 
fraction 

flake 6.10 6.13 3.30 0           P   

L289 9 Quartz 
Milky-fine 

grained 

Small 
fraction 

flake 7.20 11.00 3.30 0           P   

L290 9 Quartz 
Milky-fine 

grained 

Small 
fraction 

flake 8.40 6.20 1.50 0           P   

L291 9 Quartz 

Greasy-
fine 

grained 

Small 
fraction 

flake 6.90 9.40 2.20 0           P   

L292 9 Quartz Milky 

Small 
fraction 

flake 7.20 11.00 2.20 0           P   

L293 9 Quartz 

Greasy-
fine 

grained 

Small 
fraction 

flake 7.70 10.70 1.90 0           P   

L294 9 Quartz 

Greasy-
fine 

grained 

Small 
fraction 

flake 9.90 7.40 2.60 0           P   

L295 9 Quartz 
Rock 

crystal 

Small 
fraction 

flake 5.40 10.60 3.00 0           P   
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L296 9 Quartz Milky 

Small 
fraction 

flake 9.60 5.60 4.00 <50           P   

L300 9 Quartz Milky 

Small 
fraction 

flake 5.70 9.50 2.50 0           P   

L301 9 Quartz Milky 

Small 
fraction 

flake 8.20 8.00 3.40 100           P   

L303 9 Quartz 

Greasy-
fine 

grained 

Small 
fraction 

flake 5.60 12.50 4.70 <50           P   

L305 9 Quartz 
Fine 

grained 

Small 
fraction 

flake 8.30 5.80 3.80 100           P   

L306 9 Quartz Milky 

Small 
fraction 

flake 6.40 5.00 2.50 0           P   

L307 9 Quartz Milky 

Small 
fraction 

flake 8.10 6.00 2.30 0           P   

L309 9 Quartz Milky 

Small 
fraction 

flake 9.10 15.00 4.20 0           P   

L311 9 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 6.70 9.70 2.30 100           P   

L312 9 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 5.30 8.60 1.50 0           P   

L313 9 Quartz 
Fine 

grained 

Small 
fraction 

flake 9.44 9.13 3.09 >50           A   

L317 9 Quartz 
Milky-fine 

grained 

Small 
fraction 

flake 9.70 10.00 1.40 0           P   
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L320 9 Quartz Milky 

Small 
fraction 

flake 5.50 7.00 1.50 100           P   

L321 9 Quartz Milky 

Small 
fraction 

flake 7.60 6.70 2.00 100           P   

L322 9 Quartz 

Greasy-
fine 

grained 

Small 
fraction 

flake 7.70 9.40 2.10 <50           A   

L325 9 Quartz Milky 

Small 
fraction 

flake 8.30 5.20 2.50 0           P   

L326 9 Quartz 

Greasy-
fine 

grained 

Small 
fraction 

flake 5.50 8.40 1.60 0           P   

L327 9 Quartz 

Rock 
crystal-

fine 
grained 

Small 
fraction 

flake 8.10 8.30 3.30 >50           P   

L328 9 Quartz 
Milky-fine 

grained 

Small 
fraction 

flake 9.80 8.40 2.50 0           P   

L329 9 Quartz 
Milky-fine 

grained 

Small 
fraction 

flake 9.60 6.50 2.90 0           P   

L330 9 Quartz 
Milky-fine 

grained 

Small 
fraction 

flake 6.70 7.80 1.60 0           P   

L332 9 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 6.10 6.70 1.40 0           P   

L333 9 Quartz Milky 

Small 
fraction 

flake 9.30 8.90 2.90 0           P   

L334 9 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 5.10 7.80 1.40 0           P   
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L335 9 Quartz Milky 

Small 
fraction 

flake 8.30 8.30 3.20 0           P   

L337 9 Quartz 
Milky-fine 

grained 

Small 
fraction 

flake 8.11 9.00 3.20 100           P   

L338 9 Quartz 
Milky-fine 

grained 

Small 
fraction 

flake 5.30 6.00 2.90 0           P   

L340 9 Quartz 

Greasy-
fine 

grained 

Small 
fraction 

flake 7.50 6.40 1.50 0           P   

L341 9 Quartz 

Greasy-
fine 

grained 

Small 
fraction 

flake 8.80 9.80 3.80 0           P   

L343 9 Quartz 

Greasy-
fine 

grained 

Small 
fraction 

flake 4.60 8.00 2.20 0           P   

L344 9 Quartz 
Milky-fine 

grained 

Small 
fraction 

flake 7.10 5.00 2.60 0           P   

L345 9 Quartz Greasy 

Small 
fraction 

flake 5.50 9.00 3.60 <50           P   

L351 9 Quartz 
Milky-fine 

grained 

Small 
fraction 

flake 7.60 6.40 1.50 <50           P   

L352 9 Quartz Milky 

Small 
fraction 

flake 6.40 7.60 1.50 0           P   

L353 9 Quartz Greasy 

Small 
fraction 

flake 7.20 6.40 1.30 0           P   

L356 9 Quartz 
Milky-fine 

grained 

Small 
fraction 

flake 7.10 5.50 2.90 0           P   
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L357 9 Quartz 
Fine 

grained 

Small 
fraction 

flake 8.70 5.70 2.60 100           P   

L361 9 Quartz 

Greasy-
fine 

grained 

Small 
fraction 

flake 9.60 6.90 3.00 0           P   

L362 9 Quartz 
Milky-fine 

grained 

Small 
fraction 

flake 7.20 10.80 3.20 <50           A   

L363 9 Quartz Greasy 

Small 
fraction 

flake 5.30 4.30 2.30 0           P   

L364 9 Quartz Milky 

Small 
fraction 

flake 9.60 6.40 4.80 100           P   

L365 9 Quartz Greasy 

Small 
fraction 

flake 5.30 6.50 2.90 0           P   

L369 9 Quartz Milky 

Small 
fraction 

flake 7.90 9.70 3.50 <50           P   

L371 9 Quartz 
Fine 

grained 

Small 
fraction 

flake 7.70 5.60 2.10 0           P   

L373 9 Quartz Milky 

Small 
fraction 

flake 9.10 5.50 3.10 <50           P   

L374 9 Quartz Milky 

Small 
fraction 

flake 7.30 5.10 2.40 0           P   

L376 9 Quartz 
Milky-fine 

grained 

Small 
fraction 

flake 5.80 8.20 2.20 0           A   

L377 9 Quartz 

Greasy-
fine 

grained 

Small 
fraction 

flake 6.40 6.50 2.70 0           P   
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L378 9 Quartz Milky 

Small 
fraction 

flake 7.80 12.80 2.70 0           A   

L379 9 Quartz 
Milky-fine 

grained 

Small 
fraction 

flake 6.50 6.70 1.60 0           P   

L380 9 Quartz Milky 

Small 
fraction 

flake 8.20 5.10 2.10 0           P   

L381 9 Quartz 

Greasy-
fine 

grained 

Small 
fraction 

flake 4.50 7.90 2.60 0           A   

L382 9 Quartz Milky 

Small 
fraction 

flake 6.40 7.00 3.30 0           P   

L386 9 Quartz Greasy 

Small 
fraction 

flake 6.70 6.10 0.90 0           P   

L388 9 Quartz Milky 

Small 
fraction 

flake 4.60 6.60 2.70 100           P   

L389 9 Quartz 
Fine 

grained 

Small 
fraction 

flake 5.90 5.70 1.50 0           P   

L390 9 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 7.00 9.50 2.20 100           P   

L392 9 Quartz 
Milky-fine 

grained 

Small 
fraction 

flake 5.50 8.30 1.30 0           P   

L396 9 Quartz Milky 

Small 
fraction 

flake 7.60 13.20 3.00 0           P   

L397 9 Quartz 

Greasy-
fine 

grained 

Small 
fraction 

flake 6.20 9.40 2.00 0           P   
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L398 9 Quartz 

Greasy-
fine 

grained 

Small 
fraction 

flake 4.60 9.80 2.20 0           P   

L399 9 Quartz 
Milky-fine 

grained 

Small 
fraction 

flake 5.60 5.20 1.70 0           P   

L400 9 Quartz 
Fine 

grained 

Small 
fraction 

flake 7.90 7.10 2.40 0           A   

L401 9 Quartz Milky 

Small 
fraction 

flake 8.00 5.60 4.30 <50           P   

L403 9 Quartz Milky 

Small 
fraction 

flake 5.60 8.00 3.00 <50           P   

L405 9 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 6.50 6.30 2.70 100           P   

L406 9 Quartz 
Milky-fine 

grained 

Small 
fraction 

flake 7.90 9.40 2.10 0           P   

L407 9 Quartz Milky 

Small 
fraction 

flake 9.30 10.20 2.70 >50           P   

L408 9 Quartz 
Milky-fine 

grained 

Small 
fraction 

flake 6.80 7.50 1.80 0           P   

L409 9 Quartz 
Milky-fine 

grained 

Small 
fraction 

flake 3.80 7.60 2.10 0           P   

L414 9 Quartz 

Greasy-
fine 

grained 

Small 
fraction 

flake 7.40 10.80 1.50 0           P   

L416 9 Quartz 

Greasy-
fine 

grained 

Small 
fraction 

flake 6.60 12.00 5.70 0           P   
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L418 9 Quartz 

Greasy-
fine 

grained 

Small 
fraction 

flake 7.00 7.10 3.90 <50           P   

L419 9 Quartz 

Greasy-
fine 

grained 

Small 
fraction 

flake 5.70 9.00 1.70 0           P   

L420 9 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 8.00 8.22 2.30 0           P   

L422 9 Quartz Milky 

Small 
fraction 

flake 8.00 11.10 3.60 0           A   

L425 9 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 7.70 5.20 1.90 0           P   

L427 9 Quartz Milky 

Small 
fraction 

flake 9.90 5.70 1.80 0           P   

L428 9 Quartz 
Fine 

grained 

Small 
fraction 

flake 8.00 9.30 2.00 0           P   

L434 9 Quartz 
Rock 

crystal 

Small 
fraction 

flake 7.70 6.60 3.10 0           P   

L436 9 Quartz 
Milky-fine 

grained 

Small 
fraction 

flake 9.50 8.70 1.80 0           P   

L437 9 Quartz 
Milky-fine 

grained 

Small 
fraction 

flake 9.10 8.10 3.50 <50           A   

L441 9 Quartz Greasy 

Small 
fraction 

flake 6.20 6.30 2.20 0           P   

L442 9 Quartz Greasy 

Small 
fraction 

flake 4.50 9.40 2.70 0           A   
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L443 9 Quartz Milky 

Small 
fraction 

flake 8.40 5.00 1.60 0           P   

L444 9 Quartz Milky 

Small 
fraction 

flake 6.20 9.80 2.30 0           P   

L446 9 Quartz Milky 

Small 
fraction 

flake 6.00 5.20 2.00 0           P   

L447 9 Quartz 
Milky-fine 

grained 

Small 
fraction 

flake 8.00 7.60 2.70 <50           A   

L448 9 Quartz Milky 

Small 
fraction 

flake 9.00 9.70 6.40 0           A   

L450 9 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 8.30 6.70 4.10 0           P   

L451 9 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 5.00 8.40 3.10 <50           P   

L455 9 Quartz 
Milky-fine 

grained 

Small 
fraction 

flake 7.60 10.40 4.30 100           P   

L456 9 Quartz Milky 

Small 
fraction 

flake 8.70 5.60 3.00 0           P   

L458 9 Quartz Milky 

Small 
fraction 

flake 5.62 10.64 3.40 >50           P   

L459 9 Quartz Milky 

Small 
fraction 

flake 9.30 10.70 4.00 0           P   

L461 9 Quartz 

Greasy-
fine 

grained 

Small 
fraction 

flake 9.60 9.40 4.50 0           P   
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L462 9 Quartz Milky 

Small 
fraction 

flake 6.00 14.40 4.70 0           A   

L463 9 Quartz Milky 

Small 
fraction 

flake 9.20 7.70 3.40 0           P   

L464 9 Quartz 
Fine 

grained 

Small 
fraction 

flake 8.70 6.00 2.10 0           A   

L465 9 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 8.00 5.70 3.20 <50           P   

L470 9 Quartz 
Milky-fine 

grained 

Small 
fraction 

flake 9.70 7.20 3.10 100           P   

L471 9 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 8.90 9.20 2.90 0           P   

L473 9 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 4.10 6.70 3.20 100           P   

L474 9 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 9.30 6.40 2.50 0           P   

L475 9 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 5.90 6.80 3.60 100           P   

L476 9 Quartz 

Greasy-
fine 

grained 

Small 
fraction 

flake 6.80 5.10 3.70 0           P   

L490 9 Quartz Milky 

Small 
fraction 

flake 9.70 9.40 4.70 <50           P   

L512 14 Quartz Greasy 

Small 
fraction 

flake 9.90 12.50 3.20 0           P   



 

 

5
20

 

L514 14 Quartz Milky 

Small 
fraction 

flake 8.80 16.40 3.60 0           P   

L526 14 Quartz Milky 

Small 
fraction 

flake 8.70 9.10 2.80 0           P   

L528 14 Quartz 
Rock 

crystal 

Small 
fraction 

flake 6.50 7.00 1.40 0           P   

L529 14 Quartz Milky 

Small 
fraction 

flake 5.18 5.44 6.35 <50           P   

L531 14 Quartz 
Milky-fine 

grained 

Small 
fraction 

flake 6.00 7.80 4.10 100           A   

L535 14 Quartz Greasy 

Small 
fraction 

flake 8.80 6.10 2.80 0           P   

L536 14 Quartz 
Fine 

grained 

Small 
fraction 

flake 6.00 6.70 2.00 0           P   

L537 14 Quartz Milky 

Small 
fraction 

flake 5.80 6.40 1.80 0           P   

L538 14 Quartz 
Milky-fine 

grained 

Small 
fraction 

flake 9.10 9.80 1.60 0           P   

L539 14 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 7.10 5.50 2.20 0           P   

L541 14 Quartz Milky 

Small 
fraction 

flake 7.50 10.30 3.70 0           P   

L542 14 Quartz 
Fine 

grained 

Small 
fraction 

flake 6.10 7.40 3.70 0           P   
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L549 14 Quartz Milky 

Small 
fraction 

flake 6.60 8.60 1.50 0           P   

L550 14 Quartz Milky 

Small 
fraction 

flake 7.00 7.40 2.30 0           P   

L551 14 Quartz 
Fine 

grained 

Small 
fraction 

flake 7.00 7.80 2.60 0           P   

L552 14 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 6.10 7.60 2.20 >50           P   

L556 14 Quartz 

Greasy-
fine 

grained 

Small 
fraction 

flake 8.10 10.70 22.60 <50           A   

L581 3 Quartz 

Coarse 
grained-
feldspar 

Small 
fraction 

flake 6.00 5.64 1.55 0           P   

L582 3 Quartz Milky 

Small 
fraction 

flake 8.88 8.79 5.07 0           P   

L587 3 Quartz Milky 

Small 
fraction 

flake 8.50 11.23 2.43 0           P   

L588 3 Quartz Milky 

Small 
fraction 

flake 8.51 9.05 3.73 <50           P   

L592 3 Quartz Greasy 

Small 
fraction 

flake 7.13 9.78 3.48 0           P   

L594 3 Quartz Greasy 

Small 
fraction 

flake 6.92 7.18 0.91 0           P   

L596 3 Quartz Milky 

Small 
fraction 

flake 7.05 12.62 4.59 0           P   
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L599 9 Quartz Milky 

Small 
fraction 

flake 7.02 8.61 1.82 0           P   

L600 9 Quartz Milky 

Small 
fraction 

flake 7.86 9.40 4.56 0           A   

L602 9 Quartz Milky 

Small 
fraction 

flake 5.36 8.86 3.41 0           P   

L604 9 Quartz Greasy 

Small 
fraction 

flake 5.05 5.20 3.82 <50           A   

L614 9 Flint   

Small 
fraction 

flake 5.92 10.76 1.73 0           P   

L615 9 Flint   

Small 
fraction 

flake 8.95 6.74 0.90 0           P   

L626 9 Feldspar   

Small 
fraction 

flake 7.71 6.09 2.49 >50           P   

L627 9 Flint   

Small 
fraction 

flake 9.66 10.08 1.46 0           P   

L628 9 Flint   

Small 
fraction 

flake 8.13 5.79 2.38 <50           A   

L633 9 Quartz Milky 

Small 
fraction 

flake 9.50 7.77 2.21 100           P   

L636 9 Quartz 
Milky-fine 

grained 

Small 
fraction 

flake 6.92 10.16 1.29 0           A Flaked flake spall 

L638 9 Quartz Milky 

Small 
fraction 

flake 6.07 7.59 1.93 <50           P   
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L640 9 Quartz Milky 

Small 
fraction 

flake 9.21 6.11 2.60 0           P   

L642 9 Quartz Milky 

Small 
fraction 

flake 7.62 5.90 4.02 <50           P   

L644 9 Quartz 
Fine 

grained 

Small 
fraction 

flake 8.86 6.38 2.54 <50           P   

L647 9 Quartz Milky 

Small 
fraction 

flake 9.14 10.85 2.57 <50           P Flaked flake spall 

 

Table 53. Northton 2010 Phase 4 flakes and small fraction flakes 

ID No. 
Context 

No. Raw Material 

Raw 
Material 
Variety Typology 

Length 
(mm) 

Width 
(mm) 

Thick-
ness 
(mm) 

Cortex 
% 

Platform 
Type 

Platform 
Width 
(mm) 

Platform 
Depth 
(mm) 

Dorsal 
Flake 
Scar 

Count 

Dorsal 
Flake 
Scar 

Pattern 
Break-

age Notes 

SF100 17 Flint   Flake 11.60 10.30 4.70 >50 Plain 7.8 4.5 1 Uni P 

Cortex rounded - 
pebble; edge damage 
resembling retouch 
present 

SF101 17 Flint   Flake 16.80 11.00 3.10 <50 Plain 5.6 2.6 1 Uni P 
Cortex rounded - 
pebble 

L132 16 Flint   Flake 12.10 11.30 4.10 0 Broken     5 Multi P   

L133 16 Flint   Flake 11.00 7.30 1.80 100 Broken     N/A N/A P   

L153 16 Flint   Flake 13.90 7.30 4.20 >50 Absent     2 Multi P 

Pinky cortex, same 
unit as flakes L147-
L155, refit with L167; 
distal end of broken 
flake - perpendicular 
snap across centre of 
piece; characteristics 
of a 'split cobble 
core' 

L158 16 Flint   Flake 11.20 5.40 2.90 <50 Broken     1 Uni A 
Refit with L157; only 
inner cortex present 
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L159 16 Flint   Flake 11.40 6.75 5.04 <50 Absent     2 Uni P 

Retouch along 
cortical edge - 
function 
indeterminate due to 
breakage; only inner 
cortex present 

L160 16 Flint   Flake 11.00 4.60 3.20 0 Absent     3 Multi P   

L161 16 Flint   Flake 12.40 8.10 2.10 0 Absent     3 Multi P   

L165 17 Flint   Flake 10.40 11.20 1.60 <50 Absent     1 Uni P 

Flaked flake spall; 
only inner cortex 
present 

L167 17 Flint   Flake 13.30 6.20 4.90 >50 Broken     2 Multi P 

Pinky cortex, same 
unit as flakes L147-
L155; refits with 
L153; proximal end of 
broken flake; 
characteristics of a 
'split cobble core' 

L558 16 Quartz 
Fine 

grained Flake 37.10 27.20 12.70 100 Broken     N/A N/A P 

Cortex smooth and 
rounded - pebble; 
characteristics of a 
'split cobble core' 

L560 16 Quartz Milky Flake 10.00 12.80 2.00 >50 Absent     1 Uni P 
Cortex flat and 
frosted - block/plate 

L561 16 Quartz Milky Flake 12.30 10.80 4.50 100 Absent     N/A N/A P 
Cortex flat and 
frosted - block/plate 

L565 16 Quartz 
Milky-
greasy Flake 16.00 10.30 5.70 100 Broken     N/A N/A P   

L566 17 Quartz Milky Flake 13.00 14.70 7.50 0 Absent     1 Uni P   

L577 17 Quartz 
Coarse 
grained Flake 17.70 25.10 7.50 0 Absent     1 Uni P   

L606 16 Quartz Milky Flake 24.12 32.97 8.76 0 Plain 25.29 7.29 1 Uni P   

L610 16 Flint   Flake 12.61 10.40 1.54 0 Absent     2 Indet P   

L611 16 Flint   

Core 
rejuv-

enation 
flake 11.94 3.01 7.73 0 Broken     4 Multi A   
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L612 16 Flint   

Core 
rejuv-

enation 
flake 3.88 15.29 7.26 <50 Plain     3 Multi P 

Cortex smooth and 
rounded - pebble; 
one previous flake 
removal used as 
platform for other 
two flake removals; 
secondary working 
present - used to 
prepare edge  

L616 17 Flint   Flake 10.82 6.04 1.81 0 Absent     1 Uni P   

L618 17 Unknown   Flake 19.33 20.59 5.10 0 Broken     1 Uni P 

Dorsal flake scar 
difficult to determine 
due to the nature of 
the raw material 

L619 16 Flint   Flake 10.64 8.50 2.14 <50 Broken     3 Multi A 

Cortex smooth and 
rounded - pebble; 
pink colour 

L620 16 Flint   Flake 10.04 11.36 1.75 0 Absent     2 Multi P   

L621 16 Quartz Milky Flake 11.88 14.69 8.45 <50 Plain 11.09 8.61 3 Multi P 

Cortex flat and 
frosted - block/plate; 
one dorsal flake scar 
retains an incipient 
cone of percussion 

L134 16 Flint   

Small 
fraction 

flake 9.80 6.40 1.60 0           P   

L135 16 Flint   

Small 
fraction 

flake 7.50 9.80 4.90 <50           P   

L136 16 Flint   

Small 
fraction 

flake 8.00 8.70 1.30 <50           A 

Cortex smooth and 
rounded - pebble; 
flake core 

L137 16 Flint   

Small 
fraction 

flake 6.40 7.30 2.10 <50           P   

L138 16 Flint   

Small 
fraction 

flake 9.80 6.80 1.20 0           P   
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L139 16 Flint   

Small 
fraction 

flake 8.10 7.80 2.20 >50           P   

L140 16 Flint   

Small 
fraction 

flake 6.00 7.20 1.00 0           P   

L141 16 Flint   

Small 
fraction 

flake 8.80 9.20 1.90 0           P   

L142 16 Flint   

Small 
fraction 

flake 8.80 8.30 2.50 0           P   

L143 16 Flint   

Small 
fraction 

flake 5.70 6.30 2.20 <50           P   

L144 16 Flint   

Small 
fraction 

flake 6.40 8.10 2.20 0           P   

L145 16 Flint   

Small 
fraction 

flake 4.80 12.30 2.50 <50           P   

L146 16 Flint   

Small 
fraction 

flake 9.40 5.60 0.50 <50           P   

L147 16 Flint   

Small 
fraction 

flake 8.40 6.50 1.50 <50           P 

Pinky cortex; same 
unit as flakes L147-
L155 

L148 16 Flint   

Small 
fraction 

flake 8.50 6.80 0.90 <50           A 

Pinky cortex; same 
unit as flakes L147-
L155 

L149 16 Flint   

Small 
fraction 

flake 6.90 7.40 0.70 <50           P 

Pinky cortex; same 
unit as flakes L147-
L155 

L150 16 Flint   

Small 
fraction 

flake 6.40 7.10 2.80 <50           P 

Pinky cortex; same 
unit as flakes L147-
L155 
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L151 16 Flint   

Small 
fraction 

flake 8.80 6.10 2.80 >50           P 

Pinky cortex; same 
unit as flakes L147-
L155 

L155 16 Flint   

Small 
fraction 

flake 9.90 4.20 4.90 <50           P 

Pinky cortex; same 
unit as flakes L147-
L155 

L562 16 Quartz Milky 

Small 
fraction 

flake 8.60 10.90 3.10 0           P   

L563 16 Quartz Milky 

Small 
fraction 

flake 7.60 9.00 5.40 <50           P   

L564 16 Quartz Milky 

Small 
fraction 

flake 5.80 7.20 1.70 <50           P   

L567 17 Quartz 
Fine 

grained 

Small 
fraction 

flake 4.60 10.00 2.80 <50           P   

L568 17 Quartz 
Fine 

grained 

Small 
fraction 

flake 6.50 11.30 1.60 0           P   

L569 17 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 6.60 7.60 1.20 0           P   

L570 17 Quartz Milky 

Small 
fraction 

flake 6.10 5.60 1.60 0           P   

L572 17 Quartz 
Fine 

grained 

Small 
fraction 

flake 8.90 7.30 3.40 <50           P   

L573 17 Quartz 
Fine 

grained 

Small 
fraction 

flake 8.90 9.90 6.20 0           P 
Dorsal side destroyed 
by shattering 

L575 17 Quartz 
Fine 

grained 

Small 
fraction 

flake 5.30 4.70 3.50 0           P   
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L607 16 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 6.12 8.82 3.12 0           P   

L608 16 Flint   

Small 
fraction 

flake 5.61 6.91 1.75 0           P   

L623 16 Quartz Milky 

Small 
fraction 

flake 6.97 5.46 2.09 0           P   

 

Table 54. Northton 2010 Phase 3 chunks and small fraction chunks 

ID No. 
Context 

No. Raw Material 

Raw 
Material 
Variety Typology 

Length 
(mm) Width (mm) 

Thickness 
(mm) Cortex % Breakage Notes 

SF41 9 Flint   Chunk 14.70 10.10 7.00 <50 P   

SF61 9 Feldspar   Chunk 19.30 25.90 13.30 0 P Burnt and fire fractured 

F70b 9 Quartz Milky Chunk 15.91 12.47 11.42 <50 P   

SF95u 9 Quartz Milky Chunk 25.30 18.34 8.45 0 P   

SF95v 9 Quartz Milky Chunk 33.29 15.70 10.97 0 P   

SF96 9 Mudstone   Chunk 28.10 22.10 11.30 0 A Very weathered and rolled 

SF103h 9 Quartz Milky Chunk 26.90 10.20 5.90 0 P   

L48 9 Mudstone   Chunk 13.30 7.70 3.40 0 P   

L370 9 Quartz Milky Chunk 9.40 7.00 6.30 0 P   

L368 9 Quartz 

Greasy-
fine 

grained Chunk 11.00 4.30 3.80 0 A   

L391 9 Quartz Milky Chunk 10.00 6.40 4.80 0 P   

L411 9 Quartz Milky Chunk 11.30 5.20 3.40 0 P   

L426 9 Quartz 

Greasy-
fine 

grained Chunk 11.80 11.70 8.80 <50 A   

L469 9 Quartz Milky Chunk 10.40 10.30 7.80 <50 P   

L504 9 Feldspar   Chunk 11.41 9.36 7.18 0 P   
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L555 14 Quartz Milky Chunk 15.00 10.80 6.40 <50 P   

L50 9 Mudstone   

Small 
fraction 
chunk 9.10 7.50 6.50 0 P   

L51 9 Mudstone   

Small 
fraction 
chunk 8.10 8.60 3.61 0 A   

L55 9 Mudstone   

Small 
fraction 
chunk 7.30 4.60 4.40 0 P   

L56 9 Mudstone   

Small 
fraction 
chunk 5.30 5.60 3.60 0 P   

L101 9 Flint   

Small 
fraction 
chunk 8.80 8.80 4.50 <50 P   

L103 9 Flint   

Small 
fraction 
chunk 8.20 7.60 3.50 0 P   

L358 9 Quartz 

Greasy-
fine 

grained 

Small 
fraction 
chunk 7.60 4.80 2.80 0 P   

L375 9 Quartz Milky 

Small 
fraction 
chunk 7.60 7.50 4.40 0 P   

L417 9 Quartz Milky 

Small 
fraction 
chunk 6.40 6.00 3.60 <50 P   

L435 9 Quartz Milky 

Small 
fraction 
chunk 6.70 5.20 4.10 0 P   

L454 9 Quartz 
Milky-rock 

crystal 

Small 
fraction 
chunk 9.80 9.30 7.90 0 P   

L477 9 Quartz Greasy 

Small 
fraction 
chunk 8.10 10.70 4.62 100 P   
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L530 14 Quartz 
Fine 

grained 

Small 
fraction 
chunk 5.00 5.80 3.70 0 P   

L532 14 Quartz 
Milky-fine 

grained 

Small 
fraction 
chunk 5.40 3.70 4.10 0 P   

L533 14 Quartz Milky 

Small 
fraction 
chunk 6.50 4.60 4.50 0 P   

L548 14 Quartz 
Milky-rock 

crystal 

Small 
fraction 
chunk 7.00 7.40 3.10 0 P   

L586 3 Quartz Milky 

Small 
fraction 
chunk 8.89 6.69 4.46 0 P   

L593 3 Quartz Milky 

Small 
fraction 
chunk 9.47 4.44 4.24 <50 P   
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Table 55. Northton 2010 Phase 4 chunks and small fraction chunks 

ID No. 
Context 

No. Raw Material 

Raw 
Material 
Variety Typology 

Length 
(mm) Width (mm) 

Thickness 
(mm) Cortex % Breakage Notes 

L154 16 Flint   Chunk 13.50 4.50 4.10 >50 P Pinky cortex; same unit as flakes L147-L155 

L157 16 Flint   Chunk 11.70 10.10 4.30 >50 P Refit with L158 

L622 16 Quartz 

Coarse 
grained-
quartzite Chunk 15.83 8.21 7.11 0 P   

L152 16 Flint   

Small 
fraction 
chunk 6.20 9.20 5.70 <50 P Pinky cortex; same unit as flakes L147-L155 

L156 16 Flint   

Small 
fraction 
chunk 5.70 4.40 3.90 0 P   

L166 17 Flint   

Small 
fraction 
chunk 6.40 6.40 1.90 100 P   

L571 17 Quartz 
Milky-rock 

crystal 

Small 
fraction 
chunk 7.50 7.30 4.70 0 P   

L574 17 Quartz Milky 

Small 
fraction 
chunk 7.70 4.70 2.90 0 P   

L576 17 Quartz Milky 

Small 
fraction 
chunk 4.70 4.70 3.40 0 P   

L617 17 Flint   

Small 
fraction 
chunk 6.83 6.78 3.46 0 P   

L624 16 Quartz Milky 

Small 
fraction 
chunk 8.07 4.62 3.07 <50 P   
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Table 56. Northton 2010 Phase 3 secondary technology on flakes 

ID No. 
Context 

No. Raw Material 

Raw 
Material 
Variety Typology 

Length 
(mm) 

Width 
(mm) 

Thick-
ness 
(mm) 

Cortex 
% 

Platform 
Type 

Platform 
Width 
(mm) 

Platform 
Depth 
(mm) 

Dorsal 
Flake 
Scar 

Count 

Dorsal 
Flake 
Scar 

Pattern 
Break-

age Notes 

SF65 9 Flint   Microlith 29.50 13.40 5.40 0 Absent     3 Uni A Double backed blade 

SF79 9 Flint   Burin 21.80 14.80 5.50 <50 Plain 10.1 2.2 4 Multi P 

Burin spall removed 
from right distal end; 
cortex smooth and 
flat - pebble 

SF97 9 Flint   Microlith 27.70 21.90 4.10 <50 Crushed     3 Multi P 

Microburin; 
breakage caused by 
microburin snap 

SF103a 9 Quartz   Scraper 42.60 23.20 12.10               

Archived for 
residue/microwear 
analysis 

L65 9 Flint   Microlith 16.20 13.30 8.20 0 Absent     4 Indet P 
Broken, possibly 
lamelles a cran 

L79 9 Flint   Microlith 14.00 4.90 1.90 0 Absent     1 Uni A Scalene triangle 

L90 9 Flint   Microlith 14.70 5.60 1.70 0 Absent     1 Uni P 

Fine point; breakage 
retouched to cover 
dorsal side from 
dorsal side of break 

L113 9 Flint   Burin 14.00 8.00 2.40 0 Broken     4 Multi A 
Burin spall removed 
from right distal end 

L467 9 Quartz 
Milky-rock 

crystal Burin 11.80 8.40 4.20 0 Broken     2 Multi A 

Burin spall removed 
from proximal to left 
lateral 
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Table 57. Northton 2010 Phase 3 detail of retouch 

ID No. Type Extent Orientation Fineness Morphology Angle Course 

SF65 Edge Continuous Normal Fine  Sub-parallel Acute Straight 

SF97 Invasive Sporadic Normal Very coarse Scaled Acute Notched 

L65 Edge Continuous Normal Fine to very coarse Sub-parallel Very abrupt Straight to concave 

L79 Edge Continuous Propeller Very fine to fine Sub-parallel Very abrupt Straight to convex 

L90 Invasive Continuous Normal Very fine to fine Sub-parallel Acute Straight 

 

Table 58. Northton 2010 Phase 4 flake secondary technology  

ID No. 
Context 

No. Raw Material 

Raw 
Material 
Variety Typology 

Length 
(mm) 

Width 
(mm) 

Thick-
ness 
(mm) 

Cortex 
% 

Platform 
Type 

Platform 
Width 
(mm) 

Platform 
Depth 
(mm) 

Dorsal 
Flake 
Scar 

Count 

Dorsal 
Flake 
Scar 

Pattern 
Break-

age Notes 

L162 16 Flint   Microlith 13.60 6.40 3.90 <50 Absent     2 Multi A Crescent 

L609 16 Flint   Microlith 8.16 4.11 0.81 0 Absent     1 Uni P Oblique point 

L613 16 Flint   Microlith 8.64 3.15 1.27 0 Absent     2 Uni A Crescent 

 

Table 59. Northton 2010 Phase 4 detail of retouch 

ID No. Type Extent Orientation Fineness Morphology Angle Course 

L162 Edge Continuous Normal Fine to coarse Parallel Very abrupt Convex 

L609 Edge Sporadic Normal Very fine Scaled Abrupt Straight 

L613 Edge Continuous Normal Fine Scaled Very abrupt Convex 
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Table 60. Northton 2011 Phase 3 coarse stone tool 

ID No. 
Context 

No. Raw Material 

Raw 
Material 
Variety Typology 

Length 
(mm) Width (mm) 

Thickness 
(mm) Notes 

L659 9 Quartz Greasy Manuport 49.71 32.50 22.56 Sub-rounded water worn pebble of quartz; no visible evidence of working 

 

Table 61. Northton 2011 Phase 3 cores 

ID No. 
Context 

No. Raw Material 

Raw 
Material 
Variety Typology 

Length 
(mm) 

Weight 
(g) Cortex 

Flake 
Removal 

Count 
Flake Removal 

Sequence 
Platform 

Preparation Notes 

SF105 9 Quartz Greasy Core 29.40 8.98 P 6 Multidirectional 
Unprepared/ 

lost Cortex smooth and rounded - pebble 

L660 9 Quartz 
Fine 

grained Core 9.15 0.24 P 1 Unidirectional Unprepared 
Broken core fragment; cortex smooth 
and rounded - pebble 

 

Table 62. Northton 2011 Phase 3 flakes and small fraction flakes 

ID No. 
Con-

text No. Raw Material 

Raw 
Material 
Variety Typology 

Length 
(mm) 

Width 
(mm) 

Thick 
-ness 
(mm) 

Cortex 
% 

Platform 
Type 

Platform 
Width 
(mm) 

Platform 
Depth 
(mm) 

Dorsal 
Flake 
Scar 

Count 

Dorsal 
Flake 
Scar 

Pattern 
Break 
-age Notes 

SF103 9 Quartz Milky Flake 25.51 19.04 8.94 0 Broken     1 Uni P   

SF104 9 Quartz 
Rock 

crystal Flake 14.07 6.41 6.83 100 Absent     N/A N/A P 
Cortex flat and 
frosted - block/plate 

L649 9 Unknown Igneous Flake 41.77 40.71 13.44 0 Broken     1 Uni P   

L654 9 Quartz Milky Flake 14.63 13.41 6.03 0 Absent     1 Uni P   

L656 9 Quartz Milky Flake 12.68 12.00 1.64 0 Broken     1 Uni P   

L657 9 Quartz Milky Flake 14.33 7.79 3.41 <50 Absent     1 Uni P 
Cortex flat and 
frosted - block/plate 

L658 9 Quartz 
Milky-rock 

crystal Flake 11.14 9.66 2.28 0 Absent     2 Indet P   

L661 9 Quartz Milky Flake 17.59 18.48 9.97 100 Broken     N/A N/A P 

Cortex smooth and 
rounded - pebble; 
characteristics of a 
'split cobble core' 
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L650 9 Flint   

Small 
fraction 

flake 6.17 5.72 2.48 0           P   

L651 9 Quartz Milky 

Small 
fraction 

flake 7.77 16.80 3.97 100           P   

L652 9 Quartz 
Coarse 
grained 

Small 
fraction 

flake 7.06 10.78 2.33 100           P   

L653 9 Quartz 
Milky-fine 

grained 

Small 
fraction 

flake 6.54 7.35 2.25 100           P   

L655 9 Quartz 
Milky-fine 

grained 

Small 
fraction 

flake 7.10 5.65 2.30 0           P   

 

Table 63. Northton 2011 Phase 4 flakes and small fraction flakes 

ID No. 
Con-

text No. Raw Material 

Raw 
Material 
Variety Typology 

Length 
(mm) 

Width 
(mm) 

Thick 
-ness 
(mm) 

Cortex 
% 

Platform 
Type 

Platform 
Width 
(mm) 

Platform 
Depth 
(mm) 

Dorsal 
Flake 
Scar 

Count 

Dorsal 
Flake 
Scar 

Pattern 
Break 
-age Notes 

SF107 18 Quartz 
Fine 

grained Flake 30.18 15.22 4.81 100 Absent     N/A N/A A 

One small further 
removal made into 
the ventral face on 
the right lateral side 
at a very abrupt 
angle; cortex smooth 
- pebble 

L662 16/17 Flint  Flake 16.44 12.35 5.26 <50 Absent     1 Uni P 
Cortex smooth and 
rounded - pebble 

L664 18 Feldspar  Flake 13.59 11.77 2.87 0 Absent     1 Uni P   

L666 18 Quartz 
Milky-fine 

grained Flake 11.40 9.25 5.90 >50 Broken     1 Uni P 

Cortex smooth and 
rounded - pebble; 
characteristics of a 
'split cobble core' 

L667 18 Quartz Milky Flake 11.87 9.49 2.96 0 Absent     1 Uni P   
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L668 18 Quartz Milky Flake 13.74 6.60 5.40 <50 Broken     1 Uni P 
Cortex flat and 
frosted - block/plate 

L669 18 Quartz Milky Flake 11.09 7.90 5.12 100 Absent     N/A N/A P 
Cortex smooth and 
rounded - pebble 

L670 18 Quartz Milky Flake 14.94 6.77 2.30 0 Absent     1 Uni P   

L663 16/17 Flint   

Small 
fraction 

flake 5.49 8.93 1.58 <50           P   

L665 18 Quartz 
Fine 

grained 

Small 
fraction 

flake 8.30 8.66 1.68 0           P   

L671 18 Quartz 
Rock 

crystal 

Small 
fraction 

flake 7.07 7.59 2.55 0           P   

L672 18 Quartz Quartzite 

Small 
fraction 

flake 5.59 7.81 1.77 0           P   

 

Table 64. Northton material collected during Historic Scotland warden site visit 

Small Find No. Raw Material Typology Notes 

1 Ceramic Decorated rim  

2 Quartzite? Possible polished tool fragment  

3 Quartz Crested blade/point  

3 Quartz Platform core  

4 Bone   

5 Quartz Facetted core  

6 Quartz Flake Possible scraper - retouched 

7 Mylonite Chunk  

7 Quartz Chip With retouch? 

7 Unidentified Chip  

8 Quartz Bipolar core  

8 Quartz Flake  
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8 Quartz Possible core  

9 Mylonite Chips  

9 Quartz Bladelet  

10 Mylonite   

10 Quartz Chip  

10 Quartz Chip Possible microlith 

11 Quartz Debitage  

11 Quartz Debitage  

11 Quartz Debitage  

11 Flint Retouched Burin? 

12 Mylonite Flake  

12 Quartz Flake debitage  

13 Quartz Core  

14 Quartz Chip/bladelet  

15 Quartz Snapped blade  

15 Quartz   

15 Quartz   

15 Mylonite   

16 Mylonite Rejuvenation flake? Broad flake/ blade scars 

17 Quartz Bipolar flake  

17 Flint Irregular flake Pebble flint 

17 Flint Blade (snapped) Pebble flint 

18 Quartz Flake Blade scars? 

19 Quartz Debitage  

19 Quartz Possible retouched bladelet  

19 Mylonite Debitage  

20 Quartz Pebble core  
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20 Quartz   

21 Quartz   

21 Unidentified   

23 Quartz Core fragment  

24 Quartz Core?  

25 Quartzite Chunk  

28 Gneiss derived Fragment  

32 Quartz   

35 Mylonite Flake  

36 Quartz Flake  

37 Quartz Debitage  

38 Quartz Core  

38 Quartz Core rejuvenation  

40 Quartz   

41 Quartz   

42 Quartz Chunk/core  

U/S Quartz Core From below eroding edge/ back of boulders on beach 

U/S Quartz Core From below eroding edge/ back of boulders on beach 

U/S Quartz Core From below eroding edge/ back of boulders on beach 

U/S Quartz Flake From below eroding edge/ back of boulders on beach 

U/S Quartz Flake From below eroding edge/ back of boulders on beach 

U/S Quartzite Flake From below eroding edge/ back of boulders on beach 

U/S Quartz Hammerstone From foot of site/ edge of beach 
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Appendix 4 Tràigh an Teampuill Lithic Catalogue 

Table 65. Tràigh an Teampuill coarse stone tools 

ID No. 
Context 

No. Raw Material 

Raw 
Material 
Variety Typology 

Length 
(mm) Width (mm) 

Thickness 
(mm) Notes 

L35 8 Gneiss  

Manuport/ 
Hammerstone 97.58 68.99 39.83 

Possible hammerstone; sub-rounded stone; large number of peck-marks and 
depressions situated along two edges, causing cracks to radiate out and active 
disintegration of the outer surface – one of these has crushing and white 
discolouration possibly resulting from the striking of quartz 

L40 4 Gneiss  

Manuport/ 
Hammerstone 52.38 61.04 27.98 

Possible hammerstone; sub-rounded pebble with peck-marks along the 
shortest edge; fits comfortably in either hand 

 

Table 66. Tràigh an Teampuill cores 

ID No. 
Context 

No. Raw Material 

Raw 
Material 
Variety Typology 

Length 
(mm) 

Weight 
(g) Cortex 

Flake 
Removal 

Count 
Flake Removal 

Sequence 
Platform 

Preparation Notes 

SF5 3 Quartz Milky Core 40.88 16.98 P 4 Multidirectional 
Unprepared/ 

simple 
Pyramid shaped core; cortex smooth 
and flat - block/plate 

L21 10 Quartz Milky Core 28.40 6.90 P 4 Unidirectional 
Unprepared/ 

lost Cortex flat and frosted - block/plate 

L31 8 Quartz Milky Core 9.36 0.53 P 2 Multidirectional Simple 

The scar from one removal has been 
used as a platform for the second; 
cortex smooth and rounded - pebble 

L72 3 Quartz 
Fine 

grained Core 13.91 3.17 P 3 Multidirectional 
Unprepared/ 

lost Cortex indicates possible pebble 

L73 3 Quartz 
Coarse 
grained Core 19.32 3.53 A 2 Unidirectional Simple   

L74 3 Quartz Milky Core 36.50 18.67 P 2 Unidirectional Simple 
Cortex smooth, flat and weathered - 
block/plate 
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Table 67. Tràigh an Teampuill flakes and small fraction flakes 

ID No. 
Con 

text No. Raw Material 

Raw 
Material 
Variety Typology 

Length 
(mm) 

Width 
(mm) 

Thick-
ness 
(mm) 

Cortex 
% 

Platform 
Type 

Platform 
Width 
(mm) 

Platform 
Depth 
(mm) 

Dorsal 
Flake 
Scar 

Count 

Dorsal 
Flake 
Scar 

Pattern 
Break-

age Notes 

SF2 5 Flint   Flake 12.89 11.07 2.97 0 Absent     6 Uni P 

Refits with L6 - 
breakage happened 
in antiquity as the 
staining and 
patination on the 
two pieces is 
different 

SF3 5 Flint   Flake 21.96 14.00 5.06 <50 Crushed     1 Uni P 

Rounded flint pebble 
with smooth/hard 
cortex knapped with 
a bipolar reduction 
as ventral ripples are 
opposite those on 
the dorsal side and 
distal platform has 
collapsed; burnt 

SF4 5 Quartz Milky Flake 41.30 38.36 12.30 <50 Broken     1 Uni P 

Cortex smooth and 
rounded but still 
with angular 
fractures 

SF6 3 Quartz Milky Flake 13.73 13.20 3.79 0 Broken     1 Uni P   

L2 1 Quartz Greasy Flake 10.21 6.60 4.59 0 Absent     3 Multi P   

L5 5 Flint   Flake 10.65 11.73 1.30 0 Absent     2 Multi P   

L6 5 Flint   Flake 10.51 4.69 3.24 0 Absent     2 Uni P 

Refits with SF2 - 
breakage happened 
in antiquity as the 
staining and 
patination on the 
two pieces is 
different 

L7 7 Quartz Greasy Flake 10.43 7.56 2.00 <50 Absent     1 Uni P 
Cortex flat and 
frosted - block/plate 
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L10 3 Flint   Flake 11.27 7.04 1.14 0 Absent     1 Uni P   

L11 3 Metabasalt   Blade 17.61 8.84 3.02 <50 Absent     1 Uni A Possible bladelet 

L12 3 Metabasalt   Flake 16.42 7.62 4.59 0 Absent     7 Multi P 

Dorsal flake scars 
may be retouch, it is 
very difficult to tell 
due to the nature of 
the raw material, 
therefore the 
retouch attributes 
were not recorded 

L14 4 Flint   Blade 11.40 5.36 1.72 0 Crushed     2 Uni A 
Same pink flint as 
L13; possible blade 

L15 4 Flint   Flake 16.82 12.37 2.57 0 Crushed     4 Multi P 
Burnt; dorsal side 
patinated 

L17 4 Flint   Flake 11.16 10.42 2.47 0 Broken     1 Uni P   

L20 8 Quartz Greasy Flake 13.21 14.70 3.81 0 Crushed     2 Multi A Broken blade 

L26 10 Quartz Milky Flake core 13.26 19.26 6.47 <50 Broken     2 Multi A 

Flake appears to 
have been detached 
then a rejuvenation 
initiated from the 
proximal end to 
create a platform on 
the right lateral 
edge, from which a 
further flake has 
been detached on 
the dorsal surface 

L30 8 Quartz Milky Flake 14.60 9.76 7.15 100 Broken     N/A N/A P 
Cortex smooth and 
rounded - pebble 

L33 8 Quartz Greasy Flake 10.09 12.54 3.09 0 Broken     2 Indet A   

L34 8 Quartz Greasy Flake 10.03 7.61 3.83 0 Broken     1 Uni P   

L37 5 Mudstone   Flake 10.30 5.61 1.71 <50 Broken     1 Uni P 
Cortex smooth and 
weathered 

L38 5 Quartz Milky Flake 21.79 14.16 6.03 0 Broken     1 Uni P   
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L39 5 Quartz 
Fine 

grained Flake 13.93 14.06 4.25 100 Broken     N/A N/A P 
Cortex flat break 
along fracture plane 

L41 4 Flint   Flake 18.35 10.78 3.43 <50 Broken     1 Uni P 
Cortex smooth and 
rounded - pebble 

L43 4 Quartz Milky Flake 11.99 7.33 3.11 <50 Cortical 3.90 1.47 1 Uni P 

Not enough cortex 
present to ascertain 
probable source 

L45 4 Quartz Milky Flake core 12.57 11.94 4.91 <50 Cortical 7.12 3.88 1 Uni A 

Dorsal flake scar is a 
prior removal from 
the same platform 

L50 3 Flint   Flake 12.91 12.55 8.68 >50 Broken     1 Uni A 
Cortex smooth and 
rounded - pebble 

L51 3 Flint   Flake 14.36 10.55 3.52 0 Absent     1 Uni P   

L53 3 Flint   Flake 15.62 9.26 2.98 0 Absent     2 Multi P 

Same pink flint as 
L13 and L14; white 
patina at distal end 
of dorsal face - 
burnt? 

L57 3 Quartz Greasy Flake 11.72 16.38 3.93 0 Broken     2 Multi P   

L58 3 Quartz Milky Flake 15.89 15.19 3.45 0 Broken     1 Uni A   

L59 3 Quartz 
Fine 

grained Flake 20.10 15.54 4.39 0 Broken     2 Indet P   

L60 3 Quartz 
Fine 

grained Flake 15.04 13.34 4.60 0 Broken     1 Uni P   

L61 3 Quartz 

Milky-
Rock 

crystal Flake 14.89 13.19 3.44 100 Broken     N/A N/A P 
Cortex smooth and 
rounded - pebble 

L63 3 Quartz 
Coarse 
grained Flake 15.67 12.52 5.32 <50 Absent     1 Uni P 

Cortex rounded – 
pebble 

L66 3 Quartz Milky Flake 11.61 11.25 2.86 0 Broken     1 Uni P   

L75 5 Flint   Flake 10.52 6.49 2.87 <50 Crushed     1 Uni A 
Cortex smooth and 
rounded - pebble 

L76 5 Flint   Flake 10.68 10.07 3.60 0 Broken     2 Uni P   

L77 5 Flint   Flake 15.32 5.42 1.40 0 Absent     3 Bi P   

L78 5 Flint   Flake 10.48 6.24 2.72 0 Broken     1 Uni A   
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L1 1 Flint   

Small 
fraction 

flake 9.47 4.39 2.49 0           P Burnt and stained 

L3 1 Quartz Milky 

Small 
fraction 

flake 7.30 6.08 1.46 0           P   

L4 1 Quartz Milky 

Small 
fraction 

flake 6.12 6.15 2.35 0           A   

L9 3 Flint   

Small 
fraction 

flake 7.24 7.65 2.24 0           P   

L16 4 Flint   

Small 
fraction 

flake 6.83 8.11 1.61 0           A   

L19 8 Flint   

Small 
fraction 

flake 9.03 6.21 1.79 0           P   

L22 10 Quartz Milky 

Small 
fraction 

flake 6.33 9.55 4.51 0           A   

L23 10 Quartz 
Fine 

grained 

Small 
fraction 

flake 6.54 4.73 4.11 <50           A   

L24 10 Quartz 
Greasy-
Milky 

Small 
fraction 

flake 9.50 9.35 2.79 <50           P   

L25 10 Quartz Milky 

Small 
fraction 

flake 6.84 6.57 3.72 100           P   

L28 8 Flint   

Small 
fraction 

flake 7.01 8.55 1.78 0           P   

L32 8 Quartz Milky 

Small 
fraction 

flake 9.41 8.89 4.18 100           P   
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L36 5 Flint   

Small 
fraction 

flake 8.91 9.90 3.01 0           P   

L42 4 Flint   

Small 
fraction 

flake 5.27 9.09 2.78 0           P   

L46 4 Flint   

Small 
fraction 

flake 9.92 7.57 3.00 0           P Irregular patination 

L47 4 Flint   

Small 
fraction 

flake 9.73 5.65 2.97 <50           P   

L49 3 Flint   

Small 
fraction 

flake 8.11 5.34 2.03 0           P   

L52 3 Flint   

Small 
fraction 

flake 5.88 8.20 1.53 100           A   

L54 3 Flint   

Small 
fraction 

flake 8.84 12.58 1.84 100           A   

L55 3 Flint   

Small 
fraction 

flake 7.12 9.09 1.14 100           P   

L56 3 Flint   

Small 
fraction 

flake 8.90 7.31 0.99 0           P   

L62 3 Quartz Greasy 

Small 
fraction 

flake 9.71 6.45 1.14 100           A   

L64 3 Quartz Milky 

Small 
fraction 

flake 9.18 9.25 3.33 0           P   

L65 3 Quartz Milky 

Small 
fraction 

flake 7.80 7.05 4.74 100           P   
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L67 3 Quartz 
Rock 

crystal 

Small 
fraction 

flake 9.48 8.05 1.14 <50           P   

L68 3 Quartz Milky 

Small 
fraction 

flake 6.38 9.45 3.00 0           P   

L69 3 Quartz Milky 

Small 
fraction 

flake 7.75 6.35 3.13 100           P   

L70 3 Quartz 
Fine 

grained 

Small 
fraction 

flake 6.94 6.58 3.49 0           P   

L79 5 Flint   

Small 
fraction 

flake 4.64 6.59 4.89 <50           P   

L80 5 Flint   

Small 
fraction 

flake 2.31 8.01 6.87 >50           P   

L81 5 Quartz 
Fine 

grained 

Small 
fraction 

flake 7.70 8.90 2.61 0           A   

L82 5 Quartz Milky 

Small 
fraction 

flake 7.57 7.10 4.44 <50           A   

L83 12 Quartz Milky 

Small 
fraction 

flake 6.79 8.17 2.95 0           A   
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Table 68. Tràigh an Teampuill chunk and small fraction chunks 

ID No. 

Con 
text 
No. 

Raw  
Material 

Raw  
Material 
Variety Typology 

Length  
(mm) 

Width  
(mm) 

Thickness  
(mm) 

Cortex  
% Breakage Notes 

L13 4 Flint   Chunk 13.10 7.94 4.55 0 P Same pink flint as L14 

L18 11 Flint   Chunk 10.22 5.99 3.21 0 P Burnt 

L48 2 Quartz Milky Chunk 18.26 12.65 6.82 0 P   

L8 3 Flint   

Small  
fraction 
chunk 9.63 5.43 4.33 0 P   

L27 10 Quartz Milky 

Small  
fraction 
 chunk 9.57 10.84 4.65 0 P   

L29 8 Quartz Milky 

Small 
fraction 
chunk 8.50 6.75 5.11 <50 P   

L44 4 Quartz Greasy 

Small 
fraction 
chunk 6.30 5.61 2.65 >50 P   

L71 3 Quartz Milky 

Small 
fraction  
chunk 7.70 5.69 2.92 <50 P   
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Appendix 5 Tràigh na Beirigh 1 Lithic Catalogue 

Table 69. Tràigh na Beirigh 1 coarse stone tools 

ID No. 
Context 

No. Raw Material 

Raw 
Material 
Variety Typology 

Length 
(mm) Width (mm) 

Thickness 
(mm) Notes 

SF2 8 Gneiss  Manuport 96.63 76.47 60.31 

Sub-rounded piece of metamorphic rock, split down the centre and is actively 
degrading - several small pieces have become detached post-retrieval; one 
face is flat, caused by a sheer break; opposite face several irregular cracks 
visible causing further degradation 

SF3 14 Diorite  Manuport 99.07 73.56 30.84 Flattish, sub-rounded - well-worn and smooth 

SF9 8 Gneiss  Manuport 148.77 115.02 38.00 Broken, sub-rounded and flattish; cracked and actively degrading 

L181 9 Quartz Greasy Manuport 135.15 90.19 54.39 
Large angular block with micaceous, granitic 'cortex' on one face; no evidence 
of working 

L309 26 Quartz Greasy Manuport 43.14 33.70 31.32 Sub-rounded and smooth - pebble; no sign of working 

 

Table 70. Tràigh na Beirigh 1 cores and core tools 

ID No. 
Context 

No. Raw Material 

Raw 
Material 
Variety Typology 

Length 
(mm) 

Weight 
(g) Cortex 

Flake 
Removal 

Count 
Flake Removal 

Sequence 
Platform 

Preparation Notes 

SF7 8 Quartz Greasy Core 60.85 23.12 P 4 Multidirectional Simple/lost   

SF14 22 Quartz Greasy Core tool 40.72 13.58 P 6 Multidirectional 
Unprepared 
/simple/lost 

Possible borer - two very abrupt 
removals from one edge to create a 
pointed end; cortex flat and frosted 
- block/plate 

SF18 28 Flint   Core 23.60 2.97 A 8 Multidirectional Simple/lost   

L1 2 Quartz 

Greasy-
coarse 
grained Core 40.56 20.70 P 1 Unidirectional Unprepared 

Cortex rounded and weathered - 
outcrop 

L2 2 Quartz 

Greasy-
coarse 
grained Core 32.57 15.39 P 3 Unidirectional Unprepared 

Cortex rounded and weathered - 
outcrop 

L32 5 Quartz 
Milky-
greasy Core 21.01 2.33 P 3 Multidirectional Simple/lost 

Cortex flat and weathered - 
block/plate 
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L38 5 Quartz Milky Core 16.87 0.66 P 2 Multidirectional 
Unprepared 

/simple 
Cortex smooth and rounded - 
pebble 

L52 5 Quartz Greasy Core 23.64 5.57 P 1 Unidirectional Unprepared 

Cortex of another raw material, flat 
and frosted - block/outcrop; 
possibly tested piece rather than a 
true core 

L53 5 Quartz Milky Core 37.24 12.17 P 1 Unidirectional Unprepared 

Cortex of another raw material and 
weathered - block/outcrop; 
possibly tested piece rather than a 
true core 

L54 5 Quartz Greasy Core 34.87 16.38 P 1 Unidirectional Unprepared 

Cortex mixed quartzite and another 
raw material, flat and weathered - 
block/outcrop; possibly tested 
piece rather than a true core 

L55 5 Quartz Greasy Core 41.39 43.54 P 4 Multidirectional 
Unprepared 

/lost 

Cortex weathered quartzite - 
outcrop; flake removals largely 
indeterminate, however clear 
notch present in cortex may 
indicate where detached at source 

L56 5 Quartz Greasy Core 51.67 38.62 P 4 Multidirectional 
Unprepared 

/simple 
Cortex smooth and rounded – 
pebble 

L57 5 Quartz 
Greasy-
feldspar Core 53.50 95.90 P 2 Multidirectional Simple/lost 

Cortex smooth and rounded – 
pebble 

L58 5 Gneiss   Core tool 72.61 65.95 P 3 Unidirectional Unprepared 

Cortex/outer faces smooth and 
weathered; up to three concave 
notches indicative of flake removal 
creating a concave feature - 
subsequently fractured 

L59 8 Quartz 
Milky-
greasy Core 61.26 63.78 P 4 Multidirectional Lost 

Cortex quartzite/pegmatite - 
outcrop 

L60 8 Quartz 
Milky-
greasy Core 40.80 21.13 P 3 Multidirectional Simple/lost 

Cortex smooth and rounded - 
pebble 

L61 8 Quartz 
Milky-
greasy Core 38.16 20.26 P 4 Multidirectional 

Unprepared 
/simple 

Cortex smooth, weathered and 
rounded - source indeterminate; 
characteristics of a 'split cobble 
core' 

L62 8 Quartz Milky Core 30.19 7.48 P 3 Multidirectional 
Unprepared 

/lost 
Cortex smooth and rounded - 
pebble 
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L65 8 Quartz 
Greasy-
feldspar Core 22.56 4.24 P 1 Unidirectional Simple 

Cortex quartzite/pegmatite - 
outcrop; characteristics of a 'split 
cobble core' 

L73 8 Quartz Milky Core 13.33 0.91 P 2 Multidirectional Simple/lost 
Cortex mixed raw material - 
outcrop? 

L109 17 Quartz Milky Core 29.72 69.00 P 4 Multidirectional Unprepared 
Cortex mixed raw material - 
outcrop? 

L117 5 Quartz 
Greasy 
(dark) Core 17.91 4.27 P 1 Unidirectional Unprepared 

Cortex mixed raw material - 
outcrop? 

L142 8 Quartz Greasy Core 13.49 0.98 A 7 Multidirectional Simple/lost   

L166 8 Flint   Core 19.98 0.92 A 6 Bidirectional Unprepared Bipolar core 

L203 8 Quartz Greasy Core 19.09 1.77 P 6 Multidirectional 
Unprepared 

/lost Cortex flat and frosted - block/plate 

L204 8 Quartz Milky Core 36.31 7.16 P 4 Multidirectional Simple/lost Cortex flat and smooth - pebble 

L247 8 Quartz Greasy Core 28.39 4.56 A 7 Multidirectional Lost   

L254 8 Quartz Milky Core 25.84 5.59 P 5 Multidirectional 
Unprepared 

/lost 
Cortex smooth and rounded - 
pebble; rejuvenated core 

L264 8 Quartz Milky Core 25.82 5.22 P 1 Unidirectional Unprepared Cortex flat and frosted - block/plate 

L265 8 Quartz Milky Core 66.73 54.59 P 3 Multidirectional 
Unprepared 

/lost 
Cortex smooth and rounded – 
pebble 

L266 8 Quartz Greasy Core 67.17 158.73 P 2 Multidirectional Unprepared 
Cortex smooth and rounded – 
pebble 

L274 14 Quartz Greasy Core 17.61 0.96 P 3 Multidirectional Lost Cortex flat and frosted - block/plate 

L276 14 Quartz Greasy Core 20.69 4.19 A 7 Multidirectional Simple/lost   

L280 14 Quartz Greasy Core 24.77 1.50 P 3 Multidirectional 
Unprepared 

/lost Cortex flat and frosted - block/plate 

L310 16 Quartz Greasy Core 64.66 170.92 P 2 Unidirectional Unprepared 
Cortex smooth and rounded – 
pebble 
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Table 71. Tràigh na Beirigh 1 flakes and small fraction flakes 

ID No. 
Context 

No. Raw Material 

Raw  
Material  
Variety Typology 

Length 
(mm) 

Width 
(mm) 

Thick 
-ness 
(mm) 

Cortex 
% 

Platform 
Type 

Platform  
Width  
(mm) 

Platform 
Depth 
(mm) 

Dorsal 
Flake 
Scar 

Count 

Dorsal 
Flake 
Scar 

Pattern 
Break 
-age Notes 

SF1 8 Quartz Milky Flake 32.70 29.79 7.70 <50 Plain 21.89 6.04 1 Uni P 

Cortex flat and 
frosted - 
block/plate 

SF4 16 Quartz Greasy Flake 29.28 32.55 7.17 0 Broken   1 Uni P   

SF5 16 Quartz Milky Flake 21.79 18.13 5.74 0 Broken   4 Multi A   

SF8 8 Quartz Greasy Flake core 22.16 21.65 5.49 0 Absent   1 Uni P 

Broken platform 
used to remove 
another flake on 
the dorsal face 

SF10 8 Quartz Milky Flake 27.50 19.80 8.60 >50 Broken   1 Uni P 

Cortex flat and 
frosted - 
block/plate 

SF11 8 Quartz Greasy Flake 17.17 17.60 8.47 0 Plain 14.79 8.47 1 Uni P   

SF12 8 Quartz Greasy Flake 42.89 38.13 10.56 >50 Cortical 25.52 6.17 3 Uni P 

Cortex flat and 
weathered - 
outcrop? 

SF13 8 Quartz Milky Flake 12.91 6.77 27.29 >50 Cortical 8.31 25.31 3 Multi A 

Cortex smooth and 
round - pebble; 
characteristics of a 
'split cobble core' 

SF16 14 Quartz Greasy Flake 30.23 24.77 12.86 0 Plain 20.66 11.43 4 Multi A   

SF17 14 Quartz 
Greasy 
(dark) Flake 28.39 26.67 6.34 100 Cortical 14.60 4.33 N/A N/A P 

Cortex smooth and 
rounded - pebble; 
characteristics of a 
'split cobble core' 

SF19 28 Quartz Greasy Flake core 15.73 21.12 6.59 <50 Cortical 18.13 4.90 1 Uni P 

Breakage on right 
lateral used as a 
platform for a 
further flake 
removal; cortex flat 
and frosted - 
block/plate 
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L4 2 Quartz Milky Flake 17.70 9.73 5.36 <50 Cortical 7.59 5.33 2 Multi A   

L5 2 Quartz Greasy Flake 14.06 10.91 2.54 0 Broken   1 Uni P   

L6 2 Quartz Milky Flake 12.95 11.57 4.93 0 Broken   1 Uni P   

L7 2 Quartz Milky Flake 12.14 7.50 3.55 0 Absent   2 Multi P 

Cortex flat and 
frosted - 
block/plate 

L8 2 Quartz Greasy Flake 10.14 7.54 1.10 0 Absent   1 Uni P   

L13 4 Quartz Milky Flake 20.01 12.41 5.65 >50 Absent   3 Multi P 

Ventral face sheer, 
flat and frosted as if 
split along a natural 
fracture plane; 
however clear signs 
of previous working 
on  dorsal face; 
dorsal cortex also 
flat and frosted -  
block/plate 

L14 4 Quartz 

Milky-
coarse 
grained Flake 23.40 10.22 6.03 0 Broken   1 Uni P 

Cortex flat and 
frosted - 
block/plate 

L16a 4 Flint  Flake 17.50 7.12 4.77 0 Broken   2 Indet P   

L31 5 Quartz Greasy Flake 13.73 6.59 1.90 0 Absent   1 Uni P   

L33 5 Quartz Greasy Flake core 18.93 14.62 4.07 100 Absent   N/A N/A P 

Cortex also present 
on the ventral face, 
flat and frosted - 
block/plate; two 
further very small 
flake removals 
made into the 
ventral face from 
the broken left 
lateral edge 

L34 5 Quartz Greasy Flake 11.32 7.86 2.71 0 Absent   4 Multi P   

L35 5 Quartz Greasy Flake 11.70 16.45 2.78 0 Broken   1 Uni A   
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L39 5 Quartz 
Milky-

quartzite Flake 14.64 13.34 6.61 <50 Broken   1 Uni A 

Cortex flat and 
frosted - 
block/plate 

L63 8 Quartz Milky Flake 34.65 31.96 8.24 0 Broken   3 Multi P   

L64 8 Quartz Greasy Flake 31.59 18.77 14.50 <50 Absent   2 Indet P 

Cortex flat and 
frosted and mixed 
raw material - 
outcrop 

L66 8 Quartz Greasy Flake 12.30 11.71 3.34 0 Absent   1 Uni P   

L67 8 Quartz Greasy Flake 12.96 10.40 4.24 0 Plain 9.05 3.93 2 Bi A 

Bidirectional 
removals but not 
bipolar technology 

L68 8 Quartz Greasy Flake 11.57 14.58 5.22 0 Broken   1 Uni A   

L69 8 Quartz Greasy Flake 11.31 9.23 7.64 <50 Cortical 9.11 8.17 2 Multi P 

Cortex smooth and 
rounded - pebble; 
characteristics of a 
'split cobble core' 

L70 8 Quartz Greasy Flake 13.96 9.35 4.52 100 Broken   N/A N/A P 

Cortex flat and 
frosted – 
block/plate 

L71 8 Quartz Greasy Flake 10.82 10.55 5.11 <50 Broken   1 Uni P 

Cortex smooth and 
rounded - pebble; 
characteristics of a 
'split cobble core' 

L72 8 Quartz Milky Flake 11.00 6.92 3.91 >50 Absent   1 Uni P 

Cortex flat and 
frosted - 
block/plate 

L74 8 Quartz Milky Flake 15.09 12.29 3.51 <50 Broken   1 Uni P 
Cortex smooth and 
rounded - pebble 

L91 9 Quartz Greasy Flake 12.45 11.63 3.40 0 Absent   2 Multi P   

L94 9 Quartz Quartzite Flake core 17.94 13.93 4.54 0 Broken   1 Uni P 

Break on right 
lateral used as 
platform for further 
removal 

L95 11 Quartz Greasy Flake 11.36 15.81 3.84 <50 Cortical 6.89 2.00 3 Multi P 
Cortex smooth and 
rounded - pebble 
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L96 14 Quartz Greasy Flake 15.77 9.78 4.74 0 Absent   2 Multi P   

L102 17 Quartz Milky Flake 13.57 6.68 3.48 <50 Cortical 6.28 3.07 2 Uni P 
Cortex mixed raw 
material - outcrop 

L107 17 Quartz Milky Flake 18.36 15.96 7.15 <50 Broken   1 Uni P 
Cortex mixed raw 
material - outcrop 

L116 4 Quartz 
Milky-

feldspar Flake 34.59 21.77 17.71 <50 Broken   1 Uni A 

Cortex smooth, 
rounded and mixed 
raw material – 
pebble 

L119 5 Quartz Greasy Flake 11.58 5.06 3.33 100 Absent   N/A N/A P 

Cortex flat and 
frosted - 
block/plate 

L121 5 Quartz Greasy Flake 14.20 9.90 2.65 0 Broken   1 Uni P   

L123 5 Quartz 
Greasy 
(dark) Flake 20.29 9.92 4.98 0 Broken   1 Uni P   

L125 5 Quartz 
Fine 

grained Flake 11.55 8.75 5.44 100 Broken   N/A N/A P 

Cortex smooth and 
rounded - pebble; 
characteristics of a 
'split cobble core' 

L128 5 Quartz Greasy Flake 16.19 14.48 5.41 >50 Absent   1 Uni P 

Cortex flat and 
frosted - 
block/plate 

L129 5 Quartz Greasy Flake 10.71 13.55 2.58 <50 Cortical 9.66 2.50 1 Uni P 
Cortex smooth and 
rounded - pebble 

L131 5 Quartz Greasy Flake 10.06 5.75 2.41 0 Broken   1 Uni A   

L140 8 Quartz Greasy Flake 13.61 5.00 5.11 <50 Broken   2 Multi A 

Cortex flat and 
frosted - 
block/plate 

L141 8 Quartz 
Greasy 
(dark) Flake 10.64 12.28 5.66 >50 Broken   1 Uni A 

Cortex smooth and 
rounded - pebble 

L143 8 Quartz Greasy Flake 22.56 23.97 5.62 >50 Cortical 15.96 5.59 1 Uni P 
Cortex smooth and 
rounded - pebble 

L144 8 Quartz Greasy Flake 17.61 26.53 5.34 0 Broken   1 Uni P   

L145 8 Quartz Greasy Flake 18.10 21.01 4.02 100 Cortical 8.46 3.67 N/A N/A P 
Cortex smooth and 
rounded - pebble 
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L146 8 Quartz Greasy Flake 12.09 11.41 5.71 >50 Broken   1 Uni P 

Cortex flat and 
frosted - 
block/plate 

L147 8 Quartz Greasy Flake 13.68 12.53 5.03 <50 Broken   1 Uni P 

Not enough cortex 
to ascertain 
probable source 

L148 8 Quartz Greasy Flake 21.29 20.27 6.88 <50 Cortical 14.29 5.75 3 Uni A 
Cortex smooth and 
rounded - pebble 

L149 8 Quartz Greasy Flake 11.09 14.59 3.08 0 Absent   1 Uni P   

L151 8 Quartz Milky Flake 11.76 23.72 6.28 >50 Cortical 12.71 3.26 2 Indet P 
Cortex smooth and 
rounded - pebble 

L156 8 Quartz 
Greasy-
feldspar Flake 19.64 16.33 7.01 100 Broken   N/A N/A P 

Cortex mixed raw 
material, smooth 
and rounded – 
pebble 

L157 8 Quartz Greasy Flake 11.14 9.07 2.54 0 Broken   1 Uni P   

L158 8 Quartz Greasy Flake 10.18 11.92 4.22 100 Broken   N/A N/A P 
Cortex smooth and 
rounded - pebble 

L160 8 Quartz Milky Flake core 10.39 11.74 3.60 >50 Absent   1 Uni P 

Cortex smooth and 
rounded - pebble; 
further flake 
removal on ventral 
face initiated from 
the right lateral at 
the proximal end, 
removing the 
platform of the 
original flake 

L162 8 Quartz Greasy 

Core 
rejuv-

enation 
flake 18.95 12.76 14.62 <50 Broken   2 Multi P 

Cortex smooth and 
rounded - pebble 

L163 8 Granite  Flake 13.69 13.20 3.18 >50 Absent   1 Uni A 

Cortex smooth and 
weathered - 
outcrop? 

L164 8 Flint  Flake 16.34 12.61 6.08 <50 Broken   3 Multi A 
Cortex smooth and 
flat - pebble 
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L165 8 Flint  Flake 25.39 15.61 6.30 <50 Broken   8 Multi P 
Cortex smooth and 
rounded - pebble 

L168 8 Quartz Greasy Flake 11.09 10.65 5.69 <50 Absent   3 Multi A 
Cortex mixed raw 
material - outcrop 

L169 8 Quartz Milky Flake 11.63 14.23 4.13 0 Broken   2 Indet P Burnt? 

L171 15 Flint  Flake 16.99 17.15 4.71 >50 Crushed   1 Uni P 

Partially burnt; 
cortex smooth and 
rounded - pebble; 
characteristics of a 
'split cobble core' 

L174 19 Quartz Milky Flake 20.90 14.39 8.24 0 Plain 13.21 8.24 2 Uni A   

L176 20 Quartz Greasy Flake 13.39 9.82 3.25 0 Broken   1 Uni P   

L180 20 Quartz Greasy Flake 14.09 14.42 4.12 <50 Crushed   2 Uni P 
Cortex smooth and 
rounded - pebble 

L182 8 Feldspar  Flake 19.60 18.92 7.08 >50 Absent   1 Uni P 
Cortex smooth and 
rounded - pebble 

L187 8 Quartz Greasy Flake 10.11 5.42 6.69 <50 Broken   1 Uni A 
Cortex smooth and 
rounded - pebble 

L188 8 Quartz Milky Flake 11.96 11.77 4.09 0 Broken   1 Uni A   

L190 8 Quartz Greasy Flake 13.29 15.43 4.21 100 Broken   N/A N/A P 

Cortex smooth and 
rounded - pebble; 
characteristics of a 
'split cobble core' 

L191 8 Quartz Milky Flake 11.61 8.71 2.43 <50 Absent   1 Uni P 

Cortex smooth and 
rounded - pebble; 
characteristics of a 
'split cobble core' 

L195 8 Quartz Greasy Flake 11.99 18.27 3.47 0 Broken   1 Uni P   

L199 8 Quartz Greasy Flake 11.57 11.04 1.95 100 Plain 4.10 1.05 N/A N/A P 
Cortex smooth and 
rounded - pebble 

L200 8 Quartz Greasy Flake 12.11 14.24 5.31 0 Absent   1 Uni P   

L201 8 Quartz Greasy Flake 11.22 16.05 2.93 0 Plain 11.99 2.93 1 Uni P   

L202 8 Quartz Greasy Flake 12.66 15.91 2.68 <50 Cortical 8.48 2.58 1 Uni P 
Cortex smooth and 
rounded - pebble 

L206 8 Quartz Milky Flake 19.32 20.92 5.11 0 Plain 14.76 5.11 1 Uni P   
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L207 8 Quartz Greasy Flake 18.50 23.75 7.80 <50 Crushed   1 Uni P 
Cortex smooth and 
rounded - pebble 

L216 8 Quartz 
Fine 

grained Flake 16.21 8.27 2.74 0 Broken   1 Uni P   

L226 8 Quartz Greasy Flake core 5.37 15.13 2.20 <50 Cortical 13.65 2.20 4 Multi P 

Two bulbs of 
percussion present 
on the ventral face 
which has 
subsequently been 
destroyed by a later 
flake removal; 
cortex is smooth - 
pebble 

L231 8 Quartz Greasy Flake 11.99 7.40 5.20 0 Broken   2 Multi A   

L234 8 Flint  Flake 26.10 13.50 7.59 0 Crushed   5 Bi P   

L235 8 Flint  Flake 26.99 22.40 5.48 <50 Broken   1 Uni P 
Cortex smooth and 
rounded - pebble 

L237 8 Quartz Greasy Flake 25.53 22.47 12.03 >50 Cortical 16.82 8.17 1 Uni P 

Cortex smooth and 
rounded - pebble; 
characteristics of a 
'split cobble core' 

L238 8 Quartz Greasy Flake 34.22 30.24 8.11 >50 Cortical 28.96 4.64 1 Uni P 

Cortex smooth and 
rounded - pebble; 
characteristics of a 
'split cobble core' 

L239 8 Quartz Greasy Flake 12.27 8.64 2.99 <50 Broken   1 Uni P 

Cortex flat and 
frosted - 
block/plate 

L241 8 Quartz Greasy Flake 15.14 16.16 4.16 0 Plain 7.87 2.32 2 Uni P   

L244 8 Quartz 
Fine 

grained Flake 11.76 11.72 3.47 0 Plain 7.23 2.73 1 Uni P   

L246 8 Quartz Greasy Flake 17.57 23.97 4.57 <50 Broken   1 Uni P 
Cortex mixed raw 
material - outcrop 

L248 8 Quartz 
Fine 

grained Flake 15.80 21.36 6.26 <50 Broken   2 Indet P 
Cortex smooth and 
rounded - pebble 

L249 8 Quartz Greasy Flake 10.18 18.05 7.60 0 Broken   2 Uni P   
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L251 8 Quartz Greasy Flake 17.71 15.40 2.74 0 Broken   2 Uni P   

L252 8 Quartz Greasy Flake 24.84 18.63 6.17 <50 Broken   1 Uni P 
Cortex smooth and 
rounded - pebble 

L253 8 Quartz Greasy Flake 13.88 12.01 3.42 100 Broken   N/A N/A P 
Cortex smooth and 
rounded - pebble 

L255 8 Quartz Greasy Flake 13.48 16.67 3.85 0 Broken   2 Multi P   

L256 8 Quartz Greasy Flake 12.38 8.23 1.47 0 Absent   1 Uni P   

L257 8 Quartz 
Greasy 
(dark) Flake 18.56 14.27 6.41 <50 Broken   2 Multi P 

Cortex smooth and 
rounded - pebble 

L258 8 Quartz Greasy Flake 22.40 29.32 4.36 >50 Broken   1 Uni P 
Cortex smooth and 
rounded - pebble 

L262 8 Quartz Greasy Flake 11.05 14.26 4.78 <50 Broken   1 Uni A 

Cortex flat and 
frosted - 
block/plate 

L263 8 Quartz 
Greasy-
feldspar Flake 26.90 20.10 9.33 100 Broken   N/A N/A P 

Cortex smooth and 
rounded - pebble; 
characteristics of a 
'split cobble core' 

L268 14 Quartz Greasy Flake 16.30 14.10 4.15 0 Broken   2 Multi P   

L270 14 Quartz Greasy Flake 14.58 16.43 2.97 0 Broken   2 Uni P   

L271 14 Quartz Greasy Flake 28.68 16.04 4.83 <50 Broken   1 Uni A 
Cortex smooth and 
rounded - pebble 

L273 14 Quartz Milky Flake core 15.29 11.66 4.08 0 Crushed   1 Uni P 

Breakage on the 
right lateral has 
created a new 
platform for a flake 
removal on the 
dorsal face 

L275 14 Quartz Greasy Flake 15.15 11.31 1.97 0 Broken   2 Multi A   

L277 14 Quartz Greasy Flake 11.96 10.10 3.38 0 Absent   2 Multi P   

L278 14 Quartz Greasy Flake 10.19 5.92 3.12 0 Broken   2 Uni A   

L286 14 Quartz Greasy Flake 11.21 8.83 2.47 0 Plain 5.70 1.91 2 Multi P   

L287 14 Quartz Greasy Flake 10.08 7.56 1.77 100 Broken   N/A N/A A 

Cortex flat and 
frosted - 
block/plate 
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L296 14 Quartz Greasy Flake 12.05 9.99 4.41 <50 Broken   2 Uni A 
Cortex smooth and 
rounded - pebble 

L299 14 Quartz Greasy Flake 11.50 7.21 3.26 0 Broken   1 Uni P   

L300 14 Quartz Milky Flake 19.65 10.94 7.03 <50 Broken   2 Multi A 

Cortex smooth and 
rounded - pebble; 
characteristics of a 
'split cobble core' 

L305 14 Feldspar  Flake 20.10 25.22 5.57 100 Absent   N/A N/A P 
Cortex smooth and 
rounded - pebble 

L307 26 Quartz Greasy Flake 11.27 15.25 3.25 <50 Cortical 13.16 3.17 1 Uni P 
Cortex smooth and 
rounded - pebble 

L308 26 Quartz Greasy Flake 16.34 7.37 4.43 0 Crushed   3 Multi P   

L311 16 Quartz Greasy Flake 18.07 11.67 2.96 0 Broken   1 Uni P   

L312 16 Quartz Greasy Flake 14.05 14.06 3.56 0 Broken   1 Uni A   

L314 16 Quartz Greasy Flake 22.80 15.37 3.54 100 Broken   N/A N/A P 

Cortex flat and 
frosted - 
block/plate 

L316 32 Quartz Greasy Flake 10.67 5.41 3.04 <50 Absent   2 Uni P 

Not enough cortex 
to ascertain 
probable source 

SF6 14 Quartz Greasy 

Small 
fraction 

flake 9.37 7.68 2.88 <50      P   

L10 2 Quartz Milky 

Small 
fraction 

flake 4.05 9.61 3.26 0      A   

L11 2 Quartz Milky 

Small 
fraction 

flake 7.82 6.03 2.20 0      A   

L15 4 Quartz 
Rock 

crystal 

Small 
fraction 

flake 6.76 10.00 3.05 0      P   

L16b 4 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 8.16 10.18 1.43 0      P   
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L17 4 Quartz Milky 

Small 
fraction 

flake 8.44 11.95 2.31 0      P   

L20 4 Quartz 
Rock 

crystal 

Small 
fraction 

flake 6.43 7.41 1.76 0      P   

L21 4 Quartz 

Rock 
crystal-

quartzite 

Small 
fraction 

flake 9.52 9.76 2.07 <50      P   

L22 4 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 9.41 8.48 2.68 0      P   

L23 4 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 6.27 6.04 1.43 0      P   

L25 4 Quartz 
Rock 

crystal 

Small 
fraction 

flake 4.77 7.69 3.52 0      P   

L27 4 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 9.11 5.66 2.85 0      P   

L28 4 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 8.02 6.40 2.05 0      P   

L29 4 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 9.36 6.52 2.75 0      P   

L30 5 Flint  

Small 
fraction 

flake 6.51 6.40 2.32 0      A   

L36 5 Quartz Greasy 

Small 
fraction 

flake 6.63 12.49 3.04 0      P   

L40 5 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 7.77 9.79 3.53 <50      A   
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L41 5 Quartz 

Rock 
crystal-

quartzite 

Small 
fraction 

flake 8.32 7.13 2.12 0      P   

L42 5 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 8.27 5.49 2.64 0      P   

L43 5 Quartz Greasy 

Small 
fraction 

flake 5.61 6.38 1.68 0      A   

L44 5 Quartz Greasy 

Small 
fraction 

flake 5.04 7.41 1.66 100      A   

L45 5 Quartz Greasy 

Small 
fraction 

flake 9.47 8.62 3.21 0      P   

L46 5 Quartz Greasy 

Small 
fraction 

flake 8.82 6.28 3.28 0      P   

L47 5 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 6.19 6.03 1.85 0      P   

L48 5 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 5.09 7.65 2.51 0      P   

L49 5 Quartz Milky 

Small 
fraction 

flake 6.59 6.06 2.86 0      P   

L75 8 Quartz Greasy 

Small 
fraction 

flake 3.80 7.38 2.58 0      A   

L76 8 Quartz Milky 

Small 
fraction 

flake 5.27 7.41 3.14 0      P   

L77 8 Quartz Greasy 

Small 
fraction 

flake 8.62 6.43 3.07 >50      A   
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L78 8 Quartz Milky 

Small 
fraction 

flake 4.85 9.26 4.05 <50      P   

L79 8 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 7.45 6.77 2.37 >50      P   

L80 8 Quartz Milky 

Small 
fraction 

flake 8.65 6.89 3.88 >50      A   

L81 8 Quartz Milky 

Small 
fraction 

flake 7.13 11.18 3.89 100      A   

L82 8 Quartz Milky 

Small 
fraction 

flake 9.57 6.04 3.00 >50      A   

L83 8 Quartz Milky 

Small 
fraction 

flake 6.54 6.35 4.30 >50      P   

L85 8 Quartz Greasy 

Small 
fraction 

flake 7.92 5.64 3.93 <50      P   

L86 8 Quartz Milky 

Small 
fraction 

flake 6.94 5.00 3.62 >50      A   

L87 8 Quartz Milky 

Small 
fraction 

flake 5.65 6.45 3.09 <50      A   

L89 8 Quartz 
Milky-

feldspar 

Small 
fraction 

flake 6.89 9.75 2.84 0      P   

L92 9 Quartz 
Fine 

grained 

Small 
fraction 

flake 8.66 8.13 3.90 <50      P   

L93 9 Quartz Milky 

Small 
fraction 

flake 8.35 17.92 3.34 <50      P   
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L97 15 Quartz Milky 

Small 
fraction 

flake 8.14 5.83 1.88 0      P   

L98 16 Quartz Greasy 

Small 
fraction 

flake 5.93 6.36 0.94 0      P   

L99 16 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 5.65 9.17 2.36 0      P   

L103 17 Quartz Milky 

Small 
fraction 

flake 7.73 11.06 2.96 >50      P   

L105 17 Quartz Milky 

Small 
fraction 

flake 7.43 6.46 1.97 0      P   

L110 18 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 6.44 8.26 1.63 0      P   

L111 4 Quartz Milky 

Small 
fraction 

flake 9.18 6.50 2.78 <50      A   

L112 4 Quartz Milky 

Small 
fraction 

flake 5.36 8.18 1.90 0      P   

L113 4 Quartz Milky 

Small 
fraction 

flake 7.48 6.44 2.23 0      P   

L115 4 Quartz Milky 

Small 
fraction 

flake 6.83 13.11 2.32 0      P   

L118 5 Quartz Milky 

Small 
fraction 

flake 9.76 6.14 1.65 0      P   

L120 5 Quartz Milky 

Small 
fraction 

flake 4.99 9.29 2.53 <50      A   
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L122 5 Quartz Greasy 

Small 
fraction 

flake 9.15 6.95 1.80 0      P   

L124 5 Quartz Milky 

Small 
fraction 

flake 5.03 5.72 3.72 <50      P   

L126 5 Quartz Greasy 

Small 
fraction 

flake 8.10 10.02 2.88 <50      P   

L127 5 Quartz Greasy 

Small 
fraction 

flake 7.93 4.76 2.04 0      P   

L130 5 Quartz Milky 

Small 
fraction 

flake 7.96 12.18 4.31 0      P   

L132 5 Quartz Greasy 

Small 
fraction 

flake 5.15 7.49 2.10 0      A   

L133 5 Quartz Greasy 

Small 
fraction 

flake 7.00 7.13 1.38 0      P   

L134 5 Quartz Greasy 

Small 
fraction 

flake 9.58 7.50 1.50 >50      A   

L135 5 Flint  

Small 
fraction 

flake 5.12 7.56 4.61 <50      P   

L136 5 Flint  

Small 
fraction 

flake 8.66 11.27 1.75 0      A   

L137 8 Quartz Milky 

Small 
fraction 

flake 5.38 9.86 2.83 0      A   

L138 8 Quartz Milky 

Small 
fraction 

flake 6.86 8.79 2.40 0      P   
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L139 8 Quartz Greasy 

Small 
fraction 

flake 6.10 7.90 1.76 0      P   

L150 8 Quartz Greasy 

Small 
fraction 

flake 7.89 11.47 3.41 <50      P   

L152 8 Quartz Greasy 

Small 
fraction 

flake 7.70 16.42 3.96 0      P   

L153 8 Quartz Greasy 

Small 
fraction 

flake 6.51 9.95 3.93 <50      P   

L154 8 Quartz Greasy 

Small 
fraction 

flake 7.37 6.33 5.72 0      P   

L155 8 Quartz Greasy 

Small 
fraction 

flake 6.64 5.40 4.10 0      P   

L159 8 Quartz Greasy 

Small 
fraction 

flake 5.79 4.84 1.56 100      P   

L161 8 Quartz Greasy 

Small 
fraction 

flake 8.35 7.41 2.61 <50      P   

L167 8 Quartz Greasy 

Small 
fraction 

flake 5.96 5.95 3.16 0      P   

L172 15 Quartz Greasy 

Small 
fraction 

flake 5.87 10.14 2.72 <50      A   

L173 15 Quartz Greasy 

Small 
fraction 

flake 4.88 8.98 4.44 0      P   

L175 20 Quartz Greasy 

Small 
fraction 

flake 6.28 5.76 1.00 0      A   
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L177 20 Quartz Milky 

Small 
fraction 

flake 7.43 12.96 3.95 0      P   

L178 20 Feldspar  

Small 
fraction 

flake 9.25 9.43 1.16 <50      P   

L179 20 Quartz Greasy 

Small 
fraction 

flake 8.19 5.95 9.00 0      P   

L183 8 Quartz 
Fine 

grained 

Small 
fraction 

flake 5.82 7.34 3.51 0      P   

L184 8 Quartz Greasy 

Small 
fraction 

flake 8.89 8.89 3.02 <50      P   

L185 8 Quartz Greasy 

Small 
fraction 

flake 7.04 9.06 2.93 0      P   

L186 8 Quartz Greasy 

Small 
fraction 

flake 8.92 5.50 3.61 0      P   

L189 8 Quartz Greasy 

Small 
fraction 

flake 7.32 13.27 3.80 <50      P   

L192 8 Quartz Greasy 

Small 
fraction 

flake 6.23 4.65 3.04 0      P   

L193 8 Quartz Greasy 

Small 
fraction 

flake 6.09 8.63 1.68 100      P   

L194 8 Quartz Greasy 

Small 
fraction 

flake 8.29 9.37 3.92 0      P   

L196 8 Quartz Greasy 

Small 
fraction 

flake 6.59 8.56 1.50 0      P   
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L197 8 Quartz Milky 

Small 
fraction 

flake 4.84 7.87 1.14 0      P   

L198 8 Quartz Greasy 

Small 
fraction 

flake 6.27 8.78 1.29 100      P   

L205 17 Quartz Greasy 

Small 
fraction 

flake 5.30 5.82 1.47 0      P   

L208 8 Quartz 
Fine 

grained 

Small 
fraction 

flake 5.74 7.18 2.84 0      P   

L209 8 Quartz Greasy 

Small 
fraction 

flake 6.86 7.95 1.65 0      P   

L210 8 Quartz 
Fine 

grained 

Small 
fraction 

flake 6.38 4.86 1.73 0      P   

L211 8 Quartz Greasy 

Small 
fraction 

flake 7.38 6.37 1.58 100      P   

L212 8 Quartz Milky 

Small 
fraction 

flake 6.05 6.22 1.15 100      P   

L213 8 Quartz Milky 

Small 
fraction 

flake 8.03 10.14 2.38 0      P   

L214 8 Quartz Milky 

Small 
fraction 

flake 7.97 10.77 3.01 0      P   

L215 8 Quartz 

Greasy-
fine 

grained 

Small 
fraction 

flake 8.17 5.54 1.37 0      P   

L217 8 Quartz Greasy 

Small 
fraction 

flake 9.28 8.63 1.78 0      P   
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L218 8 Quartz Milky 

Small 
fraction 

flake 7.53 5.93 3.41 0      P   

L219 8 Quartz Greasy 

Small 
fraction 

flake 6.74 5.80 1.20 100      P   

L220 8 Quartz 
Fine 

grained 

Small 
fraction 

flake 8.22 7.71 11.25 <50      A   

L221 8 Quartz Milky 

Small 
fraction 

flake 6.68 5.78 2.26 <50      P   

L222 8 Quartz Greasy 

Small 
fraction 

flake 8.88 9.14 1.92 0      P   

L223 8 Quartz Greasy 

Small 
fraction 

flake 9.75 7.83 4.22 <50      P   

L224 8 Quartz Greasy 

Small 
fraction 

flake 7.90 8.61 2.17 0      P   

L225 8 Quartz Greasy 

Small 
fraction 

flake 8.31 6.38 1.41 0      P   

L227 8 Quartz Greasy 

Small 
fraction 

flake 9.34 4.50 2.74 0      P   

L228 8 Quartz 
Fine 

grained 

Small 
fraction 

flake 7.92 12.96 1.91 0      P   

L229 8 Quartz Greasy 

Small 
fraction 

flake 5.94 8.05 1.67 0      P   

L230 8 Quartz Greasy 

Small 
fraction 

flake 7.50 6.28 1.73 0      P   
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L232 8 Quartz Greasy 

Small 
fraction 

flake 8.36 7.16 3.11 100      P   

L233 8 Quartz Greasy 

Small 
fraction 

flake 5.48 7.43 1.28 100      P   

L240 8 Quartz Milky 

Small 
fraction 

flake 8.71 13.54 2.89 <50      P   

L242 8 Quartz Greasy 

Small 
fraction 

flake 9.95 12.23 1.96 0      P   

L243 8 Quartz Greasy 

Small 
fraction 

flake 8.01 12.05 2.33 0      P   

L245 8 Quartz Greasy 

Small 
fraction 

flake 8.75 7.86 1.32 0      P   

L250 8 Quartz Milky 

Small 
fraction 

flake 5.08 6.82 1.67 <50      P   

L259 8 Quartz Milky 

Small 
fraction 

flake 6.49 8.03 3.17 <50      P   

L261 8 Quartz Milky 

Small 
fraction 

flake 8.33 14.55 3.13 0      A   

L267 14 Quartz Greasy 

Small 
fraction 

flake 9.70 9.01 2.15 0      P   

L269 14 Quartz Greasy 

Small 
fraction 

flake 7.11 8.47 1.54 0      P   

L272 14 Quartz Greasy 

Small 
fraction 

flake 8.82 9.36 7.38 <50      P   
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L281 14 Quartz Greasy 

Small 
fraction 

flake 9.12 8.46 2.70 0      P   

L282 14 Quartz Greasy 

Small 
fraction 

flake 7.60 9.14 1.51 0      P   

L283 14 Quartz Greasy 

Small 
fraction 

flake 6.19 10.72 1.59 0      P   

L284 14 Quartz Greasy 

Small 
fraction 

flake 4.79 9.27 1.05 <50      P   

L285 14 Quartz Milky 

Small 
fraction 

flake 9.43 15.41 2.99 0      P   

L288 14 Quartz Milky 

Small 
fraction 

flake 7.92 8.28 1.23 100      A   

L289 14 Quartz Milky 

Small 
fraction 

flake 5.71 6.83 1.00 0      P   

L290 14 Quartz Greasy 

Small 
fraction 

flake 7.33 6.28 2.52 0      P   

L291 14 Quartz Milky 

Small 
fraction 

flake 9.83 8.11 2.61 0      P   

L292 14 Quartz Greasy 

Small 
fraction 

flake 9.81 6.68 1.82 100      P   

L293 14 Quartz Greasy 

Small 
fraction 

flake 9.14 8.37 3.88 0      P   

L294 14 Quartz Greasy 

Small 
fraction 

flake 7.07 6.75 1.73 0      P   
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L295 14 Quartz 
Fine 

grained 

Small 
fraction 

flake 6.43 6.50 2.52 100      P   

L297 14 Quartz Greasy 

Small 
fraction 

flake 7.50 7.76 2.07 100      P   

L298 14 Quartz Greasy 

Small 
fraction 

flake 8.04 4.62 1.56 100      P   

L301 14 Quartz Milky 

Small 
fraction 

flake 7.74 6.19 2.95 0      P   

L303 14 Quartz Greasy 

Small 
fraction 

flake 9.18 10.54 1.88 100      P   

L304 14 Quartz Greasy 

Small 
fraction 

flake 8.24 4.76 3.08 0      P   

L306 26 Quartz Milky 

Small 
fraction 

flake 8.18 8.57 4.19 <50      P   

L313 16 Quartz Greasy 

Small 
fraction 

flake 5.67 7.22 2.79 0      P   

L315 16 Quartz Greasy 

Small 
fraction 

flake 9.22 5.60 2.63 0      P   

 

Table 72. Tràigh na Beirigh 1 chunks and small fraction chunks 

ID No. 
Context 

No. Raw Material 

Raw 
Material 
Variety Typology 

Length 
(mm) Width (mm) 

Thickness 
(mm) Cortex % Breakage Notes 

L3 2 Quartz Greasy Chunk 14.12 20.23 9.60 <50 P   

L18 4 Quartz Milky Chunk 13.10 5.53 4.72 0 P   

L37 5 Quartz Greasy Chunk 11.37 7.21 3.52 0 A   

L90 6 Quartz Greasy Chunk 17.18 11.56 6.65 100 P   
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L104 17 Quartz Milky Chunk 12.88 9.19 4.48 <50 P   

L106 17 Quartz Milky Chunk 13.04 8.26 3.28 0 P   

L108 17 Quartz Milky Chunk 37.41 20.77 13.53 <50 P   

L114 4 Quartz Milky Chunk 17.46 6.90 5.46 <50 P   

L170 8 Quartz Milky Chunk 17.10 15.30 9.69 <50 P   

L279 14 Quartz Greasy Chunk 13.25 10.65 7.25 <50 P   

L9 2 Quartz 
Rock 

crystal 

Small 
fraction 
chunk 7.80 4.73 3.90 0 A   

L12 2 Quartz Milky 

Small 
fraction 
chunk 9.12 7.80 4.31 0 P   

L19 4 Quartz Milky 

Small 
fraction 
chunk 8.24 7.01 6.66 0 P   

L24 4 Quartz 
Milky-rock 

crystal 

Small 
fraction 
chunk 9.93 5.22 3.44 0 P   

L26 4 Quartz 
Milky-rock 

crystal 

Small 
fraction 
chunk 7.36 4.12 2.74 0 P   

L50 5 Quartz 
Milky-rock 

crystal 

Small 
fraction 
chunk 7.77 6.77 5.35 0 P   

L51 5 Quartz 
Milky-rock 

crystal 

Small 
fraction 
chunk 6.64 5.46 3.37 0 P   

L84 8 Quartz 
Milky-
greasy 

Small 
fraction 
chunk 9.95 7.19 4.85 <50 A   

L88 8 Quartz Milky 

Small 
fraction 
chunk 9.38 5.76 4.01 <50 A   

L100 16 Quartz Milky 

Small 
fraction 
chunk 9.98 7.75 3.46 <50 P   
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L101 16 Quartz Milky 

Small 
fraction 
chunk 8.46 5.91 2.92 <50 P   

L260 8 Quartz Greasy 

Small 
fraction 
chunk 6.26 4.37 2.76 0 P   

L302 14 Quartz Greasy 

Small 
fraction 
chunk 8.04 6.66 4.27 <50 P   

 

Table 73. Tràigh na Beirigh 1 natural quartz fragments by weight per sample 

Sample No. Context No. Weight 

S.17 18 7.47 

S.22 4 93.03 

S.23 5 9.59 

S.25 8 3.06 

S.26 15 0.82 

S.28 19 1.21 

S.31 17 777.7 

S.32 15 5.76 

S.33 8 13.65 

S.36 14 7.55 

S.40 16 31.57 



 

 

5
73

 

Appendix 6 Tràigh na Beirigh 2 Lithic Catalogue 

Table 74. Tràigh na Beirigh 2 coarse stone tools 

ID No. 
Context 

No. Raw Material 
Raw Material 

Variety Typology 
Length 
(mm) Width (mm) 

Thickness 
(mm) Notes 

L145 21 Gneiss   Manuport 101.78 56.89 19.41 Sub-angular, flattish stone, chipped along one edge 

L240 5 Quartz 
Quartz-feldspar 

(metamorphosed) Manuport 58.58 47.91 24.75 Rounded, water worn pebble broken laterally - possible test piece 

L316 11 Quartz Quartzite Manuport 91.19 55.88 25.40 Sub-angular, water worn and flattish; no signs of working 

L317 11 Quartz 
Quartz-feldspar 

(metamorphosed) Manuport 68.63 36.23 24.04 Sub-angular and water worn with a pointed end; no signs of working 

L318 11 Quartz 
Quartz-feldspar 

(metamorphosed) Manuport 69.79 44.12 21.05 
Sub-rounded and water worn with small chips and a crack present 
around the edge; no signs of working 

L319 11 Quartz Quartzite Manuport 43.12 42.55 22.94 Sub-rounded and water worn; no signs of working 

L320 11 Quartz 
Quartz-feldspar 

(metamorphosed) Manuport 50.75 33.86 19.67 
Possible hammerstone; sub-rounded and water worn - pitted and 
fractured along one face 

 

Table 75. Tràigh na Beirigh 2 cores 

ID No. 
Context 

No. Raw Material 

Raw 
Material 
Variety Typology 

Length 
(mm) 

Weight 
(g) Cortex 

Flake 
Removal 

Count 
Flake Removal 

Sequence 
Platform 

Preparation Notes 

SF11 21 Quartz 
Greasy 
(dark) Core 22.07 4.51 P 3 Multidirectional 

Unprepared 
/lost Cortex flat and frosted - block/plate 

SF13 3 Quartz 
Greasy 
(dark) Core 49.38 67.24 P 7 Multidirectional Simple/lost Cortex smooth and rounded - pebble 

SF14 3 Quartz Milky Core 78.39 262.23 P 10 Multidirectional Simple/lost Cortex smooth and rounded - pebble 

SF15 4 Quartz Greasy Core 66.82 314.98 P 8 Multidirectional 
Unprepared 

/lost 

Cortex smooth and rounded - pebble; 
circular mark present on flat cortical face 
- evidence of prior attempts to remove 
flakes 

SF16 5 Quartz Greasy Core 59.87 90.75 P 3 Multidirectional 
Unprepared 

/lost Cortex smooth and rounded - pebble 

SF17 6 Quartz Greasy Core 24.30 5.02 P 5 Multidirectional Lost Cortex flat and frosted - block/plate 

L18 3 Quartz Greasy Core 30.10 4.10 P 3 Multidirectional Lost Cortex smooth and rounded - pebble 
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L19 3 Quartz Greasy Core 32.69 3.07 P 4 Multidirectional 
Unprepared 

/lost Cortex smooth and rounded - pebble 

L26 3 Quartz Greasy Core 36.60 12.62 P 4 Multidirectional 
Unprepared 

/lost Cortex flat and weathered - pebble 

L27 5 Quartz 
Greasy 
(dark) Core 27.23 10.71 P 5 Multidirectional Simple/lost Cortex mixed raw material - outcrop 

L28 5 Quartz Greasy Core 24.43 6.19 P 5 Multidirectional 
Unprepared 

/lost Cortex smooth and rounded - pebble 

L36 5 Quartz Greasy Core 11.04 0.40 P 6 Multidirectional Lost Cortex flat and frosted - block/plate 

L42 5 Quartz 
Greasy 
(dark) Core 38.16 35.88 P 5 Multidirectional Unprepared Cortex smooth and rounded - pebble 

L74 11 Quartz Milky Core 9.82 0.27 A 6 Multidirectional Lost   

L85 11 Quartz Greasy Core 18.83 2.52 P 4 Multidirectional 
Unprepared 

/lost Cortex smooth and rounded - pebble 

L86 11 Quartz Greasy Core 17.87 2.29 P 2 Multidirectional Unprepared 
Cortex smooth and rounded - pebble; 
characteristics of a 'split pebble core' 

L88 11 Quartz 

Greasy-
fine 

grained Core 15.85 1.40 A 6 Multidirectional Lost   

L89 11 Quartz Greasy Core 21.20 3.65 P 7 Multidirectional 
Unprepared 

/lost Cortex smooth and rounded - pebble 

L94 11 Quartz Milky Core 77.77 200.72 P 2 Unidirectional Unprepared 

Flattish, water rounded block with two 
removals - appear to have been removed 
with the purpose of testing the block 

L111 5 Quartz Greasy Core 20.90 3.98 P 4 Multidirectional Unprepared Cortex smooth and rounded - pebble 

L113 5 Quartz Greasy Core 20.14 4.51 P 4 Multidirectional 
Unprepared 

/lost Cortex smooth and rounded - pebble 

L114 5 Quartz Greasy Core 38.15 17.84 P 4 Multidirectional 
Unprepared 

/lost Cortex frosted and flat - block/plate 

L115 5 Quartz Milky Core 27.13 14.48 P 6 Multidirectional 
Unprepared 
/simple/lost Cortex frosted and flat - block/plate 

L117 5 Quartz Quartzite Core 65.38 101.00 P 4 Unidirectional Unprepared 

Sub-rounded water worn pebble, split 
laterally with four possible removals 
from the edges 

L136 16 Quartz 
Greasy 
(dark) Core 30.93 8.92 P 1 Unidirectional Unprepared 

Cortex mixed raw material, flat and 
frosted – outcrop 

L152 22 Quartz Greasy Core 9.83 0.75 A 7 Multidirectional Simple/lost   



 

 

5
75

 

L171 3 Quartz Greasy Core 31.87 8.41 P 2 Unidirectional 
Unprepared 

/lost Cortex flat and frosted - block/plate 

L175 5 Quartz Greasy Core 25.26 1.86 P 2 Multidirectional Lost Cortex flat and frosted - block/plate 

L178 5 Quartz Greasy Core 30.58 4.28 P 6 Multidirectional Lost Cortex flat and frosted - block/plate 

L180 5 Quartz 
Greasy 
(dark) Core 17.29 1.79 P 5 Multidirectional 

Unprepared 
/lost Cortex smooth and rounded - pebble 

L187 5 Quartz Greasy Core 9.82 0.88 P 3 Multidirectional 
Unprepared 

/lost Cortex smooth and rounded - pebble 

L237 5 Feldspar   Core 64.97 39.48 P 2 Multidirectional Lost 
Cortex - weathered outer surface of the 
rock 

L238 5 Quartz Greasy Core 20.02 10.84 P 3 Multidirectional 
Unprepared 

/lost Cortex smooth and rounded - pebble 

L239 5 Quartz Greasy Core 31.82 7.79 P 3 Unidirectional Simple 

Cortex smooth, rounded and mixed raw 
material - pebble; percussion marks are 
visible on one face 

L241 19 Quartz Greasy Core 62.93 83.96 P 6 Multidirectional Unprepared 
Cortex smooth and rounded - pebble; 
percussion marks are visible on one face 

L242 11 Quartz 
Greasy 
(dark) Core 29.68 11.56 P 2 Multidirectional 

Unprepared 
/lost 

Cortex smooth and rounded - pebble; 
characteristics of a 'split pebble core' 

L244 11 Quartz 
Greasy 
(dark) Core 17.82 5.84 P 2 Unidirectional Lost 

Cortex smooth and rounded - pebble; 
characteristics of a 'split pebble core' 

L245 11 Quartz 
Greasy 
(dark) Core 19.60 3.27 P 3 Multidirectional 

Unprepared 
/lost 

Cortex smooth and rounded - pebble; 
characteristics of a 'split pebble core' 

L246 11 Quartz Greasy Core 21.75 3.86 P 6 Multidirectional 
Unprepared 
/simple/lost Cortex flat and frosted - block/plate 

L247 11 Quartz Greasy Core 24.88 4.19 P 3 Multidirectional Unprepared Cortex flat and smooth - pebble 

L249 11 Quartz 
Greasy 
(pink) Core 26.21 2.61 P 2 Unidirectional 

Unprepared 
/lost 

Cortex smooth and rounded - pebble; 
characteristics of a 'split pebble core' 

L260 11 Quartz Greasy Core 14.68 0.80 A 4 Multidirectional Simple/lost   

L331 6 Quartz 
Greasy 
(dark) Core 27.36 6.27 P 4 Unidirectional Unprepared Cortex smooth and rounded - pebble 
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Table 76. Tràigh na Beirigh 2 flakes and small fraction flakes 

ID 
No. 

Context 
No. 

Raw 
Material 

Raw 
Material 
Variety Typology 

Length 
(mm) 

Width 
(mm) 

Thick 
-ness 
(mm) 

Cortex 
% 

Platform 
Type 

Platform  
Width 
(mm) 

Platform 
Depth 
(mm) 

Dorsal 
Flake 
Scar 

Count 

Dorsal 
Flake 
Scar 

Pattern 
Break-

age Notes 

SF2 3 Quartz Greasy Flake 28.93 18.17 6.65 <50 Broken     2 Multi P 
Cortex flat and 
frosted - block/plate 

SF3 5 Quartz Greasy Flake 11.90 13.25 3.07 >50 Broken     2 Uni P 
Cortex smooth and 
rounded - pebble 

SF4 3 Quartz 
Greasy 
(dark) Flake 18.83 20.09 6.25 <50 Absent     1 Uni P 

Cortex smooth and 
rounded - pebble 

SF5 7 Quartz 
Milky-
greasy Flake 19.03 16.27 8.14 0 Broken     3 Uni P   

SF7 16 Quartz Greasy Flake 31.10 22.58 10.54 <50 Crushed     3 Uni P 
Cortex flat and 
frosted - block/plate 

SF8 16 Quartz Greasy Flake 26.37 34.06 19.71 <50 Cortical 30.49 11.60 5 Multi P 
Cortex smooth and 
rounded - pebble 

SF10 16 Quartz 
Greasy 
(dark) Flake 24.19 22.64 7.30 0 Plain 16.82 7.29 2 Multi P   

SF12 3 Quartz Greasy Flake 16.02 30.39 3.47 0 Broken     2 Multi P   

L1 1 Quartz Greasy Flake 13.24 8.11 1.89 0 Absent     3 Multi P   

L2 3 Quartz Greasy Flake 20.74 27.48 4.06 0 Broken     4 Multi P   

L4 3 Quartz Greasy Flake 15.01 12.80 3.24 >50 Absent     3 Multi P 
Cortex smooth and 
rounded - pebble 

L5 3 Quartz Greasy Flake 16.74 14.97 4.35 100 Broken     N/A N/A P 
Cortex flat and 
frosted - block/plate 

L13 3 Quartz Greasy Flake 10.66 3.18 1.98 0 Absent     1 Uni P   

L16 3 Quartz Greasy Flake 12.97 13.39 9.09 0 Broken     2 Uni P   

L17 3 Quartz Greasy Flake 15.58 16.30 5.16 0 Plain 6.64 3.19 2 Indet A   

L20 3 Quartz Greasy Flake 23.01 5.40 7.17 100 Absent     N/A N/A P 
Cortex smooth and 
rounded - pebble 

L21 3 Quartz Greasy Flake 10.54 7.60 4.23 0 Absent     2 Multi P   

L23 3 Quartz Greasy Flake 10.25 14.63 2.51 0 Broken     1 Uni P   

L29 5 Quartz Greasy Flake 32.32 16.19 7.16 0 Broken     2 Multi P   



 

 

5
77

 

L30 5 Quartz Milky Flake 29.73 20.69 10.21 <50 Absent     1 Uni A 
Cortex smooth and 
rounded - pebble 

L31 5 Quartz Milky Flake 18.06 18.66 9.98 >50 Absent     3 Multi P 
Cortex smooth and 
rounded - pebble 

L32 5 Quartz 
Greasy 
(dark) Flake 17.77 17.56 4.18 0 Absent     3 Multi P   

L33 5 Quartz Greasy Flake 12.66 20.16 3.78 0 Broken     1 Uni P   

L35 5 Quartz Greasy Flake 12.00 7.59 3.53 100 Absent     N/A N/A P 
Cortex smooth and 
rounded - pebble 

L38 5 Quartz Milky Flake 10.53 6.54 4.17 <50 Absent     1 Uni P 
Cortex flat and 
frosted - block/plate 

L41 5 Flint   Flake 11.28 8.60 6.24 >50 Broken     2 Multi A 
Cortex smooth and 
rounded - pebble 

L43 7 Quartz 
Greasy-
feldspar Flake 24.92 11.35 8.02 >50 Absent     1 Uni A 

Cortex smooth and 
rounded - pebble; 
characteristics of a 
'split pebble core' 

L44 7 Quartz Greasy Flake 14.81 9.86 4.30 0 Plain 9.28 3.87 1 Uni P   

L48 14 Quartz Greasy Flake 24.50 16.31 7.14 <50 Broken     1 Uni P 
Cortex smooth - 
pebble 

L53 11 Quartz 

Coarse 
grained-
feldspar Flake 14.80 10.03 3.44 0 Broken     2 Indet P   

L68 11 Quartz Milky Flake 14.05 5.74 3.15 0 Absent     4 Bi P 

Bidirectional flake 
removals but not 
bipolar reduction 

L69 11 Quartz Greasy Flake 10.00 12.94 3.33 <50 Broken     2 Uni P 
Cortex smooth and 
rounded - pebble 

L72 11 Quartz Greasy Flake 14.63 9.49 3.08 0 Broken     1 Uni P   

L73 11 Quartz Milky Flake 13.17 7.23 4.22 0 Broken     1 Uni P   

L75 11 Quartz Greasy Flake 22.09 10.26 8.99 <50 Broken     2 Indet P 
Cortex flat and 
frosted - block/plate 

L76 11 Quartz Greasy Flake 11.23 13.85 3.75 0 Broken     1 Uni A   

L77 11 Quartz Milky Flake 10.23 6.10 3.15 0 Absent     1 Uni P   

L79 11 Quartz Greasy Flake 12.51 7.71 4.92 0 Absent     1 Uni P   
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L80 11 Quartz 
Greasy 
(dark) Flake 16.77 13.05 8.35 100 Absent     N/A N/A P 

Cortex smooth and 
rounded - pebble 

L81 11 Quartz 

Coarse 
grained-
feldspar Flake 22.13 21.47 4.79 0 Broken     1 Uni P   

L82 11 Quartz Greasy Flake 27.15 18.01 5.00 0 Broken     2 Uni P   

L83 11 Quartz 

Greasy-
fine 

grained Flake 18.70 21.66 8.75 >50 Broken     1 Uni P 
Cortex smooth and 
rounded - pebble 

L84 11 Quartz Greasy Flake 16.43 13.45 4.80 0 Absent     5 Multi P   

L87 11 Quartz Milky Flake 18.92 13.01 7.55 <50 Absent     1 Uni A 
Cortex smooth and 
rounded - pebble 

L90 11 Quartz Greasy Flake 22.94 35.83 8.43 <50 Cortical 12.72 6.09 2 Multi P 
Cortex smooth and 
rounded - pebble 

L91 11 Quartz Greasy Flake 22.91 19.85 6.73 0 Crushed     1 Uni P   

L92 11 Quartz Milky Flake 30.78 12.67 9.03 <50 Broken     2 Multi P 

Cortex flat and 
smooth - likely 
pebble 

L93 11 Quartz Greasy Flake 28.26 25.93 10.95 <50 Cortical 14.19 10.94 3 Multi P 

Incipient Hertzian 
cone present on one 
of the dorsal flake 
scars; cortex smooth 
and rounded - 
pebble 

L109 5 Quartz Greasy Flake 15.44 16.08 4.44 0 Broken     2 Multi P   

L110 5 Quartz 
Milky-

feldspar Flake 25.99 16.99 7.20 0 Broken     1 Uni A   

L112 5 Flint   Flake 10.79 7.22 3.24 <50 Absent     2 Multi A 
Cortex smooth and 
rounded - pebble 

L116 5 Quartz Greasy Flake 42.84 42.40 23.04 100 Cortical 39.38 23.04 N/A N/A A 
Cortex smooth and 
rounded - pebble 

L121 15 Flint   Flake 10.84 9.90 1.95 <50 Absent     1 Uni P 

No outer cortex 
present to determine 
source 

L122 14 Quartz Greasy Flake 14.13 8.34 2.60 <50 Broken     2 Uni A 
Cortex smooth and 
rounded - pebble 



 

 

5
79

 

L124 18 Quartz Greasy Flake 11.16 3.19 2.04 <50 Absent     1 Uni P 
Cortex flat and 
frosted - block/plate 

L131 6 Quartz 
Milky-

feldspar Flake 23.56 12.91 5.23 0 Absent     2 Multi P   

L132 17 Quartz Milky Flake 21.00 12.71 7.47 100 Broken     N/A N/A A 

Cortex smooth and 
rounded - pebble; 
characteristics of a 
'split pebble core' 

L133 17 Quartz Greasy Flake 13.35 5.52 4.16 >50 Crushed     1 Uni A 
Cortex smooth and 
rounded - pebble 

L135 16 Flint   Flake 10.30 9.29 1.90 0 Absent     1 Uni P   

L137 16 Quartz Greasy Flake 20.49 30.33 8.36 >50 Cortical 25.46 6.68 1 Uni A 

Cortex smooth and 
rounded - pebble; 
characteristics of a 
'split pebble core' 

L138 16 Quartz Greasy Flake 10.50 14.99 3.62 100 Plain 13.76 3.54 N/A N/A P 
Cortex smooth and 
rounded - pebble 

L139 16 Quartz Milky Flake 16.82 7.76 4.46 0 Absent     1 Uni P   

L142 16 Quartz Milky Flake 11.26 5.20 1.94 0 Broken     1 Uni P   

L143 16 Quartz Greasy Flake 12.32 10.50 2.52 <50 Broken     1 Uni P 
Cortex smooth and 
rounded - pebble 

L146 21 Quartz Greasy Flake 20.91 21.92 7.41 >50 Crushed     1 Uni P 

Cortex smooth and 
rounded - pebble; 
characteristics of a 
'split pebble core' 

L147 21 Quartz Greasy Flake 22.75 9.52 4.73 100 Absent     N/A N/A P 

Cortex smooth and 
rounded - pebble; 
characteristics of a 
'split pebble core' 

L148 21 Quartz Greasy Flake 16.00 11.03 5.34 <50 Broken     2 Uni A 
Cortex smooth and 
rounded - pebble 

L153 22 Quartz Greasy Flake 11.72 10.72 4.34 <50 Absent     2 Multi P 
Cortex flat and 
frosted - block/plate 

L156 3 Flint   Flake 15.25 16.84 2.81 0 Absent     1 Uni P   

L157 3 Flint   Flake 12.12 14.77 4.23 100 Absent     N/A N/A P 
Cortex smooth and 
rounded - pebble 
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L166 3 Quartz Greasy Flake 12.44 7.53 2.00 0 Absent     1 Uni A   

L167 3 Quartz Milky Flake 13.80 15.50 3.16 0 Broken     1 Uni P 

Refits with L168 - 
this is the proximal 
end of the flake 

L170 3 Quartz Greasy Flake 12.33 15.22 2.68 <50 Cortical 7.33 2.68 1 Uni P 
Cortex smooth and 
rounded - pebble 

L172 3 Quartz Greasy Flake 27.83 36.22 13.88 <50 Broken     3 Multi P 
Cortex smooth and 
rounded - pebble 

L173 5 Flint   Flake 23.44 17.93 3.21 0 Absent     1 Uni P   

L174 5 Quartz Milky Flake 34.57 28.95 6.18 0 Broken     2 Uni A   

L176 5 Quartz Greasy Flake 18.01 16.05 3.96 0 Absent     2 Multi P   

L177 5 Quartz Greasy Flake 16.52 12.99 4.13 0 Broken     1 Uni P   

L179 5 Quartz Greasy Flake core 22.96 23.75 7.84 0 Absent     1 Uni P 

The proximal end of 
the flake has been 
removed by a further 
flake initiated from 
the distal end of the 
flake, destroying the 
distal ventral face 
with knapping 
shatter 

L181 5 Quartz Greasy Flake 14.29 17.15 3.04 0 Broken     1 Uni A   

L182 5 Quartz 
Greasy-
feldspar Flake 16.00 12.89 4.00 <50 Absent     1 Uni A 

Cortex mixed raw 
material - outcrop 

L183 5 Quartz Greasy Flake 11.42 16.42 4.37 <50 Broken     1 Uni A 
Cortex smooth and 
rounded - pebble 

L184 5 Quartz Milky Flake 10.38 18.76 1.65 0 Absent     1 Uni P   

L185 5 Quartz 
Fine 

grained Flake 13.24 15.71 4.98 0 Absent     1 Uni P   

L190 5 Quartz 
Fine 

grained Flake 11.34 9.96 1.84 100 Absent     N/A N/A A 
Cortex smooth and 
rounded - pebble 

L191 5 Quartz Greasy Flake 12.58 10.64 2.87 0 Broken     1 Uni P   

L193 5 Quartz Greasy Flake 12.30 8.93 2.59 0 Broken     2 Indet P   

L195 5 Quartz Milky Flake 10.21 10.70 2.83 0 Absent     1 Uni P   



 

 

5
81

 

L196 5 Quartz Milky Flake 12.77 8.59 2.11 0 Absent     2 Uni P   

L214 5 Quartz 
Greasy 
(dark) Flake 11.25 7.65 4.68 <50 Broken     2 Uni P 

Cortex flat and 
frosted - block/plate 

L220 5 Quartz Greasy Flake 11.01 7.40 2.05 0 Absent     1 Uni P   

L221 5 Quartz Greasy Flake 10.69 4.96 3.86 0 Absent     2 Uni P   

L235 5 Quartz Greasy Flake 11.50 5.60 3.42 0 Absent     1 Uni P   

L243 11 Quartz 

Greasy 
(dark)-

feldspar Flake 33.44 22.28 11.92 100 Cortical 10.36 9.95 N/A N/A A 

Cortex smooth and 
rounded - pebble; 
characteristics of a 
'split pebble core' 

L248 11 Quartz 
Greasy-
feldspar Flake 25.73 17.39 5.81 100 Broken     N/A N/A P 

Cortex flat and 
frosted - block/plate 

L250 11 Quartz 
Fine 

grained Flake 22.29 13.04 5.49 0 Broken     1 Uni P   

L251 11 Quartz Greasy 

Core 
rejuv-

enation 
flake 19.03 7.31 17.63 0 Plain 2.28 3.79 3 Multi A 

There is one removal 
from the rejuvenated 
platform 

L252 11 Quartz Milky Flake 18.44 12.73 3.42 0 Broken     2 Multi P   

L253 11 Quartz Greasy Flake 19.95 15.53 7.62 0 Broken     2 Multi A   

L254 11 Quartz Greasy Flake 20.19 12.85 5.13 <50 Broken     1 Uni A 
Cortex smooth and 
rounded - pebble 

L255 11 Quartz Greasy Flake 21.21 17.00 6.68 0 Broken     1 Uni P   

L256 11 Quartz Milky Flake 16.31 16.37 6.23 0 Broken     1 Uni P   

L257 11 Quartz Greasy Flake 13.54 21.72 2.53 0 Broken     2 Multi P   

L258 11 Quartz Greasy Flake 12.86 13.89 3.12 0 Absent     1 Uni P   

L259 11 Quartz Greasy Flake 16.14 14.86 5.58 100 Broken     N/A N/A P 
Cortex smooth and 
rounded - pebble 

L261 11 Quartz 
Fine 

grained Flake 14.02 16.21 2.60 <50 Absent     2 Multi P 
Cortex flat and 
frosted - block/plate 

L262 11 Quartz Greasy Flake 12.71 10.51 5.31 0 Broken     1 Uni P   
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L263 11 Quartz Milky 

Core 
rejuv-

enation 
flake 10.92 9.21 10.84 0 Plain 5.53 8.38 4 Multi A   

L264 11 Quartz Greasy Flake 19.30 12.71 5.60 0 Broken     1 Uni P   

L265 11 Quartz Greasy Flake 13.00 12.90 3.44 0 Absent     1 Uni P   

L266 11 Quartz Milky Flake 11.69 10.55 6.16 <50 Broken     3 Multi A 
Cortex smooth and 
rounded - pebble 

L268 11 Quartz 
Fine 

grained Flake 16.00 9.84 3.20 0 Broken     1 Uni P   

L269 11 Quartz Greasy Flake 16.60 6.18 3.85 <50 Absent     1 Uni P 

Not enough cortex 
present to ascertain 
probable source 

L272 11 Quartz Greasy Flake 11.77 9.85 2.81 0 Absent     1 Uni P   

L279 11 Quartz Greasy Flake 10.37 6.60 2.68 0 Absent     1 Uni P   

L280 11 Quartz Greasy Flake 10.41 5.85 2.70 0 Broken     1 Uni P   

L287 11 Quartz 
Milky-fine 

grained Flake 12.40 8.13 1.83 0 Broken     1 Uni P   

L289 11 Quartz Greasy Flake 10.04 4.53 2.83 0 Absent     1 Uni P   

L292 11 Quartz Greasy Flake 12.32 4.39 2.48 0 Broken     2 Indet P   

L304 11 Quartz Milky Flake 10.29 7.47 2.73 0 Absent     1 Uni P   

L321 5/11 Quartz Greasy Flake 20.42 11.92 7.34 0 Absent     1 Uni P   

L322 5/11 Quartz Greasy Flake 22.20 18.25 8.83 0 Broken     1 Uni A   

L323 5/11 Quartz Greasy Flake 13.66 12.86 5.20 <50 Broken     1 Uni P 
Cortex smooth and 
rounded - pebble 

L324 5/11 Quartz Greasy Flake 11.93 17.42 4.69 0 Absent     1 Uni P   

L328 17 Quartz Greasy Flake 11.83 8.61 2.86 0 Absent     2 Indet P   

L334 6 Quartz 
Greasy 
(dark) Flake 11.19 7.42 2.40 <50 Broken     1 Uni P 

Cortex mixed raw 
material - outcrop 

SF9 16 Quartz Greasy 

Small 
fraction 

flake 9.51 5.75 1.44 0           P   
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L3 3 Quartz Greasy 

Small 
fraction 

flake 5.82 12.35 3.55 0           P   

L6 3 Quartz Greasy 

Small 
fraction 

flake 4.94 4.06 4.76 0           P   

L7 3 Quartz Greasy 

Small 
fraction 

flake 8.55 7.13 2.17 0           P   

L8 3 Quartz Greasy 

Small 
fraction 

flake 7.21 7.38 1.83 0           P   

L9 3 Quartz Greasy 

Small 
fraction 

flake 5.44 5.97 2.55 0           P   

L10 3 Quartz Greasy 

Small 
fraction 

flake 6.51 5.89 3.27 0           P   

L11 3 Quartz Greasy 

Small 
fraction 

flake 8.51 7.85 1.81 0           P   

L12 3 Quartz Greasy 

Small 
fraction 

flake 8.63 5.49 2.01 0           P   

L14 3 Quartz Milky 

Small 
fraction 

flake 9.17 6.63 1.25 0           P   

L15 3 Quartz Greasy 

Small 
fraction 

flake 6.99 10.56 1.49 100           P   

L22 3 Quartz Greasy 

Small 
fraction 

flake 5.92 6.35 2.32 100           P   

L24 3 Quartz Milky 

Small 
fraction 

flake 6.57 6.94 5.49 0           P   
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L34 5 Quartz Greasy 

Small 
fraction 

flake 9.10 11.22 3.61 <50           P   

L37 5 Quartz Greasy 

Small 
fraction 

flake 5.01 10.13 3.15 0           P   

L39 5 Quartz Greasy 

Small 
fraction 

flake 9.39 11.79 1.89 0           P   

L40 5 Quartz Greasy 

Small 
fraction 

flake 9.56 11.41 2.69 0           P   

L45 7 Quartz Greasy 

Small 
fraction 

flake 9.37 3.16 2.14 <50           P   

L46 9 Quartz 
Fine 

grained 

Small 
fraction 

flake 8.45 5.86 2.45 0           P   

L47 12 Quartz Greasy 

Small 
fraction 

flake 9.46 9.21 1.39 0           P   

L49 14 Quartz Greasy 

Small 
fraction 

flake 5.64 7.19 2.62 0           P   

L50 14 Quartz Greasy 

Small 
fraction 

flake 6.67 7.22 1.40 100           P   

L51 14 Quartz Greasy 

Small 
fraction 

flake 8.03 7.82 2.17 0           P   

L52 14 Flint   

Small 
fraction 

flake 6.30 6.92 2.30 0           P   

L54 11 Quartz Greasy 

Small 
fraction 

flake 9.59 4.87 2.89 <50           P   
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L56 11 Quartz 
Fine 

grained 

Small 
fraction 

flake 5.12 7.30 1.94 0           P   

L57 11 Quartz Greasy 

Small 
fraction 

flake 8.45 9.51 3.04 <50           P   

L58 11 Quartz Milky 

Small 
fraction 

flake 5.81 8.96 3.35 0           P   

L59 11 Quartz Greasy 

Small 
fraction 

flake 8.18 7.82 3.97 100           P   

L60 11 Quartz Greasy 

Small 
fraction 

flake 6.72 6.07 1.68 0           A   

L61 11 Quartz Greasy 

Small 
fraction 

flake 6.39 8.67 4.87 <50           A   

L62 11 Quartz Greasy 

Small 
fraction 

flake 7.37 9.06 3.32 0           P   

L63 11 Quartz Greasy 

Small 
fraction 

flake 7.92 4.67 3.12 0           P   

L64 11 Quartz Greasy 

Small 
fraction 

flake 7.61 7.30 2.72 >50           P   

L65 11 Quartz Greasy 

Small 
fraction 

flake 5.06 7.24 1.91 0           P   

L66 11 Quartz Milky 

Small 
fraction 

flake 7.98 4.84 2.10 0           P   

L67 11 Quartz Milky 

Small 
fraction 

flake 8.22 7.40 1.73 0           P   
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L70 11 Quartz Milky 

Small 
fraction 

flake 9.77 11.66 2.14 0           P   

L71 11 Quartz Greasy 

Small 
fraction 

flake 8.37 10.38 2.09 0           P   

L95 5 Quartz Greasy 

Small 
fraction 

flake 9.15 7.50 1.54 0           P   

L96 5 Quartz Greasy 

Small 
fraction 

flake 7.78 9.14 3.80 <50           P   

L97 5 Quartz Greasy 

Small 
fraction 

flake 6.29 6.95 1.11 0           P   

L98 5 Quartz Greasy 

Small 
fraction 

flake 7.89 5.36 2.08 0           P   

L99 5 Quartz Greasy 

Small 
fraction 

flake 6.49 6.83 2.48 0           P   

L100 5 Quartz Greasy 

Small 
fraction 

flake 5.63 7.47 0.80 0           P   

L101 5 Quartz 
Fine 

grained 

Small 
fraction 

flake 6.09 11.12 2.95 0           P   

L102 5 Quartz Milky 

Small 
fraction 

flake 8.20 9.33 7.04 <50           A   

L103 5 Quartz Greasy 

Small 
fraction 

flake 8.11 8.67 2.00 0           P   

L104 5 Quartz Greasy 

Small 
fraction 

flake 8.03 8.12 3.26 0           P   
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L105 5 Quartz Greasy 

Small 
fraction 

flake 8.15 9.57 3.15 0           A   

L106 5 Quartz 

Fine 
grained-
greasy 

Small 
fraction 

flake 6.52 9.94 2.59 0           P   

L107 5 Quartz 
Milky-

quartzite 

Small 
fraction 

flake 9.04 14.12 4.30 <50           P   

L108 5 Quartz Greasy 

Small 
fraction 

flake 6.71 8.65 2.33 0           P   

L118 10 Quartz Greasy 

Small 
fraction 

flake 8.92 6.55 2.78 0           P   

L119 10 Quartz Greasy 

Small 
fraction 

flake 8.89 7.25 2.20 0           P   

L120 15 Quartz Milky 

Small 
fraction 

flake 8.71 19.41 4.46 <50           A   

L123 18 Quartz 
Fine 

grained 

Small 
fraction 

flake 9.35 11.96 3.08 0           A   

L125 18 Quartz Greasy 

Small 
fraction 

flake 7.40 12.47 4.84 <50           P   

L126 18 Quartz Greasy 

Small 
fraction 

flake 7.96 9.35 2.92 <50           P   

L127 18 Quartz Greasy 

Small 
fraction 

flake 8.47 5.48 1.57 0           A   

L128 18 Quartz Greasy 

Small 
fraction 

flake 7.34 4.54 3.10 0           P   
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L129 18 Quartz Greasy 

Small 
fraction 

flake 6.63 5.53 3.45 0           P   

L130 18 Quartz Greasy 

Small 
fraction 

flake 6.68 8.59 1.44 <50           A   

L140 16 Quartz Greasy 

Small 
fraction 

flake 7.23 7.12 1.35 0           P   

L141 16 Quartz Greasy 

Small 
fraction 

flake 6.57 5.54 1.66 0           P   

L144 16 Quartz Greasy 

Small 
fraction 

flake 7.14 8.84 2.91 0           P   

L150 21 Quartz Milky 

Small 
fraction 

flake 6.68 6.38 2.51 0           P   

L151 21 Quartz Greasy 

Small 
fraction 

flake 9.88 6.98 1.66 100           P   

L154 22 Quartz 
Fine 

grained 

Small 
fraction 

flake 4.44 7.45 2.08 0           P   

L155 22 Quartz Greasy 

Small 
fraction 

flake 8.74 6.35 1.46 0           P   

L158 3 Quartz Greasy 

Small 
fraction 

flake 8.42 7.71 0.87 100           P   

L159 3 Quartz Greasy 

Small 
fraction 

flake 7.74 4.43 1.94 0           P   

L160 3 Quartz Greasy 

Small 
fraction 

flake 5.68 5.03 1.68 0           P   
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L161 3 Quartz Greasy 

Small 
fraction 

flake 5.90 4.34 3.31 0           P   

L162 3 Quartz 
Fine 

grained 

Small 
fraction 

flake 5.75 8.79 3.26 <50           P   

L163 3 Quartz Greasy 

Small 
fraction 

flake 6.98 6.21 1.39 0           P   

L164 3 Quartz Greasy 

Small 
fraction 

flake 7.92 13.94 2.13 100           P   

L165 3 Quartz 

Fine 
grained-
feldspar 

Small 
fraction 

flake 8.32 6.83 1.78 100           P   

L168 3 Quartz Milky 

Small 
fraction 

flake 5.13 15.64 3.76 0           P 

Refits with L167 - 
this is the distal end 
of the flake 

L169 3 Quartz Greasy 

Small 
fraction 

flake 9.55 7.84 4.36 0           P   

L188 5 Quartz Greasy 

Small 
fraction 

flake 7.81 11.27 2.23 0           P   

L189 5 Quartz Greasy 

Small 
fraction 

flake 7.71 8.51 3.59 <50           P   

L192 5 Quartz Milky 

Small 
fraction 

flake 8.16 10.04 1.66 0           P   

L194 5 Quartz Milky 

Small 
fraction 

flake 9.28 10.52 2.95 0           P   

L197 5 Quartz Milky 

Small 
fraction 

flake 8.03 8.71 1.29 0           P   



 

 

5
90

 

L198 5 Quartz Greasy 

Small 
fraction 

flake 9.40 3.01 2.74 0           P   

L199 5 Quartz Greasy 

Small 
fraction 

flake 8.23 6.05 1.53 100           P   

L200 5 Quartz Milky 

Small 
fraction 

flake 6.95 7.33 2.45 0           P   

L201 5 Quartz Greasy 

Small 
fraction 

flake 7.48 5.45 2.62 0           P   

L202 5 Quartz Greasy 

Small 
fraction 

flake 8.47 3.95 3.15 0           P   

L203 5 Quartz Greasy 

Small 
fraction 

flake 5.30 5.29 1.30 0           A   

L204 5 Quartz Greasy 

Small 
fraction 

flake 5.27 5.53 1.78 >50           P   

L205 5 Quartz Greasy 

Small 
fraction 

flake 5.12 6.03 1.77 <50           P   

L206 5 Quartz Greasy 

Small 
fraction 

flake 6.31 6.43 1.59 0           P   

L207 5 Quartz Greasy 

Small 
fraction 

flake 6.55 4.90 2.92 0           P   

L208 5 Quartz 
Greasy 
(dark) 

Small 
fraction 

flake 7.89 6.51 1.58 0           P   

L211 5 Quartz 
Fine 

grained 

Small 
fraction 

flake 4.10 5.96 3.05 0           P   
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L212 5 Quartz Milky 

Small 
fraction 

flake 6.66 6.58 1.28 0           A   

L213 5 Quartz Greasy 

Small 
fraction 

flake 6.78 5.45 2.15 0           P   

L215 5 Quartz Milky 

Small 
fraction 

flake 8.32 9.97 1.81 0           P   

L216 5 Quartz 
Fine 

grained 

Small 
fraction 

flake 9.09 8.03 1.34 0           P   

L217 5 Quartz Greasy 

Small 
fraction 

flake 8.07 5.93 1.39 0           P   

L218 5 Quartz Greasy 

Small 
fraction 

flake 6.62 7.15 1.78 0           P   

L219 5 Quartz Greasy 

Small 
fraction 

flake 7.28 7.45 2.95 0           P   

L222 5 Quartz Greasy 

Small 
fraction 

flake 9.40 9.15 1.79 0           P   

L223 5 Quartz Greasy 

Small 
fraction 

flake 6.31 7.01 1.26 0           P   

L224 5 Quartz Greasy 

Small 
fraction 

flake 6.76 7.55 3.05 0           P   

L225 5 Quartz Milky 

Small 
fraction 

flake 4.85 7.04 2.56 0           P   

L226 5 Quartz Greasy 

Small 
fraction 

flake 6.09 9.98 1.50 <50           P   
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L227 5 Quartz Greasy 

Small 
fraction 

flake 5.31 6.02 1.69 0           P   

L228 5 Quartz Greasy 

Small 
fraction 

flake 5.52 10.29 1.33 0           P   

L229 5 Quartz Milky 

Small 
fraction 

flake 6.28 6.58 1.57 0           P   

L230 5 Quartz Greasy 

Small 
fraction 

flake 5.71 5.41 2.81 0           P   

L231 5 Quartz Milky 

Small 
fraction 

flake 5.71 6.94 1.16 0           P   

L232 5 Quartz Greasy 

Small 
fraction 

flake 5.62 5.76 2.91 0           P   

L233 5 Quartz Greasy 

Small 
fraction 

flake 8.83 2.63 1.14 0           P   

L234 5 Quartz Greasy 

Small 
fraction 

flake 5.65 11.58 2.84 0           P   

L236 5 Quartz Milky 

Small 
fraction 

flake 8.03 4.75 1.14 0           P   

L270 11 Quartz 
Greasy 
(dark) 

Small 
fraction 

flake 7.48 8.03 2.98 0           P   

L271 11 Quartz 
Greasy 
(dark) 

Small 
fraction 

flake 7.72 11.77 2.83 0           P   

L273 11 Quartz Greasy 

Small 
fraction 

flake 6.26 5.65 6.06 0           P   
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L275 11 Quartz Milky 

Small 
fraction 

flake 8.68 8.07 3.10 0           P   

L276 11 Quartz 
Greasy 
(dark) 

Small 
fraction 

flake 7.09 12.84 4.21 <50           A   

L277 11 Quartz Greasy 

Small 
fraction 

flake 8.50 9.17 2.04 0           P   

L278 11 Quartz Greasy 

Small 
fraction 

flake 8.51 7.04 3.24 100           P   

L281 11 Quartz Greasy 

Small 
fraction 

flake 7.78 7.32 1.59 0           P   

L282 11 Quartz Milky 

Small 
fraction 

flake 4.74 8.76 2.95 0           P   

L283 11 Quartz Milky 

Small 
fraction 

flake 8.04 6.02 4.55 0           P   

L284 11 Quartz Greasy 

Small 
fraction 

flake 6.65 8.33 2.61 0           P   

L285 11 Quartz Greasy 

Small 
fraction 

flake 6.39 4.84 1.71 0           P   

L286 11 Quartz Greasy 

Small 
fraction 

flake 7.02 6.36 2.54 0           P   

L288 11 Quartz Greasy 

Small 
fraction 

flake 6.81 6.31 3.44 0           P   

L290 11 Quartz Greasy 

Small 
fraction 

flake 8.31 4.00 3.49 0           P   
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L291 11 Quartz Greasy 

Small 
fraction 

flake 5.58 7.73 3.80 0           P   

L293 11 Quartz Greasy 

Small 
fraction 

flake 7.70 5.84 0.72 0           P   

L294 11 Quartz Greasy 

Small 
fraction 

flake 5.63 3.92 1.50 0           P   

L295 11 Quartz Greasy 

Small 
fraction 

flake 8.12 4.24 1.82 0           P   

L296 11 Quartz Greasy 

Small 
fraction 

flake 7.45 5.79 0.62 0           P   

L297 11 Quartz Greasy 

Small 
fraction 

flake 9.49 10.20 1.30 0           P   

L298 11 Quartz Greasy 

Small 
fraction 

flake 7.93 4.56 4.32 0           P   

L299 11 Quartz Greasy 

Small 
fraction 

flake 6.71 5.69 1.08 0           P   

L300 11 Quartz Milky 

Small 
fraction 

flake 5.57 5.24 2.32 0           P   

L301 11 Quartz 
Greasy-

milky 

Small 
fraction 

flake 8.70 7.88 1.81 0           P   

L302 11 Quartz Greasy 

Small 
fraction 

flake 7.29 6.04 1.07 0           P   

L303 11 Quartz 
Fine 

grained 

Small 
fraction 

flake 6.61 6.86 3.97 <50           P   
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L305 11 Quartz Greasy 

Small 
fraction 

flake 6.54 3.70 2.40 0           P   

L306 11 Quartz Greasy 

Small 
fraction 

flake 6.91 3.58 1.59 0           P   

L307 11 Quartz Milky 

Small 
fraction 

flake 5.12 4.58 1.22 0           P   

L308 11 Quartz Greasy 

Small 
fraction 

flake 7.70 4.64 2.05 0           P   

L309 11 Quartz Greasy 

Small 
fraction 

flake 6.67 6.40 2.60 0           P   

L310 11 Quartz Greasy 

Small 
fraction 

flake 6.82 4.22 1.31 0           P   

L311 11 Quartz Greasy 

Small 
fraction 

flake 7.75 4.88 3.51 0           P   

L312 11 Quartz Greasy 

Small 
fraction 

flake 7.33 5.67 1.42 <50           P   

L313 11 Quartz Greasy 

Small 
fraction 

flake 9.34 8.91 1.67 0           P   

L314 11 Quartz Greasy 

Small 
fraction 

flake 5.15 5.41 1.91 0           P   

L315 11 Flint   

Small 
fraction 

flake 9.61 5.78 2.02 0           P   

L325 5/11 Quartz Greasy 

Small 
fraction 

flake 4.99 10.80 1.77 0           P   
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L326 5/11 Quartz Milky 

Small 
fraction 

flake 8.40 6.38 2.06 0           P   

L327 5/11 Quartz Greasy 

Small 
fraction 

flake 8.29 8.70 1.72 0           P   

L329 17 Quartz Greasy 

Small 
fraction 

flake 8.94 11.08 3.32 0           P   

L330 17 Quartz Greasy 

Small 
fraction 

flake 5.97 6.21 2.20 0           P   

L332 6 Quartz Greasy 

Small 
fraction 

flake 9.29 6.85 1.75 <50           P   

L333 6 Quartz 
Greasy 
(dark) 

Small 
fraction 

flake 7.93 7.83 4.63 <50           P   

L335 6 Quartz 
Milky-

feldspar 

Small 
fraction 

flake 8.47 7.94 4.06 >50           P   

L336 6 Quartz Milky 

Small 
fraction 

flake 5.65 8.56 3.40 0           P   

 

Table 77. Tràigh na Beirigh 2 chunks and small fraction chunks 

ID No. 
Context 

No. Raw Material 

Raw 
Material 
Variety Typology 

Length 
(mm) Width (mm) 

Thickness 
(mm) Cortex % Breakage Notes 

L25 3 Quartz Greasy Chunk 10.80 8.07 3.69 <50 P   

L78 11 Quartz Greasy Chunk 12.82 11.25 6.18 0 P   

L186 5 Quartz Greasy Chunk 13.72 11.77 5.21 <50 P   

L267 11 Quartz Greasy Chunk 12.77 6.13 6.32 <50 P   

L55 11 Quartz Greasy 

Small 
fraction 
chunk 5.52 5.21 5.29 0 P   
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L134 19 Quartz 
Greasy 
(dark) 

Small 
fraction 
chunk 7.34 4.59 2.73 <50 P   

L149 21 Quartz Greasy 

Small 
fraction 
chunk 9.79 6.17 4.96 0 P   

L209 5 Quartz Greasy 

Small 
fraction 
chunk 7.10 6.26 2.31 0 P   

L210 5 Quartz Greasy 

Small 
fraction 
chunk 6.95 5.18 6.23 0 P   

L274 11 Quartz Greasy 

Small 
fraction 
chunk 8.88 8.03 4.55 <50 P   
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Appendix 7 Tràigh na Beirigh 3 Lithic Catalogue 

Table 78. Tràigh na Beirigh 3 flake 

ID No. 
Context 

No. Raw Material 

Raw 
Material 
Variety Typology 

Length 
(mm) 

Width 
(mm) 

Thick 
-ness 
(mm) 

Cortex 
% 

Platform 
Type 

Platform 
Width 
(mm) 

Platform 
Depth 
(mm) 

Dorsal 
Flake 
Scar 

Count 

Dorsal 
Flake 
Scar 

Pattern 
Break 
-age Notes 

L1 1 Quartz Greasy Flake 10.30 7.80 2.02 0 Absent    1 Uni P   
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Appendix 8 Tràigh na Beirigh 4 Lithic Catalogue 

Table 79. Tràigh na Beirigh 4 core 

ID No. 
Context 

No. Raw Material 

Raw 
Material 
Variety Typology 

Length 
(mm) 

Weight 
(g) Cortex 

Flake 
Removal 

Count 
Flake Removal 

Sequence 
Platform 

Preparation Notes 

L18 1 Quartz Greasy Core 23.68 3.22 A 4 Multidirectional Lost 
Core rejuvenation scar evident, removing 
the original platform 

 

Table 80. Tràigh na Beirigh 4 flakes and small fraction flakes 

ID No. 
Context 

No. Raw Material 

Raw 
Material 
Variety Typology 

Length 
(mm) 

Width 
(mm) 

Thick 
-ness 
(mm) 

Cortex 
% 

Platform 
Type 

Platform 
Width 
(mm) 

Platform 
Depth 
(mm) 

Dorsal 
Flake 
Scar 

Count 

Dorsal 
Flake 
Scar 

Pattern 
Break 
-age Notes 

SF1 1 Quartz 
Fine 

grained Flake 17.13 8.47 4.81 0 Plain 7.51 4.69 2 Uni P   

SF3 1 Quartz 

Fine 
grained-
greasy Flake 29.92 35.94 9.72 <50 Broken     5 Multi A 

Cortex smooth and 
flat 

L3 1 Quartz Greasy Flake 12.18 6.42 3.26 0 Broken     1 Uni P   

L12 1 Quartz Greasy Flake 12.50 8.23 1.70 <50 Absent     1 Uni P   

L13 1 Quartz Greasy Flake 10.48 12.51 3.45 >50 Plain 8.25 3.34 1 Uni P 
Cortex smooth and 
slightly rounded 

L15 1 Quartz Greasy Flake 18.91 20.02 3.91 100 Absent     N/A N/A P 
Cortex flat break 
along fracture plane 

L16 1 Quartz Greasy Flake 17.61 18.22 5.30 >50 Absent     1 Uni P 
Cortex flat break 
along fracture plane 

L1 1 Quartz Greasy 

Small 
fraction 

flake 9.21 9.72 4.33 0           P   

L2 1 Quartz Greasy 

Small 
fraction 

flake 7.49 4.39 0.64 0           A   
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L4 1 Quartz Greasy 

Small 
fraction 

flake 9.85 4.22 2.02 0           P   

L6 1 Quartz Greasy 

Small 
fraction 

flake 7.08 6.93 1.91 100           A   

L7 1 Quartz Greasy 

Small 
fraction 

flake 7.86 10.01 3.51 >50           P   

L8 1 Quartz Greasy 

Small 
fraction 

flake 6.65 4.83 2.30 0           P   

L9 1 Quartz Greasy 

Small 
fraction 

flake 9.01 6.65 3.01 >50           A   

L10 1 Quartz Greasy 

Small 
fraction 

flake 7.73 6.29 1.44 0           P   

L11 1 Quartz Greasy 

Small 
fraction 

flake 4.56 9.16 1.50 100           P   

 

Table 81. Tràigh na Beirigh 4 chunks and small fraction chunks 

ID No. 
Context 

No. Raw Material 

Raw 
Material 
Variety Typology 

Length 
(mm) Width (mm) 

Thickness 
(mm) Cortex % Breakage Notes 

L14 1 Quartz 
Fine 

grained Chunk 13.62 8.69 7.24 0 P   

L5 1 Quartz Greasy 

Small 
fraction 
chunk 6.96 6.72 1.15 <50 A   
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Table 82. Tràigh na Beirigh 4 core secondary technology 

ID No. 
Context 

No. Raw Material 

Raw 
Material 
Variety Typology 

Length 
(mm) 

Weight 
(g) Cortex 

Flake 
Removal 

Count 
Flake Removal 

Sequence 
Platform 

Preparation Notes 

SF2 1 Quartz Greasy Core/ Scraper 32.11 8.92 A 8 Bidirectional Unprepared 

Bipolar core that looks to have been 
used as a scraper evidenced by a 
small area of retouch and crushing at 
one end 

 

Table 83. Tràigh na Beirigh 4 flake secondary technology 

ID No. 
Context 

No. Raw Material 

Raw 
Material 
Variety Typology 

Length 
(mm) 

Width 
(mm) 

Thick 
-ness 
(mm) 

Cortex 
% 

Platform 
Type 

Platform 
Width 
(mm) 

Platform 
Depth 
(mm) 

Dorsal 
Flake Scar 

Count 

Dorsal 
Flake 
Scar 

Pattern 
Break 
-age Notes 

L17 1 Quartz Greasy Notch 15.77 19.11 4.95 0 Broken     1 Uni P   

 

Table 84. Tràigh na Beirigh 4 detail of retouch 

ID No. Type Extent Orientation Fineness Morphology Angle Course Notes 

SF2 Edge Sporadic * Fine Sub-parallel 
Abrupt-Very 

Abrupt Convex *Orientation could not be identified due to the fact this was originally a core  

L17 Invasive Sporadic Normal Very coarse *   Notched *Morphology could not be recorded as the retouch is only a single removal 
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Appendix 9 Tràigh na Beirigh 9 Lithic Catalogue 

Table 85. Tràigh na Beirigh 9 coarse stone tools 

ID No. 
Context 

No. Raw Material 

Raw 
Material 
Variety Typology 

Length 
(mm) Width (mm) 

Thickness 
(mm) Notes 

SF31 7 Quartz Milky Manuport 77.12 50.29 32.60 Sub-angular pebble 

L54 5 Sandstone   Manuport 15.46 14.17 8.45 
Rounded pebble, broken; not consistent with the background material in the 
sample 

L255 7 Flowstone   Manuport 56.82 32.93 24.34 
Probable hammerstone - rounded pebble with pitting along one face, likely 
percussion damage 

 

Table 86. Tràigh na Beirigh 9 cores 

ID No. 
Context 

No. Raw Material 

Raw 
Material 
Variety Typology 

Length 
(mm) 

Weight 
(g) Cortex 

Flake 
Removal 

Count 
Flake Removal 

Sequence 
Platform 

Preparation Notes 

SF29 6 Quartz Greasy Core 17.22 2.23 A 6 Multidirectional 
Unprepared 

/Lost   

L3 4 Quartz Milky Core 9.92 0.58 P 1 Unidirectional Unprepared 
Cortex frosted and weathered - 
block/plate 

L23 5 Quartz 
Greasy 
(dark) Core 16.48 1.38 P 5 Multidirectional 

Unprepared 
/Lost Cortex flat and frosted - block/plate 

L78 5 Quartz Greasy Core 8.14 0.23 A 4 Multidirectional Simple/lost   
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Table 87. Tràigh na Beirigh 9 flakes and small fraction flakes 

ID No. 
Context 

No. Raw Material 

Raw 
Material 
Variety Typology 

Length 
(mm) 

Width 
(mm) 

Thick 
-ness 
(mm) 

Cortex 
% 

Platform 
Type 

Platform 
Width 
(mm) 

Platform 
Depth 
(mm) 

Dorsal 
Flake 
Scar 

Count 

Dorsal 
Flake 
Scar 

Pattern 
Break 
-age Notes 

SF1a 5 Quartz Greasy Flake 17.25 15.76 5.97 0 Broken     1 Uni P 

Broken edge used as 
a rejuvenated 
platform from which 
to detach another 
flake, prior to 
removal of this flake 

SF1b 5 Quartz Milky Flake 18.58 19.12 6.23 >50 Broken     1 Uni P 
Cortex flat and 
frosted - block/plate 

SF3 6 Quartz Milky Flake 26.5 28.72 16 >50 Plain 10.58 4.32 2 Bi P 
Not bipolar; cortex is 
rounded - pebble 

SF4 6 Quartz Milky Flake 17.84 23.23 10.55 0 Plain 23.23 10.55 3 Multi A   

SF5 5 Quartz Greasy Flake 27.66 28.79 9.35 <50 Facetted 19.14 6.95 3 Multi P 

Further working 
appears to have 
been used to detach 
small, thin blades; 
not enough cortex to 
ascertain probable 
source 

SF6 5 Quartz Milky Flake 18.27 28.47 6.87 >50 Plain 8.05 7.13 5 Multi A 
Cortex flat and 
frosted - block/plate 

SF7 5 Quartz Greasy Flake 12.83 23.03 4.8 <50 Broken     3 Multi A 

Not enough cortex to 
ascertain probable 
source 

SF8 5 Quartz 
Greasy 
(dark) Flake core 23.35 14.1 6.05 <50 Broken     2 Multi P 

Flake has broken 
perpendicular to the 
platform, creating an 
edge that has been 
used as a platform 
for a subsequent 
flake removal; not 
enough cortex to 
ascertain probable 
source 
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SF9 5 Quartz Greasy Flake 19.22 14.58 9.54 0 Broken     1 Uni P   

SF10 5 Quartz 
Greasy 
(dark) Flake 16.10 22.57 7.47 0 Facetted 4.99 6.61 8 Multi P   

SF11 5 Quartz Greasy Flake 20.47 27.67 5.41 0 Broken     1 Uni P   

SF12 5 Quartz Greasy Flake 20.17 19.24 3.27 0 Absent     3 Multi A 

Yellow staining on 
two of the dorsal 
scars 

SF13 5 Quartz Greasy Flake 15.75 17.58 5.17 <50 
Broken/C

ortical     2 Uni P 
Cortex rounded - 
pebble 

SF15 5 Quartz Greasy Flake 14.75 11.79 6.36 0 Plain 10.71 6.36 3 Indet P   

SF17 5 Quartz Greasy Flake 11.86 17.73 3.32 100 Crushed     N/A N/A A 
Cortex flat and 
frosted - block/plate 

SF21 5 Quartz Greasy Flake 13.06 9.03 3.29 >50 Broken     1 Uni P 
Cortex smooth and 
rounded - pebble 

SF23 5 Quartz 
Fine 

grained 

Core 
rejuv-

enation 
flake 23.14 10.54 11.70 0 Plain 9.82 7.91 5 Multi A   

SF24 5 Quartz 
Fine 

grained Flake 22.33 19.70 6.12 0 Broken     2 Indet P   

SF26 5 Quartz 
Greasy 
(dark) Flake 10.00 7.24 13.21 >50 Crushed     1 Uni P 

Cortex rounded - 
pebble 

SF27 5 Quartz Milky Flake 11.08 6.96 1.87 100 Absent     N/A N/A P 
Cortex flat and 
frosted - block/plate 

SF32 7 Quartz 
Greasy 
(dark) Flake 29.76 22.03 8.05 >50 Broken     2 Multi P 

Cortex flat and mixed 
raw material - 
outcrop? 

SF33 6 Quartz Greasy Flake 20.16 18.94 5.08 0 Broken     3 Multi P   

SF34 6 Quartz Greasy Flake core 14.71 19.96 5.54 0 Plain 15.63 4.89 4 Multi P   

SF37 6 Quartz 
Greasy 
(dark) Flake 13.82 9.66 4.77 0 Crushed     1 Uni P   

SF40 9 Quartz Milky Flake 17.93 14.34 3.71 0 Absent     5 Multi A   
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SF41 9 Quartz 
Greasy 
(dark) Flake 20.68 21.61 6.77 <50 Cortical 19.71 6.16 2 Uni P 

Cortex flat and 
smooth - pebble; 
percussion marks 
visible on the cortical 
face 

L1 4 Quartz 
Fine 

grained Flake 13.10 17.38 4.14 >50 Crushed     1 Uni A 
Cortex rounded - 
pebble 

L2 4 Quartz 
Fine 

grained Flake 12.04 18.18 9.57 >50 Cortical 12.28 9.67 2 Multi A 
Cortex smooth and 
rounded - pebble 

L4 4 Quartz 
Rock 

crystal Flake 13.10 13.67 5.22 >50 Broken     1 Uni P 

Cortex flat, frosted 
and weathered - 
block/plate 

L9 5 Quartz Greasy Flake 15.91 26.53 9.53 <50 Broken     4 Multi P 

Dorsal surface 
shattered by 
previous flaking 
attempt; cortex flat 
and frosted - 
block/plate 

L12 5 Quartz Greasy Flake 17.32 19.96 4.68 0 Absent     1 Uni P   

L14 5 Quartz Milky Flake 16.88 8.00 3.06 0 Broken     1 Uni P   

L16 5 Quartz 
Coarse 
grained Flake 13.75 9.79 5.06 0 Broken     1 Uni P   

L18 5 Quartz 
Greasy 
(dark) Flake 12.94 9.04 5.10 0 Crushed     3 Multi A   

L26 5 Quartz 
Fine 

grained Flake 15.85 12.75 4.47 100 Cortical 6.20 3.91 N/A N/A P 

Cortex is flat, frosted 
and mixed raw 
material - outcrop 

L27 5 Quartz Greasy Flake 11.11 11.37 4.11 0 Crushed     1 Uni P   

L35 5 Quartz Greasy Flake 10.26 5.93 3.89 >50 Broken     1 Uni P 
Cortex flat and 
frosted - block/plate 

L38 5 Quartz 

Greasy-
fine 

grained Flake 10.24 5.70 3.26 0 Broken     1 Uni P   

L41 5 Quartz Greasy Flake 11.61 6.21 2.46 0 Crushed     1 Uni P   

L48 5 Flint   Flake 10.49 7.07 2.85 <50 Absent     3 Multi P 
Exterior cortex 
absent 

L50 5 Quartz Milky Flake 10.37 4.77 0.96 0 Absent     1 Uni A   
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L53 5 Granite   Flake 27.67 23.33 6.44 0 Broken     ? Indet P   

L55 6 Quartz 
Greasy 
(dark) Flake 11.82 8.25 3.57 0 Broken     2 Indet P   

L64 6 Quartz Milky Flake 16.82 9.10 4.85 100 Absent     N/A N/A P 

Cortex flat and 
weathered - 
outcrop? 

L65 5 Quartz 

Greasy-
fine 

grained Flake 13.31 12.62 2.73 0 Absent     1 Uni P   

L66 5 Quartz 
Greasy 
(dark) Flake 14.86 9.71 4.85 >50 Absent     N/A N/A P 

Cortex flat and mixed 
raw material - 
outcrop 

L67 5 Quartz Greasy Flake 10.86 15.46 3.40 0 Broken     1 Uni P   

L68 5 Quartz 
Greasy 
(dark) Flake 10.09 12.49 2.82 0 Absent     3 Multi P   

L70 5 Quartz 
Greasy 
(dark) Flake 13.38 12.27 5.60 <50 Broken     1 Uni P 

Cortex flat and 
frosted - block/plate 

L105 5 Quartz Milky Flake 11.27 9.05 2.03 100 Broken     N/A N/A A 
Cortex rounded - 
pebble 

L106 5 Quartz Milky Flake 14.51 7.95 3.67 0 Broken     1 Uni P   

L121 5 Quartz 
Fine 

grained Flake 10.99 4.93 2.45 0 Absent     1 Uni P   

L125 5 Carbonate   Flake 12.86 9.90 2.18 0 Absent     3 Uni P   

L126 5 Granite   Flake 11.56 19.78 4.96 100 Broken     N/A N/A P 
Cortex weathered - 
outcrop? 

L127 6 Quartz Greasy  Flake 20.85 25.35 3.39 0 Absent     1 Uni P   

L128 6 Quartz Greasy Flake core 18.30 19.05 7.58 0 Absent     2 Multi P 

Crushing on arris of 
dorsal face leading to 
removal of proximal 
end 

L129 6 Quartz 
Greasy 
(dark) Flake 17.47 11.97 6.57 0 Broken     1 Uni P   

L130 6 Quartz Greasy Flake 13.11 15.20 6.70 >50 Broken     1 Uni P 

Cortex flat and mixed 
raw material - 
outcrop 
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L131 6 Quartz Greasy Flake 19.72 15.45 13.16 <50 Absent     2 Multi P 
Cortex flat and 
smooth - pebble 

L133 6 Quartz 
Milky-
greasy Flake 10.47 14.22 5.48 0 Plain 10.35 5.48 1 Uni A   

L137 6 Quartz Greasy Flake 13.01 12.52 2.03 0 Broken     3 Multi P   

L138 6 Quartz Greasy Flake 10.32 13.30 2.84 0 Broken     2 Multi P   

L140 6 Quartz Greasy Flake 13.83 8.58 2.95 <50 Absent     1 Uni P 
Cortex rounded - 
pebble 

L145 6 Quartz Greasy Flake 12.75 9.63 2.32 0 Absent     2 Multi P   

L150 6 Quartz Greasy Flake 10.07 9.38 2.19 100 Absent     N/A N/A A 
Cortex flat and 
frosted - block/plate 

L152 6 Quartz Greasy Flake 13.58 8.60 2.84 0 Absent     3 Multi P   

L153 6 Quartz 

Greasy 
(dark)-

feldspar Flake 18.90 10.13 4.47 0 Broken     1 Uni P   

L156 6 Quartz Milky Flake 12.49 8.14 1.52 0 Absent     2 Multi A   

L157 6 Quartz Greasy Flake 10.03 10.00 1.59 0 Absent     1 Uni P   

L160 6 Quartz 
Greasy - 

Milky Flake 13.16 7.77 4.59 0 Broken     1 Uni P   

L163 6 Quartz Milky Flake 10.95 5.77 3.01 0 Broken     2 Indet A   

L166 6 Quartz 
Greasy - 

Milky Flake 12.69 3.66 1.51 0 Absent     1 Uni P   

L167 6 Quartz 
Greasy - 

Milky Flake 11.69 3.44 2.42 0 Absent     3 Uni P 

Refits with L169; 
medial lateral snap, 
proximal end 

L168 6 Quartz 
Greasy - 

Milky Flake 10.70 4.76 1.24 0 Absent     1 Uni P   

L169 6 Quartz 
Greasy - 

Milky Flake 10.05 3.03 2.28 0 Absent     3 Uni P 

Refits with L167; 
medial lateral snap, 
distal end 

L170 6 Quartz Greasy Flake 11.77 5.02 2.84 <50 Absent     1 Uni P 
Cortex flat and 
frosted - block/plate 

L173 6 Quartz 
Greasy 
(dark) Flake 11.51 8.88 5.19 <50 Broken     1 Uni P 

Cortex flat and mixed 
raw material - 
outcrop 
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L174 6 Quartz Milky Flake 10.27 9.06 2.60 100 Absent     N/A N/A A 
Cortex rounded - 
pebble 

L177 6 Quartz 
Greasy 
(dark) Flake 16.98 8.92 3.94 100 Absent     N/A N/A P 

Cortex flat and mixed 
raw material - 
outcrop 

L178 6 Quartz 
Greasy 
(dark) Flake 12.17 5.79 2.94 >50 Absent     1 Uni P 

Cortex flat and mixed 
raw material - 
outcrop 

L185 6 Quartz Greasy Flake 15.11 8.46 3.33 100 Absent     N/A N/A P 
Cortex flat and 
frosted - block/plate 

L191 6 Quartz Milky Flake 10.24 8.65 1.77 >50 Broken     1 Uni P 
Cortex flat and 
frosted - block/plate 

L215 6 Quartz Milky Flake 11.60 6.41 1.35 <50 Broken     1 Uni P 
Cortex flat and 
frosted - block/plate 

L235 6 Quartz 
Greasy 
(dark) Flake 13.84 8.51 5.02 <50 Absent     N/A N/A P 

Cortex smooth and 
rounded - pebble 

L238 6 Feldspar   Flake 10.90 10.20 2.35 0 Broken     1 Uni P   

L240 6 Feldspar   Flake 11.58 11.09 3.28 0 Plain 10.98 3.28 1 Uni A   

L241 6 Limestone   Flake 22.08 18.12 4.49 0 Broken     1 Uni P   

L242 7 Quartz Milky Flake 17.22 11.36 4.98 0 Absent     1 Uni P   

L243 7 Quartz Milky Flake 18.38 16.59 2.21 0 Absent     1 Uni P   

L244 7 Quartz 
Milky-rock 

crystal Flake 13.45 12.82 2.12 0 Absent     1 Uni P   

L245 7 Quartz 
Milky-rock 

crystal Flake 10.07 7.35 1.70 0 Absent     1 Uni P   

L246 7 Quartz 
Fine 

grained Flake 11.24 9.36 2.82 0 Broken     1 Uni P   

L248 7 Quartz Greasy Flake 13.23 10.60 3.02 0 Plain 6.41 2.18 1 Uni P   

L249 7 Quartz Milky Flake 14.28 5.64 3.52 0 Absent     2 Multi P   

L251 7 Quartz Milky Flake 10.90 7.19 3.69 0 Absent     1 Uni P   

L254 7 Quartz 
Milky/Qua

rtzite Flake 42.53 23.87 10.30 >50 Broken     1 Uni A 

Cortex flat and mixed 
raw material - 
outcrop 

L256 9 Quartz Milky Flake 13.75 12.37 2.39 0 Broken     2 Uni P   
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L258 9 Quartz 
Milky-rock 

crystal Flake 10.15 12.14 2.62 0 Broken     1 Uni P   

L270 9 Quartz 
Fine 

grained Flake 10.40 7.19 2.73 0 Broken     1 Uni P   

L278 9 Basalt   Flake 11.72 10.48 4.19 0 Broken     2 Multi A   

L279 11 Quartz Milky Flake 29.23 18.48 8.55 <50 Absent     1 Uni P 

Cortex rounded - 
pebble; 
characteristics of a 
'split cobble core' 

L280 11 Quartz Milky Flake 12.59 20.10 4.35 0 Broken     1 Uni A   

SF16 5 Quartz Milky 

Small 
fraction 

flake 8.31 13.47 8.80 <50           A  

SF19 5 Quartz Greasy 

Small 
fraction 

flake 7.77 6.44 1.88 100           P   

SF28 6 Quartz Greasy 

Small 
fraction 

flake 8.19 10.27 2.23 <50           P   

L6 4 Quartz 
Fine 

grained 

Small 
fraction 

flake 6.99 8.58 1.68 100           P   

L7 4 Quartz 
Fine 

grained 

Small 
fraction 

flake 9.95 6.81 1.21 100           P   

L10 5 Quartz 
Greasy 
(dark) 

Small 
fraction 

flake 8.91 13.31 3.92 0           P   

L11 5 Quartz Greasy 

Small 
fraction 

flake 7.68 12.00 3.21 0           P   

L13 5 Quartz 
Fine 

grained 

Small 
fraction 

flake 9.01 11.53 2.87 0           P   

L15 5 Quartz Greasy 

Small 
fraction 

flake 7.66 11.16 2.72 0           P   
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L19 5 Quartz Greasy 

Small 
fraction 

flake 7.76 10.57 3.81 0           P   

L20 5 Quartz Greasy 

Small 
fraction 

flake 8.19 9.81 2.86 0           A   

L22 5 Quartz 
Fine 

grained 

Small 
fraction 

flake 8.90 4.09 2.16 0           P   

L28 5 Quartz 
Rock 

crystal 

Small 
fraction 

flake 8.23 12.00 1.50 0           P   

L29 5 Quartz Milky 

Small 
fraction 

flake 8.82 8.78 3.36 0           P   

L30 5 Quartz Greasy 

Small 
fraction 

flake 5.61 6.75 2.15 0           P   

L31 5 Quartz Milky 

Small 
fraction 

flake 4.45 8.67 2.98 0           P   

L32 5 Quartz 
Coarse 
grained 

Small 
fraction 

flake 6.29 6.55 2.04 0           A   

L33 5 Quartz Greasy 

Small 
fraction 

flake 6.85 7.05 2.87 0           P   

L34 5 Quartz 
Coarse 
grained 

Small 
fraction 

flake 6.19 5.16 1.96 0           A   

L36 5 Quartz Greasy 

Small 
fraction 

flake 4.67 7.54 1.97 0           P   

L37 5 Quartz Greasy 

Small 
fraction 

flake 7.74 3.22 2.23 0           P   
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L39 5 Quartz 
Coarse 
grained 

Small 
fraction 

flake 6.13 6.37 1.71 0           P   

L40 5 Quartz Greasy 

Small 
fraction 

flake 5.65 6.46 1.60 0           P   

L42 5 Quartz 
Coarse 
grained 

Small 
fraction 

flake 6.39 7.89 1.92 0           P   

L44 5 Quartz 
Rock 

crystal 

Small 
fraction 

flake 5.73 10.15 3.74 <50           A   

L45 5 Quartz Greasy 

Small 
fraction 

flake 4.94 8.89 3.10 100           P   

L46 5 Quartz 
Greasy 
(dark) 

Small 
fraction 

flake 6.48 5.12 2.31 <50           P   

L47 5 Quartz 
Coarse 
grained 

Small 
fraction 

flake 7.86 5.26 2.83 <50           P   

L49 5 Quartz Milky 

Small 
fraction 

flake 8.73 6.81 3.16 0           P   

L51 5 Quartz Greasy 

Small 
fraction 

flake 4.41 6.80 1.12 0           P   

L52 5 Quartz 

Fine 
grained-
coarse 
grained 

Small 
fraction 

flake 6.18 9.69 2.14 0           P   

L56 6 Quartz Greasy 

Small 
fraction 

flake 7.33 13.55 4.45 >50           P   

L57 6 Quartz 
Fine 

grained 

Small 
fraction 

flake 6.31 9.27 2.40 0           P   
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L58 6 Quartz 
Coarse 
grained 

Small 
fraction 

flake 6.01 7.16 1.50 100           A   

L59 6 Quartz Greasy 

Small 
fraction 

flake 9.14 4.23 2.46 0           P   

L60 6 Quartz 
Fine 

grained 

Small 
fraction 

flake 4.81 7.51 1.56 100           P   

L61 6 Quartz 
Greasy 
(dark) 

Small 
fraction 

flake 6.04 9.47 2.75 >50           P   

L63 6 Quartz Greasy 

Small 
fraction 

flake 4.40 7.79 2.63 <50           P   

L69 5 Quartz Milky 

Small 
fraction 

flake 8.58 15.70 3.21 0           P   

L73 5 Quartz Milky 

Small 
fraction 

flake 9.31 11.60 2.03 >50           P   

L74 5 Quartz Greasy 

Small 
fraction 

flake 9.02 11.25 6.52 <50           P   

L75 5 Quartz 
Fine 

grained 

Small 
fraction 

flake 7.63 11.90 1.94 0           P   

L76 5 Quartz Greasy 

Small 
fraction 

flake 5.83 7.84 3.04 0           A   

L77 5 Quartz Greasy 

Small 
fraction 

flake 5.97 8.62 2.02 0           P   

L79 5 Quartz Greasy 

Small 
fraction 

flake 5.36 8.38 1.83 0           P   
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L80 5 Quartz 
Coarse 
grained 

Small 
fraction 

flake 9.84 10.48 2.75 0           P Medial fragment 

L81 5 Quartz 
Coarse 
grained 

Small 
fraction 

flake 9.63 6.80 2.13 0           P   

L82 5 Quartz Milky 

Small 
fraction 

flake 5.83 8.72 1.83 0           P   

L83 5 Quartz Milky 

Small 
fraction 

flake 9.31 10.87 2.96 0           P   

L84 5 Quartz Greasy 

Small 
fraction 

flake 7.33 12.14 1.73 0           P   

L85 5 Quartz 

Greasy-
fine 

grained 

Small 
fraction 

flake 7.54 8.89 3.37 0           P   

L88 5 Quartz 
Greasy-

quartzite 

Small 
fraction 

flake 6.71 9.01 1.74 <50           P   

L91 5 Quartz 
Fine 

grained 

Small 
fraction 

flake 6.26 6.83 1.04 0           P   

L92 5 Quartz 
Coarse 
grained 

Small 
fraction 

flake 6.52 7.30 1.58 0           P   

L94 5 Quartz Greasy 

Small 
fraction 

flake 6.04 9.46 2.51 0           A   

L96 5 Quartz 
Fine 

grained 

Small 
fraction 

flake 8.52 7.92 2.49 0           P   

L97 5 Quartz Greasy 

Small 
fraction 

flake 9.59 4.41 1.85 0           P 
Possible blank for 
rod 
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L98 5 Quartz Greasy 

Small 
fraction 

flake 6.31 8.41 3.30 <50           P   

L99 5 Quartz Greasy 

Small 
fraction 

flake 9.77 3.67 2.73 0           P   

L101 5 Quartz Greasy 

Small 
fraction 

flake 4.77 6.85 2.09 0           P   

L102 5 Quartz 
Coarse 
grained 

Small 
fraction 

flake 5.89 5.01 1.99 0           P 

Additional flake 
removed from same 
platform 

L104 5 Quartz Milky 

Small 
fraction 

flake 9.01 5.76 2.64 0           P   

L107 5 Quartz 
Fine 

grained 

Small 
fraction 

flake 6.52 7.81 1.86 0           A   

L108 5 Quartz 
Fine 

grained 

Small 
fraction 

flake 6.28 7.74 2.27 0           P   

L109 5 Quartz 
Fine 

grained 

Small 
fraction 

flake 8.47 5.11 1.81 0           P   

L110 5 Quartz 
Fine 

grained 

Small 
fraction 

flake 4.29 6.37 2.99 100           P   

L111 5 Quartz 
Fine 

grained 

Small 
fraction 

flake 5.11 7.49 3.25 0           P   

L112 5 Quartz Greasy 

Small 
fraction 

flake 6.86 5.87 1.31 0           P   

L113 5 Quartz Milky 

Small 
fraction 

flake 8.60 3.73 3.82 100           P   
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L114 5 Quartz Milky 

Small 
fraction 

flake 5.50 8.65 1.53 0           P   

L115 5 Quartz Milky 

Small 
fraction 

flake 5.58 7.24 1.29 0           P   

L116 5 Quartz Milky 

Small 
fraction 

flake 7.57 8.25 2.79 <50           P   

L117 5 Quartz Greasy 

Small 
fraction 

flake 6.12 7.48 4.29 100           P   

L118 5 Quartz 
Fine 

grained 

Small 
fraction 

flake 6.42 6.07 1.69 0           P   

L120 5 Quartz Milky 

Small 
fraction 

flake 4.79 7.93 2.61 100           P   

L122 5 Quartz Greasy 

Small 
fraction 

flake 4.27 6.91 5.49 <50           P   

L123 5 Quartz 
Fine 

grained 

Small 
fraction 

flake 7.23 4.79 1.70 0           P   

L135 6 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 7.87 7.97 1.43 0           P   

L136 6 Quartz 
Milky-rock 

crystal 

Small 
fraction 

flake 8.44 9.39 1.53 0           A   

L141 6 Quartz Milky 

Small 
fraction 

flake 5.24 6.83 0.86 0           A   

L142 6 Quartz Milky 

Small 
fraction 

flake 9.59 7.61 0.95 0           A   
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L143 6 Quartz Milky 

Small 
fraction 

flake 7.72 7.73 1.01 0           P   

L144 6 Quartz Milky 

Small 
fraction 

flake 8.78 8.76 2.80 0           P   

L146 6 Quartz Milky 

Small 
fraction 

flake 1.93 6.85 0.60 0           P   

L148 6 Quartz Milky 

Small 
fraction 

flake 9.87 9.17 2.42 0           P   

L149 6 Quartz Milky 

Small 
fraction 

flake 7.27 10.62 1.72 0           P   

L151 6 Quartz Milky 

Small 
fraction 

flake 9.20 6.74 2.22 0           P   

L155 6 Quartz Milky 

Small 
fraction 

flake 9.73 10.24 1.54 0           P   

L158 6 Quartz 
Greasy – 
Feldspar 

Small 
fraction 

flake 7.96 9.14 2.50 <50           P   

L161 6 Quartz 
Greasy – 

Milky 

Small 
fraction 

flake 9.75 8.22 2.10 0           P   

L162 6 Quartz Milky 

Small 
fraction 

flake 8.06 8.98 1.46 0           P   

L164 6 Quartz 
Greasy – 

Milky 

Small 
fraction 

flake 8.96 5.54 3.26 0           P   

L165 6 Quartz Greasy 

Small 
fraction 

flake 9.88 7.65 1.18 0           P   
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L171 6 Quartz 
Greasy – 

Milky 

Small 
fraction 

flake 9.64 7.64 1.56 0           P   

L172 6 Quartz 
Greasy 
(dark) 

Small 
fraction 

flake 9.43 7.59 2.40 0           P   

L175 6 Quartz Greasy 

Small 
fraction 

flake 9.19 8.49 2.83 0           A   

L179 6 Quartz Greasy 

Small 
fraction 

flake 9.01 6.68 2.39 0           P   

L180 6 Quartz Greasy 

Small 
fraction 

flake 8.20 7.21 1.07 0           P   

L182 6 Quartz Greasy 

Small 
fraction 

flake 7.98 6.19 1.94 0           P   

L184 6 Quartz Milky 

Small 
fraction 

flake 7.57 6.91 2.26 0           P   

L186 6 Quartz 
Greasy – 

Milky 

Small 
fraction 

flake 7.75 7.42 1.23 0           P   

L188 6 Quartz Milky 

Small 
fraction 

flake 5.96 7.12 1.88 0           P   

L189 6 Quartz Greasy 

Small 
fraction 

flake 5.59 11.04 2.84 100           P   

L190 6 Quartz Greasy 

Small 
fraction 

flake 7.80 6.79 1.00 0           P   

L192 6 Quartz Greasy 

Small 
fraction 

flake 9.50 8.77 1.36 0           P   
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L193 6 Quartz Milky 

Small 
fraction 

flake 8.31 7.14 1.19 0           P   

L194 6 Quartz Milky 

Small 
fraction 

flake 5.84 8.24 1.80 0           P   

L195 6 Quartz Greasy 

Small 
fraction 

flake 7.36 7.55 1.13 0           A   

L196 6 Quartz 
Fine 

grained 

Small 
fraction 

flake 9.72 8.39 1.93 0           A 

Small flake became 
detached from 
ventral face during 
recording 

L197 6 Quartz Milky 

Small 
fraction 

flake 7.30 6.43 1.88 0           P   

L198 6 Quartz Milky 

Small 
fraction 

flake 8.67 10.97 3.13 0           P   

L199 6 Quartz Milky 

Small 
fraction 

flake 5.27 6.39 1.76 0           P   

L202 6 Quartz 
Greasy 
(dark) 

Small 
fraction 

flake 7.89 9.01 2.52 >50           P   

L203 6 Quartz 
Fine 

grained 

Small 
fraction 

flake 8.59 4.38 3.09 0           P   

L204 6 Quartz 
Greasy 
(dark) 

Small 
fraction 

flake 8.55 6.69 2.30 <50           P   

L205 6 Quartz Greasy 

Small 
fraction 

flake 5.57 8.07 0.99 <50           A   

L206 6 Quartz Milky 

Small 
fraction 

flake 5.61 8.34 1.12 0           P   
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L208 6 Quartz Milky 

Small 
fraction 

flake 6.82 4.78 4.68 100           A   

L209 6 Quartz Greasy 

Small 
fraction 

flake 6.59 8.17 1.69 0           P   

L210 6 Quartz Milky 

Small 
fraction 

flake 6.60 7.16 3.14 <50           P   

L211 6 Quartz 
Fine 

grained 

Small 
fraction 

flake 6.88 8.04 1.40 0           P   

L212 6 Quartz Greasy 

Small 
fraction 

flake 7.79 6.15 1.38 100           P   

L213 6 Quartz Greasy 

Small 
fraction 

flake 6.52 6.74 5.37 <50           P   

L214 6 Quartz Milky 

Small 
fraction 

flake 6.80 7.11 4.06 0           P   

L217 6 Quartz Milky 

Small 
fraction 

flake 7.25 7.66 0.89 <50           P   

L218 6 Quartz Milky 

Small 
fraction 

flake 6.99 3.71 2.92 0           P   

L219 6 Quartz Milky 

Small 
fraction 

flake 8.99 6.29 2.14 0           P   

L220 6 Quartz Milky 

Small 
fraction 

flake 5.38 7.01 1.65 0           P   

L221 6 Quartz Milky 

Small 
fraction 

flake 5.21 5.45 1.05 0           P   
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L222 6 Quartz Greasy 

Small 
fraction 

flake 9.30 5.88 2.10 0           P   

L223 6 Quartz Greasy 

Small 
fraction 

flake 8.56 4.41 2.83 0           P   

L225 6 Quartz Milky 

Small 
fraction 

flake 7.02 6.91 2.81 <50           P   

L227 6 Quartz Greasy 

Small 
fraction 

flake 7.45 5.67 3.10 0           P   

L228 6 Quartz Greasy 

Small 
fraction 

flake 4.17 5.17 1.20 0           P   

L229 6 Quartz Greasy 

Small 
fraction 

flake 6.84 6.73 2.68 100           P   

L230 6 Quartz Milky 

Small 
fraction 

flake 5.78 6.42 1.93 <50           P   

L231 6 Quartz Milky 

Small 
fraction 

flake 6.84 5.54 1.80 0           P   

L232 6 Quartz 
Greasy 
(dark) 

Small 
fraction 

flake 7.67 8.13 2.18 0           P   

L233 6 Quartz 
Fine 

grained 

Small 
fraction 

flake 7.44 4.99 1.53 <50           P   

L234 6 Quartz 

Coarse 
grained – 
Quartzite 

Small 
fraction 

flake 5.96 10.77 2.76 0           P   

L239 6 Feldspar   

Small 
fraction 

flake 6.78 6.40 2.61 0           P   
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L247 7 Quartz Milky 

Small 
fraction 

flake 4.44 7.94 2.47 0           P   

L252 7 Quartz Milky 

Small 
fraction 

flake 8.97 6.59 1.18 0           P   

L253 7 Quartz Quartzite 

Small 
fraction 

flake 9.59 7.38 2.04 0           P   

L257 9 Quartz Milky 

Small 
fraction 

flake 9.85 9.15 5.79 >50           P   

L259 9 Quartz 

Greasy - 
Fine 

grained 

Small 
fraction 

flake 9.93 8.89 0.90 100           P   

L260 9 Quartz Milky 

Small 
fraction 

flake 9.56 6.55 2.94 0           P   

L261 9 Quartz 
Fine 

grained 

Small 
fraction 

flake 7.26 8.31 2.62 0           A   

L262 9 Quartz 
Fine 

grained 

Small 
fraction 

flake 7.83 6.50 3.24 0           P   

L263 9 Quartz 
Fine 

grained 

Small 
fraction 

flake 6.78 7.22 2.79 0           P   

L264 9 Quartz Greasy 

Small 
fraction 

flake 9.16 13.16 4.22 <50           P   

L265 9 Quartz 
Greasy 
(dark) 

Small 
fraction 

flake 6.28 7.76 2.23 0           P   

L266 9 Quartz Milky 

Small 
fraction 

flake 6.74 10.63 3.14 0           P   
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L267 9 Quartz Milky 

Small 
fraction 

flake 6.09 8.24 5.02 <50           P   

L268 9 Quartz 
Fine 

grained 

Small 
fraction 

flake 9.07 7.30 3.39 0           P   

L271 9 Quartz Milky 

Small 
fraction 

flake 9.32 5.93 2.06 0           P   

L273 9 Quartz 
Rock 

crystal 

Small 
fraction 

flake 8.16 6.81 3.35 0           P   

L274 9 Quartz 
Fine 

grained 

Small 
fraction 

flake 8.07 6.66 2.40 0           P   

L281 11 Quartz 
Fine 

grained 

Small 
fraction 

flake 9.20 10.31 3.20 0           P   

L282 11 Quartz Milky 

Small 
fraction 

flake 7.12 4.45 3.36 >50           P   

 

Table 88. Tràigh na Beirigh 9 chunks and small fraction chunks 

ID No. 
Context 

No. Raw Material 

Raw 
Material 
Variety Typology 

Length 
(mm) Width (mm) 

Thickness 
(mm) Cortex % Breakage Notes 

SF30 7 Quartz Milky Chunk 15.17 7.37 6.68 0 P   

SF35 6 Quartz 
Greasy 
(dark) Chunk 10.33 14.14 4.80 0 P   

SF39 9 Quartz Fine grained Chunk 10.87 8.21 7.73 <50 A   

SF42 11 Quartz Milky Chunk 18.92 10.31 9.48 <50 P   

L21 5 Quartz Fine grained Chunk 17.00 10.15 6.43 >50 P   

L24 5 Quartz Greasy Chunk 10.87 4.02 4.27 0 P   

L25 5 Quartz Greasy Chunk 15.37 8.22 3.65 0 P   

L43 5 Quartz Greasy Chunk 10.29 6.50 3.32 0 P   
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L71 5 Quartz 
Milky-
greasy Chunk 12.24 10.59 6.38 0 P   

L72 5 Quartz 

Greasy 
(dark) -

quartzite Chunk 22.78 11.27 5.92 >50 P   

L86 5 Quartz Greasy Chunk 10.65 6.84 2.55 0 A   

L90 5 Quartz Greasy Chunk 10.03 7.72 3.93 100 P   

L93 5 Quartz Greasy Chunk 10.87 6.57 3.63 0 P   

L95 5 Quartz Greasy Chunk 11.75 5.36 3.37 0 P   

L132 6 Quartz Greasy Chunk 11.91 13.75 5.15 <50 P   

L134 6 Quartz 
Greasy 
(dark) Chunk 17.39 14.59 6.21 >50 A   

L139 6 Quartz 
Greasy 
(dark) Chunk 15.02 11.49 3.86 0 P   

L154 6 Quartz Greasy Chunk 10.91 9.54 3.17 0 A   

L159 6 Quartz 
Greasy - 

Fine grained Chunk 14.37 7.80 6.72 >50 P   

L176 6 Quartz 
Greasy 
(dark) Chunk 13.24 6.02 5.34 <50 P   

L183 6 Quartz Greasy Chunk 11.73 5.50 3.80 0 P   

L250 7 Quartz Milky Chunk 10.07 8.00 3.42 0 P   

L277 9 Quartz 
Coarse 
grained Chunk 13.94 6.32 5.93 0 P   

SF18 5 Quartz Greasy 
Small fraction 

chunk 6.81 6.57 4.90 0 P   

L5 4 Quartz Milky 
Small fraction 

chunk 7.24 9.53 3.76 <50 A   

L17 5 Quartz Greasy 
Small fraction 

chunk 7.81 6.05 2.65 0 P   

L62 6 Quartz Greasy 
Small fraction 

chunk 9.96 3.37 3.28 0 P   

L100 5 Quartz Greasy 
Small fraction 

chunk 8.35 5.55 2.72 0 P   

L103 5 Quartz 
Coarse 
grained 

Small fraction 
chunk 7.69 6.52 2.12 <50 P   
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L119 5 Quartz Milky 
Small fraction 

chunk 7.25 5.40 3.28 <50 P   

L124 5 Quartz Milky 
Small fraction 

chunk 6.39 4.72 2.29 0 P   

L147 6 Quartz Milky 
Small fraction 

chunk 8.84 8.41 2.65 0 P   

L181 6 Quartz Milky 
Small fraction 

chunk 7.73 5.60 2.16 * P 
*Cortex presence indeterminate due to 
yellow staining across piece 

L187 6 Quartz Milky 
Small fraction 

chunk 5.72 5.00 2.33 0 P   

L200 6 Quartz 
Greasy 
(dark) 

Small fraction 
chunk 8.65 8.48 6.82 <50 P   

L201 6 Quartz 
Greasy 
(dark) 

Small fraction 
chunk 9.29 5.64 5.79 <50 P   

L207 6 Quartz Milky 
Small fraction 

chunk 6.56 6.37 3.71 0 P   

L216 6 Quartz Greasy 
Small fraction 

chunk 6.37 5.74 2.71 100 P   

L224 6 Quartz Milky 
Small fraction 

chunk 7.10 5.55 3.01 <50 A   

L226 6 Quartz Milky 
Small fraction 

chunk 6.07 5.58 3.28 0 P   

L236 6 Quartz 
Greasy 
(dark) 

Small fraction 
chunk 7.61 6.45 3.49 0 P   

L237 6 Quartz Milky 
Small fraction 

chunk 5.53 5.96 3.26 0 P   

L269 9 Quartz Fine grained 
Small fraction 

chunk 4.53 5.64 4.43 0 A   

L272 9 Quartz 

Fine grained 
- Rock 
crystal 

Small fraction 
chunk 6.41 5.56 1.56 0 P   

L275 9 Quartz Greasy 
Small fraction 

chunk 8.38 6.49 4.41 >50 P   

L276 9 Quartz 
Milky - Fine 

grained 
Small fraction 

chunk 8.85 11.59 6.91 0 P   
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Table 89. Tràigh na Beirigh 9 secondary technology 

ID No. 
Context 

No. Raw Material 

Raw 
Material 
Variety Typology 

Length 
(mm) 

Width 
(mm) 

Thick-
ness 
(mm) 

Cortex 
% 

Platform 
Type 

Platform 
Width 
(mm) 

Platform 
Depth 
(mm) 

Dorsal 
Flake 
Scar 

Count 

Dorsal 
Flake 
Scar 

Pattern 
Break 
-age Notes 

SF14 5 Quartz Greasy 
Oblique 

point 22.37 8.99 3.18 <50 Absent     1 Uni P 

Flake removed from 
a flake core as two 
ventral surfaces are 
present; cortex flat 
break along fracture 
plane 

SF25 5 Quartz Milky Burin 14.05 15.78 5.11 0 Broken     1 Uni A 

Burin spall removed 
obliquely from 
proximal to right 
lateral with the facet 
perpendicular to the 
lower face 

SF36 6 Quartz 
Greasy 
(dark) Notch 17.79 11.68 3.50 <50 Absent     1 Uni P 

Notch initiated from 
ventral side and 
situated on the 
right; cortex flat 
break along fracture 
plane 

L89 5 Quartz Milky Burin 10.53 11.34 3.04 0 Crushed     3 Multi A 

Possible burin spall 
removed from distal 
to left lateral 

L8 5 Quartz 
Fine 

grained Burin 16.41 13.83 3.41 0 Plain 7.88 2.36 2 Multi P 

Burin spall initiated 
from distal end to 
right lateral 

 

Table 90. Tràigh na Beirigh 9 detail of retouch 

ID No. Type Extent Orientation Fineness Morphology Angle Course Notes 

SF14 Edge Sporadic From ridge (cortex) Fine Scaled Abrupt Straight Unusual backing on arris - possible keying for hafting 
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Appendix 10 Pabaigh Mòr South Lithic Catalogue 

Table 91. Pabaigh Mòr South cores 

ID No. 
Context 

No. Raw Material 

Raw 
Material 
Variety Typology 

Length 
(mm) 

Weight 
(g) Cortex 

Flake 
Removal 

Count 
Flake Removal 

Sequence 
Platform 

Preparation Notes 

L12 2 Flint   Core 13.97 1.78 P 9 Multidirectional 
Unprepared 

/lost Cortex smooth - pebble 

L13 2 Quartz 

Fine 
grained - 

greasy 
Core/test 

piece 110.4 127.09 A 5 Unidirectional Unprepared 

Angular block; removals appear to 
have been done with the purpose of 
testing the block – removal on lateral 
edge, perpendicular to the rest 
indicates scar from blow used to 
detach the piece 

 

Table 92. Pabaigh Mòr South flakes and small fraction flakes 

ID No. 
Context 

No. Raw Material 

Raw 
Material 
Variety Typology 

Length 
(mm) 

Width 
(mm) 

Thick-
ness 
(mm) 

Cortex 
% 

Platform 
Type 

Platform 
Width 
(mm) 

Platform 
Depth 
(mm) 

Dorsal 
Flake 
Scar 

Count 

Dorsal 
Flake 
Scar 

Pattern 
Break 
-age Notes 

L1 1 Quartz Greasy Flake 19.30 12.03 4.47 <50 Plain 8.11 1.97 1 Uni P 
Cortex flat and 
frosted - block/plate 

L2 1 Quartz Greasy Flake 18.42 9.19 4.92 100 Absent     N/A  N/A P 

Cortex flat and 
smooth - likely 
pebble 

L7 2 Quartz Milky Flake 11.24 4.82 2.30 0 Broken     1 Uni P   

L10 2 Quartz Greasy Flake 12.69 18.07 3.90 100 Broken     N/A  N/A P 
Cortex flat and 
frosted - block/plate 
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L11 2 Quartz Greasy Flake core 3.73 25.76 5.74 0 Broken     1 Uni P 

Breakage on left 
lateral edge due to 
knapping error 
resulted in an 
accidentally 
rejuvenated platform 
which was used for a 
removal on the 
dorsal side 

L3 2 Quartz Milky 

Small 
fraction 

flake 6.22 5.47 2.06 0           A   

L5 2 Quartz Milky 

Small 
fraction 

flake 9.86 9.31 1.14 0           A   

L6 2 Quartz Greasy 

Small 
fraction 

flake 3.99 9.84 1.74 0           A   

L8 2 Quartz Greasy 

Small 
fraction 

flake 7.06 11.10 1.45 0           P   

 

Table 93. Pabaigh Mòr South chunks and small fraction chunks 

ID No. 
Context 

No. Raw Material 

Raw 
Material 
Variety Typology 

Length 
(mm) Width (mm) 

Thickness 
(mm) Cortex % Breakage Notes 

L4 2 Quartz Greasy Chunk 9.81 6.63 4.33 0 P   

L9 2 Quartz Milky Chunk 15.14 9.25 5.64 <50 P   
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Appendix 11 Harris – Small Fraction Flakes, Chunks, and Small 

Fraction Chunks Results 

11.1. Northton 2010 

11.1.1. Small Fraction Flake Assemblage 

The small fraction flake (<10mm) assemblage from Northton totals 311 pieces. There are 279 small 

fraction flakes in Phase 3 (C009; C014), and 32 small fraction flakes in Phase 4 (C016; C017). 

11.1.1.1. Raw Material 

Quartz makes up two-thirds of the total small fraction flake assemblage at Northton (Figure 274). 

A little less than a quarter of the small fraction flakes are flint, and there is a small proportion of 

mudstone. Two small fraction flakes of feldspar and an unknown igneous raw material comprise 

the remainder. 

 

Figure 274. Northton 2010 total small fraction flake assemblage raw material composition 

In Phase 3, quartz is the dominant raw material in the small fraction flake assemblage (Figure 275). 

Flint is represented more often than mudstone, and the small fraction flakes of feldspar and an 

unknown igneous rock are found in this phase. 
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Figure 275. Northton 2010 Phase 3 small fraction flake raw material composition 

Mixed quartz small fraction flakes are the most highly represented in the assemblage, with milky 

quartz also frequently occurring (Figure 276). There are smaller numbers of fine grained and greasy 

quartz present, and rare occurrences of rock crystal. 

 

Figure 276. Northton 2010 Phase 3 small fraction flake quartz varieties 

Flint is the most common raw material in the small fraction flake assemblage from Phase 4 (Figure 

277). Fine grained and milky quartz varieties are equally represented, with two flakes mixed small 

fraction flakes of milky-rock crystal quartz also present (Figure 278). 
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Figure 277. Northton 2010 Phase 4 small fraction flake raw material composition 

 

Figure 278. Northton 2010 Phase 4 small fraction flake quartz varieties 

11.1.1.2. Small Fraction Flake Dimensions 

The summary statistics for the small fraction flake assemblage from Northton are presented in 

Table 94. The length of the small fraction flakes is constrained by the recording methodology; 

therefore none exceed 10mm in length. In Phase 3 the flint small fraction flakes are on average 

longer and wider than both the mudstone and quartz small fraction flakes. The quartz small fraction 

flakes are thicker on average. In Phase 4, the flint small fraction flakes are longer than those made 

from quartz, although the quartz small fraction flakes are both wider and thicker than flint. 
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Raw 

Material 

  Length (mm) Width (mm) Thickness (mm) 

  Phase 3 Phase 4 Phase 3 Phase 4 Phase 3 Phase 4 

Flint 

Min 4.10 4.80 4.70 4.20 0.50 0.50 

Max 9.90 9.90 16.60 12.30 5.50 4.90 

Mean 7.55 7.70 8.56 7.44 2.12 2.07 

SD 1.595226 1.572428 2.447584 1.707835 1.032285 1.178477 

Mudstone 

Min 3.60  3.90  0.70  
Max 9.90  16.10  4.40  

Mean 7.32  8.55  2.22  
SD 1.673967  2.789873  0.978139  

Quartz 

Min 3.80 4.60 4.30 4.70 0.90 1.20 

Max 9.90 8.90 17.20 11.30 22.60 6.20 

Mean 7.40 6.83 8.19 8.15 2.72 2.98 

SD 1.495542 1.410629 2.285823 2.189022 1.758615 1.541708 

Table 94. Northton 2010 small fraction flake dimension summary statistics for Phase 3 and 4 primary raw materials. 
*Includes outlier. By removing the outlier, mean = 2.62, SD = 1.02505 

11.1.1.2.1. Phase 3 

There is a weak positive correlation between the length and width of the flint small fraction flakes 

in Phase 3. This contrasts with the baked mudstone small fraction flakes from this phase, which 

present no discernible relationship (Figure 279). The feldspar and igneous raw material small 

fraction flakes also follow a positive trend. The data points are constrained by the methodology 

employed, which classifies small fraction flakes as <10mm in length and the recovery method of 

material >4mm. The greatest concentration of small fraction flakes in flint, mudstone, feldspar and 

igneous raw material is more than 6mm in length and between 5mm-12mm in width. Single flint 

and mudstone small fraction flakes are more than 15mm in width each, and there is very little 

difference between the mean widths of these raw materials (Table 94 and Figure 279). 

 

Figure 279. Northton 2010 Phase 3 small fraction flake dimensions length:width, quartz excluded 
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The majority of the quartz small fraction flakes fall within the same dense concentration as the 

other raw materials (Figure 280 and Figure 281). There are marginally more quartz small fraction 

flakes that exceed 15mm in width, with the mean width much greater than that of flint or mudstone 

small fraction flakes (Table 94). There is no observable relationship between the length and width 

of the quartz small fraction flakes in Phase 3. 

 

Figure 280. Northton 2010 Phase 3 quartz small fraction flake dimensions length:width 

The minimum recorded length for mudstone and quartz small fraction flakes is marginally lower 

than that for flint. These raw materials are also shorter, but wider, on average than flint small 

fraction flakes (Table 94 and Figure 281). 

 

Figure 281. Northton 2010 Phase 3 small fraction flake dimensions length:width, quartz included 

The relationship between length and thickness for the feldspar, igneous raw material and flint small 

fraction flakes in Phase 3 is positive, as observed above (Figure 282). However, this is not evident 
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group between 0.50mm-3.5mm in thickness. The maximum thickness for the flint small fraction 

flakes is greater than the mudstone flakes, which have a very small standard deviation from the 

mean (Table 94). 

 

Figure 282. Northton 2010 Phase 3 small fraction flake dimensions length:thickness, quartz excluded 

It is clear from Figure 283 and Figure 284 that there is a significant outlier in terms of the thickness 

of the quartz small fraction flake assemblage in Phase 3, which is unusually thick and obscures the 

remainder of the data. By removing the outlier (Figure 284) it is evident that the majority of the 

quartz small fraction flakes are less than 5mm in thickness, which compares well with the other raw 

materials in the assemblage (Figure 285 and Figure 286). 

 

Figure 283. Northton 2010 Phase 3 quartz small fraction flake dimensions length:thickness 
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Figure 284. Northton 2010 Phase 3 quartz small fraction flake dimensions length:thickness, excluding significant 
outlier 

Despite the excessive thickness of a single quartz small fraction flake, there is little difference 

between the standard deviation of the quartz and flint small fraction flakes. On average, the quartz 

small fraction flakes are only marginally thicker than the mudstone and flint small fraction flakes 

(Table 94). 

 

Figure 285. Northton 2010 Phase 3 small fraction flake dimensions length:thickness, quartz included 
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Figure 286. Northton 2010 Phase 3 small fraction flake dimensions length:thickness, quartz included, excluding 
significant outlier 

The small fraction flake width and thickness are not constrained by the methodology or recovery 

technique; therefore any relationships between these dimensions are easily identifiable. The 

feldspar and igneous raw material small fraction flakes from Phase 3 clearly increase in both 

dimensions; however this is less apparent in the flint and mudstone small fraction flakes (Figure 

287). The grouping between 5mm-12mm in width and 0.5mm-3.5mm in thickness is supported by 

this figure. 

 

Figure 287. Northton 2010 Phase 3 small fraction flake dimensions with:thickness, quartz excluded 

Figure 288 displays the quartz small fraction flake assemblage from Phase 3 as a whole, and Figure 

289 shows the data following the removal of the outlier. The main cluster of points falls within 

5mm-11mm in width, and 1mm-4mm in thickness as observed above, and there appears to be no 

significant relationship between the increases in these two dimensions. 
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Figure 288. Northton 2010 Phase 3 quartz small fraction flake dimensions width:thickness 

 

Figure 289. Northton 2010 Phase 3 quartz small fraction flake dimensions width:thickness, excluding significant 
outlier  

By removing the outlier (contrast Figure 290 and Figure 291) the greater range in thickness of the 

flint and quartz small fraction flakes in comparison to the mudstone small fraction flakes is very 

clear (Figure 291). All of the raw materials display a similar range in width, which is clear from the 

comparable standard deviation figures for this dimension across the raw materials (Table 94). 
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Figure 290. Northton 2010 Phase 3 small fraction flake dimensions width:thickness, quartz included 

 

Figure 291. Northton 2010 Phase 3 small fraction flake dimensions width:thickness, quartz included - significant 
outlier removed 

11.1.1.2.2. Phase 4 
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292). There is a single flint outlier that is greater than 10mm in width, whereas there are three 

quartz small fraction flakes that exceed this measurement for width. There is a negative correlation 

between the flint small fraction flakes, which become narrower as they increase in length. This may 

be due to flake breakage. The quartz small fraction flakes in contrast have a positive relationship 

between the length and width. In Phase 4 the flint small fraction flakes have larger maximum and 

minimum length dimensions than those in quartz, with a greater mean flake length (Table 94). 
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Figure 292. Northton 2010 Phase 4 small fraction flake dimensions length:width 

The quartz small fraction flakes from Phase 4 average almost a whole millimetre thicker than the 

flint small fraction flakes in this phase (Table 94 and Figure 293). The flint small fraction flakes are 

almost exclusively thinner than 3mm, with only two pieces recorded at 4.9mm. This contrasts to 

the quartz small fraction flakes which have an equal number of pieces greater, and less than, 3mm 

in thickness. 

 

Figure 293. Northton 2010 Phase 4 small fraction flake dimensions length:thickness 

Figure 294 demonstrates how the flint small fraction flakes from Phase 4 are much more densely 

clustered than the quartz small fraction flakes. There are four flint small fraction flakes that are 

outliers from this main group, which are thicker, thinner, or wider than the majority. The quartz 

small fraction flakes are more dispersed and follow a roughly linear correlation between width and 

thickness. Although the flint small fraction flakes have a wider maximum dimension than those of 

quartz, the quartz small fraction flakes are wider on average and with a higher standard deviation 

from the mean (Table 94). 
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Figure 294. Northton 2010 Phase 4 small fraction flake dimensions width:thickness 

11.1.1.2.3. Phases 3 and 4 Compared 

The flint small fraction flakes from both phases are spread across the whole range of the length, 

although there are greater densities of flint small fraction flakes at the longer end of the spectrum 

from both phases (Figure 295). On average, the flint small fraction flakes from Phase 4 are very 

marginally longer than those from Phase 3, with the same standard deviation from the mean in 

both phases (Table 94). Phase 4 flint small fraction flakes occupy the narrower range of width than 

those from Phase 3, which has a greater number of small fraction flakes exceeding 10mm in this 

dimension. The Phase 3 flint small fraction flakes are on average much wider than those from Phase 

4, with a greater maximum dimension and a higher standard deviation from the mean supporting 

the greater variation (Table 94). 

 

Figure 295. Northton 2010 comparison between Phase 3 and Phase 4 flint small fraction flake dimensions 
length:width 
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The majority of flint small fraction flakes from both phases fall below 3mm in thickness; however, 

a greater number from Phase 3 exceed this than those from Phase 4 (Figure 296). All of the flint 

small fraction flakes that are less than 7mm in length are also less than 3mm in thickness. Above 

this length, the flint small fraction flakes range much more widely in their thickness measurements. 

The Phase 3 flint small fraction flakes average marginally thicker than those from Phase 4, with a 

slightly higher maximum thickness recorded (Table 94). 

 

Figure 296. Northton 2010 comparison between Phase 3 and Phase 4 flint small fraction flake dimensions 
length:thickness 

The densest concentration of flint small fraction flakes from both phases fall below 10mm in width 

and 3mm in thickness, as observed above (Figure 297). There are a larger number of flint small 

fraction flakes from Phase 3 that fall outside of this grouping than from Phase 4. 

 

Figure 297. Northton 2010 comparison between Phase 3 and Phase 4 flint small fraction flake dimensions 
width:thickness 
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The quartz small fraction flakes from Phase 4 fall towards the shorter end of the length spectrum, 

whereas those from Phase 3 appear to be more evenly distributed between 4mm-10mm (Figure 

298). This is reflected by the larger overall length of the Phase 3 quartz small fraction flakes (Table 

94). There are a number of quartz small fraction flakes from Phase 3 that exceed 12mm in width in 

contrast to those from Phase 4, which all fall below this figure.  

 

Figure 298. Northton 2010 comparison between Phase 3 and Phase 4 quartz small fraction flake dimensions 
length:width 

Figure 299 displays the length and thickness dimensions for the total quartz small fraction flake 

assemblages from Phases 3 and 4. The outlier in Phase 3 evidently obscures any discernible patterns 

between the data. In Figure 300 the outlier has been removed. 

 

Figure 299. Northton 2010 comparison between Phase 3 and Phase 4 quartz small fraction flake dimensions 
length:thickness 

Both Figure 300 and Figure 302 show that the majority of quartz small fraction flakes from each 
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toward the shorter end of the spectrum. Figure 299 clearly shows the greater maximum and 

minimum dimensions for both length and thickness of the Phase 3 quartz small fraction flakes, in 

addition to the higher number from this phase that exceed 3.5mm in thickness. This contrasts to 

only two from Phase 4. 

 

Figure 300. Northton 2010 comparison between Phase 3 and Phase 4 quartz small fraction flake dimensions 
length:thickness, excluding significant outlier 

The cluster of points in both Figure 301 and Figure 302 emphasise how the majority of quartz small 

fraction flakes from both phases are less than 12mm in width and 4mm in thickness. Those from 

Phase 4 separate out into three different groups of thickness – c.1mm-2mm, c.2mm-3mm, 

and >5mm. However, there is little relationship between these increases in thickness and any 

increase in width. Beyond the main cluster of points the quartz small fraction flakes from Phase 3 

are quite dispersed in terms of width and thickness, with greater maximum sizes in both dimensions 

than those in Phase 4. There is virtually no difference between the mean widths of the quartz small 

fraction flakes from both phases. Despite the presence of the outlier in the thickness measurements 

from Phase 3, the Phase 4 quartz small fraction flakes are thicker on average (Table 94). 
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Figure 301. Northton 2010 comparison between Phase 3 and Phase 4 quartz small fraction flake dimensions 
width:thickness 

 

Figure 302. Northton 2010 comparison between Phase 3 and Phase 4 quartz small fraction flake dimensions 
width:thickness, excluding significant outlier 

11.1.1.3. Cortex 

A small number of flint and mudstone small fraction flakes from Phase 3 retain 100% cortex; 

however no cortex is the most frequently represented category for both these raw materials. <50% 

cortex is the second most populated category for these raw materials in Phase 3, with a single flint 

small fraction flake displaying >50% cortex. The feldspar and igneous raw material small fraction 

flakes from this phase do not retain any cortex. 

There are only two categories of cortex represented in the Phase 4 quartz small fraction flake 

assemblage - <50% and 0%, of which the latter is more frequently recorded (Figure 303). In the 

Phase 4 flint small fraction assemblage <50% cortex is most common, with only two flint small 

fraction flakes displaying >50% cortex. The remainder of the flint small fraction flakes from Phase 4 

do not have any cortex present. 
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Figure 303. Northton 2010 small fraction flake cortex percentage 

11.1.1.4. Breakage 

There is a higher presence of breakage in all of the raw materials in both phases (Figure 304). 

 

Figure 304. Northton 2010 small fraction flake breakage 

11.1.2. Chunks and Small Fraction Chunks 

Nineteen chunks and 26 small fraction chunks were recovered from Northton 2010, with 16 chunks 

and 18 small fraction chunks deriving from Phase 3. The remaining three chunks and eight small 

fraction chunks were recovered from Phase 4. As with the small fraction flakes, the results from the 

chunk and small fraction chunks analysis are presented on a phase-by-phase basis with a concluding 

comparison between the phases at the end of each section. 
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11.1.2.1. Raw Material 

The raw material of the chunk assemblage at Northton is mostly comprised of quartz (Figure 305). 

Less than a quarter of the chunks are flint, and the remainder is composed of small quantities of 

mudstone and two feldspar chunks. 

 

Figure 305. Northton 2010 total chunk raw material 

The small fraction chunk assemblage is also dominated by quartz, in similar proportions to that of 

the chunk assemblage (Figure 306). Comparably with the chunk assemblage, flint also comprises 

less than a quarter of the small fraction chunks. Mudstone is the only other raw material 

represented in the small fraction chunk assemblage. 

 

Figure 306. Northton 2010 total small fraction chunk raw material 

In Phase 3, quartz represents over two thirds of the chunk raw material, with an equal number of 

feldspar and mudstone pieces present (Figure 307). A single chunk of flint makes up the remainder 

of the chunk assemblage from this phase. 
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Figure 307. Northton 2010 Phase 3 chunk raw material 

The small fraction chunk assemblage in Phase 3 is also dominated by quartz and mudstone accounts 

for a higher proportion of small fraction chunks in this phase than flint (Figure 308). 

 

Figure 308. Northton 2010 Phase 3 small fraction chunk raw material 

There is a very small number of quartz varieties present in the chunk assemblage from Phase 3 

(Figure 309). The majority are milky, and the two mixed quartz chunks grade from greasy to fine 

grained quartz. A slightly wider variety of quartz is represented by the small fraction chunks. Single 

small fraction chunks were identified in fine grained and greasy quartz, with the majority also 

comprised of milky quartz. The mixed varieties grade between greasy to fine grained, fine grained 

to milky, and milky to rock crystal. 
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Figure 309. Northton 2010 Phase 3 chunk quartz varieties 

Two of the three chunks present in Phase 4 are flint (Figure 310). The other chunk is a single piece 

mixed between coarse grained quartz and quartzite (Figure 312), which contrasts to Phase 3. 

 

Figure 310. Northton 2010 Phase 4 chunk raw material 

In the Phase 4 small fraction chunk assemblage flint and quartz are equally represented (Figure 310). 

Three of the quartz pieces are milky quartz and the other is a mix between milky quartz and rock 

crystal (Figure 312). 
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Figure 311. Northton 2010 Phase 4 small fraction chunk raw material 

 

 

Figure 312. Northton 2010 Phase 4 chunk quartz varieties 

11.1.2.2. Chunk Dimensions 

11.1.2.2.1. Phase 3 

There is a large range in the chunk dimensions from Phase 3, both within and between the raw 

materials. There are two groups of quartz chunks. In the smallest, the pieces do not exceed 16mm 

in length, and in the second all are in excess of 25mm in length. None of the quartz chunks are more 

than 20mm in width, in contrast to the other raw materials. Both flint and mudstone have pieces 

that are very large – exceeding 20mm in width (Figure 313). The flint chunk is almost 20mm in 

length, and the baked mudstone piece is almost 30mm in length. There are two much smaller pieces 

in each of these raw materials, which fall in with the smaller grouping of quartz chunks, as does the 

feldspar chunk. 
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The small fraction chunks in this phase are clearly constrained by the typological and recovery 

methodologies employed, as described previously. With the exception of a single quartz piece, 

none of the small fraction chunks exceed 10mm in width. 

 

Figure 313. Northton 2010 Phase 3 chunk and small fraction chunk dimensions length:width 

A similar pattern to the width is observed in the chunk thickness from Phase 3 (Figure 314). The 

two groups of quartz chunks are still clearly divided by length, and only a single piece from each 

group exceeds 10mm in thickness. The large and smaller chunks of mudstone and flint are also still 

separate in terms of width and thickness – each separated by over 5mm in the latter dimension. 

The feldspar chunk remains within the main cluster of smaller quartz, mudstone and flint chunks. 

There are only two small fraction chunks that exceed 5mm in thickness – one mudstone and one 

quartz. 

 

Figure 314. Northton 2010 Phase 3 chunk and small fraction chunk dimensions length:thickness 
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The largest grouping of both chunks and small fraction chunks from Phase 3 fall between c.3mm-

11mm in width, and by thickness between c.3mm-8mm (Figure 315). The quartz chunks have the 

greatest range in width, as evidenced by a strong overlap with the small fraction chunks at the 

narrower end of the scale, and also the wider pieces which extend outside of the main cluster. The 

two large mudstone and flint chunks are also significant outliers in these dimensions, whereas the 

smaller pieces in these raw materials again fall within the main group. 

 

Figure 315. Northton 2010 Phase 3 chunk and small fraction chunk dimensions width:thickness 

11.1.2.2.2. Phase 4 

In Phase 4 the quartz chunk is longer than the flint chunks (Figure 316). One flint chunk is quite 

narrow in comparison with the other. The flint small fraction chunks have a greater range of width 

than the quartz small fraction chunks, with both greater extremes of widths displayed. Only a single 

flint chunk marginally exceeds 10mm in width. 

 

Figure 316. Northton 2010 Phase 4 chunk and small fraction chunk dimensions length:width 
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The quartz chunk from Phase 4 is significantly thicker than both of the flint chunks, and is the only 

piece from this Phase to exceed 8mm in thickness (Figure 317). The flint small fraction chunks 

display an even wider range in thickness when compared to the quartz small fraction chunks, than 

they did terms of length. 

 

Figure 317. Northton 2010 Phase 4 chunk and small fraction chunk dimensions length:thickness 

The flint chunks from Phase 4 are very comparable in terms of width and thickness to both the flint 

and quartz small fraction chunks. The quartz chunk is also similar in width to these pieces but is 

much thicker than either of the flint and quartz small fraction chunks, or the flint chunk (Figure 318). 

 

Figure 318. Northton 2010 Phase 4 chunk and small fraction chunk dimensions width:thickness 
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The Phase 4 chunks in both raw materials cluster very closely in terms of length and width with the 

flint chunk and the majority of the quartz chunks from Phase 3 (Figure 319). The outliers are three 

quartz chunks from the Phase 3 which are longer. 
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Figure 319. Northton 2010 Phase 3 and 4 chunk dimensions length:width 

The Phase 4 flint chunks are much thinner than the flint chunk from Phase 3, although there is little 

difference in their length (Figure 320). The quartz chunk from Phase 4 falls in the middle of the 

range of Phase 3 quartz chunks in terms of thickness. 

 

Figure 320. Northton 2010 Phase 3 and 4 chunk dimensions length:thickness 

The flint chunks from Phase 4 fall at the smallest end of the scale in terms of width and thickness, 

whereas the one from Phase 3 occupies the middle range (Figure 321). There is a clear positive 

correlation between the width and thickness of the quartz chunks from Phase 3; the quartz chunk 

from Phase 4 falls in the centre of this. 
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Figure 321. Northton 2010 Phase 3 and 4 chunk dimensions width:thickness 

The flint small fraction chunks from Phase 3 are slightly longer than those from Phase 4, with a very 

narrow range in width; the Phase 4 flint small fraction chunks range very widely in width but less 

so in length (Figure 322). The majority of Phase 3 quartz small fraction chunks group quite closely 

in both dimensions with the quartz small fraction chunks from Phase 4, although there are some 

quartz small fraction chunks from Phase 3 which extend slightly longer and wider than those from 

Phase 4. On the whole the entire small fraction chunk assemblage ranges by less than 8mm in width. 

 

Figure 322. Northton 2010 Phase 3 and 4 small fraction chunk dimensions length:width 

The range of thickness from the small fraction chunk assemblage is even less than that of the width. 

The vast majority of small fraction chunks in both raw materials, and from both phases, are 

clustered between 3mm-4mm; almost all points fall between 2mm-6mm and only a single quartz 

small fraction chunk from Phase 3 extends beyond this (Figure 323). In flint the Phase 4 small 

fraction chunks are most widely spread in terms of thickness. 
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Figure 323. Northton 2010 Phase 3 and 4 small fraction chunk dimensions length:thickness 

The low variation in width and thickness observed above is emphasised in Figure 324. With few 

exceptions, the small fraction chunks deviate very little in terms of thickness irrespective of width, 

raw material or phase. 

 

Figure 324. Northton 2010 Phase 3 and 4 small fraction chunk dimensions width:thickness 
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There is very little cortex present on any of the chunks from Northton. The flint chunk from Phase 

3 and both flint chunks from Phase 4 retain <50% cortex, as do just over half of the quartz chunks 

from Phase 3 (Figure 325). The remainder of the chunk assemblage does not retain any cortex at 

all. 
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Figure 325. Northton 2010 Phase 3 and 4 chunk cortex percentage 

Only two small fraction chunks, one of quartz from Phase 3 and one of flint from Phase 4, display 

100% cortex (Figure 326). A small number of flint and quartz small fraction chunks from both phases 

retain <50% cortex, and de-corticated small fraction chunks are the most common in all raw 

materials from both phases. 

 

Figure 326. Northton 2010 Phase 3 and 4 small fraction chunk cortex percentage 

11.1.2.4. Breakage 

The only chunks not to display any evidence for breakage are a single mudstone chunk and two 

quartz chunks, both from Phase 3 (Figure 327). The remainder of the chunks in these raw materials 

from Phase 3 exhibit breakage, as do the flint and feldspar chunks in this phase. All of the flint and 

quartz chunks in Phase 4 are also broken. 

0% <50%

Phase 3 Flint 1

Phase 3 Mudstone 2

Phase 3 Quartz 7 4

Phase 3 Feldspar 2

Phase 4 Flint 2

Phase 4 Quartz 1

0

2

4

6

8

Q
ty

Cortex Percentage

0% <50% 100%

Phase 3 Flint 1 1

Phase 3 Mudstone 4

Phase 3 Quartz 9 2 1

Phase 4 Flint 2 1 1

Phase 4 Quartz 3 1

0

2

4

6

8

10

Q
ty

Cortex Percentage

n=19 

n=26 



 

656 

 

 

Figure 327. Northton 2010 Phase 3 and 4 chunk breakage 

Almost all of the small fraction chunks from both phases, in each of the raw materials, show 

evidence of breakage. The only exception is a single mudstone small fraction chunk from Phase 3 

(Figure 328). 

 

Figure 328. Northton 2010 Phase 3 and 4 small fraction chunk breakage 
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11.2. Northton 2011 

11.2.1. Small Fraction Flakes 

There are nine small fraction flakes (<10mm) in the assemblage from Northton 2011. These derive 

from both Phase 3 (C009) and from Phase 4 (C016/017; C018). 

11.2.1.1. Raw Material 

Flint and quartz are the only raw materials present in the small fraction flake assemblage from 

Northton 2011. In both phases, single small fraction flakes are flint, and the majority are quartz 

(Figure 329). 

 

Figure 329. Northton 2011 total small fraction flake assemblage raw material composition 

Half of the small fraction flakes in Phase 3 are mixed milky to fine grained quartz. One is simply 

milky quartz, and another is coarse grained (Figure 330). In Phase 4 the small fraction flakes are 

singly quartzite, fine grained, and rock crystal quartz varieties. 
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Figure 330 Northton 2011 Phase 3 and 4 small fraction flake quartz varieties 

11.2.1.2. Small Fraction Flake Dimensions 

The Phase 4 small fraction flakes are all on average shorter than those from Phase 3. In length, there 

is a wider range between the maximum and minimum dimensions in Phase 4, leading to a higher 

standard deviation value than in Phase 3, whereas in the other dimensions the range is narrower 

and consequently the standard deviation is less (Table 95). 

Raw 

Material   Length (mm) Width (mm) Thickness (mm) 

Quartz 

small 

fraction 

flake 

  Phase 3 Phase 4 Phase 3 Phase 4 Phase 3 Phase 4 

Min 6.54 5.59 5.65 7.59 2.25 1.68 

Max 7.77 8.3 16.80 8.66 3.97 2.55 

Mean 7.12 6.99 10.15 8.02 2.71 2.00 

SD 0.504273 1.356921 4.923051 0.565066 0.838983 0.478435 

Table 95. Northton 2011 small fraction flake dimension summary statistics 

The flint small fraction flakes from both phases fall at the shorter end of the spectrum, with the 

Phase 3 flint small fraction flake much smaller than the one from Phase 4 (Figure 331). Both fall 

significantly short of the average values for the quartz small fraction flakes from each phase, despite 

appearing to be similar in length. There is a very gradual increase between the length and width of 

the quartz small fraction flakes from Phase 4, which contrasts to those from Phase 3, where the 

correlation is very strong. One quartz small fraction flake from Phase 3 is much wider than the rest 

of the assemblage, although it is not much longer. 
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Figure 331. Northton 2011 small fraction flake dimensions length:width 

There is also a strong, positive trend between the increase in length and thickness of the quartz 

small fraction flakes from Phase 3, whereas this is negligible in the same raw material from Phase 

4 (Figure 332). The flint small fraction flakes are similar in thickness to those of quartz from their 

respective phases. 

 

Figure 332. Northton 2011 small fraction flake dimensions length:thickness 

The single quartz small fraction flake from Phase 3 that is much wider than the remainder of the 

assemblage, is also significantly thicker (Figure 333). A negative trend between the width and 

thickness of the Phase 4 quartz small fraction flakes is observed; there is no correlation between 

these dimensions for the Phase 3 quartz small fraction flakes, once the outlier is excluded. The 

Phase 4 flint small fraction flake is wider and thinner than the quartz from this phase, whereas the 

opposite occurs in Phase 3. 
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Figure 333. Northton 2011 small fraction flake dimensions width:thickness 

11.2.1.3. Cortex and Breakage 

The flint small fraction flake and a single quartz small fraction flake from Phase 3 are completely 

decorticated. The three other quartz small fraction flakes from this phase have 100% cortex present 

(Figure 334). None of the quartz small fraction flakes from Phase 4 have any cortex present, and 

the flint small fraction flake retains <50% cortex. 

 

Figure 334. Northton 2011 small fraction flake cortex percentage 
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11.3. Tràigh an Teampuill 

11.3.1. Small Fraction Flakes 

The small fraction flake assemblage from Tràigh an Teampuill totals 25 pieces. These were 

recovered from the old ground surface (C004; C005); an older relic ground surface (C008), and the 

earliest old ground surface of early- to mid-Holocene soil (C003). 

11.3.1.1. Raw Material 

The small fraction flakes only comprise two raw materials – flint and quartz (Figure 335). Flint is the 

most dominant raw material in this technological category. The majority of the quartz small fraction 

flakes are milky quartz (Figure 336). Greasy and rock crystal varieties are equally represented by a 

single small fraction flake each and two quartz small fraction flakes are of the fine grained variety. 

 

Figure 335. Tràigh an Teampuill small fraction flake raw material composition 

 

Figure 336. Tràigh an Teampuill small fraction flake quartz varieties 
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11.3.1.2. Small Fraction Flake Dimensions 

The summary statistics for the small fraction flake assemblage from Tràigh an Teampuill is 

presented in Table 96. The flint small fraction flakes have a wider range between the maximum and 

minimum values recorded for each dimension than the quartz small fraction flakes. The mean 

length and thickness of flint small fraction flakes is less than that of quartz, but the flint is very 

slightly wider. The quartz small fraction flakes have a much lower standard deviation from the mean 

value than flint, which reflects the narrower range of measurements in each recorded dimension. 

Raw Material  Length (mm) Width (mm) Thickness (mm) 

Flint 

Min 2.31 5.34 0.99 

Max 9.92 12.58 6.87 

Mean 7.32 7.99 2.56 

SD 2.111062 1.810477 1.539132 

Quartz 

Min 6.38 6.35 1.14 

Max 9.71 9.45 4.74 

Mean 8.19 7.81 3.12 

SD 1.16675 1.236078 1.237686 

Table 96. Tràigh an Teampuill small fraction flake dimension summary statistics for primary raw materials 

The quartz small fraction flakes clearly cluster tightly between 6mm-10mm in both length and width 

(Figure 337 and Table 96). This contrasts to the flint small fraction flakes which range much more 

widely, with little correlation between length and width. The shortest flint small fraction flake is 

anomalous in terms of length, given the whole small fraction flake assemblage are over 4.5mm in 

length. Almost all the remainder of the flint small fraction flakes are less than 10mm in width, and 

one small fraction flake is larger than this, with a width of 12.58mm. 

 

Figure 337. Tràigh an Teampuill small fraction flake dimensions length:width 
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The quartz small fraction flakes are also more tightly grouped in terms of length and thickness than 

those made from flint, which display greater variation in thickness (Figure 338). There is a negative 

correlation between the length and thickness of the small fraction flakes in both raw materials, 

which is most evident in the flint small fraction flakes – the shortest is also the thickest piece. The 

majority of the quartz small fraction flakes fall between 2.5-5mm in thickness, whereas the flint 

small fraction flakes are predominantly found between 1-3mm. 

 

Figure 338. Tràigh an Teampuill small fraction flake dimensions length:thickness 

There is no discernible relationship between the width and thickness of small fraction flakes in 

either raw material (Figure 339). There are two clear outliers, which have been identified previously 

and fall outside of the main group. 

 

Figure 339. Tràigh an Teampuill small fraction flake dimensions width:thickness 
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11.3.1.3. Cortex 

An equal number of quartz small fraction flakes exhibit either 0% or 100% cortex (Figure 340). The 

remainder of the quartz small fraction flakes retain <50% cortex. The majority of flint small fraction 

flakes do not have any cortex. Three flint small fraction flakes have 100% dorsal coverage of cortex, 

two have <50%, and only one displays >50% cortex. 

 

Figure 340. Tràigh an Teampuill small fraction flake cortex percentage 

11.3.1.4. Breakage 

An equal number of small fraction flakes are complete in both raw materials, whereas the majority 

of small fraction flakes were recorded as broken (Figure 341). 

 

Figure 341. Tràigh an Teampuill small fraction flake breakage 
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(C002), and two small fraction chunks came from the early to mid-Holocene ground surface that 

overlay this (C003). Two chunks and a small fraction chunk were identified in the main ground 

surface deposit (C004; C011), and a single small fraction chunk was revered from the ground surface 

that formed alongside the scoop fill deposits (C008). Due to the small number of pieces in this 

category the results of both the chunks and small fraction chunks are presented together. 

11.3.2.1. Raw Material 

There are two chunks of flint at Tràigh an Teampuill, and one of quartz. Quartz accounts for a higher 

proportion of small fraction chunks, with only a single piece in flint (Figure 342). 

 

Figure 342. Tràigh an Teampuill chunk and small fraction chunk raw material 

There are two varieties of quartz present in the chunk assemblage (Figure 343). The larger fraction 

chunk is milky quartz, as are two of the small fraction chunks. The remaining small fraction chunk 

is of the greasy (very fine grained) variety. 

 

Figure 343. Tràigh an Teampuill chunk and small fraction chunk quartz varieties 
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11.3.2.2. Chunk Dimensions 

Overall, there is a clear positive correlation between all dimensions of the flint chunk assemblage. 

This positive correlation is also observable in the quartz small fraction chunk assemblage. 

The quartz chunk is substantially longer and wider than the flint chunks (Figure 344). This contrasts 

to the small fraction chunk assemblage, where the flint small fraction chunk is larger than those of 

quartz. The smallest flint chunk is very close in length and width to the flint small fraction chunk of 

the same raw material. 

 

Figure 344. Tràigh an Teampuill chunk and small fraction chunk dimensions length:width 

The quartz chunk is also thicker than the flint chunks (Figure 345). One quartz small fraction chunk 

and the flint small fraction chunk are thicker than one of the flint chunks in the assemblage. Quartz 

on the whole has a wider range of thickness and length than flint. 

 

Figure 345. Tràigh an Teampuill chunk and small fraction chunk dimensions length:thickness 
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The flint small fraction chunk is the narrowest of the assemblage, but thicker than one of the larger 

fraction flint chunks. It is also thicker than two of the quartz small fraction (Figure 346). The quartz 

chunk and small fraction chunks range more widely than flint in terms of width, however this range 

is exaggerated by the quartz chunk, which is a clear outlier. 

 

Figure 346. Tràigh an Teampuill chunk and small fraction chunk dimensions width:thickness 

11.3.2.3. Cortex and Breakage 

Only the quartz small fraction chunks retain any cortex – two display <50% and one >50% cortex 

(Figure 347). 

 

Figure 347. Tràigh an Teampuill chunk and small fraction chunk cortex percentage 

All the chunks and small fraction chunks in both raw materials are broken.
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Appendix 12 Lewis – Small Fraction Flakes, Chunks, and Small 

Fraction Chunks Results 

12.1. Tràigh na Beirigh 1 

12.1.1. Small Fraction Flakes 

The small fraction (<10mm) flake assemblage from Tràigh na Beirigh 1 totals 143 pieces. The 

majority of the assemblage was recovered from the main body of the shell midden (C008; C009; 

C020), with a high proportion also found in the old ground surface deposits and soil/sand layers 

underlying the shell midden (C014; C015; C016; C017; C022; C032). A large number of small fraction 

flakes were identified in the interface deposits between the turf and the shell midden (C005; C014), 

and a single small fraction flake was found in the fill of a negative feature (C026) cut into the 

underlying ground surface. 

12.1.1.1. Raw Material 

The assemblage is almost exclusively comprised of quartz – only three flint small fraction flakes 

were recovered in addition to a single small fraction flake of feldspar (Figure 348). 

  

Figure 348. Tràigh na Beirigh 1 small fraction flake raw material composition 

Greasy quartz dominates the small fraction flakes with milky quartz also represented in high 

quantities (Figure 349). There are small numbers of fine grained quartz and rock crystal present. 

The most common mixed quartz varieties grade from milky quartz to rock crystal, feldspar, and 

quartzite. 
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Figure 349. Tràigh na Beirigh 1 small fraction flake quartz varieties 

12.1.1.2. Small Fraction Flake Dimensions 

The summary statistics for the flint and quartz small fraction flakes are presented in Table 97. The 

flint small fraction flakes are on average slightly wider and thicker than the quartz, which is longer 

on average. The flint small fraction flakes have a very narrow range between the maximum and 

minimum values for each of the dimensions, when compared to the quartz small fraction flakes. 

Despite this, the standard deviation from the mean for both raw materials is very similar, if 

marginally greater for flint than quartz. This is likely to be because the flint small fraction flake 

assemblage only comprises three pieces, which are very different in size from each other. 

Raw Material   Length (mm) Width (mm) Thickness (mm) 

Flint 

Min 5.12 6.40 1.75 

Max 8.66 11.27 4.61 

Mean 6.76 8.41 2.89 

SD 1.783545 2.543836 1.513748 

Quartz 

Min 3.80 4.50 0.94 

Max 9.95 17.92 11.25 

Mean 7.38 8.11 2.68 

SD 1.448289 2.48831 1.360286 

Table 97. Tràigh na Beirigh 1 small fraction flake dimension summary statistics for primary raw materials 

The maximum dimension of the small fraction flakes does not exceed 10mm due to the criteria of 

distinguishing between flakes and small fraction flakes. At least one of the recorded dimensions will 

also be a minimum of 4mm due to the recovery methodology employed. These limiting factors are 

clearly visible in Figure 350, with only a single quartz flake less than 4mm in length. All of the flakes, 

regardless of raw material, are wider than 4mm. In flint, the maximum width does not exceed 

12mm, whereas quartz small fraction flakes are up to c.18mm in width. However, the majority of 

quartz small fraction flakes are also less than 12mm in width. 
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Figure 350. Tràigh na Beirigh 1 small fraction flake dimensions length:width 

There is no obvious correlation between the length and thickness of the small fraction flakes (Figure 

351). The vast majority of quartz small fraction flakes are less than 5mm in thickness, and only a 

very small number exceed this – up to a maximum of 11.25mm. These thicker small fraction flakes 

also tend to be longer. There is a negative correlation between the length and thickness of the flint 

small fraction flakes – the shortest is the thickest, and the longest the thinnest. The feldspar small 

fraction flake is very thin, but also long. 

 

Figure 351. Tràigh na Beirigh 1 small fraction flake dimensions length:thickness 

As discussed above the quartz small fraction flakes most densely cluster between 4-10mm in width, 

and up to 5mm in thickness, as seen in Figure 352. There is little correlation between the increases 

in these dimensions as the wider quartz flakes (10mm in width or greater) still fall under 5mm in 

thickness. The few quartz outliers in terms of thickness are clearly discernible, yet still fall within 

the same width range as the majority of the quartz small fraction flakes. There is also no correlation 

between width and thickness of the flint small fraction flakes. 
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Figure 352. Tràigh na Beirigh 1 small fraction flake dimensions width:thickness 

12.1.1.3. Cortex 

A complete absence of cortex is observed on the majority of quartz small fraction flakes, with <50% 

cortex also frequently represented (Figure 353). Small fraction flakes with cortex between >50-100% 

are few in number. The flint small fraction flakes are mostly decorticated, however a single piece 

has <50% cortex present, as does the feldspar small fraction flake. 

 

Figure 353. Tràigh na Beirigh 1 small fraction flake cortex percentage 

12.1.1.4. Breakage 

Twice as many flint small fraction flakes are complete than broken, and the only feldspar small 

fraction flake is damaged (Figure 354). Very few quartz small fraction flakes are complete. 
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Figure 354. Tràigh na Beirigh 1 small fraction flake breakage 

12.1.2. Chunks and Small Fraction Chunks 

There are a total of nine chunks and eleven small fraction chunks from Tràigh na Beirigh 1, which 

were recovered from a variety of contexts including the interface deposits (C004; C005; C006), main 

body of the shell midden (C008), and underlying old ground surface/sand deposits (C014; C016; 

C017). 

12.1.2.1. Raw Material 

All of the chunks and small fraction chunks are quartz. Both chunks and small fraction chunks are 

most commonly of the milky quartz variety, and a small number are greasy quartz (Figure 355). The 

mixed quartz varieties represented by small fraction chunks are almost exclusively milky quartz 

which grades into rock crystal. 

 

Figure 355. Tràigh na Beirigh 1 chunk and small fraction chunk quartz varieties 
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12.1.2.2. Chunk Dimensions 

The small fraction chunks form a distinct, tight cluster between 5-10mm in length and 4-8mm in 

width (Figure 356). The chunks, in contrast range much more widely in their dimensions, with two 

clusters at c.13mm in length, and 17mm in length. These are spread between 5-15mm in width. A 

single chunk is significantly larger than the rest of the chunk assemblage in both length and width. 

 

Figure 356. Tràigh na Beirigh 1 chunk and small fraction chunk dimensions length:width 

The small fraction chunks are distributed between 2-7mm in thickness, with a clear positive 

correlation between this dimension and length (Figure 357). Overall the chunks and small fraction 

chunks are of a similar thickness, with the exception of the chunk which is longer than the other 

pieces in the assemblage and is also much thicker. 

 

Figure 357. Tràigh na Beirigh 1 chunk and small fraction chunk dimensions length:thickness 

There is a clear positive linear trend between the increasing width and thickness of the chunks 

(Figure 358). The small fraction chunks are very tightly clustered, in accordance with the constraints 

of the recovery and category methodology, however a positive correlation between the two 

dimensions is also observable. 
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Figure 358. Tràigh na Beirigh 1 chunk and small fraction chunk dimensions width:thickness 

12.1.2.3. Cortex 

A single chunk has 100% dorsal cortex present, however the majority have <50% cortex. An equal 

number of small fraction chunks were recorded with a similar quantity of cortex, yet most of the 

small fraction chunks do not retain any cortex at all (Figure 359). 

 

Figure 359. Tràigh na Beirigh 1 chunk and small fraction chunk cortex percentage 

12.1.2.4. Breakage 

Only a single chunk does not display any sign of breakage and almost all of the small fraction chunks 

are broken (Figure 360). 
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Figure 360. Tràigh na Beirigh 1 chunk and small fraction chunk breakage
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12.2. Tràigh na Beirigh 2 

12.2.1. Small Fraction Flakes 

There are 162 small fraction flakes (<10mm) from Tràigh na Beirigh 2. The majority of small fraction 

flakes were recovered from the shell midden deposits (C005; C011; C014; C015; C018). A high 

proportion was also found in the overlying interface deposits of mixed machair and shell, 

predominantly in C003, but very small numbers of small fraction flakes also came from C009, C010, 

and C012. A small number of small fraction flakes were found in the upper old ground surface 

horizon (C006; C016; C017), and only a single context from the lower ground surface (C021) yielded 

pieces from this aspect of the assemblage. 

12.2.1.1. Raw Material 

The small fraction flake assemblage is almost exclusively quartz – only two pieces are flint (Figure 

361). Greasy quartz is the most prevalent variety in the small fraction flake assemblage (Figure 362). 

This is followed by a small quantity made from milky quartz, some of which grade to quartzite or 

feldspar. A very small number of small fraction flakes are fine grained quartz; some of these are 

mixed with feldspar or grade into greasy quartz. 

 

Figure 361. Tràigh na Beirigh 2 small fraction flake raw material 

Flint
1%

Quartz
99%

n=162 



 

677 

 

 

Figure 362. Tràigh na Beirigh 2 small fraction flake quartz varieties 

12.2.1.2. Small Fraction Flake Dimensions 

The small fraction flake summary statistics are presented in Table 98. The mean and standard 

deviation values have not been provided for the flint small fraction flakes as there are only two 

pieces present in the assemblage, which are the maximum and minimum values in the table. The 

width of the quartz small fraction flakes ranges widely between the maximum and minimum values, 

however the lower mean value suggests that the maximum figure is anomalous, as evident in Figure 

363 and Figure 365. This is the probable cause for the higher standard deviation value of this 

dimension. 

Raw Material  Length (mm) Width (mm) Thickness (mm) 

Flint 

Min 6.30 5.78 2.02 

Max 9.61 6.92 2.30 

Mean N/A N/A N/A 

SD N/A N/A N/A 

Quartz 

Min 4.10 2.63 0.62 

Max 9.88 19.41 7.04 

Mean 7.31 7.51 2.46 

SD 1.350974 2.556638 1.092048 

Table 98. Tràigh na Beirigh 2 quartz small fraction flake dimension summary statistics 

The small fraction flakes from Tràigh na Beirigh 2 range between 4-10mm in length, following the 

recovery and recording methodologies. There is a slightly denser concentration of quartz small 

fraction flakes between 8-9mm in length, however the quartz small fraction flakes are distributed 

throughout the length range (Figure 363). The majority of quartz small fraction flakes are less than 

15mm in width, forming a weak correlation with length. Of the two flint small fraction flakes, the 

shortest is slightly wider than the longest thus forming a negative correlation; both fall at the 

narrower end of the range in terms of width. 
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Figure 363. Tràigh na Beirigh 2 small fraction flake dimensions length:width 

There is no relationship between the length and thickness of either the quartz or flint small fraction 

flakes (Figure 364). The majority of the quartz small fraction flakes are less than 5mm in thickness 

– only three are larger than this. As with width, the shortest flint small fraction flake is also thicker 

than the longest; both of these also fall towards the thinner end of the thickness scale. 

 

Figure 364. Tràigh na Beirigh 2 small fraction flake dimensions length:thickness 

The densest concentration of quartz small fraction flakes falls between 4.5-7.5mm in width and 1-

3.5mm in thickness (Figure 365). Beyond these ranges the points are more dispersed. There is a 

broadly positive correlation between the increase in width and thickness of the quartz small 

fraction flakes. This trend is also observed in the flint small fraction flakes; the flint small fraction 

flakes both lie within the densest cluster of quartz small fraction flakes. 
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Figure 365. Tràigh na Beirigh 2 small fraction flake dimensions width:thickness 

12.2.1.3. Cortex 

The overwhelming majority of quartz small fraction flakes do not retain any cortex, nor do either of 

the flint small fraction flakes (Figure 366). Twice as many quartz small fraction flakes retain <50% 

than those with complete cortical coverage. 

 

Figure 366. Tràigh na Beirigh 2 small fraction flake cortex percentage 

12.2.1.4. Breakage 

Both of the flint small fraction flakes and the majority of those in quartz are broken (Figure 367). 
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Figure 367. Tràigh na Beirigh 2 small fraction flake breakage 

12.2.2. Chunks and Small Fraction Chunks 

Four chunks and six small fraction chunks were recovered from Tràigh na Beirigh 2. The majority 

derived from shell midden contexts (C005 and C011). A single chunk came from the upper interface 

horizon (C003), and two small fraction chunks were recovered from the lower old ground surface 

deposits (C019 and C021). 

12.2.2.1. Raw Material 

All of the chunks and small fraction chunks found at Tràigh na Beirigh 2 are made from greasy quartz, 

and a single small fraction chunk is of the dark greasy quartz variety. 

12.2.2.2. Chunk Dimensions 

The chunks and small fraction chunks are separated at 10mm in length, as described in the 

methodology and observed in Figure 368. Both the chunks and small fraction chunks have a small 

range in length. None of the chunks exceed 14mm in length, and there is slightly over 4mm 

separating the shortest small fraction chunk from the longest. The two longest chunks are also the 

widest, which follows a strong positive trend in the increase of these dimensions. A single chunk is 

anomalous from this trend, however. The same correlation is also observed in the small fraction 

chunks, although it is weaker than for the chunks. 
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Figure 368. Tràigh na Beirigh 2 chunk and small fraction chunk dimensions length:width 

There is no relationship between the length and the thickness of either the chunks or small fraction 

chunks (Figure 369). Both chunks and small fraction chunks fall into a similar range of thickness, 

primarily between c.3.5-6mm. Only two small fraction chunks are much thinner than this. 

 

Figure 369. Tràigh na Beirigh 2 chunk and small fraction chunk dimensions length:thicknesss 

The two narrower chunks fall into the same range of width measurements as the small fraction 

chunks (Figure 370). There is no observable relationship between the width and thickness of these 

pieces. The two widest chunks are thinner than small fraction chunks that measure half their width. 
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Figure 370. Tràigh na Beirigh 2 chunk and small fraction chunk dimensions width:thickness 

12.2.2.3. Cortex and Breakage 

Three quarters of the chunk assemblage from Tràigh na Beirigh 2 retain <50% cortex – only a single 

piece does not have any cortex present (Figure 371). In contrast, the small fraction chunks 

frequently do not retain any cortex and only two small fraction chunks have <50% cortex present. 

 

Figure 371. Tràigh na Beirigh 2 chunk and small fraction chunk cortex percentage 

All of the chunks and small fraction chunks from this assemblage are broken. 

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14

C
h

u
n

k 
Th

ic
kn

es
s 

(m
m

)

Chunk Width (mm)

Chunk Small fraction chunk

0% <50%

Chunk 1 3

Small fraction chunk 4 2

0

1

2

3

4

5

Q
ty

Cortex Percentage
n=10 



 

683 

 

12.3. Tràigh na Beirigh 4 

12.3.1. Small Fraction Flakes 

There are nine small fraction flakes from the single context (C001) at Tràigh na Beirigh 4, all of 

which are greasy quartz. 

12.3.1.1. Small Fraction Flake Dimensions 

The small fraction flakes are tightly clustered between 6-10mm, and are no more than 10mm in 

width. There a strong correlation between the length and width of the small fraction flakes, if the 

anomalous long, but narrow, piece is disregarded (Figure 372). There is also a strong correlation 

between the length and thickness of this category (Figure 373). A strong positive correlation is again 

seen between the width and thickness measurements of the small fraction flakes (Figure 374). 

  

Figure 372. Tràigh na Beirigh 4 small fraction flake dimensions length:width 

 

Figure 373. Tràigh na Beirigh 4 small fraction flake dimensions length:thickness 

0

2

4

6

8

10

12

0 2 4 6 8 10 12

Fl
ak

e 
W

id
th

 (
m

m
)

Flake Length (mm)

Small fraction flake

0

1

2

3

4

5

0 2 4 6 8 10 12

Fl
ak

e 
Th

ic
kn

es
s 

(m
m

)

Flake Length (mm)

Small fraction flake



 

684 

 

 

Figure 374. Tràigh na Beirigh 4 small fraction flake dimensions width:thickness 

12.3.1.2. Cortex and Breakage 

The majority of small fraction flakes do not have any cortex present. Equal numbers of the 

remaining four small fraction flakes retain >50% and 100% cortex respectively (Figure 375). 

 

Figure 375. Tràigh na Beirigh 4 small fraction flake cortex percentage 

Six of the small fraction flakes exhibit breakage, with a three pieces in the assemblage complete. 

12.3.2. Chunks and Small Fraction Chunks 

One chunk and one small fraction chunk were recorded from the Tràigh na Beirigh 4 assemblage. 

The chunk (L14) is of the fine grained quartz variety. It measures 13.62mm X 8.69mm X 7.24mm, 

does not have any cortex present and is broken. L5 is a small fraction chunk of greasy quartz, which 

measures 6.96mm X 6.72mm X 1.15mm, exhibits less than 50% cortex and is complete. 
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12.4. Tràigh na Beirigh 9 

12.4.1. Small Fraction Flakes 

168 small fraction flakes were recovered from Tràigh na Beirigh 9 throughout the archaeological 

sequence, including the overlying interface deposits (C004); mixed shell midden/old ground surface 

(C006); both the primary and secondary pit fill (C007; C005) and the lower soil horizons (C009; C011). 

12.4.1.1. Raw Material 

The small fraction flake (<10mm) component of the assemblage is almost exclusively quartz, with 

only a single small fraction flake of feldspar (Figure 376). The quartz varieties present range 

throughout the whole spectrum of grain sizes, with a single piece of quartzite at the coarsest end 

to three small fraction flakes of rock crystal at the finest (Figure 377). Greasy (very fine grained) and 

milky varieties are the most frequently represented. 

 

Figure 376. Tràigh na Beirigh 9 small fraction flake raw material composition 

 

Figure 377. Tràigh na Beirigh 9 small fraction flake quartz varieties 
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12.4.1.2. Small Fraction Flake Dimensions 

The quartz small fraction flakes do not range widely in any of the dimensions recorded, which is 

likely to be due to the recovery and recording methodology. The range between maximum and 

minimum values is greatest for the width of these pieces, as reflected by the higher standard 

deviation value (Table 99). 

Raw Material  Length (mm) Width (mm) Thickness (mm) 

Quartz 

Min 1.93 3.22 0.6 

Max 9.95 15.7 8.8 

Mean 7.34 7.79 2.41 

SD 1.611569 2.175489 1.133184 

Table 99. Tràigh na Beirigh 9 quartz small fraction flake dimension summary statistics 

There is little discernible correlation between the length and width of the quartz small fraction 

flakes (Figure 378). The clustering between 4mm and 10mm in length is representative of the 

recovery and classification methodologies implemented. The densest concentration of small 

fraction flakes fall between 6-10mm in width. The very short outlier was recovered due width of 

the piece, which exceeds 4mm. The feldspar small fraction flake is slightly shorter and narrower 

than the average quartz small fraction flake. 

 

Figure 378. Tràigh na Beirigh 9 small fraction flake dimensions length:width 

Again there is no trend between the dimensions of the quartz small fraction flakes in terms of length 

and thickness (Figure 379). The densest concentration of lithics is between 1-4mm in thickness, 

with several longer pieces that fall outside this band, and are thicker. The feldspar small fraction 

flake lies in the centre of this main group, and is slightly thicker than the average value for the 

quartz small fraction flakes. 
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Figure 379. Tràigh na Beirigh 9 small fraction flake dimensions length:thickness 

The relationship between small fraction width and thickness is not constrained by the flake 

classification methodology which is based on length, therefore if a correlation between these 

dimensions was to be evident, it would be represented by this relationship. Only a weak correlation 

is seen, as the vast majority of quartz small fraction flakes cluster tightly between 5-10mm in width, 

and 1-3.5mm in thickness (Figure 380). The thicker quartz small fraction flakes that fall outside the 

main group have a stronger correlation with width. The feldspar small fraction flake is contained 

within the main cluster. 

 

Figure 380. Tràigh na Beirigh 9 small fraction flake dimensions width:thickness 

12.4.1.3. Cortex 

The majority of the small fraction flake assemblage does not display any cortex (Figure 381). A 

considerably higher number of small fraction flakes retain <50%, in comparison with those 

displaying >50% cortex. A small quantity of small fraction flakes exhibit 100% cortex. 
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Figure 381. Tràigh na Beirigh 9 small fraction flake cortex percentage 

12.4.1.4. Breakage 

A significant proportion of the quartz small fraction flakes and the feldspar small fraction flakes are 

broken. There are comparatively very few that are complete (Figure 382). 

 

Figure 382. Tràigh na Beirigh 9 small fraction flake breakage 

12.4.2. Chunks and Small Fraction Chunks 

All chunks present in the Tràigh na Beirigh 9 assemblage are quartz. There are equal numbers of 

chunks and small fractions chunks (n=23), and the results are presented together. The majority of 

the chunks and small fraction chunks were recovered from the secondary pit fill deposit containing 

the skeleton (C005), and the underlying mixed shell midden/old ground surface (C006). Small 

numbers were also recovered from the mixed shell midden/old ground surface C009, which is 

similar to C006. A single small fraction chunk was found in the overlying interface deposits (C004), 

and a single chunk was recovered from the basal soil horizon (C011). 
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12.4.2.1. Raw Material 

Coarse grained and fine grained quartz varieties are equally represented by both the chunks and 

small fraction chunks (Figure 383). The very fine grained (greasy) variety is more commonly 

represented by chunks, whereas greater quantities of small fraction chunks are made from milky 

quartz. Three chunks each are made from milky and mixed varieties of quartz respectively, whereas 

only a single small fraction chunk is of mixed quartz. 

  

Figure 383. Tràigh na Beirigh 9 chunk and small fraction chunk quartz varieties 

12.4.2.2. Chunk Dimensions 

There is a broad spread and overall positive correlation between the length and width of the chunks 

from Tràigh na Beirigh 9. The small fraction chunks are more tightly clustered in terms of length, 

due to methodological constraints, and also in width – predominantly falling between 5-6.5mm in 

width (Figure 384). 

 

Figure 384. Tràigh na Beirigh 9 chunk and small fraction chunk dimensions length:width 
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The same pattern is echoed in the relationship between length and thickness, although there are a 

few clear outliers. The chunks broadly follow a positive correlation, whereas the small fraction 

chunks remain densely clustered between 2-4mm (Figure 385). 

 

Figure 385. Tràigh na Beirigh 9 chunk and small fraction chunk dimensions length:thickness 

There is no clear trend between the width and thickness of either the chunks or small fraction 

chunks, although the majority of the pieces are loosely grouped between 5-6.5mm in width, and 2-

4.5mm in thickness (Figure 386). 

 

Figure 386. Tràigh na Beirigh 9 chunk and small fraction chunk dimensions width:thickness 

12.4.2.3. Cortex 

The number of chunks and small fraction chunks without any cortex are equally represented (Figure 

387). This is also the case for the number of pieces from each fraction with 100% cortex. There are 

an equal number of chunks which exhibit both >50%, and <50% cortex; for small fraction chunks 

<50% cortex is more frequently represented. 
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Figure 387. Tràigh na Beirigh 9 chunk and small fraction chunk cortex percentage 

12.4.2.4. Breakage 

The number of chunks and small fraction chunks are almost equally represented in terms of 

breakage; the disparity between the two is that there is one more chunk that is not broken (Figure 

388). 

  

Figure 388. Tràigh na Beirigh 9 chunk and small fraction chunk breakage 

12.4.3. A Comparison between C005 and C006 

Before successful radiocarbon dates were obtained from the human skeleton at Tràigh na Beirigh 

9 a comparison between the quartz flakes of C005 (the undated context in which the skeleton was 

found), and C006 (the securely dated Mesolithic context) was made. This was in an attempt to 

establish whether quartz had been treated in the same way between the two contexts. There were 

several possible outcomes: the quartz was markedly different between the two contexts, 

suggesting that it had been treated in a different manner, and therefore may be the result of later 
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communities with different reduction techniques exploiting the raw material; the treatment of the 

quartz was not different between the two contexts, thus quartz was treated the same way over a 

significant period of time; or the treatment of the quartz was not different between the two 

contexts, representing a Mesolithic industry, and that the skeleton was potentially Mesolithic in 

date. 

If there was no difference, then ascertaining which of the latter two scenarios as the most probable 

would was very difficult. Nevertheless, the results would have had interesting implications 

regardless. The equal sample size of the quartz assemblage from each context (n=35) was ideally 

suited to this investigation. 

12.4.3.1. Raw Material 

Only the quartz flakes from these contexts were used for the comparison. Very fine grained (greasy) 

quartz is the most frequently represented quartz variety in both contexts, which is followed by 

milky quartz. C006 has a higher number of flakes knapped from quartz which is of mixed varieties, 

whereas C005 has a larger spread of flakes between varieties with four flakes of fine grained quartz, 

only two of mixed, and a single flake of coarse grained quartz (Figure 389). 

 

Figure 389. Tràigh na Beirigh 9 quartz varieties from C005 and C006 

12.4.3.2. Flake Dimensions  

The summary statistics for the flake dimensions are presented in Table 100. C005 has longer flakes 

on average with a higher standard deviation. The minimum values for width are very different 

between the two contexts, although the maximum width is very similar. The C005 flakes are 

substantially wider on average than those from C006, again with a higher standard deviation. The 

mean thickness for the flakes is very close between the two contexts, despite the different ranges 

between maximum and minimum values. C006 has a higher standard deviation in this case. 
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  Length (mm) Width (mm) Thickness (mm) 

 C005 C006 C005 C006 C005 C006 

Min 10.00 10.03 4.77 3.03 0.96 1.24 

Max 27.66 26.5 28.79 28.72 13.21 16.00 

Mean 14.71 13.89 14.11 10.53 4.93 4.20 

SD 4.062339 3.8426 7.155913 5.906472 2.561694 3.228817 

Table 100. Tràigh na Beirigh 9 flake dimension summary statistics between C005 and C006 

Both contexts show a clear positive correlation between all of the flake dimensions (Figure 390, 

Figure 391 and Figure 392). 

Between length and thickness, there is a tight grouping between 10-15mm in length and 3-10mm 

in width, which is more densely populated by flakes from C006 (Figure 390). There are a higher 

number of flakes that range over a wider length and width, and is indicated by the higher standard 

deviation value. Single flakes from each context sit apart from the main group as they are very long 

and wide. 

 

Figure 390. Tràigh na Beirigh 9 quartz flake length:width from C005 and C006 

A similar pattern to the one described above is observed in Figure 391. The wider range of the 

length of C005 flakes is evident, as is the wider range of C006 thickness, which is again consistent 

with the standard deviation value. There is a tight grouping of C006 flakes between c.1-4mm, 

resulting in the lower mean value despite the higher standard deviation, whereas the C005 flakes 

are more dispersed. One flake from C005 is anomalously thick in relation to its length. 
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Figure 391. Tràigh na Beirigh 9 quartz flake length:thickness from C005 and C006 

On the whole, the width and thickness of the flakes from both contexts are closely linked, however 

there are three flakes from each context that are notably thicker than other pieces in the 

assemblage of a similar width. (Figure 392). The majority of flakes are less than 8mm in thickness, 

and none exceed 30mm in width. 

 

Figure 392. Tràigh na Beirigh 9 quartz flake width:thickness from C005 and C006 

A MANOVA statistical test was conducted on the flake dimensions of the quartz flakes from C005 

and C006 (Field 2013). Using Wilks’s lambda, there was no significant difference between the quartz 

flake dimensions of C005 and C006: 

Λ = .912, F(3,66) = 2.121, p = .106 

To test the robustness a Mann-Whitney U test was also conducted on the quartz flakes, between 

the phases on the ranked values of each dimension (Table 101). 
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Dimensions 

(mm) 

Mean 

Rank 

C005 

Mean 

Rank 

C006 

U z p r 

Length 37.79 33.21 532.5 -.940 .347 n/a 

Width 40.83 30.17 426.0 -2.191 .028 -.2619 

Thickness 40.44 30.56 439.5 -2.032 .042 -.2429 

Table 101. Tràigh na Beirigh 9 Mann Whitney U test results on quartz flakes between C005 (n = 35) and C006 (n = 34) 

There was no significant difference between the length of C005 flakes and the length of C006 flakes. 

There was, however a significant difference between the width and thickness of the flakes between 

these two contexts. The r value for both these dimensions indicates that the effect size is only small 

to medium (Field 2013). Overall, this supports the results of the MANOVA – there is no difference 

in the dimensions of the quartz flakes between the two contexts. 

12.4.3.3. Cortex 

The majority of flakes from both C005 and C006 do not exhibit any cortex. Equal numbers of flakes 

from C005 and C006 display <50%, with marginally more flakes from C005 retaining >50% cortex 

than those from C006. There are slightly more flakes with 100% cortex from C006 (Figure 393). 

 

Figure 393. Tràigh na Beirigh 9 quartz flake cortex percentage from C005 and C006 

12.4.3.4. Striking Platform – Type and Dimensions 

The vast majority of platforms from C006 are absent, with broken/crushed platforms also 

represented in high numbers (Figure 394). Only three flakes from C006 exhibited plain platforms.  

For C005 the highest number of flakes had damaged platforms, followed by flakes where the 

platforms were absent. Of the flakes from this context where the platform could be recorded, a 

single platform still retained cortex, two had plain platforms, and two were facetted. One was 

completely indeterminate. 

0% <50% >50% 100%

Context 5 19 6 6 4

Context 6 20 6 4 5

0

5

10

15

20

25

Q
ty

Cortex Percentage
n=70  



 

696 

 

 

Figure 394. Tràigh na Beirigh 9 quartz flake platform type from C005 and C006 

The width of the platforms ranges widely for both of the contexts (c.5-25mm) with a comparatively 

narrow range of platform depth (c. 4-8mm; Figure 395). The main cluster sits between c.5-10cm in 

length. One of the flakes from each context stands apart from the rest of the group in terms of 

greater width and/or thickness. 

 

Figure 395. Tràigh na Beirigh 9 quartz flake platform dimensions from C005 and C006 

12.4.3.5. Dorsal Flake Scars – Count and Pattern 

Single dorsal flakes scars are most frequently recorded on flakes from both contexts (Figure 396). 

In C006, there are more flakes with two dorsal flakes scars than three, whereas in C005 the opposite 

is true. Only C005 has flakes that display four or more dorsal flakes scars. 
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Figure 396. Tràigh na Beirigh 9 quartz flake dorsal scar count from C005 and C006 

Equal numbers of flakes from both contexts display multidirectional dorsal flake scar patterns, 

although this is not the most commonly observed pattern – a unidirectional pattern is dominant 

(Figure 397). A small number of flakes have indeterminate removal patterns and a single flake from 

C006 shows a bidirectional removals. This is not evidence of bipolar technology, but of an 

alternating reduction sequence. 

 

Figure 397. Tràigh na Beirigh 9 quartz flake platform dorsal scar pattern from C005 and C006 

12.4.3.6. Breakage 

Flake breakage is highly prevalent in both contexts, with flakes from each context represented 

almost equally in each category (Figure 398). 
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Figure 398. Tràigh na Beirigh 9 quartz flake breakage from C005 and C006 

12.4.3.7. Concluding Remarks 

The quartz flakes that were from C005 and C006 at Tràigh na Beirigh 9 have been treated in an 

identical manner throughout, suggesting that either the skeleton was Mesolithic in date, or that 

the reduction of quartz had not changed significantly over a long period of time. Following the 

successful radiocarbon dating of a tooth from the skeleton, it was evident that the material 

surrounding it was Mesolithic in date. Consideration of the site formation processes indicates that 

the quartz lithics present in C006 are likely to have been redeposited, as the material from the 

underlying midden, into which the grave had been cut, was subsequently used to fill the grave.
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12.5. Pabaigh Mòr South 

12.5.1. Small Fraction Flakes 

Four small fraction (<10mm) flakes were recovered from Pabaigh Mòr South in C002. Two of them 

are milky quartz and two are greasy quartz. Their dimensions are presented in Table 102. None of 

the small fraction flakes have any cortex present and three of the small fraction flakes are complete. 

Catalogue No. Quartz Variety Length (mm) Width (mm) Thickness (mm) 

L3 Milky 6.22 5.47 2.06 

L5 Milky 9.86 9.31 1.14 

L6 Greasy 3.99 9.84 1.74 

L8 Greasy 7.06 11.10 1.45 

Table 102. Pabaigh Mòr South small fraction flake dimensions 

12.5.2. Chunks 

There were two chunks recovered from Pabaigh Mòr South, both from the main body of the shell 

midden (C002). L4 is a chunk of greasy quartz which is broken and did not retain any cortex. L9, a 

milky quartz chunk, is also broken but exhibited less than 50% cortex. The dimensions of the chunks 

are presented in Table 103. 

Catalogue No. Quartz Variety Length (mm) Width (mm) Thickness (mm) 

L4 Greasy 9.81 6.63 4.33 

L9 Milky 15.14 9.25 5.64 

Table 103. Pabaigh Mòr South chunk dimensions
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Appendix 13 Thin Section Analysis of Baked Mudstone 

13.1. Introduction 

In Chapter Five, it was established that determining the lithological differences between 

two raw materials – mylonite and baked mudstone – could not be definitively 

ascertained based on visual inspection alone. In order for the composition of these raw 

materials to be better understood, thin sections were made using standard 

petrographic techniques (Goldberg & Macphail 2008). The thin sections were examined 

under increasing magnifications using a high-powered binocular microscope, using both 

cross-polarising (XPL) and plain polarising (PPL) light. 

This study simply aimed to gain a quantitative understanding of the lithological 

differences between these raw materials: are these raw materials mylonite or baked 

mudstone? As such, only basic descriptions of the lithological components of each thin 

section have been undertaken. Two samples were taken from Northton and one sample 

from Tràigh an Teampuill. The thin section descriptions were then compared to two 

previously examined thin sections held within the British Geological Survey (BGS) 

minerology and petrology collection database (British Geological Survey 2016b). The 

first reference sample is of mylonite (S73582) taken from “S shore of Toe Head, 32 m at 

112 deg from Chapel (ruin)”. This sample has erroneously been recorded as taken from 

North Uist, as is clear from the grid reference, which places it slightly beyond the site of 

Tràigh an Teampuill (Collins & British Geological Survey 2016b). The other reference 

sample is a baked shale (S72034), which was used in the initial thin section study of the 

Beaker-age flake from Northton by Phillips (2006b). This piece is derived from the cliff 

exposure at An Corran, at the south end of Staffin Bay (Collins & British Geological 

Survey 2016a).
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13.2. Thin Section Descriptions: Archaeological Samples 

13.2.1. Northton L50 

This sample has a poorly-sorted, matrix-supported texture with no apparent preferred 

orientations of clasts, and a large range of grain sizes. The coarse, sand-sized fraction 

predominantly comprises angular to sub-angular quartz, with a minor feldspar 

component. There is also a small proportion of very-fine sand to silt sized, dark, opaque 

mineral clasts, which are much smaller in size than the quartz and feldspar fractions. 

The fine fraction is mainly clay, variously stained by both organic material and iron 

oxides, with some quartz silt (Figure 399 and Figure 400). 

 

 

 

 

 

 

 

 

 

 

 

Figure 399. Northton 
L50 thin section under 
PPL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 400. Northton 
L50 thin section under 
XPL



 

702 

 

13.2.2. Northton SF96 

The texture of this thin section is also matrix-supported. The grain sizes range from fine sand to clay, 

which is considerably less than that of sample L50, discussed above. A definite preferred orientation 

of fine-sand sized quartz clasts are observed in this sample, oriented in bands from top-right to 

bottom-left (Figure 401). This banding is clearer under XPL than PPL (Figure 402). There are possible 

secondary calcite coatings along the preferred orientation plane, or preferential orientation of the 

clay particles as a result of metamorphosis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 401. 
Northton SF96 thin 
section under PPL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 402. 
Northton SF96 thin 
section under XPL
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13.2.3. Tràigh an Teampuill L37 

This thin section also displays a poorly-sorted, matrix-supported texture with no 

preferred orientation of clasts. The range of grain sizes is similar to that of Northton L50, 

comprising sand to clay-sized particles, although there is a lower abundance of larger 

clasts. The sand-sized fraction is dominated by angular to sub-angular quartz, and the 

fine fraction is mainly comprised of quartz silts with a minor component of clays (Figure 

403 and Figure 404). 

 

 

 

 

 

 

 

 

 

 

Figure 403. Tràigh 
an Teampuill L37 
thin section under 
PPL 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 404. Tràigh 
an Teampuill L37 
thin section under 
XPL 
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13.3. Thin Section Descriptions: Reference Samples 

13.3.1. Mylonite: S73582 

This thin section exhibits a highly crystalline texture entirely comprising inter-grown quartz and 

feldspar grains, with very few void spaces. It shows marked foliation and a strongly preferred 

orientation in the bimodal distribution of crystal sizes, which results in a banded appearance. Some 

of the void spaces have been secondarily infilled, possibly with chlorite, which also align with the 

preferred orientation of the sample (Figure 405 and Figure 406). 

 

Figure 405. Mylonite (S73582) thin section under PPL. Contains British Geological Survey materials © NERC 2016. No 
scale available 

 
Figure 406. Mylonite (S73582) thin section under XPL. Contains British Geological Survey materials © NERC 2016. No 

scale available
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13.3.2. Baked Shale: S72034 

Due to the low magnification available for this sample, only a very broad description can 

be made regarding its lithology. The sample displays distinctive foliation of coarse and 

fine-grained clasts. The coarse fraction appears to be dominated by rounded to sub-

rounded quartz grains, with some feldspar inclusions also likely. It is probable that the 

fine-grained fraction comprises quartz silts or clays, however it is difficult to be certain. 

There is moderate sorting of grains within each of the foliated bands; however, over the 

entire face of this thin section, sorting is poor (Figure 407 and Figure 408). 

 

Figure 407. Baked shale (S72034) thin section under PPL. Contains British Geological Survey materials © NERC 2016. 
No scale available 

 

Figure 408. Baked shale (S72034) thin section under XPL. Contains British Geological Survey materials © NERC 2016. 
No scale available 
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13.4. Interpretation and Conclusions 

It is clear that the three raw material samples, recovered from the Mesolithic sites on 

Harris and analysed here, differ considerably from the mylonite sample found within the 

BGS reference collection. Given the mylonite was sampled within the immediate vicinity 

of the sites, this is significant in terms of determining whether this locally available 

material was utilised during the Mesolithic occupation of the Toe Head Peninsula. 

The high degree of crystallinity in the mylonite sample, which is a high-grade 

metamorphic rock, is not evidenced in any of the archaeological samples (Haldar 

2013:220). Instead, the thin section analyses indicate that these samples are pelitic 

sedimentary rocks (Haldar 2013:159-162). The presence of calcite infillings in SF96, 

suggest this is a pelitic sedimentary rock that has been slightly metamorphosed. As 

such, the samples analysed are characteristic of the argillaceous lithologies found within 

the Staffin Shale Formation, specifically sandy siltstones (Survey 2016a; Trewin 

2002:349). The Staffin Shale Formation was deposited during the Jurassic period, 

therefore it is possible that these lithologies have been slightly metamorphosed due to 

the extensive regional igneous activity that occurred during this period (Trewin 

2002:349). In this instance, these lithologies could be colloquially termed ‘baked 

mudstones’.
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Appendix 14 Gleann Mor Barabhais Survey Records 

Table 104. Catalogue of sites recorded during the survey of Gleann Mor Barabhais 

Site 
No. NGR (centred) Site Type 

Previously 
Recorded? 

SMR 
No. 

NMR 
No. Photo No. Eroded 

Estimated 
Date Description/Interpretation 

1 NB3505149392 

Structure 
and lazy 

beds No N/A N/A DP51-55 No 
Medieval-
Modern 

A rectangular structure oriented N-S with a possible entrance to the N although this 
is indistinct. Exterior dimensions 23.5x11.3m, interior dimensions 18.5x8.2m. The W 
wall appears to have been robbed out to construct a modern wall immediately 
behind. Only a single course of very large (>50cm) sub-rounded stones (0.8m high) 
is visible at ground level on the S wall and in the lower coursing of the modern wall. 
Sixteen lazy beds orientated E-W are associated with the structure. 

2 NB3535049165 Lazy beds No N/A N/A 
DP56-63 
DP67-68 Yes 

Medieval-
Modern 

A large area of lazy beds c.500x120m running in several directions. Several of the 
beds are truncated by the river and the eroded section was observed from Site 4 
where the original ground surface was visible below the beds. 

3 NB3548549077 

Structures 
and lazy 

beds No N/A N/A 
DP66 

DP69-87 Yes 
Medieval-
Modern? 

Area of lazy beds extending over an area c.100m², some truncated by the river. A 
series of 11 sub-rectangular structures were also identified associated with the lazy 
beds. The ridges of the beds have been used as E and W walls of the structures, with 
entrances to the N and S. There is minimal evidence of stone coursing (only a single 
stone identified in the complex); turf walling appears to have been added to the 
tops of the ridges to create additional height and to create entrances. Structure 1 
3.4x4.2m; Structure 2 3.9x3.8m; Structure 3 5.2x4.6m; Structure 4 4.9x3.9m; 
Structure 5 4.5x5.6m; Structure 6 6.2x5.5m; Structure 7 9.5x5.5m; Structure 8 
9.2x5.3m; Structure 9 6x5.5m; Structure 10 17.5x6.2m; Structure 11 5.8x6.4m. Age 
and function unknown. 

4 NB3527849332 Lazy beds No N/A N/A DP88 Yes 
Medieval-
Modern 

Lazy beds running in several directions over c.150m. Several beds were truncated 
by the river and investigation of the eroded sections revealed sandy deposits with 
little organic content and no cultural material was visible. Agricultural. 

5 NB3508749464 Lazy beds No N/A N/A - No 
Medieval-
Modern Five lazy beds orientated NW-SE over an area c.10x20m. Agricultural. 

6 NB3561148770 Lazy beds No N/A N/A - No 
Medieval-
Modern Two, possibly three lazy beds orientated NE-SW over a c.10m² area. Agricultural. 

7 NB3608148183 Wall No N/A N/A DP89-90 No Modern 

A wall 13.5x1m oriented N-S almost along the bank of the river, comprised of a single 
course of large (>20cm) sub-rounded stones visible at ground level, however a 
maximum of three courses were visible in the bank section above water level at a 
height of 1m. Likely function as bank stabilisation. 
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8 NB3634847995 Wall No N/A N/A DP91-94 Yes Modern 

Two linear walls oriented NW-SE comprising large (>20cm) to sub angular stones 
with a maximum of two courses visible (varying height of 0.3-0.6m). The landward 
wall extends for 17.8m before a 90° return towards the SW, which extends for 3m, 
followed by an indeterminate change of course to the original orientation. The 
second wall, closer to the river extends for c.17m. Both walls are c.0.54m in width 
and although there has been some animal erosion and scatter of stones there is 
clear facing of both walls on their NE side. Likely function as bank stabilisation. 

9 NB3627048031 Wall No N/A N/A DP99 No Modern 

A stretch of wall 10.4mx0.6m built into the bank close to the river, oriented E-W. A 
maximum of three courses of large (>20cm) sub-angular stones were visible (0.5m 
high). Likely function as bank stabilisation. 

10 NB3653647841 Wall No N/A N/A DP100 No Modern 

A small stretch of wall c.5x0.5m running E-W comprising large (>20cm) sub-angular 
stones. A single course is visible (c.0.3m in height) at ground level at the western 
extend for c.2m before becoming more indeterminate for the remainder of the 
extent towards the east. Likely function as bank stabilisation. 

11 NB3666347622 Lazy beds No N/A N/A - No 
Medieval-
Modern 

Five lazy beds orientated NW-SE and running parallel to the river for c.200m. 
Agricultural. 

12a NB3699047113 Wall No N/A N/A - Yes Modern 

A wall 10.9x1.3m orientated NW-SE comprising large (>20cm) sub-angular stones 
with a maximum of three courses (c.0.5m high) visible. The wall may have originally 
been higher as there was a significant amount of tumbled stones in front of the NW 
face indicating collapse. Likely function for bank stabilisation. 

12b NB3673547498 Wall No N/A N/A 
DP101-

102 No Modern 

A substantial extent of wall 25x2.8m comprising a single visible course of large 
(>20cm) sub-angular stones (0.2m high) oriented NW-SE. A possible earlier phase 
was noted to the NE face with facing stones set well into the ground. The single 
course of facing stones set back from this indicates a later phase of maintenance. It 
is probable that this wall is still being reinforced as the N, S, and E extent were very 
well defined with no grass coverage or tumble. Likely function as bank stabilisation. 
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13 NB3703146894 

Structures 
and lazy 

beds Yes 3189 131382 
DP107-

111 Yes 
Medieval-
Modern 

Two structures in association with a system of lazy beds. Structure 1 exterior 
dimensions 11.3x7.7m, interior dimensions 8.9x4.4m is the smaller of the two 
structures. The structure is visible as earthworks c.0.6m in height with a few large 
(>20cm) stones visible which may attest to stone-walling. A possible entrance is 
situated in the S facing wall. Structure 2 comprises much more substantial 
earthworks, although still only 0.8m in height. The external dimensions measure 
17.7x8.9m and the internal dimensions 12.8x3.8m - this large discrepancy in 
measurements indicates a high degree of collapse. As with structure 1 there are a 
few large (>20cm) sub-angular stones visible attesting to stone walling. There is a N 
facing entrance which is contained by a small semi-circular stone (medium, >10cm) 
walled feature which measures 4.2x4.2m. This 'annexe' has a possible W facing 
entrance. The structures confirm the NMR record. Some lazy beds truncated by the 
river and adjoining head dyke system. Situated directly opposite Site 16 and may 
possibly be associated with the same phase of settlement. 

14 NB3731746652 Wall No N/A N/A - No Modern 
A wall c.6x1m running N-S comprising large (>20cm) sub-angular stones with a 
maximum of three courses (c.0.5m high). Likely function as bank stabilisation. 

15 NB3744546572 Lazy beds No N/A N/A - Yes 
Medieval-
Modern 

Eight lazy beds orientated N-S covering an area of c.100m². Two were truncated by 
the river and it was possible to see the relic ground surface below the beds, although 
no cultural material was identified. Agricultural. 

16 NB3710946940 Lazy beds No N/A N/A - No 
Medieval-
Modern 

Four, possibly five lazy beds c.50m in length orientated NW-SE. These were situated 
directly opposite Site 13 and may possibly be associated with the same settlement 
phase. Agricultural. 

17 NB3704847115 Lazy beds No N/A N/A - Yes 
Medieval-
Modern 

Four lazy beds c.50m in length orientated NW-SE, two of which were truncated by 
the river at their southern extent. Agricultural. 

18 NB3672547573 Wall No N/A N/A 
DP112-

113 No Modern 

A stretch of wall 18.6x0.4m forming part of the river bank comprising very large 
(>50cm) sub-angular stones. A maximum of four courses were visible above the 
water level (c.0.8m high). River bank revetment. 
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19 NB3753746661 

Structures 
and lazy 

beds Yes 3191 131384 
DP114-

121 Yes 
Medieval-
Modern 

Four structures associated with a system of lazy beds extending over an area 
c.200x50m. Structure 1 comprises earthworks, sub-circular in plan and measuring 
6.9x7.3m. A few large (.20cm) sub-angular stones are also visible which may suggest 
stone walling. A possible semi-circular annexe is present to the NW although this, 
and any entrance is indeterminate. Structure 2 is positioned to the S of Structure 1 
and comprises very indeterminate sub-circular earthworks measuring 5x3.4m. Both 
these structures are situated on the E bank of a stream/head dyke that bisects the 
site, with Structures 3 and 4 on the east bank. Structure 3 is visible by irregularly 
shaped earthworks, with no stonework visible. It may have been rectilinear in plan 
with a curved south wall and measures 14.4x9.2m. Structure 4 is also only visible as 
earthworks with an elevated circular area to the N with a lower, rectilinear 'annexe' 
to the S - the whole structure measures 14.7x7.6m. Some lazy beds to the E 
truncated by the stream, no cultural material was visible in the section. Majority of 
the lazy beds are orientated N-S. The survey has confirmed that there are four 
structures still visible of the original possible ten unroofed shieling huts that were 
identified on the 1st Edition OS map, but were not present on the current 1:10000 
map (1974). 

20 NB3843645375 Structures Yes 3197 131390 
DP126-

135 No 
Medieval-
Modern? 

A series of four structures, two of which (Structures 1 and 2) were situated on the 
top of a steep bank, whereas the other two (Structures 3 and 4) were situated by 
the river, directly below Structures 1 and 2. Structure 1 comprised circular 
earthworks with very indeterminate edges, therefore the dimensions of 7.3x7m are 
very approximate. There was no stonework visible for this structure. Structure 2, to 
the S of structure 1, also comprised indeterminate sub-circular earthworks with 
approximate dimensions of 5.3x4.4m. Some large (>20cm) stones were 
intermittently visible. Structure 3, to the E of structure 1, comprised large 
earthworks (15.1x12.5m) of substantial height (c.2m) and was ovoid in plan with an 
irregularly shaped 'annexe' (6.2x7.6m) to the N. A single stone was visible in the 
centre of the structure and may represent collapsed stone walling. Structure 4, to 
the E of structure 2 comprised ovoid earthworks 7.3x6.8m and no stonework was 
visible. This survey indicates that there are more structures remaining than the 
single unroofed building reported as present on the current 1:10000 (1974) OS map, 
of the original six roofed shieling huts that were visible on the 1st Edition. 

21 NB3864844997 Shieling Yes 3218 131411 
DP136-

138 No 
Medieval-
Modern 

A single structure comprising roughly ovoid earthworks and standing stonework 
5.8x5.1m. At the NE extent a maximum of four courses of large (>20cm) sub-angular 
stones are visible forming a D-shaped 'alcove' with a very large (>30cm) flat lintel-
like slab which had partially slumped by the collapse of some of the supporting 
stonework within the interior of the structure. Confirms the current CANMORE 
entry. 
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22 NB3895544345 Shieling No N/A N/A 
DP139-

140 No 
Medieval-
Modern? 

A small stone rectilinear structure measuring 3.5x3.1m likely to be a shieling 
orientated N-S. The large (>20cm) to medium (>10cm) sub-angular stone walling 
stands to a maximum of four courses (0.5m high). A possible entrance is situated in 
the W wall. 

23 NB3810046139 Lazy beds No N/A N/A - Yes 
Medieval-
Modern 

Ten lazy beds covering an area c.100x50m orientated NE-SW. The southern extent 
of the lazy beds were truncated by the river and two beds were eroded down the 
centre by a small tributary stream. Agricultural. 

24 NB3790246095 Lazy beds No N/A N/A - No 
Medieval-
Modern 

Fifteen lazy beds covering an area c.100x50m running in several directions. 
Agricultural. 

25 NB3752246499 Lazy beds No N/A N/A - No 
Medieval-
Modern 

Fourteen lazy beds orientated N-S and six beds orientated E-W covering an area 
c.100m². These are situated directly opposite Site 19 and may be part of the same 
settlement phase. Agricultural. 

26 NB3888944252 Structures Yes 12156 136372 
DP141-

144 No 
Medieval-
Modern? 

Two structures identified. The first is a small sub-circular earthwork 3.7x4.2 with no 
stonework visible and a small linear feature extending from the southern extent 
towards Structure 2. This structure was sub-rectangular in plan comprising a 
maximum of seven courses of large (>20cm) sub-angular stones and a turf bank 
supporting the exterior. The exterior measures 5.9x4.8m and the interior 3.4x1.9m. 
A single alcove was built into the eastern wall in the interior, directly opposite the 
entrance in the western wall. The structure is listed in the NMR a possible shieling 
hut that can be seen on both the 1st Edition (1852) and current 1:10000 (1972) 
maps. The association and function of the earthworks to the N is unknown. 

27 NB3841843585 Earthworks No N/A N/A 
DP145-

146 No Unknown 

Ovoid earthwork with a possible entrance facing NW, measuring 5x6.3m. 
Indeterminate linear earthwork to the W. Situated directly opposite Site 28. Form 
and function unknown. 

28 NB3838443592 Structure Yes 12153 136323 
DP147-

152 No 
Medieval-
Modern 

A structure ovoid in plan that may have been a beehive shaped building from the 
shape of the walls (clearly NOT slumping). The structure is oriented E-W with 
entrances in the N and S walls, with four alcoves built into the W wall. There are a 
maximum of seven courses of large (>20cm) sub-angular stones 1m in height. The 
external dimensions measure 5.3x4.4m and the internal dimensions measure 
2.8x1.9m. It is situated directly opposite Site 27, although any association cannot be 
determined. This was the only structure identified of a possible five unroofed 
structures depicted on the current 1:10000 (1972) map, which remained of four 
roofed and thirteen unroofed possible shieling huts that were present on the 1st 
Edition OS map (1852). 
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29 NB3872844227 Structure Yes 12155 136325 
DP153-

155 Yes 
Medieval-
Modern 

A sub-rectangular structure oriented N-S with two entrances in the E and W walls 
which are biased towards the S end of the structure. Four alcoves in a two-by-two 
arrangement were built into the N wall, which has slumped considerably. There are 
two alcoves built into the E wall to the N of the entrance. The exterior dimensions 
measure 4x4.9m and the interior dimensions measure 3x1.9m. The walling survives 
to a height of 0.9m with maximum of five courses of large (>20cm) sub-angular 
stone visible. This is most likely to be the single structure present on the current 
1:10000 map, which is all that remains of four unroofed structures depicted on the 
1st Edition OS map (1852). 

30 NB3746546484 Possible OGS No N/A N/A 

DP122-
125 

DP156-
162 Yes Holocene? 

A dark-brown/black organic layer overlying a thin layer of grey clay and glacial till 
and underlying orange-brown alluvium, extending for c.5m in an eroding section of 
the river bank and sheep scrape. This may be a possible Holocene ground surface 
based on the stratigraphy and possible anthropogenic activity is attested by the 
presence of charcoal flacks in the deposit. A 0.95m stretch was bulk sampled for RST 
and two soil-micromorphology samples were taken. 
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