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Abstract 
 

As the limits of human lifespan continue to expand, ageing biologists must address the 

decline in the integrity of bodily tissues with time. Our skin is drastically impacted by both intrinsic 

and extrinsic ageing processes, driven by gradual accumulation of cellular damage and 

environmental insults like ultra-violet irradiation. 

Together intrinsic and extrinsic skin ageing give rise to clinical issues such as xerosis, pruritus 

and neoplasms. Cosmetic issues, such as unsightly wrinkling, thinning and sagging of the skin also 

impact human psychological and social wellbeing. Given these issues, studying the molecular 

mechanisms of intrinsic and extrinsic skin ageing processes is an important element of biological 

research, as a better understanding of how these processes contribute to reduced tissue integrity 

will allow us to develop therapies to attenuate the ageing process.  

Using tissues taken from C57BL/6 male mice and female humans as our models, we analysed 

skin at early, middle and late stages within both the murine and human lifespans to assess the impact 

of ageing on changes in the epidermis, dermis and at the basement membrane. By considering tissue 

taken from photo-protected and photo-exposed sites of humans, we additionally studied the 

differential changes occurring during intrinsic and extrinsic skin ageing (photo-ageing). 

Our studies showed that several morphometric changes occur to the epidermis with age in 

mouse skin, where we observed thinning and cellular loss. Cell proliferation and lamin B1 levels 

declined, which was coupled with decreased expression of dermal and basement membrane 

collagens. Many of these observations were ubiquitous in intrinsically aged human skin, where we 

additionally show unique transcriptional changes at the basement membrane. One little studied 

pathway in skin ageing is the Hippo pathway, which has crucial roles in epidermal development 

through its control of epidermal cell proliferation. We identify a novel modulation of the Hippo 

pathway effector YAP1 in aged mouse and human skin, where we show that nuclear localisation of 

YAP1 increases during epidermal ageing. 

Together this body of work demonstrates that C57BL/6 mouse skin ageing shares common 

mechanisms of intrinsic human skin ageing. Additionally, we show that YAP1 localisation is altered 

during epidermal ageing, which suggests that the Hippo pathway is sensitive to both changes in the 

extra-cellular matrix content, and cell-proliferation properties of skin over time. 
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Chapter 1: Introduction and Objectives 
1.1 Skin structure and function 
 

Our skin is the largest organ in the human body, accounting for around 15% of the total 

body weight in adult humans. As a highly evolved, multifunctional organ, skin prevents excess 

water loss, excludes toxins, resists mechanical stress, maintains our body temperature and 

participates in immune responses (Kanitakis, J. 2002). In order to fulfill its many functions, skin 

has an elaborate layered structure, with the outermost layer being the epidermis, followed by 

the dermis and then the hypodermis. Within the dermal region adnexal structures such as hair 

follicles, sweat glands, sebaceous glands, lymphatic vessels and blood vessels are present, 

which all play a role in skin biology. A representative example of human skin is shown in figure 

1.1. 

 

 
Figure 1.1: An example of a cross section of human skin showing the 3 main layers: epidermis, dermis and 
subcutaneous layer (also known as hypodermis). The epidermis does not have a vascular network of its own, and 
depends on the vasculature present in the dermis for nutrient supply. The skin is a highly sensory organ, and 
therefore present in the dermis are many nerve endings (Lamellated corpuscle’s). The subcutaneous (fatty) layer 
provides insulation to the body, preventing excess heat loss and thus allowing us to maintain our core temperature. 
(Image taken from Hole’s Human Anatomy and Physiology, Chapter 6). 
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1.2 The epidermis of our skin is a multilayered, specialized epithelium  
 

Our epidermis is our first line of defence against water loss, pathogens and mechanical 

stress (Sandilands et al, 2009). This multi-layered epithelium has evolved over time to consist of 

several different cellular layers, which are made primarily from keratinocytes. The epidermal 

layers are histologically distinct (figure 1.2) and in ascending order, are called the basal layer 

(stratum basale), spinous layer (stratum spinosum), granular layer (stratum granulosum) and 

cornified envelope (stratum corneum). 

 

Figure 1.2: The epidermal layers are histologically distinct from 
one another. Epidermal layers stained with haematoxylin and 
eosin showing the different strata (layers) (image from Simpson et 
al, 2011).   
 

 

 

 

 

 

 

 

 

Although keratinocytes make up the vast majority of the cellular population in this 

compartment, other specialized cells are also present in small quantities such as antigen-

presenting Langerhans cells, which play a role in the skin immune response and make up 2-5% 

of the epidermal cell population in humans (Chomiczewska et al, 2009). Merkel cells are also 

present, and these mechanosensory cells are usually associated with several nerve endings, 

allowing touch sensations to be signaled from the skin to the brain. This sensory cell population 

accounts for 6-10% of the whole epidermis in humans. Finally, melanocytes are resident in the 

basal layer, and these cells produce the pigment melanin, which gives skin its colour and 

protects DNA from UV-induced damage. Melanocytes make up around 5% of the total 

epidermal cell population in human skin (Cichorek et al, 2013). 

The resident keratinocytes within each epidermal layer have their own unique cellular 

morphology, keratin expression profile and cell junction expression profile. This phenotypic 

change in the different layers is a result of the terminal differentiation process that occurs 

starting in the basal layer and ending in the cornified envelope (CE) (Simpson et al, 2011). 

Figure 1.3 depicts the basal layer (stratum basale), which is connected to the basement 
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membrane (BM) by several cell-matrix adhesion complexes (focal contacts), such as integrin 

proteins, which tether the basal keratinocytes to this region. Several cellular junctions are 

present between the basal epidermal cells, which confer mechanical stability and also allow 

cell-cell communication (Lai-Cheong et al, 2007). In the spinous layer cells begin to synthesize 

the machinery needed to form the CE, whilst also increasing their expression of adhesion 

proteins such as E-cadherin, desmoplakin (DP), plakophilin 1 (PKP1) and plakoglobin (PG). 

These molecules contribute to the formation of cadherin-based cell junctions and 

desmosomes, aiding in both the mechanical resistance and barrier properties of the epidermis 

(Bazzoni and Dejana, 2002). In the granular layer (figure 1.3), cells begin to assemble the 

components of the CE before eventually becoming anuclear components of the stratum 

corneum (SC). Finally, dead corneocytes are shed from the outer epidermis, ensuring that basal 

keratinocyte proliferation is balanced with cellular loss. 

 
Figure 1.3: Structure of the keratinocytes within each epidermal layer. Basal layer cells are connected to the 
basement membrane via hemidesmosomes and integrin-containing focal adhesions. Cells of the spinous layer are 
reduced in size compared to basal cells and express many cell adhesion molecules so that cells can be connected via 
desmosomes and adherens junctions, which allow inter-cell communication. In the granular layer cell flattening and 
synthesis of lipid vesicles and other protein components occurs so that terminally differentiated keratinocytes can 
form the components of the stratum corneum. Image from Fuchs and Raghavan, 2002. 
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1.3 Epidermal stem cells in the basal layer drive epidermal homeostasis 
 

The epidermal basal layer (stratum basale) is the central hub of epidermal mitosis, as it 

houses keratinocyte stem cells which are contained within a protective niche. Cells of this layer 

express the keratins K5 and K14, which help to maintain them in an un-differentiated state 

(Fuchs and Raghavan, 2002). Epidermal stem cell (Epi SC) proliferation in this layer is believed 

to be driven in part by extracellular signals derived from cells within the dermis, which secrete 

mitogens such as insulin-like growth factors (IGF’s), causing the initiation of cell division (Hsu et 

al, 2014). Epi SC’s proliferate and subsequently migrate upwards and differentiate in to the 

cells forming the spinous layer (stratum spinosum). The precise mechanics of Epi SC 

proliferation and differentiation have been contested in several reports, with some authors 

providing support for a hierarchical model (Clayton et al, 2007; Lim et al, 2013), and others a 

stochastic mechanism of epidermal renewal (Mascré et al, 2012) (both mechanisms depicted in 

figure 1.4). Whatever the precise mechanics of Epi SC proliferation, it is hypothesized that loss 

of cellular contact with the basement membrane (BM), via down-regulated expression of 

integrins on the cell surface, allows subsequent keratinocyte differentiation processes to occur 

(Watt, F.M. 2002). 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: Two proposed models of Epi SC proliferation. In the Hierarchical model (A) rarely placed stem cells in the 
basal layer divide giving rise to rapidly diving transit amplifying cells also occupying the basal layer. These TA cells 
then go on to differentiate and form the upper epidermal layers. In the Stochastic model (B) all of the basal cells are 
identical and random assignment of cell fate can result in 3 outcomes. 1: one cell becomes a differentiated daughter 
cell (purple) and one remains a progenitor and continues to reside in the basal layer (orange). 2: both cells become 
progenitors, or 3: both cells become differentiated daughter cells. In this model equal probability of the 3 outcomes 
ensures that overall epidermal homeostasis is maintained (image from Hsu et al, 2014). 

 
In the absence of cell-matrix contact, daughter cells of Epi SC’s undergo alterations in 

their cell polarity and cytoskeletal architecture, eventually becoming post-mitotic cellular 

residents of the spinous layer. Both biochemical and mechanical cues are thought to drive this 
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process (Connelly et al, 2010), which results in down-regulation of the expression of basal 

epidermal keratins K5 and K14 and up-regulation of keratin 1 (K1) and keratin 10 (K10). 

Additionally, the intercellular adhesion profile in this layer is altered, with cells expressing 

greater amounts of E-cadherin and desmoglein 1, which contribute to the formation of 

adherens junctions and desmosomes respectively (Simpson et al, 2011). At this stage, cells 

begin to lay the foundations for later CE formation, by depositing glutamine and lysine-rich 

envelope proteins such as involucrin on the inner surface of the plasma membrane of each cell. 

Additionally, lipid synthesis and packing into vesicles begins to occur (Fuchs, E. 1990).  

1.4 Spinous to granular transition 
 

The phenotypic transition of keratinocytes in the spinous layer to the granular layer is 

controlled by several signaling mechanisms, some of which are dependent on the presence of a 

calcium gradient within the epidermal layer. The Protein Kinase C (PKC) pathway initiates 

expression of the CE components loricrin, filaggrin and transglutaminases whilst also causing a 

down-regulation in expression of K10 and K1 (Koster and Roop, 2007). Filaggrin acts to bundle 

keratin filaments into parallel rope-like structures that cause the cell to collapse and become 

flattened. The filaggrin bundled cytoskeleton then forms a platform for the assembly of the 

components of the CE, which is a proteinaceous barrier that resists mechanical stress and 

prevents water loss (Steven and Steinert, 1994). The structure of the CE is depicted in figure 

1.5. 

 
Figure 1.5: Proteins of the CE. In corneocytes the plasma membrane 
is replaced with a specialized protein cage that is formed from 
structural proteins like involucrin and loricrin which give the CE 
elasticity and keratin which promote mechanical resilience in this 
layer. Involucrin and loricrin are cross-linked through isopeptide 
bonds catalyzed by transglutaminase enzymes and small-proline 
rich proteins (SPRs). Keratins are bundled in large macrofilaments 
by filaggrin. Additionally, lipids such as ceramides, cholesterol, fatty 
acids and cholesterol esters are released between the corneocytes, 
allowing a hydrophobic barrier to be formed in the outer epidermal 
layers. (Picture from Candi et al, 2005). 
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1.5 Formation of the CE 
 
 The formation of the outermost epidermal layer involves a unique cell death 

programme called cornification. During cornification, proteases such as cathepsins degrade 

organelles and DNase enzymes degrade nuclear material, causing an associated reduction in 

cell body size. Apoptotic signaling mechanisms are suppressed during this process, so that the 

remaining cell body, now known as a squame, remains present on the outer epidermal surface, 

fulfilling its function as a barrier structure (Eckhart et al, 2013). By this stage the terminally 

differentiated keratinocytes are free from organelles and contain only cytoskeletal and other 

structural proteins of the CE. The squames are joined to one another by special inter-cellular 

adhesions in this area, known as corneodesmosomes (Lippens et al, 2009). Additionally, the 

formation of the CE involves inter-cellular lipid release from lamellar bodies within the cells, 

resulting in a lipid coating to be formed in the spaces between squames. The eventual structure 

of the CE has been likened to “bricks” within a lipid-based “mortar”, which is adept in its role as 

a hydrophobic barrier that prevents microorganism entry (Nemes and Steinert, 1999). The final 

process of de-squamification involves shedding of corneocytes due to proteolytic activity that 

degrades the corneodesmosomes. Removal and changes to the surrounding lipids are also 

thought to aid in this process (Lin et al, 2012).  

 

1.6 The Basement membrane of skin is situated at the dermal-epidermal 
junction 
 

The basement membrane (BM) in skin is a specialized ECM layer that separates the 

epidermal and dermal compartments and provides a platform for adherence of basal epidermal 

keratinocytes. The structure of the BM promotes mechanical stability at the dermal-epidermal 

junction (DEJ) and also provides a protective niche for epidermal stem cells (Kalluri, R 2003). 

BM’s are complex structures consisting of several layers and molecular components, including 

their own unique collagen protein profile. Ultra-structural imaging of the BM using an electron 

microscope depicts two layers, known as the electron-lucid, upper lamina lucida and the 

electron-dense, lower lamina densa (Natsuga, K. 2013) (see figure 1.6). Collagen IV is a crucial 

part of the lamina densa, and it confers mechanical stability to this region and can be found in 

the BM’s of many epithelia and also blood vessel endothelia (Hasegawa et al, 2007). Unlike 

collagen IV, the expression of collagen VII is restricted to the BM zone beneath stratified 

squamous epithelia, like the skin epidermis, and this protein acts to form anchoring fibrils that 

connect the BM to the underlying dermis (Langton et al, 2016). In vitro studies from Ryynanen 

et al, (1992) have shown that epidermal keratinocytes are primary synthesizers of collagen VII, 
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although dermal fibroblasts also express collagen VII mRNA at low levels. Both fibroblasts 

(Olsen et al, 1989) and keratinocytes (Schafer et al, 1991) have also been shown to synthesize 

collagen IV demonstrating the potential for both epidermal and dermal cell populations to 

contribute to the production of the basement membrane collagens. 

 

 

Figure 1.6: Structure of the basement membrane at the dermal-epidermal junction. The figure shows a keratinocyte 
(components in red font) in the basal epidermis tethered to the basement membrane by α6β4 integrin and type 
XVII collagen. Also present in the diagram are the cytoskeletal linker proteins plectin and BPAG1 (Bullous 
pemphigoid antigen 1) that tether the intermediate filaments in the keratinocyte to the hemidesmosomes at the 
cellular plasma membrane. The diagram indicates the two morphologically distinct layers in the BM, the lamina 
lucida, which is rich in laminin 332 protein, and lamina densa, rich in type IV collagen. Collagen VII anchoring fibrils 
join the BM to the type I and type III collagens present in the dermis. (Image from Natsuga, K. 2013) 

 

1.7 Structure and functions of the dermal compartment  
 

The dermis is a thick, extra-cellular matrix (ECM) rich skin layer that is relatively 

acellular compared to the epidermis, although fibroblasts and immune cells do populate this 

layer, which houses appendages such as hair follicles, sweat and sebaceous glands. The 

structural constituents of the dermal matrix, notably collagens, elastins and fibrillins form a 

basket-weave structure that confers tensile strength and mechanical resilience to the skin 

(Brincat et al, 2005). Several non-fibrillar molecules interact with dermal collagens and elastins 

such as glycosaminoglycans. These unbranched polysaccharide chains are able to bind large 
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quantities of water and give the dermis a soft, gel-like consistency that constitutes suppleness 

(Calleja-Agius et al, 2013).  

Type I and Type III collagens make up the bulk of dermal protein (97.5%) and are 

arranged in a ratio of approximately 3:1 in young skin (Cheng et al, 2011). Their distribution is 

different in the two histologically distinctive dermal layers. In the upper papillary dermis, which 

is fibroblast-dense and consists of loosely arranged collagen, there is less type I collagen and 

more type III. In contrast, in the lower reticular dermis the collagen fibrils are densely packed 

and the region is rich in type I collagen (Oikarinen, A 1990)(see figure 1.7.). Each region has 

been shown to have its own distinct fibroblast populations, with a genetic and secretory profile 

unique to that region (Janson et al, 2012). 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.7: The two dermal layers are histologically distinct. Human skin stained with Herovici’s stain for young (blue) 
and mature (magenta) collagen. Nuclei are stained blue/black. Black dotted line= DEJ. The papillary dermis resides 
in the upper dermal layer and contains high levels of young, type III collagens. In the reticular dermis mature, type I 
collagens are pre-dominant. Scale bar= 100µm.  Image= authors own. 

 

1.8 Dermal collagen fibrillogenesis 
 
 Collagens I and III of the dermis are proteins with a triple-helical structure and multiple 

in vivo binding partners (Di Lullo et al, 2002). Fibroblasts synthesize pro-collagen molecules that 

are assembled into triple helices in the rough endoplasmic reticulum then secreted into the 

surrounding ECM. Once they have been secreted, resident metalloproteinase enzymes cleave 

pro-peptides present at the N and C terminus of each protein molecule (Mouw et al, 2014-see 

figure 1.8). Cross-linking between collagen molecules by lysyl oxidases then occurs, which 

allows higher order assembly of collagen molecules into nano-fibrils and collagen fibre’s (Fratzl, 
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P et al, 1998). Type III collagen is believed to be important in the regulation of type I collagen 

fibril assembly, and thus the two are commonly found localized together (Liu et al, 1997). AFM 

(atomic force microscopy) studies have shown that the papillary dermis, where collagen III 

predominates, is softer than the reticular dermis, where collagen I predominates and thus both 

of these dermal regions have differences in their biomechanical properties due to the different 

collagen fibril arrangements (Achterberg et al, 2014) 

 
Figure 1.8: Overview of collagen molecule synthesis. Collagen molecules are synthesized in fibroblasts and each 
individual molecule has both an N and C –terminal pro-peptide (a1). The majority of collagen molecules are made of 
up glycine-rich repeats, which assist in the assembly of the triple helix formation. The individual collagen alpha 
chains (depicted here are the 3 alpha chains for collagen I) form triple helices in the rough ER (2) and are then 
secreted from the cell through vesicles formed in the Golgi (3). Finally, enzymes in the ECM cleave away the N and C-
terminal pro-peptides before extra-cellular higher order collagen assembly occurs. (Image from Mouw et al, 2014)
  

1.9 The dermis houses a prominent vascular network 
  

Unlike the epidermis, the dermis is home to a prominent vascular network, which 

originates from cutaneous branches of musculoskeletal arteries. Deep in the reticular dermis 

these artery branches spread to form a vascular plexus, which resides in the reticular dermis, 

running parallel to the skin’s surface. In the superficial papillary dermis, extensions from 

reticular parent vessels are arranged into smaller arterioles, forming the superficial plexus. This 

vascular supply provides the cells of the epidermis and dermis with oxygen and nutrients, 

allowing them to carry out normal metabolism (figure 1.9). (Brehmer-Andersson, E. 2006) 
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Figure 1.9: Schematic of the dermal vascular network showing how the deep vascular plexus in the reticular dermis 
is joined to the superficial plexus in the papillary dermis by communicating blood vessels. Further branching of the 
vessels allows a fine capillary network to reside in the papillary dermis. (Image from Ackerman et al, 2005) 

 

1.10  The Hair Follicle is a key skin appendage 
 

Along with a prominent vascular supply, the dermis also houses one of the key 

appendages found within all mammalian skin types- hair follicles. These keratin-rich structures 

provide a thermo-regulatory protective covering that shields the skin from the outer 

environment (Otberg et al, 2008) and a cross-sectional image of a hair follicle is shown in figure 

1.10, which depicts the organ with its auxiliary structures. Together the hair follicle, the 

arrector pili muscle, sebaceous gland and sebaceous duct are known as a “pilo-sebaceous unit”. 

Key differences in the structure and organisation of hair follicles are demonstrated 

between mammalian species, and within organisms themselves, distinct follicle types are 

situated on different bodily regions. In mice, 8 distinct hair types are present, including those 

found at the eye lashes, tail, ears, vibrissae (whiskers) and most abundant of all, the pelage 

(coat hairs). In humans, two distinct follicle populations are present: the highly pigmented 

terminal hairs found in regions such as the scalp, and the finer, less-pigmented villus hairs 

found on the face and abdomen (Schneider et al, 2009). Mouse pelage hairs are highly 

abundant compared to human hairs, and within an anatomical-site matched region, the density 

of hair follicles within mouse skin can be more than 100 times that of human skin (Mangelsdorf 

et al, 2014). 
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Figure 1.10: Structure of a pilosebaceous unit. The majority of the hair follicle and its auxiliary structures are situated 
in the dermis, with the most inferior structure being the dermal (hair) papilla. The hair root is surrounded by a 
protective root sheath (not labelled), which is connected to an adjacent sebaceous gland that secretes sebum (oil) 
onto the surface of the skin. The arrector pili muscle determines the angular position of the hair next to the skin, and 
when contracted, the hair shaft stands upwards, allowing air to be trapped between the hairs on the skin which 
provides insulation to the body. (Image from Mescher, A.L: Junqueira’s Basic Histology: Text and Atlas, 12th edition) 

 

1.11 Hair Follicles demonstrate cyclical regeneration that is impacted during 
physiological ageing 
 

Across all species, the hair follicles are recognised as self-regenerating mini-organs, 

which undergo a cycle of active growth (anagen), regression (catagen) and rest (telogen) 

(Schneider et al, 2009). The molecular circuitry that regulates the transitions between the hair 

follicle cycle (HFC) stages is highly complex, and is dependent on the impact of growth factors 

and mitogenic pathways such as Wnt signalling, which control stem cell activity within the 

bulge region. In order for a new HFC to occur, cells within the bulge proliferate and migrate 

downwards into the hair bulb to initiate growth of a new hair (Fuchs, E. 2009). At each stage of 

the HFC the follicle takes on a unique structure, making anagen follicles visually distinct from 

both catagen and telogen follicles. This is depicted in figure 1.11 (Müller-Röver et al, 2001). 
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Figure 1.11: The stages in the hair follicle cycle are structurally distinct. A hair follicle in telogen is typically short, 
contained within the dermal region, and the dermal papilla (dp) is situated below the hair bulb (hb). Once entry into 
anagen has occurred, the follicle grows in length and extends downwards into the hypodermis, and the dermal 
papilla is engulfed within the hair bulb. During catagen the follicle regresses upwards back to the dermal region, and 
separation of the dermal papilla from the resulting club hair (ch) is initiated. (Image adapted from Foitzik et al, 2003) 

 

In post-natal mice the first two HFC’s are highly synchronised across the entire body, 

with the first anagen occurring 1 month after birth and the second anagen 3 months after birth 

(Paus and Cotsarelis, 1999). Following this, sections of the pelage begin to grow asynchronously 

in distinct domains across the body, and the initiation of active growth (anagen) in each bodily 

domain is dependent on BMP signalling factors originating from the dermal environment 

(Plikus and Chuong, 2008).  

Growth of the mouse pelage is impacted by the ageing process, and after 18 months 

the number of actively cycling, anagen follicles is reduced. The hair follicles spend a greater 

amount of time resting (in telogen) and hair growth domains become fragmented into smaller 

regions (Chen et al, 2014).  The potential causes of reduced HFC activity with age are 

numerous, and it has been shown that hair follicle stem cells accumulate chromatin 

modifications during the ageing process as a result of deterioration in DNA damage repair 

capacities (Schuler and Rübe, 2013). Additionally the extracellular environment can play a role, 

as transplanting aged donor mouse skin to a young host restored donor HFC capacity, 

demonstrating that changes in the extra-follicular environment in the ageing dermal matrix 

impacts the activity of hair follicles (Chen et al, 2014). 

 

1.12 The hair follicle is a rich resource of distinct stem cell populations 
 

Hair follicles have recently gained attention due to a vastly expanding field of 

knowledge concerning the presence and behavior of several stem cell pools within the follicle 

structure (figure 1.12). Stem cells can be found within the hair follicle bulge, above the bulge in 
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the isthmus, in sebaceous glands and also within the dermal papilla, indicating that the hair 

follicle can be a rich resource of stem cell activity. Cells of the dermal papilla have recently 

gained attention due evidence supporting their ability to be re-programmed into induced-

pluripotent stem cells, which under varying culture conditions can be directed to form 

adipogenic, osteogenic and haematopoietic lineages (Driskell et al, 2011). The plasticity of stem 

cells within the follicle is also demonstrated during skin insults such as in wounding, where 

stem cells present in the sebaceous glands and hair follicles have been shown to contribute to 

inter-follicular epidermal repair by stimulating cellular proliferation in order to restore 

homeostasis (Solanas and Benitah, 2013). 

 

 

Figure 1.12: Diagram of the stem cell populations in the hair follicle. Unique stem cell pools (depicted by yellow 
stars) have been identified in the bulge, above the bulge in the isthmus, in sebaceous glands, in the dermal papilla 
as well as in the inter-follicular epidermis. The hair follicle is continuous with the inter-follicular epidermis and 
provides a further layer of protection to the skin barrier (Image from Solanas and Benitah, 2013). 
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1.13 Skin ageing impacts the epidermis and dermis 
 

Profound morphological and physiological changes occur during ageing of the skin, 

which have both clinical and cosmetic consequences (Binic et al, 2013). Skin ageing within the 

dermis comes as a result of age-related changes in the proliferative and metabolic properties of 

collagen-producing fibroblasts. One of the many contributing factors to decreased fibroblast 

health in aged skin is due to age-related atrophying of the vascular network within the dermis, 

which results in a reduced delivery of oxygen and nutrients to cells within the dermis (Mine et 

al., 2008). A reduction in the number and biosynthetic capacity of fibroblasts leads to a 

decrease in their secretion of the extracellular matrix proteins type I and type III collagen and 

elastin, causing atrophying of the dermal matrix (Varani et al., 2008). Additionally, aged 

fibroblasts secrete Matrix Metalloproteinases (MMPs) that cause collagen degradation and 

disorganization of the remaining fibrils (Quan et al., 2013). Decreased production and increased 

degradation of collagen and elastin results in a thinned and wrinkled appearance to the skin 

and reduces its ability to withstand mechanical stress (Zouboulis and Makrantonaki, 2011). In 

the epidermis slowing of stem cell activity in the basal layer results in a reduced cellular output, 

which causes a decline in epidermal turnover. This results in epidermal thinning and a 

reduction in the efficiency of the epidermal barrier. The aged stratum corneum is less adept to 

exclude environmental pathogens, resulting in an increased frequency of infections in the skin 

of the elderly (Rawlings, A.V. 2010).  

Changes in the protein component of the basement membrane also occur during skin 

ageing, making it less able to withstand mechanical stress which, coupled with dermal changes, 

results in flattening of the dermal-epidermal junction and a reduced surface area for oxygen 

transport from the vasculature in dermis to the cells within the epidermis (Langton et al, 2016). 

 

1.14 Clinical and cosmetic consequences of skin ageing 
 

The external nature of skin gives it special importance, as the appearance of our body, 

and especially the facial area, greatly influences individual personal and social identity (Oberg 

and Tornstam, 1999). However, profound morphological and physiological changes occur during 

ageing of the skin, which have both clinical and cosmetic consequences (Binic et al, 2013). 

Cosmetically, the aged skin phenotype is characterized by unsightly changes such as wrinkling, 

sagging, presence of irregular pigmentations (wrinkling and pigmentary changes depicted in 

figure 1.13) and telangiectases (visible broken capillaries on the skin surface). Clinically, the 

consequences of skin ageing can be severe, and skin disorders, like xerosis, pigmentation 

disorders and neoplastic formations, are one of the main reasons that elderly patients visit their 
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doctors (St. Sauver et al, 2013). Aside from the pathological issues occurring in ageing skin, the 

unsightly physical appearance of wrinkles, pigmentary spots and age-associated hair loss can 

cause serious psychological consequences. The source of many of these issues are due to 

increased negative connotations associated with old age, leading to societal and cultural 

pressures to maintain a youthful appearance (Gupta and Gilchrest, 2005). For these reasons 

many elderly patients suffer decreased self-esteem and poorer social relations as a result of 

ageing skin (Kligman and Koblenzer, 1997). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 1.13: Visual changes to ageing skin. Pigmentary spots can accumulate around the eye (A, B) and lip regions 
(C). Wrinkles can also be observed around the eyes (D), lips (E) and in the forehead region (F) (Image from Flament 
et al, 2015).  

 

1.15 Intrinsic and extrinsic ageing share common and distinct mechanisms 
 

Skin ageing is driven by intrinsic cellular processes and also external environmental 

insults and therefore both “intrinsic” and “extrinsic” mechanisms contribute to the aged skin 

phenotype (figure 1.14). The main causative factors in “intrinsic” skin ageing concern the 

gradual accumulation of cellular damage as a result of normal oxidative metabolism (Naylor et 

al, 2011). DNA damage accumulates in both ageing fibroblasts and keratinocytes, which 
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instigates the process of cellular senescence as a result of this genomic instability. Cellular 

senescence results in cell cycle arrest, thus resulting in a depletion of dermal and epidermal cell 

populations in the absence of restorative cellular proliferation (Campisi, J, 1998). These 

processes also occur during, “extrinsic” ageing, but are compounded by additional cellular 

damage that occurs as a result of external factors within the environment. Air pollution and 

exposure to ultra-violet (UV) rays from sunlight have been shown to drive skin ageing, but it is 

commonly accepted that the most potent external driver of skin ageing mechanisms is UV-

irradiation (Fisher et al, 2002). UV-rays have such a profound effect on the aged skin phenotype 

that the term “photoageing” is used to describe sun-exposed skin that can adopt a prematurely 

aged phenotype due to the damaging effect of these agents (Naylor et al, 2011).  
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Figure 1.14: Pathomechanisms of intrinsic and extrinsic (photo-ageing). Intrinsic skin ageing (left hand side) is a 
result of the accumulation of critically short telomeres in fibroblasts and keratinocytes, along with other genomic 
instabilities, which induces cellular senescence. Extrinsic ageing (right hand side) is primarily caused by the 
deleterious effects of UV rays from sunlight, which directly damage DNA and protein. Additionally, UV-induced 
cellular damage stimulates the production of excess ROS, which causes further damage to cellular organelles and 
genetic material (image from Naylor et al, 2011).
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1.16 Lamin proteins: intermediate filaments of a nuclear meshwork 
 

Nuclear lamins are type V intermediate filaments of A-type and B-type that form a 

stress-resistant network underneath the inner nuclear membrane (Broers et al., 2006). Lamin 

monomers consist of an N-terminal head domain, a C-terminal globular tail and a central alpha-

helical rod domain (structure depicted in figure 1.15) and they are assembled in the nucleus 

through dimerization, polymerization and higher order assembly (Goldman et al, 2002). B-type 

lamins (lamin B1 and lamin B2) are generally ubiquitously expressed in human tissues, whereas 

A-type lamins (lamin A and lamin C) are restricted to differentiated cells (Constantinescu et al, 

2006). Lamin B1 and B2 are encoded for by the LMNB1 and LMNB2 genes whereas lamin A and 

lamin C are produced through alternative splicing of the single LMNA gene (Dittmer and 

Misteli, 2011). Lamin A protein is translated as a pre-cursor protein that undergoes several 

post-translational modifications in order to form mature lamin A, including the enzymatic 

cleavage of the full length pre-cursor protein (figure 1.16).  

 

 

Figure 1.10: Structure of the nuclear lamins showing how the proteins all share a common α-helical rod domain. The 
tail domain contains a nuclear localization signal, an immunoglobulin domain (green), and a conserved CAAX box, 
which undergoes farnesylation. Numbers indicate their amino-acid lengths. Arrows point to the presence of the 
CAAX motif in the carboxy termina of lamin A, lamin B1 and lamin B2 (Taken from Ditmer and Misteli, 2011). 
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Figure 1.11: Pre lamin A processing requires several stages: Maturation of 
lamin A from the precursor pre-lamin A involves firstly farnesylation by 
farnesyl transferase (FTase), then RAS-converting CAAX endopeptidase 1 
(RCE1)-mediated proteolysis. Next the cleaved protein is methylated by an 
isoprenylcysteine carboxylmethyltransferase enzyme (ICMT). Finally the 
ZMPSTE24 protease cleaves the carboxy-terminal residues from prelamin A to 
produce mature lamin A (Image from Wang and Casey, 2016) 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

Aberrant lamin A processing, which allows the nuclear accumulation of pre-lamin A 

intermediates, is the cause of several age-related degenerative diseases known as 

laminopathies (Broers et al, 2006). The location of the nuclear lamina, and the spectrum of 

diseases that are a result of mutations in the LMNA gene suggests a multifunctional role for A-

type lamin proteins in both genetic and structural aspects of cell physiology, including tumour 

progression, control of nuclear architecture, regulation of gene expression, senescence, 

apoptosis and chromatin organization and segregation (Foster et al, 2010; Ho and Lammerding 

2012).  

B-type lamins are thought to have crucial functions in DNA replication, chromatin 

organisation and gene expression at the nuclear periphery (Ho and Lammerding, 2012). Genetic 

ablation of either LMNB1 or LMNB2 in HeLa cells leads to growth arrest and apoptosis, leading 

to the theory that B-type lamins are essential for cellular growth and division (Harborth et al, 

2001). In mouse embryonic stem cells (mESC’s) however, this concept has been refuted, as 

mESCs without B-type lamins or both A and B-type lamins grow and differentiate normally (Kim 

et al, 2011). Lmnb1-/- and Lmnb2-/- knockout mice are unable to survive after birth however, 

indicating that both B-type lamins are essential for post-natal life. Lmnb1-/- knockouts showed 

severe defects in brain, lung and bone tissues, whereas the defects in the Lmnb2-/- knockouts 

were restricted to the brain (Vergnes et al, 2004). These findings highlight that although 
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dispensable in embryonic cells, B-type lamins clearly have important roles in the building of 

tissues and particularly in the brain (Yang et al, 2011a). 

 

1.17 Role of lamins in skin development and homeostasis 
 

As rapidly dividing cells contributing to a self-renewing epithelium, one would think 

that the keratinocytes of the basal epidermal layer would require normal levels of B-type 

lamins in order to fulfil their function, but this has been disproved in conditional knock-out 

mice where both lamin B1 and lamin B2 expression is absent from the epidermis (Lmnb1-/- 

Lmnb2-/-). The epidermis and hair follicles of Lmnb1-/- Lmnb2-/-mice developed normally and 

showed normal levels of proliferation. This demonstrates that for the epidermis at least, B-type 

lamins are not essential, and raises questions about their dispensability in other tissues (Yang 

et al, 2011b). 

 Similar epidermal-specific genetic knock-out studies have been performed in order to 

deduce the importance of the A-type lamins in epidermal development. Epidermal Lmna-/- mice 

present with abnormalities in the form of a thickened epidermis, thinner dermis and reduced 

hair follicle density, suggesting that unlike B-type, proper A-type lamin levels are essential for 

normal epidermal development where they allow cells to differentiate into the lineages needed 

for hair follicle and inter-follicular epidermis formation (Wang et al, 2008). As a more severe 

phenotype is demonstrated by epidermal-specific Lmna-/- knockouts compared to Lmnb1-/- 

Lmnb2 -/- knockouts, this suggests that A-type lamins play a more pivotal role in epidermal 

development. 

Complete genetic ablation of both A and B-type lamins from the epidermis of 

developing mice presents with the most dramatic phenotype at all (see figure 1.17). The 

absence of lamins in the epidermis causes severe abnormalities, including ichthyosis (dry, 

thickened epidermis), complete loss of epidermal barrier function and abnormal accumulation 

of endoplasmic reticulum components in keratinocyte nuclei. The mice die a few days after 

birth from severe dehydration (Jung et al, 2014). The more dramatic phenotype seen in the 

combined epidermal-specific A and B-type lamin knock-out compared to the separate A-type or 

B-type lamin knockouts suggests that although not essential when removed in isolation, the 

absence of B-type lamins in the presence of abolished A-type lamin expression exacerbates 

poor skin development and maintenance, and the resultant phenotype implies both a lack of 

cellular proliferation and differentiation mechanisms needed for normal epidermal barrier 

formation.  
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Figure 1.17: Complete ablation of lamin expression in the epidermis results in a dramatic phenotype. Histological 
presentation of skin as shown by haematoxylin and eosin staining in mice with homozygous expression of A-type 
lamins, and no epidermal B-type lamins (A-Lmna+/+Lmnb1∆/∆Lmnb2∆/∆), mice with heterozygous expression of A-type 
lamins and no epidermal B-type lamins (B- Lmna+/-Lmnb1∆/∆Lmnb2∆/∆) and mice with no A-type lamins and 
epidermal-specific knock-out of B-type lamins (C- Lmna-/-Lmnb1∆/∆Lmnb2∆/∆). Epidermis and dermis in the absence of 
B-type lamins only (A and B) shows no obvious phenotype whereas in the absence of all lamins (C), epidermal 
hyperplasia is present (green bracket-C). Additionally, the stratum granulosum and stratum corneum were 
disorganised (black arrowheads) and nuclei were present in the stratum corneum (yellow arrowheads). Image from 
Jung et al, 2014. 

 

1.18 Lamins modulate cellular senescence programmes 
 

Cellular senescence is a state of permanent cell cycle arrest that occurs as a result of 

DNA lesions and critically short telomeres. This nuclear instability triggers a permanent DNA 

damage response, preventing subsequent cell cycle progression. Cellular senescence can be 

induced in cells by multiple rounds of replication, oncogene expression and DNA damage 

caused by ionising radiation (d’Adda di Fagagna et al, 2003). 

Changes in the shape of the nuclear lamina are shown in senescent cells and cells that 

undergo premature ageing due to lamin protein mutations (Righolt et al, 2011). Additionally, 

several recent publications have shown that levels of the nuclear lamina component lamin B1 

are decreased in cells induced to senescence by a variety of mechanisms (Freund et al, 2012). 

Dreesen et al (2013) have further shown that reduced lamin B1 is a hallmark of cellular 

senescence, but is not a cause. The relevance of having appropriate levels of both nuclear A-

type and B-type lamins has also been demonstrated by the fact that lamin B1 overexpression in 

cells depleted of lamin A results in telomere dysfunction, DNA damage accumulation and 

premature entry into a senescent state. These studies implicate that lamin expression can be 

modulated by senescence effector programmes and this may be due to the fact that lamins 

have roles in both stress signaling and cell cycle control (Hutchison, C.J. 2012). 
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1.19 Laminopathies and lamins in normal skin ageing 
 

Laminopathies impact several tissues within the body and can result from a variety of 

mutations in the LMNA gene. The premature ageing disease Hutchison-Gilford Progeria 

Syndrome (HGPS) is a result of a single point mutation in exon 11 of the LMNA gene. This 

mutation creates the appearance of a cryptic splice site, which leads to the elimination of a 50 

amino acid residue sequence within the lamin A tail. This truncated form of lamin A is called 

progerin. Progerin lacks the cleavage site recognised by ZMPSTE24 and in the absence of 

normal processing, progerin is permanently farnesylated and thus anchored at the inner 

nuclear membrane (INM). Although lamins A and C are products of the same gene, lamin C 

formation remains unaffected as, unlike lamin A, it does not require complex processing for 

normal sub-nuclear localisation (Burke and Stewart, 2013). 

 Abnormal accumulation of progerin at the INM in cells is cytotoxic and drives the 

premature ageing phenotype in this disease that results in alopecia, short stature and early 

death from cardiovascular disease (De Sandre-Giovannali et al, 2003). Skin fibroblasts isolated 

from Progeria patients show chromosomal abnormalities, reduced proliferation in culture 

compared to WT fibroblasts and tend to senesce prematurely due to accumulation of 

irreparable levels of DNA damage (Burtner and Kennedy, 2010). Further reports show that the 

accumulation of cellular progerin increases sensitivity to oxidative stress leading to the 

formation of DNA lesions that slow the cell cycle (Richards et al, 2011). Progerin has also been 

found to increase in level in the skin of subjects during healthy ageing (Mc Clintock et al, 2007). 

Studies on fibroblasts isolated from elderly individuals show that the accumulation of progerin 

was associated with decreased heterochromatin, shortened telomeres and a slower cell cycle 

(Scaffidi and Misteli, 2006). These observations show that normal lamin A processing becomes 

altered in ageing fibroblasts and implicate lamin A in proliferative changes to skin cells in both 

normal physiological ageing and diseases associated with premature ageing syndromes. 

Restrictive Dermopathy (RD) is a skin-specific laminopathy, which is caused by either a 

splicing mutation in exon 11 of LMNA (like in HGPS) or a base-pair insertion in ZMPSTE24. The 

mutation in ZMPSTE24 leads to the production of a truncated form of the enzyme that is highly 

unlikely to be an active protease, thus preventing its wild type activity (Navarro et al, 2004). 

Although the two predisposing mutations are in different genes, they both result in loss of 

normal cellular levels of mature lamin A due to an inhibition of proper lamin A processing. 

Instead, accumulation of truncated lamin A causes an embryonic lethal disease presenting with 

a severe skin phenotype showing dermal thinning, alopecia and epidermal hyperkeratosis. Of 

interest, many of these maladies are shared by the epidermal Lmna-/- knockout mice (Wang et 
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al, 2008). The phenotype is severe, and new-borns that survive normally die just a few weeks 

after birth from other anomalies such as respiratory defects due to pulmonary hyperplasia (Lu 

et al, 2013). The phenotype of RD indicates that altered levels of mature lamin A and the 

accumulation of truncated lamin A during foetal development drastically impacts normal skin 

development along with other tissues found in the lungs. 

 Despite a plethora of in vitro work looking at the roles of lamins in cellular senescence 

and physiological ageing (Dreesen et al, 2013; Hutchison et al, 2012; Freund et al, 2013), 

studies on changes in the nuclear lamina in ageing skin in vivo are rare. In a small study, 

Dreesen et al (2013) have shown that lamin B1 protein decreases in intrinsically aged 60y 

human skin along with a decline in cell proliferation and the expression of LAP2α (a polypeptide 

associated with the nuclear lamina) compared to 1yr old skin (see figure 1.18) . In this study 

epidermal lamin A/C levels were constant along with the keratinocyte differentiation marker 

K10 in the aged skin, implicating an association of decreased epidermal lamin B1 levels with 

age but not lamin A/C. Lamin B1 has also been shown to decline in the fat body organ of aged 

Drosophila melanogaster, here lamin B1 loss was associated with an increased inflammatory 

response (Chen et al. 2014). 

 

 

Figure 1.18: Decreased lamin B1 and cellular proliferation in the epidermis of aged human skin. Young human 
epidermis had strong lamin B1 (LB1) staining and many cells positive for Ki-67 (cellular proliferation). In contrast, 
aged skin (b) had dramatically reduced lamin B1 and cellular proliferation levels. bl= basal layer, d= dermis, sc= 
stratum corneum. Scale bar= 50 µm. Image taken from Dreesen et al, 2013. 
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1.20 Role of lamins in oxidative defence 
 
 Reactive Oxygen Species (ROS) are small, short-lived molecules that at normal levels, 

regulate cellular proliferation, differentiation, gene-expression and migration. However, 

abnormally high levels of ROS are associated with age-related protein and genome damage, 

cellular death and senescence (Callaghan and Wilhelm, 2008). Both intrinsic cellular ageing and 

extrinsic photo-ageing of the skin have been shown to be associated with increased (ROS), 

which in excess contribute to cellular ageing by causing protein oxidation, telomere shortening 

and DNA damage (Sieprath et al, 2012).  

Maintenance of normal lamin A levels has been shown to be important in cellular ROS 

defence mechanisms. Silenced LMNA and ZMPSTE24  human cells both have elevated basal 

levels of ROS compared to controls and both cell types show increased levels of ROS 

detoxifying enzymes such as SOD3 (superoxide dismutase 3)(Sieprath et al, 2015). Under 

identical levels of oxidative insult, both cell lines were less able to tolerate oxidative insult in 

comparison to control cells with normal A-type lamin expression. During exposure to oxidative 

stress, mutant LMNA fibroblasts underwent apoptosis whereas the fibroblasts that 

accumulated farnesylated pre-lamin A due to the ZMPSTE24 silencing became prematurely 

senescent (Sieprath et al, 2015).  

The bifurcation in cellular response shown in LMNA-/- and ZMPSTE24-/- cells could be 

due to another identified role for lamin A during oxidative insult. The C-terminus of mammalian 

lamin A contains 3 unique, highly conserved cysteine residues, and it was shown that di-

sulphide bond formation at these residues can occur under oxidising conditions. Removal of 

these residues resulted in premature senescence under oxidative stress, leading to the theory 

that lamin A is able to chelate excess ROS in human dermal fibroblasts (HDF’s) undergoing 

oxidative insult. This mechanism is thought to be unrelated to disease causing mutations to 

LMNA however, as HDF’s expressing progerin showed control levels of ROS tolerance in 

comparison to cells where the cysteine residues were removed. The authors concluded that 

inter and intra-molecular di-sulphide bond formation at these specific cysteine residues could 

allow lamin A to behave as a ROS “sink”, thus protecting the cell from excessive genetic and 

protein damage and prolonging its fitness (Pekovic et al, 2011). It thus follows that the 

presence of these cysteine residues in the ZMPSTE-/- cells allowed them to tolerate more ROS in 

comparison to the LMNA-/- cells where they were absent. This tolerance could explain why 

oxidative insult directed a senescent cell fate in ZMPSTE-/- cells whereas the more ROS-sensitive 

LMNA-/- cells underwent apoptosis (Sieprath et al, 2015). 
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In addition to the studies looking at A-type lamins and ROS, several authors have 

deduced a link between B-type lamins, ROS and cell cycle control. ROS levels are known to 

increase as cells progress through the cell cycle and anti-oxidant treatment can induce cell 

cycle arrest in late G1 (Verbon et al, 2012). Furthermore, modest increases in ROS from pro-

oxidant treatment increase the proliferation rates of cells in culture and whole organisms 

(Shimi and Goldman, 2014). The presence of cellular ROS is therefore crucial for cell cycle 

progression. Shimi et al (2011) uncovered a role for lamin B1 in this process by showing that 

silencing of lamin B1 promoted cell cycle arrest via p53 signalling, which was accompanied by a 

decrease in mitochondrial ROS levels. By re-introducing small levels of ROS, cell cycle 

progression occurred, therefore showing a link between lamin B1 expression, cell division and 

ROS. A correlation between lamin B1 levels and ROS was also shown by Barascu et al (2012), 

where treatment of fibroblasts with excess ROS induced an increase in expression of lamin B1, 

which was directly linked to an induction of the p38-MAPK stress-induced signalling pathway. 

These two findings implicate lamin B1 as a mediator of normal redox balance through two 

independent pathways, cell cycle control and stress signalling and implicate lamin B1 in the 

maintenance of cellular fitness during oxidative insult (Hutchison, C, 2012). As oxidative insult is 

a key modulator of skin ageing, and photo-ageing in particular, uncovering whether lamin 

proteins play a role in oxidative defence in the skin is an important future step in this research. 

1.21 Lamins form part of the LINC complex which tethers the nucleus to the 
cytoskeleton 

 

In addition to their roles as modulators of the cell cycle, senescence programmes and 

redox balance, the nuclear lamins are important structural components of the LINC (linker of 

nucleoskeleton and cytoskeleton) complex, which connects the nucleus to the cytoskeleton via 

a protein structure that spans the nuclear envelope (figure 1.19). An intact nuclear lamina is 

important for cytoskeletal organization, and cells lacking A-type lamins show defective motility 

due to the presence of a disorganized cytoskeleton as a result of disruptions of the LINC 

network (Ho and Lammerding, 2012). Furthermore, the LINC complex is a sensor of mechanical 

force, and in response to cellular tension placed on nesprin proteins, lamin A/C is recruited at 

the nuclear envelope in order to induce nuclear stiffening in response to this force (Guilluy et 

al, 2014). 

 Studies have also shown that lamins are important for the anchoring of other LINC 

complex components such emerin (Vaughan et al, 2001) and SUN1 (Chen et al, 2012) at the 

nuclear membrane. In HeLa cells without lamin A, emerin accumulated abnormally in the 

endoplasmic reticulum and lamin C was also mislocalised within cells. In Lmna null mice, SUN1 
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accumulated in the golgi of cells and surprisingly, deletion of SUN1 in the Lmna null background 

resulted in partial rescue of the premature ageing phenotype displayed by these mice. This 

showed that the mis-localisation of SUN1 in the golgi could be involved in the cellular 

pathogenesis mechanism observed in diseases resulting from mutations in the LMNA gene- like 

the autosomal dominant form of Emery-Dreifuss Muscular Dystrophy (AD-EDMD). This report 

further showed that properly localized components of LINC is crucial for cellular fitness. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.12: The lamina forms part of the LINC complex which tethers the nucleus to the cytoskeleton. Nuclear 
lamins (B-type lamins not shown in this diagram but also present) interact with chromatin (nuclear material) in the 
nucleoplasm and also the structural complex that spans the nuclear membrane consisting of emerin, nesprins and 
SUN proteins. Nesprins link this complex to cytoskeletal actin located in the cytoplasm, and in this way, the LINC 
complex forms a bridge from the nucleus to the cytoskeleton (image from Meinke et al, 2011). 
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1.22 The Hippo Pathway is a crucial modulator of tissue development and 
homeostasis 
 

 The Hippo kinase signaling pathway is a highly conserved signaling pathway that 

controls cell growth, homeostasis, apoptosis, differentiation and senescence (Lo Sardo et al, 

2014). The pathway was originally identified in Drosophila, where mutations in its component 

kinases resulted in an overgrown phenotype (figure 1.20). The core signaling components are 

conserved in mammals and their final targets are the transcriptional co-activator Yes-

associated protein (YAP1) and Transcriptional co-activator with a PDZ-binding motif (TAZ), 

which are protein homologs with 46% amino-acid sequence identity (Kodaka and Hata, 2015) 

(Core kinase cascade depicted in figure 1.21). 

 Along with normal roles in cellular physiology, the Hippo pathway effector YAP1 has 

been identified as an oncogene. Many human cancers show overexpression or hyper-activation 

of YAP1 (Wang et al, 2013; Hayashi et al, 2015; see Lo Sardo et al, 2014 for additional 

references). Furthermore, in mouse, overexpression of YAP1 in the liver resulted in an 

overgrown phenotype which eventually lead to development of hepatocellular carcinoma 

(Camargo et al, 2007). 

 

Figure 1.20: Mutations in the gene 
encoding the core kinase Hpo 
(hpo gene- MST1/2 in mammals) 
results in cellular overgrowth in 
Drosophila. Scanning electron 
micrographs of a wild-type fruitfly 
(a) and a fruitfly with patches of 
cells that are homozygous mutant 
for the Hippo (hpo) gene (b) are 
shown. The hpo-mutant fly 
exhibits an overgrown phenotype, 
shown by large clumps of cells 
forming on the body (Image from 
Johnson and Halder, 2014). 
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Figure 1.21: Core elements of the Hippo kinase cascade in vertebrates. Following upstream signals, MST1/2 
phosphorylates Sav, Lats1/2, and Mob. Lats1/2 then phosphorylates the transcription factor YAP/TAZ. 
Phosphorylated YAP/TAZ interacts with 14-3-3, which results in cytoplasmic retention and subsequent degradation, 
thus preventing activation of downstream target genes. In the absence of phosphorylation, YAP/TAZ enter nuclei 
and induce gene transcription by interacting with the TEAD family of transcription factors. Drosophila orthologs for 
these core components are shown in brackets. (Image from Yu and Guan 2013). 

 
 

1.23 Hippo pathway regulators 
 
 Many up-stream regulators modulate Hippo, including cell junction proteins, G-protein-

coupled receptor signaling components and proteins that dictate cell polarity. Cell junction and 

cell polarity proteins work together to maintain the normal structure of epithelia, and organize 

the cytoskeleton and position of the nucleus. One notable complex that modulates Hippo 

activity is the Kibra complex, which is located at the apical surface of epithelial cells. This 

complex acts upstream of the core Hippo kinase cascade and negatively regulates YAP1 by 

cytoplasmic retention (Genevet et al, 2010) (see figure 1.22). Additionally, Hippo regulators can 

be found in tight junctions and adherens junctions (Lo Sardo et al, 2014). 
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Figure 1.22: Polarity and tight-junction protein complexes negatively regulate YAP1 activity. The Kibra complex at 
the apical surface of the cell, the Par3 complex at tight junction (TJ) cellular adhesions and the Scribble complex at 
the baso-lateral surface of the cell are all modulators of YAP1 activity. In this way the proteins that control tissue 
architecture contribute to the activity of YAP1, thus allowing tissue homeostasis to be maintained. This is particularly 
important in the maintenance of epithelia. (Image from Kim and Gumbiner, 2015). 
 
 

1.24 The Hippo Pathway is a mechano-sensory effector 
 

 Mechanical cues are also crucial in the regulation of YAP1 activity, and changes to the 

properties of the cell culture substrate can modulate the activity of the Hippo pathway. Dupont 

et al, (2011) have shown that culture on stiff substrates drove nuclear localisation of YAP1 

whereas culture on soft substrates allowed YAP1 to be retained in the cytoplasm. Furthermore, 

cell density is an important modulator of YAP1 localisation, and cells cultured at low cell 

density, where cells are flattened and spread out, show nuclear localization of YAP1. When 

cells are at high cell density, and a tightly packed together, YAP1 is predominantly localized to 

the cytoplasm (Yu and Guan, 2013). In this way, the hippo pathway behaves as an extra-cellular 

“sensor” and cues from the surrounding tissue microenvironment direct cell fate through the 

cellular localization of YAP1. (Aragona et al, 2013; Wada et al, 2011) (Piccolo et al, 2014- see 

figure 1.23). 
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Figure 1.13: Extra-cellular mechanical cues drive YAP1 localization and impact cell fate: In the presence of a small 
adhesive area or a soft ECM, YAP1 is sequestered in the cytoplasm and is targeted for degradation. This allows 
apoptosis pathways to be effected and also the formation of soft tissue components like adipocytes. Conversely, if a 
cell is subjected to a large adhesive area of a stiff ECM environment, YAP1 translocates to the nucleus and induces 
transcription of target genes that control proliferation and formation of stiff tissues like bone. (Image from Piccolo et 
al, 2014.) 

 

Both the mechano-sensory and cell-density sensing properties of YAP1 are thought to 

be modulated via the actin cytoskeleton, and studies have shown that actin cytoskeleton 

modulators, like Rho GTPase, can affect the localization of YAP1 independently of the core, 

phosphorylation dependent signaling cascade (Dupont et al, 2011). In line with this, cellular 

detachment from the ECM, which causes actin cytoskeletal re-arrangements, results in 

activation of the Hippo pathway and sequestration of YAP1 in the cytoplasm, ultimately 

resulting in its degradation. Detachment-induced YAP inactivation is required for anoikis, which 

is a form of apoptosis resulting from cell-ECM detachment. This mechanism forms part of the 

underlying biology of tumour metastasis, as transformed cells which are resistant to anoikis 

present with growth-maintaining nuclear YAP1, thus allowing them to disperse to various 

anatomic sites within the body where they can form secondary tumours (Zhao et al, 2012). 
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1.25 YAP1 plays crucial roles in epidermal homeostasis and wound healing 
 

The epidermis is a self-renewing epithelial sheet that depends on a careful balance of 

proliferative and differentiative cues to maintain homeostasis and given that control of both 

stem cell proliferation and differentiation are crucial aspects of epidermal biology, it is 

unsurprising that the Hippo pathway has been shown to play a role in epidermal homeostasis 

in a body of work completed in mice. 

Key publications from the Camargo and Fuchs labs have used genetic studies to 

determine how YAP1, the hippo pathway effector, contributes to epidermal biology. The 

Camargo lab used Cre-Lox technology to generate epidermal-specific YAP1 knock-out mice. An 

aberrant phenotype was the result, with thin, fragile, underdeveloped skin showing complete 

loss of barrier function. In addition, the mouse mutants showed cellular loss in the epidermis, 

particularly within the basal layer. Importantly, existing basal cells had lost their normal 

columnar morphology, and exhibited pronounced cellular flattening. Staining of the epidermis 

with proliferation markers indicated reduced basal keratinocyte division compared to WT mice. 

Finally, the mutant skin showed loss of Loricrin expression in the outer epidermal layers, which 

indicated that the barrier function was compromised (Schlegelmilch et al, 2011-see Figure 

1.24). 

 

Figure 1.14:YAP1 is crucial for epidermal development in mouse. The figure depicts staining in wild type E18.5 mouse 
skin and epidermal-specific YAP1 knock-out mice (YAP1 deletion under control of K14 promoter-YAP1 Ep KO). In the 
WT skin, the basal epidermal keratinocyte marker K5 (green) is abundant, and the mice have a thick stratum 
corneum, depicted by loricrin expression (red). In the knock-out mice the epidermis is much thinner, and both K5 
and loricrin expression are dramatically reduced. Image from Schlegelmilch et al, 2011. 

 
Zhang et al, (2011- Fuchs lab) generated transgenic mice that expressed a mutated 

form of YAP1 protein (S127A YAP1) under the control of the K14 promoter. The resulting 

mutation ablated the YAP1 phosphorylation sites needed for cytoplasmic retention, causing 

abnormal nuclear YAP1 accumulation in basal keratinocytes. This caused a hyper-thickened 
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epidermis to form with abnormal hair follicles. Cells isolated from the epidermis and cultured in 

vivo divided rapidly and showed reduced levels of both differentiation and apoptosis cues 

compared to WT keratinocytes. Altogether the paper showed, like in Schlegelmilch et al, 2011, 

that YAP1 controlled epidermal cell proliferation. Furthermore, the results indicated that 

sequestration of YAP1 into the cytoplasm was crucial for proliferation to cease and for 

differentiation to occur so that a normal epidermis could be formed. Together, these two 

studies show that proper YAP1 levels and sub-cellular localisation are crucial in the balance 

between proliferation and differentiation in epidermal stem and progenitor cells in developing 

mice.  

 The requirement for normal Hippo Pathway action is also important in dermal 

physiology. This has been shown in wound healing studies using siRNA (small-interfering RNA) 

knockdown of YAP and its protein homolog TAZ. During normal wounding, YAP and TAZ levels 

were observed to be elevated in the cells at the wounded site where induction of wounding 

creates an area of low cell density. At this site nuclear YAP and TAZ caused TGFβ signaling, 

which induced fibroblast proliferation, migration and collagen synthesis in order to close the 

wound. Silencing of YAP and TAZ at the wound site delayed its closure, showing that in the 

absence of cell-density sensing cues orchestrated by the Hippo Pathway, skin repair upon 

wounding was defective (Lee et al, 2014). 

 

1.26 Objectives of this thesis 
 

Clinical and cosmetic issues associated with skin ageing outline a clear need for the 

development of therapeutics to address the incidence of pathology and the poor presentation 

of aged skin. However, a crucial pre-requisite to therapeutic development is a sound 

understanding of the underlying molecular causes that drive the age-related changes in skin 

architecture. The objectives of this thesis were therefore to: 

 

1. The mouse strain C57BL/6 is a commonplace model for studies of biological ageing but 

a comprehensive overview of skin ageing changes in this rodent has not been produced. 

We therefore aimed to understand the morphological and protein changes that occur to 

the skin over the lifespan of the mouse in the epidermal, dermal and basement 

membrane compartments. In our studies we also wished to conclude if evidence of 

cellular senescence occurred in the highly cellular epidermal compartment during ageing 

(Relevant data sections: 3.2-3.5). 
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2. Numerous studies have identified a link between alterations in both the expression 

levels and organisation of nuclear lamina intermediate filaments during ageing at both 

the cell and tissue level. We aimed to build on what is already uncovered in two ways: 

Firstly we wished to understand whether lamin B1 expression was altered in ageing 

mouse epidermis and secondly, we wished to characterise the unique transcriptional 

and protein changes of lamina constituents during human intrinsic ageing and photo-

ageing (Relevant data sections: 3.3.6, 4.4) 

 

3. The tissue pools used in our human transcriptomic studies are unprecedented in terms 

of sample size numbers and age-range; and by separating the epidermis and dermis in 

some of our experiments we increased our ability to un-cover transcriptional changes 

that are highly specific to either the epidermal or dermal compartment. We therefore 

aimed to use this highly powerful data set to uncover novel findings with regards to 

well-studied areas of skin ageing biology such as dermal collagen gene transcription 

and also basement membrane collagen gene transcription. (Relevant data sections: 

4.2-4.3) 

 
4. Discrete roles for the Hippo pathway have been identified in organ development and 

skin homeostasis but little is known about the role of Hippo during skin ageing. One of 

our goals was therefore to assess whether the expression levels and localisation of the 

Hippo effector YAP1 changed during ageing in our mouse and human models. (Relevant 

data sections 3.5, 4.5) 

 

5. Once we had established a greater understanding of skin ageing processes in our 

C57BL/6 mice and human cohorts, our final aim was to understand the similarities and 

differences in ageing skin between these two models at the protein level. 

 
 
 



34 | P a g e  
 

Chapter 2: Materials and Methods  

2.1 C57BL/6 mouse skin histology 
 

2.1.1 Mice 
 
Statement of Ethics: Ethical approval was granted by the LERC Newcastle University, UK. The 

work was licensed by the UK Home Office (PPL 60/3864) and complied with the guiding 

principles for the care and use of laboratory animals published by the National Research 

Council.  

Ad-libitum fed, male C57BL/6J mice of ages 3 mo, 12 mo, 15 mo, 24 mo and 30 mo 

were housed and prepared at the Newcastle University Institute for Ageing. Four individual 

mice from each age group were used in the generation of experimental data.  

2.1.2 Preparation of paraffin-embedded samples. 
 

Preparation of mice and paraffin embedding was completed by Clara Correia Melo at 

Newcastle University. The back skin of each mouse was removed and the excess hair was 

shaved away. A square of skin was taken from this region and placed with the epidermis facing 

upwards onto a square of cardboard and the edges were pulled to ensure no folding or 

crumpling of the skin occurred. The skin was then placed in histological cassettes and was fixed 

in 4% paraformaldehyde (w/v) prepared in PBS [8 mM Na2HPO4, 2 mM KH2PO4, 137 mM NaCl, 

and 2.7 mM KCl, (all reagents Sigma) pH 7.4] overnight at 4℃. Excess fixative was removed and 

the skin was washed in 3 changes of PBS for 10 min each. Skin was then subjected to 

dehydration in sequential changes of ethanol before embedding in paraffin. Skin samples were 

orientated so that longitudinal cross sections would be taken upon subsequent sectioning. 

Paraffin blocks were covered with aluminium foil and stored in an airtight container. 

2.1.3 Sectioning of mouse skin  
 
 Prior to sectioning, skin was placed at -20℃ to cool the paraffin blocks and assist in the 

cutting process. A microtome blade (Thermo Fisher) was loaded into a manual microtome 

(Leica RM 2235) and the block was trimmed to remove the outer layer. 5µm sections were then 

cut and floated briefly on the surface of a water bath set to 37℃ to expand the sections before 

collection on charged microscope slides (Superfrost™ Plus- Thermo Fisher). Slides were left to 

dry overnight on a slide drying bench before being placed in microscope slide boxes and sealed 

with paraffin to exclude air. 
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2.1.4 Deparaffinisation and re-hydration of mouse skin sections 
 

Slides were incubated sequentially in 2x 5 min changes of histological grade xylene 

(Sigma, cat #534056), 2x5 min changes of 100% EtOH and 2x 5 min changes dH20 and then 

stored in PBS for up to 24 hrs. 

2.1.5 Haematoxylin and Eosin staining  
 

Skin sections were prepared as described in 2.1.3 and 2.1.4. Nuclei were then stained 

using Mayer’s haematoxylin (Sigma- H9267) solution [0.1% (w/v) haematoxylin, 0.02% (v/v) 

sodium iodate, 5% (v/v) aluminium potassium sulphate, 5% (v/v) chloral hydrate and 0.1% (v/v) 

citric acid (all reagents Sigma) in dH20] for 5 min then excess reagent was briefly washed away 

in distilled water for 30 sec. Slides were then incubated in alkaline alcohol [3% (v/v) ammonia in 

70% EtOH] to blue nuclei. Slides were then passed through 30 sec changes of 2x 70% EtOH and 

2x 95% EtOH before incubation in 0.5% (w/v) eosin (Sigma- E4009) prepared in 95% EtOH for 1 

minute to stain protein components in the skin. Excess eosin solution was removed by passing 

the slides through 2x 30 sec changes in 95% EtOH followed by 2x 20 sec changes in 100% EtOH. 

Slides were then cleared in 2x 3 min sequential changes of xylene (Sigma, cat #534056) before 

mounting in DPX (Fisher, 10050080) and coverslipping. Slides were left to dry overnight at room 

temperature then imaged using a Leica DM500 light microscope with ICC50 Camera and 20x 

and 40x objective lenses. Images were exported and processed using LAS EZ (Leica) software. 

2.1.6 Herovici staining for young and mature collagen 
 

Skin sections were prepared as described in 2.1.3 and 2.1.4. The acid resistant nuclear 

stain Weigert’s Iron Hamematoxylin was prepared by mixing equal parts of solution A [1% (w/v) 

haematoxylin in 95% EtOH] and solution B [0.8% (w/v) ferric chloride (Sigma), 1.5% (w/v) 

ferrous sulphate (Sigma) and 1% (v/v) hydrochloric acid prepared in dH20] just prior to use. To 

stain nuclei, slides were incubated in staining solution for 15 min and then placed under a 

running tap for 15 min to remove excess stain (care was taken to ensure tissue was not 

disturbed during the rinsing period). Next, to differentially stain young and mature collagen 

Herovici’s polychrome solution was prepared according to Turner et al (2013). Solution A [0.1% 

Van Gieson stain prepared from 495ml picric acid and 5ml 1% (w/v) acid fuchsin (Sigma)] was 

used in a 2:1 ratio with solution B [0.05% (w/v) methyl blue (Sigma) prepared in 1% acetic acid 

in dH20]. Slides were incubated in polychrome staining solution for 4 min then differentiated in 

1% acetic acid in dH20 for 2 min. Excess reagent was rinsed away by incubating slides in 2x 1 

min changes of 100% EtOH under gentle agitation. Slides were then cleared in 2x 3 min changes 

of xylene before mounting in DPX and coverslipping. Slides were left to dry overnight at room 
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temperature then imaged using a Leica DM500 light microscope with ICC50 Camera and 20x, 

40x and 100x objective lenses. Images were exported and processed using LAS EZ (Leica) 

software. 

2.2 Mouse skin western blotting 

2.2.1 Sample Collection 
 

The back skin of three different C57BL/6 mice aged 3 mo and three different C57BL/6 

mice aged 30 mo snap frozen in liquid nitrogen and stored at -150℃ were provided by Glyn 

Nelson from Newcastle University. Samples travelled to Durham University on dry ice and were 

stored for 24 hours before lysate preparation began. 

2.2.2 Whole skin lysate preparation 
 

Skin was handled using sterile forceps and placed into a Petri dish containing ice. Using 

a scalpel, excess hair was removed from each sample and they were briefly rinsed in ice-cold 

PBS to remove any loose hair. Samples were then cut into small 1mm pieces and placed in 

shatter-proof test tubes. Ice-cold RIPA buffer [150mM NaCl, 50mM Tris-HCl pH 8.0, 0.1% (v/v) 

Triton X-100, 0.5% (w/v) sodium deoxycholate, 0.1% (w/v) SDS- all reagents- Sigma] with the 

addition of 1% proteinase inhibitor cocktail (PIC Sigma) was added at a volume of 300µl buffer 

per 5 mg skin with the total volume being at least 1 ml in each tube. Tubes were kept on ice 

wherever possible during this procedure. 

Test tubes containing skin were then subjected to homogenisation (using VWR NDI 25 

homogeniser) in brief bursts, and upon sample rotation the homogeniser blade was cleaned 

thoroughly with dH20 and 70% ethanol. Each sample was subjected to 6x 20 sec 

homogenisation steps or until no visible tissue clumps were present in the homogenate. All 

samples were prepared in the same time frame and were kept on ice when not in use. Test 

tubes containing homogenate were then placed in a 4℃ room and subjected to agitation on a 

laboratory shaker for 30 min. 

The homogenate from each sample was then dispensed into a clean Eppendorf tube 

(one for each sample) and mechanical break-down of sample components was performed by 

passing each sample through a 24G hypodermic needle using a 2 ml syringe. Samples were 

syringed 5 times each to shear DNA and ensure breakdown of cellular components. Lysates 

were then subjected to centrifugation at 13,000 RPM for 20min. On ice, the supernatant was 

then carefully removed and pipetted into a new, pre-labelled Eppendorf. The supernatant was 

briefly mixed then 10 µl of each sample was taken for protein assay quantification. Samples 

were then aliquotted into two Eppendorf tubes each. In one tube 2x sample buffer [125mM 
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Tris-HCl pH 6.8, 2% (v/v) SDS, 2mM DTT, 20% (v/v) glycerol, 5% (v/v) β-mercaptoethanol and 

0.25% (w/v) bromophenol blue (all reagents- Sigma)] was added in a 1:1 ratio of sample to 

buffer. The samples containing sample buffer were heated to 99℃ for 4 minutes then cooled 

and stored at -20℃. The Eppendorf containing the remaining sample was stored at -80℃. All of 

the 6 samples prepared were subjected to an identical procedure and stored on ice wherever 

possible. 

2.2.3 Bradford Assay 
 

Approximate protein concentrations for each lysate were determined by Bradford 

Assay. In order to produce a standard curve for use in determination of the unknown protein 

concentration of whole cell extracts, a protein assay kit was used (Bio Rad). Standards were 

prepared according to the manufacturer’s instructions along with skin lysate samples (all in 

triplicate). Both low (2.5µl) and high (5µl) amounts of skin lysate samples were prepared to 

glean accurate readings. All samples were prepared in 96 well plates and readings were 

recorded on a plate reader (Nanodrop 8000- Thermo Scientific). A standard curve was then 

generated from the results using the average absorbance at the test BSA concentrations, 

omitting any anomalous values from the analysis. The results of the assay are shown in figure 

2.1. For each sample of un-known protein concentration, the equation shown on the standard 

curve graph was subsequently used to solve for x (the unknown protein concentration of each 

sample) where the absorbance values were represented on the y-axis. 

 

Figure 2.1: Protein standard curve produced for skin lysate protein assay. The equation of the graph represents the 
slope of the line of best fit (regression line). The R-squared value indicates how closely data points fit the line of 
regression. 
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2.2.4 Coomassie blue based in-gel validation of equal protein loading 
 

Once protein concentration had been determined for each sample, equal protein 

loading was validated by Coomassie staining of samples subjected to gel electrophoresis. 10% 

polyacrylamide gels were cast in casting chambers (Bio-Rad) using the reagents detailed in 

table 2.1. Resolving gel was pipetted between gel plates and topped with isobutanol (Sigma) 

and left for 45min to set. Once resolving gel was set, isobutanol was removed by pouring and a 

5% stacking gel solution (see table 2.1) was poured on the surface of the resolving gel. A comb 

was then inserted to form wells and the gel was left to set for 15 min.  

Table 2.1: Quantities of reagents used for acrylamide gel casting 

Reagent (measurement in ml/µl) 
Amount used: 

Resolving Gel- 10% 

Amount used: Stacking 

Gel- 

5% 

ProSieve® 50 acrylamide gel solution 

(Cambrex BioScience Wokingham, 

Ltd., UK), (ml) 

2.00 0.50 

Milli-Q™ H20 (ml) 5.30 3.96 

1.5M Tris-HCl pH 8.8 (ml) 2.50 0.50 

10% SDS solution (μl) 100 50 

10% Ammonium persulphate solution 

(μl) (Fisher Biosciences) 
100 50 

TEMED (μl) ((N,N,N',N'-

Tetramethylethylenediamine).(Sigma) 
4 5 

 

2.2.5 SDS Polyacrylamide gel electrophoresis (SDS PAGE) 
 

Once gels had set, they were placed in a tank (BioRad) and submerged in tank buffer 

[25mM Tris pH 8.3, 192mM Glycine, 0.1% (v/v) SDS (all reagents-Sigma) ] Combs were then 

removed from gels and equal protein concentrations (10 µg of protein per well) were loaded 

into the gel using a fine pipette tips. The volume of sample in each well was standardised with 

excess sample buffer as needed. A protein standard (PageRuler™ Plus- Thermo Fischer) was 

also loaded into one of the wells to behave as a reference. Gel electrophoresis was 

subsequently performed at 100V and 40mAmp until samples migrated to the bottom of the 

resolving gel. This took around 2 hours.  
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2.2.6 Coomassie blue staining of gels 
 
 Separated in-gel proteins were stained with Coomassie brilliant blue reagent 

(ThermoFischer) prepared in gel staining solution [0.1% (w/v) Coomassie R-250, 10% (v/v) 

glacial acetic acid, 50% (v/v) methanol, 40% dH20] by incubating the gel in solution in a plastic 

staining dish under agitation for at least 1 hour at room temperature. Gel was then subjected 

to de-staining (to allow band visualisation) overnight in de-staining solution [10% (v/v) glacial 

acetic acid, 50% (v/v) methanol, 40% dH20]. In the morning the de-staining solution was 

changed and replenished then gels were visualised over a white light box (ThermoFisher) to 

enhance contrast between protein bands. Equal loading of protein bands was determined by 

considering the intensity of staining and distribution of protein bands from each sample across 

the whole gel (see figure 2.2). Small adjustments in protein amounts for each sample were 

made accordingly until equal protein loading was achieved between samples. 

 

Figure 2.2: Coomassie blue in-gel staining of skin lysate samples to validate equal loading. Proteins within samples 
were separated by weight using gel electrophoresis. Equal sample loading was determined by the intensity and 
distribution of protein bands in each lane.   

 

2.2.7 Resolving gels for C57BL/6 skin blots 
 
 The percentage acrylamide for each resolving gel was determined by the molecular 

weight of the protein(s) of interest and 8%, 10% and 12% acrylamide gels were used. The 
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stacking gel was the same for all gels cast. Reagents for 8% and 12% resolving gels are shown 

below in table 2.2 (10% gel reagent volumes are in table 2.1). and details of the resolving gel 

percentages for each protein, along with the antibody used, its host animal and the working 

dilution are shown in table 2.3. 

 

Table 2.2: Reagents and their volumes used in preparation of 8% and 12% acrylamide resolving gels for SDS-PAGE 

Reagent (measurement in ml/µl) 
Amount used: 

Resolving Gel- 8% 

Amount used: 

Resolving Gel- 12% 

ProSieve® 50 acrylamide gel solution 

(Lonza), (ml) 
1.60 2.40 

Milli-Q™ H20 (ml) 5.70 4.90 

1.5M Tris-HCl pH 8.8 (ml) 2.50 2.50 

10% SDS solution (μl) 100 100 

10% Ammonium persulphate solution 

(μl) (Fisher Biosciences) 
100 100 

TEMED (μl) ((N,N,N',N'-

Tetramethylethylenediamine).(Sigma) 
4 4 

 

Table 2.3: Primary antibodies, host animals, percentage gel and working dilutions used for western blots of C57BL/6 
mouse skin lysates. 

Antibody Supplier/ (cat#) Host Resolving gel 
percentage 

Dilution of 
antibody 

Collagen I Abcam (ab34710) Rabbit 8 1:1000 

Collagen III Abcam (ab7778) Rabbit 8 1:1000 

Lamin B1 Abcam (ab16048) Rabbit 10 1:1000 

Keratin 14 Abcam (ab181595) Rabbit 10 1:2000 

Keratin 10 Abcam (ab76318) Rabbit 10 1:3000 

Loricrin Abcam (ab83679) Rabbit 12 1:1000 

GAPDH Abcam (ab9485) Mouse 10 or 12 1:2000 

β-Actin Sigma (A2228) Mouse 10 or 12 1:1000 

β-Tubulin Sigma (T8328) Mouse 10 or 12 1:2000 

YAP1 Novus Biologicals 
(NB110-58358) 

Rabbit 10 1:1000 

E-Cadherin Cell Signalling 
(#14472) 

Mouse 8 1:1000 

 
All protein gels were cast as described in 2.3.4 and underwent electrophoresis as 

described in 2.3.5. Glass gel plates were then separated and the gel was carefully removed 

from plates and equilibrated in transfer buffer [192mM Glycine, 25mM Tris HCl pH 9.2, 20% 

(v/v) methanol, 0.1% (v/v) SDS] for 1 minute. 
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2.2.8 Electrophoretic transfer of proteins in polyacrylamide gels onto PVDF 
membranes 
 
 PVDF transfer membrane was activated prior to use by soaking in methanol (1 min), 

dH20 (1 min) then transfer buffer (5 min). Transfer cassettes (Bio Rad) consisting of (from 

negative to positive electrode- a fibre pad (VWR), Whatman paper soaked in transfer buffer, 

SDS-PAGE gel and activated PVDF membrane, Whatman paper and fibre pad) were assembled 

into a transfer equipment rack and tank (Bio Rad) and fully covered in transfer buffer. For 

subsequent immunoblotting of proteins with a molecular weight under 80 kDa, transfer was 

performed at 100V, 250 mAmp for 1.5 hours at room temperature (25°C). For proteins over 80 

kDa, transfer was performed overnight at 4°C using a current of 20V, 100 mAmps and constant 

stirring of transfer buffer within the tank. 

2.2.9 Membrane blocking for non-specific binding and immunoblotting 
  

Following transfer, cassettes were disassembled and membranes were transferred to 

plastic incubation dishes using clean, flat ended tweezers. The protein standard bands present 

on the membrane were checked to verify efficient protein transfer and were then marked in 

pencil for future reference (as bands faded during storage). Membranes were then blocked for 

non-specific antibody binding in 4% (w/v) non-fat dry milk (Sigma) in Blot Rinse Buffer/Tween-

20® [BRB/T- 150mM NaCl, 10mM Tris pH 7.4, 1mM EDTA, 0.1% (v/v) (Sigma) Tween-20®] for 1 

hour at room temperature. Membranes were then washed briefly in 2 changes of BRB/T before 

being carefully placed into a 50ml falcon tube (Greiner Bio One) with the transferred proteins 

on the membrane facing upwards. Primary antibodies prepared in antibody diluent [1% (v/v) 

NCS in BRB/T] were then added to the tubes using the working dilutions shown in table 2.4 and 

volumes were made up to 3 mol of solution. Tubes were then incubated on a roller overnight at 

4°C so that the solution remained in contact with the membrane for the entire incubation 

period. 

 Membranes were then removed from falcon tubes using clean, flat ended tweezers 

and were placed, protein side up in plastic dishes. Membranes were then washed three times 

for 10 min in BRB/T and then placed in a fresh falcon tube for addition of the secondary 

antibody (Either goat anti-mouse POD –P4416 or goat anti-rabbit POD- A9037 both purchased 

from Sigma). Secondary antibodies were prepared at a working dilution of 1:2000 in antibody 

diluent with the final volume being made up to 3 mol. Membranes were then carefully placed 

in fresh falcon tubes, which were were placed on a roller and secondary antibody incubation 

was performed for 1 hr at room temperature. Following secondary antibody incubation, 

membranes were washed as for the primary antibody.  
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2.2.10 ECL-based protein band detection 
 

Enhanced chemiluminescence (ECL) detection solution [250 mM luminol (Sigma) 

prepared in DMSO (Sigma), 90mM P-coumaric acid (Sigma) prepared in DMSO, 1M Tris-HCl pH 

8.5 and 0.01% (v/v) 30% hydrogen peroxide solution (Sigma)] was prepared fresh just prior to 

film exposure. Excess wash buffer was blotted away from membranes at their edges using 

absorbent paper towel and membranes were placed flat on a surface prepared with cling film. 

ECL substrate was pipetted onto membrane surface (protein side up) and left for 1 min. Excess 

ECL was then removed and the membranes were covered in a single layer of cling film and 

mounted in a developing cassette. Membranes were then exposed to high-performance 

photographic film (GE Healthcare Life Sciences) in a Dark Room and films were developed using 

a Compact X4 Automatic X-ray Film Processor (Xograph Imaging Systems Ltd., Gloucestershire, 

UK). 

2.3 C57BL/6 mouse skin Immunohistochemistry 
 

2.3.1 Heat induced antigen retrieval (HIAR): 
 

Prior to HIAR, mouse skin sections were prepared on slides and were processed as 

shown in sections 2.1.3-2.1.4. Citrate buffer [10 mM Sodium Citrate 0.05% Tween 20, pH 6.0] 

was prepared using a tri-sodium citrate di-hydrate salt (Sigma- S1804). Buffer solution was 

heated in a small, plastic, thermostable box (ThermoFisher, cat#195) in a microwave until 

boiling. As soon as boiling had subsided, the solution was stirred to evenly distribute heat and 

temperature was checked using a thermometer to ensure it was between 95-99℃. Slides were 

then placed in a compatible staining rack (ThermoFisher, cat# 196) and subsequently in a 

water-bath preheated to 98℃ (under boiling). The water-bath was topped up with freshly 

boiled water from a kettle to ensure that the water level was just below the lid of the box. 

Slides were incubated for 16 min in the water-bath before being removed and left to cool in the 

box (lid taken off) for 15 min. Slides were then placed under a running tap to complete the 

cooling process and wash away excess buffer then stored in PBS for up to 2 hrs. 

2.3.2 Enzymatic antigen retrieval (Enz AR) 
 
 For enzymatic antigen retrieval, proteinase K enzyme (Sigma) (stock solution was 10 

mg/ml enzyme in PBS stored at -20℃ and defrosted prior to use) was prepared in Tris-EDTA 

buffer [50 mM Tris Base, 1 mM EDTA, 0.5% (v/v) Triton X-100, pH 8.0] at a concentration of 20 

µg/ml. Tris-EDTA buffer was subjected to gentle microwave heating to obtain a temperature of 

37℃ before addition of the enzyme. Slides were placed in the buffer and incubated in a water-
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bath preheated to 37℃ for 15 minutes. Slides were then removed and placed under a running 

tap and washed several times to quench the enzymatic activity. They were then stored in PBS 

for up to 2 hrs. 

 

2.3.3 Blocking of non-specific antibody binding 
 
  To reduce subsequent reagent use, the region around skin sections was marked with a 

hydrophobic barrier pen (VectorLabs- H-4000). Excess fluid was blotted away from this region 

using paper towel with care taken to ensure that the skin sections were not disturbed. Blocking 

solution [10% normal goat serum (Sigma) prepared in 0.1% BSA (bovine serum albumin) in PBS] 

was applied to skin sections and incubated at room temperature for 1 hr. 

2.3.4 Antibody preparation 
 

Antibodies were prepared in antibody diluent [0.1% BSA in PBS] at the concentrations 

shown in table 2.4. To avoid issues associated with non-specific binding of secondary antibody, 

all primary antibodies used on mouse tissue were made in rabbits. The antigen retrieval 

method used prior to each antibody was dependent on the individual antibody and is detailed 

in table 2.4. 

Table 2.4: Details of antibodies, their suppliers, the antigen retrieval method used on skin sections prior to their 
application and the working dilution. 

Antibody  Supplier/ (cat#) Antigen retrieval method: 
HIAR= (heat induced) 
Enz AR=(enzyme-induced) 

Dilution 

Lamin B1 Abcam (ab16048) HIAR 1:200 

YAP1 Novus Biologicals (NB110-
58358) 

HIAR 1:150 

Keratin 10 Abcam (ab76318) HIAR 1:500 

Keratin 14 Abcam (ab181595) HIAR 1:500 

Loricrin Abcam (ab83679) HIAR 1:100 

Collagen I Abcam (ab34720) Both used 1:100 

Collagen III Abcam (ab7778) Both used 1:100 

Collagen IV Abcam (ab6586) Enz AR 1:200 

Collagen VII Abcam (ab93350) Enz AR 1:50 

P53BP1 Cell signalling (4937S) HIAR 1:200 

Ki67 directly 
labelled with 
Alexa Fluor 
488 

Abcam- custom order HIAR 1:100 
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Blocking solution was removed prior to application of primary antibody, and approx. 

100 µl of antibody solution was pipetted onto each skin section, ensuring that the tissue was 

fully covered with antibody solution. Slides were then incubated in a moist staining chamber, 

protected from light, overnight (~16h) at 4℃. Primary antibody was then removed and slides 

were washed in tris-buffered saline with Tween 20 [TBS/T- 50 mM Tris-HCl pH 7.5. 150 mM 

NaCl, 0.01% (v/v) Tween® 20 (Sigma)] for 3x 10 min, with the buffer being changed each time 

and gentle agitation being used to encourage dissociation of non-specifically bound antibody. 

  The secondary antibody used for all primary antibodies aside from P53BP1 and Ki67 

was a Goat anti-rabbit conjugated Alexa Fluor 568 (Molecular probes, Invitrogen- A11011) 

which was prepared at a working dilution of 1:1000 in antibody diluent with the addition of 

DAPI (4’,6-diamidino-2-phenylindole- Sigma) at a concentration of 2mg/ml also diluted 1:1000. 

Slides were incubated in a moist staining chamber, protected from light, at room temperature 

for 1 hour. Secondary antibody was then washed away as for the primary antibody. Skin 

sections were then covered in Vectashield anti-fade mounting medium (Vector Laboratories, 

cat# H-1000) then sealed with nail polish and left to dry overnight before imaging. 

2.3.5 P53BP1/Ki67 immunofluorescence double staining 
 
 Slides were prepared as detailed in sections 2.1.3-2.1.4 and subjected to HIAR and 

blocking of non-specific antibody binding as described in 2.3.1 and 2.3.3. The first primary 

antibody incubation was the Ki67 antibody (directly labelled with Alexa Fluor 488) which was 

prepared in antibody diluent [0.1% BSA in PBS], pipetted onto sections and incubated overnight 

at 4℃ in a moist staining chamber protected from light. Excess antibody was then washed away 

using 3x 7 min changes TBS/T under agitation. Next P53BP1 antibody prepared in antibody 

diluent was applied to slides and they were incubated overnight at 4℃ in a moist staining 

chamber. Excess antibody was then washed away using 3x 7 min changes TBS/T under 

agitation. Next a biotinylated Goat anti-rabbit IgG secondary antibody (Vector Laboratories- BA-

1000) was prepared at a working dilution of 1:400 in antibody diluent and applied to skin 

sections for 30 min at room temperature. Excess anti-rabbit IgG was then washed away using 

3x 7 min changes of TBS/T. Texas Red® labelled Avidin (Vector Laboratories- A-2006) prepared 

in PBS at a working dilution of 1:800 was then applied to the skin sections for 20 min. Excess 

Avidin was then washed away from slides using 3x 7 min changes of TBS/T under agitation. 

Excess buffer was then blotted away from slides using absorbent paper and slides were then 

mounted in Vectashield containing DAPI (Vector Laboratories-H-1200) then sealed with nail 

polish and left to dry overnight before imaging. 
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2.3.6 Imaging and quantitative analysis of DNA damage and cell proliferation 
 

Slides were imaged using a Leica TCS SP5 confocal laser scanning microscope. 405 nm 

and 488 nm lasers were used to image DAPI and Ki67 stains respectively. A HyD (Leica) laser set 

to 594 nm was used to image P53BP1 staining. 5µm thick Z-stack images were captured using a 

63x oil lens (NA=1.4). Pinhole diameter was optimised to 1 Airy unit and 1024 x 1024 pixel 

images were captured at a scan speed of 400Hz. Imaging conditions were kept constant for the 

entirety of the data collection between all samples. 3 images were collected for each of the 

four mice in each age group and 2D maximal projection images of the image stacks were 

collated in LAS AF software (Leica). Individual nuclei were scored according to the scoring 

system depicted in figure 3.3.3 –section 3.3. Data was collated in Microsoft Excel. Subsequent 

downstream analysis was performed in Sigmaplot v12.5 and the data was assessed for 

statistically significant differences using computational methods. One-way analysis of variance 

(ANOVA) was used as the statistical test and prior testing for equal variance between samples 

was performed for all age groups assessed by performing Levene’s testing. Post-hoc analysis of 

results was performed using Holm-Sidak testing. 

2.3.7 Imaging and semi-quantitative analysis of epidermal lamin B1 levels 
 

Using a Leica TCS SP5 confocal laser scanning microscope, a 405 nm laser were used to 

image DAPI and a HyD (Leica) laser set to 568 nm was used to image lamin B1 staining. 5µm 

thick Z-stack images were captured using a 40x oil lens. Pinhole diameter was optimised to 1 

Airy unit and 1024 x 1024 pixel images were captured at a scan speed of 400Hz. Imaging 

conditions were kept constant for the entirety of the data collection between all samples. 3 

images were collected for each of the four mice in each age group and 2D maximal projection 

images of the image stacks were collated in LAS AF software (Leica). 2D maximally projected 

stacks were subsequently produced and the maximally projected images were exported as .tiff 

files. Subsequent analysis was completed in image J with all images being processed identically: 

A median filter was applied to all images using a radius of 1.5 pixels and background 

subtraction was also completed using a rolling ball radius of 50 pixels. Using the freehand 

selection tool, the epidermal region was isolated and the average integrated density (pixel 

intensity) within this region was measured, along with the area. For each image, the result was 

expressed as the average pixel intensity per unit area. Data was collated in Microsoft Excel and 

subsequent downstream analysis (ANOVA) was performed in Sigmaplot v12.5 as described in 

2.4.6. 
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2.3.8 Imaging and calculation of YAP1 nuclear:cytoplasmic ratio in C57BL/6 
epidermis 
 

Mouse skin epidermis from 3 mo and 30 mo old animals was imaged as for section 

2.4.7 with the 405 nm laser imaging DAPI and the HyD laser imaging YAP1 primary antibody 

conjugated to Alexa Fluor 568 secondary antibody. 2D maximally projected stacks were 

prepared in the same way as described in 2.3.7 and images were exported as tiff files with DAPI 

staining and YAP1 staining being exported as separate image files. Nuclear to cytoplasmic ratio 

values were calculated in image J. A median filter was applied to all images using a radius of 1.5 

pixels. Background subtraction was also completed using a rolling ball radius of 50 pixels and all 

images were processed identically. The binary masking tool was used to generate templates of 

both nuclei (from DAPI images) and cytoplasmic regions (from YAP1 images). The image 

subtraction and addition functions were then used to isolate nuclear and cytoplasmic YAP1 

epidermal expression. Mean pixel intensity values for YAP1 expression in epidermal nuclei and 

epidermal cytoplasm were then measured using histogram data. An example of image 

processing is shown below in figure 2.3. The nuclear to cytoplasmic ratio value was then 

calculated for each epidermal compartment in each image by dividing the average nuclear pixel 

intensity by the average cytoplasmic pixel intensity. A ratio greater than 1 indicated greater 

nuclear YAP compared to cytoplasmic YAP and vice versa. 6 images were taken from each 

mouse and two mice aged 30 mo and two mice aged 3 mo were used in the analysis. 
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Figure 2.3: Deduction of YAP1 
nuclear:cytoplasmic ratios in 3 mo and 30 
mo epidermis using binary masking. 
ImageJ software was used to create 
templates of YAP1 expression (red) and 
nuclear material (DAPI-blue) (A,B). In order 
to deduce nuclear and cytoplasmic-region 
specific levels of YAP1 in the epidermis (C), 
the image calculation tool was used in 
ImageJ. Histogram plots generated from 
the pixels contained within the selections 
(D) allowed quantification of the levels of 
YAP1 present in these regions resulting in 
an average pixel intensity value for the 
nuclear and cytoplasmic regions. 
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2.4 Preparation of mice for EM 
 

2.4.1 Mice 
 

Infarct mice were provided by Gavin Richardson (Institute of genetic medicine: 

Newcastle University). Shortly after birth all mice were subjected to surgical ligation of the left 

descending artery. Mice aged 2.75 months and 23.5 months (subjected to anaesthesia) were 

prepared for TEM. 

2.4.2 Skin tissue preparation 
 

Mice were subjected to chemical depilation to remove excess hair. Subsequently, 5 mm 

x 10 mm squares of back skin were taken from mice and placed immediately in Karnovsky’s 

double strength fixative [5% glutaraldehyde, 4% paraformaldehyde, 0.1M cacodylate buffer 

and 0.05% (w/v) CaCl2] for 3 hr. Akis Karakesisoglou and Gavin Richardson both assisted with 

collection of the mouse skin samples. 

The next processing steps were completed by Christine Richardson and Helen Grindley at 

Durham University. Samples were then processed for epoxy resin embedding and ultra-thin 

sections were cut using a Leica EM UC6 microtome. Sections were then mounted on copper 

grids and imaged using a Hitachi TEM-H7600 transmission electron microscope with assistance 

from Helen Grindley. 

2.5 HaCaT cell culture 
 

2.5.1 Cell line maintenance 
 

Human keratinocyte cell line HaCaT (AddexBio, T0020001) was cultured in high glucose 

Dulbecco’s modified Eagle’s medium (DMEM, Sigma) supplemented with 10% (v/v) foetal 

bovine serum (FBS-Sigma), 2mM L-glutamine (Sigma) and 100 units/ml penicillin/streptomycin 

(Sigma). Routine culturing was performed on CELLSTAR® culture plastic (T-75cm2 flasks- Greiner 

Bio-one) and cells were maintained in a humidified incubator at 37℃ in 5% CO2. 

2.5.2 Passaging of cell cultures 
 

At 70% confluence, HaCaT cells were enzymatically passaged by removing growth 

media, washing adherent cells in sterile (autoclaved) versene [137mM NaCl, 2.7mM KCl, 8mM 

Na2HPO4, 1.5mM KH2PO4, 1.5mM EDTA pH 7.4] and incubating cells in 10% (v/v) trypsin (Lonza) 

in versene at 37℃ until cell detachment occurred (5-10 min). Trypsin neutralisation was 

performed by addition of an equal volume of complete medium before splitting cells into 
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several culture flasks and replenishing medium in each flask. Culture splitting was dependent 

on the rate of cell growth and cells were normally split in a 1:4 ratio. 

2.5.3 Storage of cell culture reagents 
 

Versene, versene with 10% trypsin and complete culture medium were stored at 4°C 

and heated to 37°C in a chemically treated water bath before use on cells. FBS was aliquotted 

and stored at -20°C and thawed before use 

2.5.4 Cryopreservation of cells 
 

Cells were cryopreserved at -150°C in 1.5ml Nunc vials (ThermoScientific). Following 

trypsinisation of cells as described in 2.5.2, centrifugation was performed in an Eppendorf 

5810R centrifuge at 1000rpm for 4 min, with the temperature maintained at 4°C. The cell pellet 

was re-suspended in freezing medium (10% (v/v) dimethysulfoxide (DMSO- Sigma) and 20% 

(v/v) FBS (Sigma) in DMEM culture medium). Cells were frozen at a density of one 70% 

confluent T-75 flask per 4 ml of medium. To re-establish cultures after freezing, vials were 

defrosted in a water bath at 37°C before the addition of 5ml growth media in order to form a 

cell suspension. The suspension was then centrifuged as above and the supernatant containing 

DMSO was removed. The cell pellet was then re-suspended in fresh, complete culture medium 

and incubated in a T-25 flask to allow mono-layer re-establishment. 

2.6 Immunofluorescence of cell cultures 
 

2.6.1 Coverslip preparation 
 

Glass coverslips with a circumference of 1cm (SLS) were prepared in 6 well plates 

(Greiner Bio-One) in a sterile flow cabinet. 3 coverslips were placed in each well using tweezers 

sterilised with ethanol. 200µl of 0.01mg/ml of Poly-D-Lysine (Sigma) was pipetted onto each 

coverslip ensuring that the coverslip was fully coated with solution before being left to dry in 

the hood for 24h. 

2.6.2 Seeding of HaCaT cells 
 
  Cellular suspensions for seeding were prepared when cells were at 70% confluence. 

Growth flasks of cells were washed in Versene before undergoing trypsinisation and pelleting 

as described in section 2.5.2 and 2.5.4 above. Cells were then counted by collecting a small 

sample of suspension into a 1ml pipette then dropping the liquid on to the chambers of an 

improved Neubauer haemocytometer (Marienfeld-Superior) by capillary action. Counting grids 

were viewed under a Zeiss Televal 31 microscope and cells that fell within the 16 square grid 
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area were counted. Cells that fell on bottom and left sides of the grid were included and cells 

that fell on the top and right hand sides of the grid were ignored. Cells were seeded at a density 

of 0.5x106 cells per well and each well was filled with 2ml of complete DMEM medium. Cells 

were maintained in a 5% CO2 humidified incubator at 37°C until they were ready for fixation.  

2.6.3 Cell Fixation and processing for immunofluorescence 
 

“Low cell density” cultures were fixed when the cells reached 50% confluence and 

“high cell density” cultures were fixed when cells reached 100% confluence. Medium was 

removed from each well of the 6 well plates before cells were washed in PBS. Remaining in the 

6 well plates, coverslips with cells were incubated in 4% (w/v) Paraformaldehyde prepared in 

PBS (PFA-Agar Scientific) at a pH of 7.4 at 25°C on an orbital shaker for 15 moin. 500µl of PFA 

was used per well of each 6 well plate. Excess PFA was then removed and disposed of according 

to safely guidelines. The coverslips were washed for 3 x 5min in 1x PBS to remove any residual 

fixative. Cells were then incubated in 400µl per well of permeabilisation buffer (10% (v/v) NCS 

(Sigma), 0.1% (v/v) TritonX-100 (Sigma) in PBS) for 15 moin at 25°C before washing for 2x 5min 

in 1x PBS. To avoid non-specific anti-body binding cells were subsequently blocked in 1% PBS 

containing 10% NCS for 1hr on an orbital shaker at 25°C. 

2.6.4 YAP1 primary antibody and secondary antibody incubations 
 

In order to observe the staining of rabbit YAP1 primary antibody (Novus Biologicals cat# 

NB110-58358) in cells cultured at low and high cell density, the antibody was prepared in 

antibody diluent (1% (v/v) NCS in 0.1% (w/v) BSA in PBS) at a dilution of 1:150. 50µl of antibody 

solution was used per coverslip. Prior to antibody application, coverslips were removed from 6 

well plates using sterile, fine tweezers and placed in moist, dark staining chambers prepared 

using absorbent paper soaked in 1% PBS covered with aluminium foil. Primary antibodies were 

applied using a 100µl Gilson pipette. Primary antibody was incubated overnight (~16hr) at 4°C. 

Goat anti–rabbit Alexa Fluor 568 secondary antibody (Molecular probes-Invitrogen cat# 

A11011) was prepared in antibody diluent at a dilution of 1:1000. Additionally, DAPI (4’,6-

diamidino-2-phenylindole- Sigma) at a concentration of 2mg/ml was added to the antibody 

diluent using a 1:1000 dilution. Prior to secondary antibody incubation, coverslips were 

returned to clean 6 well plates for washing by 3x 5 min changes of PBS under gentle agitation. 

Coverslips were then removed from plates using fine tweezers and placed in moist staining 

chambers before addition of 50µl of secondary antibody solution containing DAPI using a 

pipette. Coverslips were protected from light and incubated at room temperature for 1 hr. 

After incubation, excess secondary antibody was washed away using 3x 5 min changes of PBS 
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under gentle agitation. Coverslips were then carefully blotted using absorbent paper at the 

edges to remove excess wash buffer before mounting. 

2.6.5 Coverslip mounting and imaging 
 

Coverslips were inverted and mounted onto glass microscope slides (Fisher) in 

Vectashield anti-fade mounting medium (Vector Laboratories, cat# H-1000) then sealed with 

nail polish and left to dry overnight before imaging. Images were taken on a Zeiss Aksioskopp 

40 fluorescent microscope (Carl Zeiss GmbH, Germany) fitted with a 40x oil lens. Images were 

viewed and saved in the corresponding software (Zeiss Axiovision) before being exported as tiff 

files. 

2.7 Transcriptomic analysis of female skin 
 
Statement of Ethics: All consent for patient tissue use was obtained by Procter and Gamble, 

USA, in compliance with local laws and regulations. The protocol for obtaining samples was 

approved by an Institutional Review Board, and the participants signed informed consent 

documents for procurement of the tissue biopsy or surgical waste samples. A Material Transfer 

Agreement was subsequently drawn up to cover transfer of tissue to Durham, UK.” Storage and 

use of the tissues at Durham University was in full compliance with codes of practice from the 

Human Tissue Act. 

Work detailed in 2.7.1-2.7.5 was performed by members of Procter and Gamble – 

Cincinnati. Experiment leaders were Bob Binder (binder.rl@pg.com) Charlie Bascom 

(bascom.cc@pg.com) and Bob Isfort (isfort.rj@pg.com). As far as the author of this thesis is 

aware, full acknowledgement of all persons contributing to the work has been made. 

2.7.1 Experimental design of study 
 

The following persons contributed to the design of this study: Rosemarie Osborne, 

Robert L. Binder, Charles C. Bascom, Robert J. Isfort, Bradley B. Jarrold, Heather L. Rocchetta, 

Dionne Swift, Jay P. Tiesman and Daniel Schnell (all from Procter and Gamble). 

2.7.2 Subjects 
 

Biopsy collection, clinical execution and clinical data management was performed by 

Alexandra B. Kimball (Harvard University and Massachusetts General Hospital), the 

Dermatology resident staff (Massachusetts General Hospital), Scott M. Hartman, Debora 

Whittenbarger, Robert Hinkle, Joseph Kaczvinsky and Elizabeth Jewell-Motz (all from Procter 

and Gamble). 

mailto:bascom.cc@pg.com
mailto:isfort.rj@pg.com
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Subjects were female Fitzpatrick types I-III (Caucasian individuals) and were taken from 

age cohorts within the following decades of life: 2nd , 3rd , 4th , 5th ,6th and 7th . The subjects were 

verified as non-smokers and females at menopausal age were not on hormone replacement 

therapy (HRT). Two full thickness biopsies were collected from the arm (representative of 

photo-exposed condition) and the buttock (representative of photo-protected condition). One 

biopsy was used to generate full-thickness skin (FTS) skin biopsy samples and the other for 

Laser Capture Microdissection (LCM) to separate the epidermis and dermis.  

2.7.3 Laser capture microdissection 
 

For LCM biopsies were embedded in OCT (optimal cutting temperature medium) and 

cryo sectioned at 14µm. Typically, 4 sections were pooled from 4 mm biopsies and in some 

cases additional 4 sections were taken to get enough RNA for microarray chips (25 ng). Prior to 

LCM sections were stained with cresyl violet and Eosin Y to determine nuclei and ECM 

respectively. Haematoxylin was not used as a nuclear stain due to its propensity to degrade 

RNA. All skin structures including epidermis, dermis, hypodermis, hair follicles and sebaceous 

glands could now be identified and such the epidermis and dermis were isolated in the samples 

to create samples representing the epidermal and dermal compartments only. The 6 sample 

sub-sets produced following LCM, including full-thickness skin samples are shown in table 2.5. 

 

Table 2.4: Tissue sub-sets following the LCM procedure 

 

The complete list of samples for each age group and each condition is shown in table 2.6. 

 

Photo-Protected Condition (buttock skin) Photo-Exposed Condition (arm skin) 

Photo protected dermis Photo exposed dermis 

Photo protected epidermis Photo exposed epidermis 

Photo protected full thickness skin (FTS) Photo exposed full thickness skin (FTS) 
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Table 2.5: Number of samples collected for each age group and condition subjected to microarray analysis. The table shows how many subjects were in each age group, the mean age 
of the subjects in the age group and the standard deviation of the mean age. 

Sample type 
Number of subjects Mean age in years Standard Deviations 

20s 30s 40s 50s 60s 70s 20s 30s 40s 50s 60s 70s 20s 30s 40s 50s 60s 70s 

ARM Full thickness 30 24 25 26 25 25 22.4 32.1 42.5 51.8 62.2 71.6 1.5 1.5 1.2 1.5 1.5 1.5 

BUTTOCK Full thickness 31 23 25 26 23 25 22.5 32.0 42.5 51.8 62.1 71.6 1.5 1.5 1.2 1.5 1.5 1.5 

ARM epidermis 30 24 25 26 24 24 22.5 32.1 42.5 51.8 62.3 71.6 1.5 1.5 1.2 1.5 1.4 1.5 

ARM dermis 30 24 25 25 24 24 22.5 32.1 42.5 51.8 62.3 71.6 1.5 1.5 1.2 1.5 1.4 1.5 

BUTTOCK epidermis 30 22 25 26 24 25 22.5 32.2 42.5 51.8 62.3 71.6 1.5 1.5 1.2 1.5 1.4 1.5 

BUTTOCK dermis 30 24 25 26 24 25 22.5 32.1 42.5 51.8 62.3 71.6 1.5 1.5 1.2 1.5 1.4 1.5 
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2.7.4 Preparation and processing of microarray chips 
 

Transcriptomic analysis was performed using Affymetrix HG-U219 GeneChips 

(GeneTitan system) with one chip being used per sample. mRNA extraction, target cRNA 

synthesis, GeneChip analysis, and raw GeneChip data normalization was performed by Rachel 

Adams and Chelsea Combs (Procter and Gamble). Following hybridisation and washing of chips, 

microarray chips were scanned and the intensity calculations on the scanner pixel values were 

stored in CEL-files with a single representative intensity per feature. CEL-files were pre-

processed by Quantile normalization and PLIER (proprietary Affymetrix algorithm) 

summarization using the algorithms default parameters to obtain a single signal expression 

value for a probe set. Normalization was completed across all of the GeneChips run in a batch.  

2.7.5 Data extrapolation and quality control 
 

GeneChip quality control, statistical analysis and summary of data (including 

calculations of p values and fold changes were carried out by Dionne Swift (Procter and 

Gamble). For each probe set, log2 transformed data were used to compare different age 

groups and estimate correlation between mRNA expression and age. The significance of 

correlation between expression and age was evaluated based on the Spearman’s rank 

correlation. Preparation of excel documents specific for the author of this thesis, detailing both 

mean expression and statistical data for selected genes and data summaries were prepared by 

Robert L. Binder (Procter and Gamble). 

2.7.6 Generation of mean expression plots 
 

Mean expression plots for target genes of interest were prepared in excel by the 

author of this thesis using mean expression data from the probe sets targeting our genes of 

interest. 

2.8 Female skin immunohistochemistry 
 

2.8.1 Subjects 
 

Three female subjects each were in the “young” and “old” data pools. A skin biopsy 

from the forearm and buttock of each female was collected by members of Procter and 

Gamble as detailed in 2.7.2. Skin was then fixed and processed for paraffin embedding by 

Procter and Gamble. Details of the ages of the female subjects are shown in table 2.7. 

 

 



55 | P a g e  
 

Table 2.6: Details of ages of female subjects. Shown in parentheses are the abbreviations used to indicate young 
photo-protected skin (Y-PP), old photo-protected skin (O-PP), young photo-exposed skin (Y-PE) and old photo-
exposed skin (O-PE). 

Young Buttock (Y-

PP) 

Old Buttock (O-PP) Young Arm (Y-PE) Old Arm (O-PE) 

Young female 1= 21y Old female 1= 60y Young female 1= 21y Old female 1= 60y 

Young female 2= 22y Old female 2- 64y Young female 2= 22y Old female 2- 64y 

Young female 3= 21y Old female 3= 65y  Young female 3= 21y Old female 3= 65y  

 

2.8.2 Sectioning of samples 
 

Sections were prepared as for paraffin embedded mouse skin described in section 

2.1.3. Due to the precious nature of the tissue, assistance with sectioning was provided by Dr 

Mathilde Roger. 

2.8.3 Female skin histology 
 

Skin sections were prepared for Haematoxylin and Eosin staining as described in 2.1.5. 

Herovici staining was also completed as described in 2.1.6. 

2.8.4 Female skin Immunohistochemistry 
 

Female paraffin embedded skin sections were prepared for antigen retrieval as 

described in 2.1.4. Antigen retrieval method was dependent on the target antigen and for 

collagen I, collagen IV, collagen VII, YAP1 and lamin B1 immunostaining. For these proteins, 

identical antigen retrieval methods, blocking for non-specific binding and antibodies were used 

as described in 2.3.1-2.3.4 and table 2.4 in section 2.3.4. 

Additionally, human skin sections were stained with a mouse monoclonal Jol2 (anti 

Lamin A/C) primary antibody with details of conditions shown in table 2.8. The secondary 

antibody used for this staining was a Goat anti-mouse Alexa 568 IgG (Invitrogen- A-11004) used 

at a working dilution of 1:1000 and antibody diluents and incubation conditions for primary and 

secondary antibodies were completed as described for mice in 2.3.4. All slides were mounted in 

Vectashield mounting medium, coverslipped and edges were sealed with nail polish. Slides 

were left to dry overnight before imaging. 

 

Table 2.7: Details of Jol2 antibody staining conditions 

Antibody  Supplier 
 

Antigen retrieval method:  
 

Dilution 

Jol2 (lamin A/C) Produced in house HIAR 1:25 
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2.8.5 Imaging and semi-quantitative analysis 
 

Semi-quantitative protein analysis was performed to calculate protein amounts for the 

proteins in skin regions described in table 2.9. The nuclear to cytoplasmic ratio of YAP1 in 

epidermis was also assessed. To complete this analysis, skin from all of the female subjects 

listed in table 2.7 was used and 2 images each were taken from the photo-protected and 

photo-exposed skin samples for each of the 3 subjects in the “young” and “old” age groups. 

Table 2.8: Proteins assessed in the semi-quantitative analysis of human skin and the detail of the region where the 
analysis was completed 

 
All images for analysis were taken using a Leica TCS SP5 CLSM using a 40x oil objective, 

and pinhole optimised to 1 airy unit. 1024 x 1024 pixel Z-stack images were captured at a scan 

speed of 400Hz and the z-depth for each stack was standardised at 3µm. Imaging conditions 

were kept constant for the young and aged photo-protected and photo-exposed samples 

generated for each protein of interest. 

2.8.6 Lamin B1 and lamin A/C semi-quantitative analysis of protein expression 
in epidermis 
 

Analysis of epidermal lamin B1 and lamin A/C expression was performed as for mouse 

epidermis described in 2.3.7. The average fluorescence intensity of the epidermal staining of 2 

images from each skin sample (2 skin samples from 3 subjects in each condition make a total of 

6 images per condition) were quantified in image J and the mean and standard deviation values 

for the young PP, young PE, old PP and old PE epidermal levels of lamin B1 and lamin A/C were 

generated computationally. Data values were collated in excel and significance between young 

and aged photo-exposed and young and aged photo-protected skin was assessed by un-paired 

t-testing in Microsoft Excel. 

2.8.7 Collagen IV and collagen VII semi-quantitative analysis of protein 
expression in the basement membrane 

 

Image processing using median filtering and background subtraction was performed in 

Image J. Semi-quantitative analysis of collagen IV and collagen VII was then calculated from the 

signal isolated at the basement membrane and was expressed as the average pixel intensity per 

Protein Skin region assessed 

Lamin B1 epidermis 

Lamin A/C epidermis 

Collagen IV Basement membrane of epidermis (not dermal 
vasculature) 

Collagen VII Basement membrane of epidermis 

YAP1 (nuclear to cytoplasmic ratio) epidermis 



57 | P a g e  
 

unit area of staining. Staining from 2 images from each skin sample (2 skin samples from 3 

subjects in each condition make a total of 6 images per condition) were quantified and the 

mean and standard deviation values for the young PP, young PE, old PP and old PE collagen IV 

and collagen VII protein levels were generated computationally. Data values were collated in 

Microsoft Excel and significance between young and aged photo-exposed and young and aged 

photo-protected skin was assessed by un-paired t-testing in excel. 

2.8.8 Mean epidermal YAP1 and Nuclear to cytoplasmic ratio of YAP1 in 
epidermis 

 

Quantification of mean epidermal YAP1 was completed as for epidermal lamin B1 in 

mice, described in section 2.3.7. Epidermal YAP1 nuclear to cytoplasmic ratio calculations in 

female epidermis was performed as for mice in section 2.3.8. Data values were collated in 

Microsoft Excel using 2 skin samples from 3 subjects in each condition, making a total of 6 

images per condition. The mean and standard deviation values for the young PP, young PE, old 

PP and old PE were generated computationally. The statistical significance between mean 

epidermal YAP1 and the mean nuclear:cytoplasmic ratio of YAP1 in young and aged photo-

exposed and young and aged photo-protected skin was assessed by un-paired t-testing in 

Microsoft Excel. 
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Chapter 3: Identification of the skin ageing phenotype in 
C57BL/6 mice  

3.1 Introduction 
 

3.1.1 Benefits of the use of mice for ageing research 
 

The laboratory mouse has proven to be a powerful tool in studies addressing the 

molecular mechanisms of ageing. Mice are ideal for biomedical research due to their relatively 

short lifespan, genetic tractability and varied strain availability (Vanhooren and Libert, 2013). 

Mouse models have been used to understand several of the factors contributing to ageing, like 

the role of diet, oxidative stress and genomic stability (Liao and Kennedy, 2014). Additionally, 

mouse models of age-related diseases like Progeria (Burtner and Kennedy, 2010) and 

Alzheimer’s (Janus and Welzl, 2010) have been used to study these specific age-associated 

pathologies in more detail. 

Various phenomena and mechanisms of skin aging have been verified by in vivo 

experimental data from rodent models, such as changes to the epidermal compartment during 

intrinsic ageing and the impact of UV exposure on dermal elastins (Hwang et al, 2011). 

Additionally, specific strains like hairless mice have advanced dermatological knowledge in the 

fields of wound healing, carcinogenesis and inflammation due the ease of process observation. 

Mice are also useful models for studying cutaneous aging because they eliminate problems 

associated with reliable sampling and effects of the environment that present confounding 

issues in human studies (Bhattacharyya and Thomas, 2004). 

3.1.2 Mouse studies on epidermal ageing 
 
 Several previous studies looking at morphometric changes to the skin of ageing mice 

have been completed and in many of these, the epidermal compartment has been 

characterised in detail. There appears to be strain-specific differences in epidermal changes. 

For example, in hairless mice (Haratake et al, 1997) and in Balb/c mice (Farage et al, 2008), 

epidermal thinning has been observed to occur during ageing. Additionally, in the dorsal skin of 

CBA mice decreases in epidermal thickness and epidermal cell numbers with age were 

statistically significant, along with fewer pilosebaceous units being present in the skin of aged 

animals (Bhattacharyya and Thomas, 2004-see figure 3.1.1).  However, in other strains such as 

C57BL/6N the number of epidermal cell layers and epidermal thickness have been shown to be 

constant between 1 mo and 22 mo animals, which suggests no significant change in epidermal 

thickness in these mice with age (Monteiro-Riviere et al, 1991). In a detailed study completed 
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by M.W Hill (1988) the epidermal thickness, epidermal cell density, and number of cells per mm 

of basement membrane were all found to decrease in C57B1/6NNia mice. However, none of 

these findings were statistically significant, suggesting only minor morphometric changes 

occurred in the epidermis of this strain during ageing.  

Studies that examine the proliferative index of epidermal cells are also numerous, and 

have generally shown that epidermal proliferation decreases with age. In particular, this was 

observed in Swiss albino male mice (Cameron, IL, 1972) and C57/B16 mice (Giangreco et al, 

2008). However, strain specific differences were also present in terms of changes to epidermal 

proliferation with age, as there was no decrease in the mitotic activity and DNA-labelling index 

of 20 mo Balb/c mice compared to 2 mo Balb/c mice (Farage et al, 2008). Limited data is 

available on epidermal cell size changes in ageing mice but Farage et al (2008) observed a 

decrease in cell size in aged Balb/c mice whereas Hill (1988) saw a small but non-significant 

increase in cell volume in C57B1/6NNia mice.  

Figure 3.1.1: Images of back skin from CBA mice aged 1 mo (A) and 27 mo (B) stained with Verhoeff van Gieson stain 
for collagen (pink) and elastin (blue). Nuclei are stained dark purple. e=epidermis, de= dermis, hf= hair follicle, sg= 
sebaceous gland. Dotted line= DEJ.  Original magnification x400. The authors identified epidermal thinning, fewer 
pilosebaceous units and an increase in elastin fibres (black arrows) in aged mice of this strain. Images from 
Bhattacharyya and Thomas, 2004. 

3.1.3 Mouse studies on dermal ageing 
 

The majority of studies concerning dermal ageing have been completed in rats not 

mice. Fornieri et al (1989) used electron microscopy to show that collagen bundles become dis-

organised in aged rat dermis. They also observed a significant reduction in the percentage of 

collagen present in the dermis as well as atrophying of dermal cells. Collagen synthesis rates 

have also been shown to decline in this rodent model with age. In one study of changes in 

collagen synthesis and degradation in male Lewis rats between the ages of 1 and 24 months, 

collagen synthesis rates decreased by at least 10-fold in the 24 month animals compared to 

rates in 1-month old animals. Additionally, the proportion of newly synthesized collagen that 

was degraded in the skin was increased from 6.4% at 1 month of age to 56% at 15 months of 
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age, indicating modulation of both collagen synthesis and degradation mechanisms during rat 

skin ageing (Mays et al, 1991).   

A report using hairless mice showed that total collagen synthesis in mouse skin 

expressed as the amount of hydroxyproline according to the wet weight was decreased by 

about 30% between 2 and 22 months of age. This study also found that the proportion of type I 

collagen to type III collagen increased with age from ~25% at 12 mo to 60% at 22 mo (Boyer et 

al, 1991). Giangreco et al, (2008) also reported changes to the dermal compartment with age, 

where they observed a decreased dermal thickness and increased subcutaneous fat layer in the 

back skin of aged C57/Bl6 mice (figure 3.1.2). 

 

 

Figure 3.1.2: Age‐associated changes in C57/Bl6 murine skin. (A, B) Haematoxylin‐and‐eosin‐stained sections of 
young, 3 month (A) and old, 25 month (B) telogen dorsal skin. e= epidermis, de= dermis, hd= hypodermis, ms= 
muscle, hf= hair follicle. Dotted line =DEJ.  Abnormal follicular architecture, dermal thinning, and hypodermal 
thickening are present in aged skin. Scale bars= 100µm. (C) Average dermis (measured from epidermis to 
hypodermis) and hypodermis (measured from dermis to underlying muscle) thickness in young (green) and old (red) 
mice. Dermal thickness significantly decreased in aged animals and hypodermal thickness increased (p< 0.05). 
Images from Giangreco et al, 2008. 

3.1.4 Mice in Gerontological studies- Factors for consideration 
 

Together previous reports on the epidermal and dermal studies completed on rodents 

show that age-related changes to the thickness and cellular content of the epidermis and ECM 

changes in the dermis occur with age. A clear drawback in these studies however, is a lack of 

systematic assessment of the same changes across multiple rodent strains. This is an issue 

because the mice or rats making up a single population of an in-bred strain are so genetically 

similar to one another that any conclusions drawn from single-strain studies provide evidence 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3145984/#B45
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3145984/#B8
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3145984/#B8
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for ageing changes in this genetic background only. Findings would therefore need to be cross-

validated with other strains to identify if changes are ubiquitous to all mice (Masoro, E.J, 2000). 

 Additionally, no formal criterion for the defining age of a “young” or “aged” mouse has 

been established in the literature for several mouse strains, meaning that there is no 

agreement between researchers as to what constitutes a “young” or an “aged” mouse of a 

certain strain. Selection of suitable chronological ages for “young” and “aged” mice is made 

challenging by strain specific differences in lifespan, which additionally makes inter-strain 

comparisons in skin morphology at the same chronological age somewhat redundant.  

Furthermore, there are general factors that should be considered in the design of 

gerontological studies using mice, such as their age, the genotype of the mouse, the financial 

resources available and the planned methods of data collection. As the goal of our research 

was to identify age-related changes, we wanted to avoid falsely mis-interpreting changes 

associated with early-life development or late-life disease. For our “young” age groups we 

therefore had mice of 3 mo and 12 mo, as they were fully developed and for our “old” age 

groups, we considered both 24 mo and 30 mo mice, with any mice presenting with tumours or 

pathological lesions as a result of old age being removed from the study. We also included 15 

mo mice in our study because mice at interim life stages allow the trajectory of ageing changes 

over time to be studied in detail and also ensure that maturational effects that could last 

several months are separated from ageing effects (Nadon, N.L 2000). 

In the design of gerontological studies, several animals are needed for statistically 

powerful observations, but the financial cost of animal maintenance increases as they continue 

to age. As previously identified, extremely aged animals are more likely to present with 

diseases that impact data quality. It is therefore more cost effective to use a population of 

animals that have been subjected to ageing processes, but not to the extent that the financial 

costs outweigh the benefits of the experiment (Miller and Nadon, 2000). This meant that 

although C57BL/6 mice can live up to 35 months of age in the laboratory, we decided not to 

use mice over the age of 30 mo in our analysis. 

Finally, laboratory experiments should be carefully designed to take into account batch 

effects and other confounding errors. Experimental techniques should be performed on 

batches that include young and aged animals to ensure any differences are due to ageing, not 

experimental technique. Additionally, tissues should not be pooled during experimental 

preparations. Experimental work will have more statistical impact if the researcher is able to 

show age effects in several independent animals using several independent experiments than if 

they were to pool all the tissue and consider this a single biological replicate (Nadon, N.L 2006). 
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For this reason, we had 4 mice in each age group and considered data from each mouse 

separately in our analysis. 

 

3.1.5 Research Objectives 
 
 Once we had selected suitable age groups and numbers of mice in which to implement 

our research, our objectives were to complete systematic studies that would allow us to 

characterise the skin ageing process in C57BL/6 skin in more detail. This would allow us to 

develop the information found in previous reports. We therefore aimed to: 

 

1. Produce a morphometric characterisation of age-related changes in the epidermal and 

dermal compartments in the young, middle age and aged mice. 

 

2. Use protein-based methods to identify changes to the dermal and basement 

membrane collagens with age. 

 

3. Exploit electron microscopy (EM) in order to look at ultrastructural changes occurring 

at the dermo-epidermal junction during ageing. 

 

4. Identify epidermal biomarkers of ageing using fluorescent immunohistochemistry. 

 

5. Explore whether the Hippo Pathway effector YAP1 is modulated by the ageing process 

in the epidermis. 
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3.2 Morphometric assessment of intrinsic skin ageing in male C57BL/6 
mice 
 

3.2.1 Survival Curve for C57BL/6 mice 
 

Figure 3.2.1 shows survival curves for both female and male C57BL/6J mice taken from 

Jackson Laboratory data (see footnote 1). Compared to other inbred strains of mice, this strain is 

relatively long lived with the median lifespan being 28.9 months for females and 30.0 months 

for males (Yuan et al, 2009). After 15 months (m) there is a progressive decline in the 

percentage of mice surviving with less than 10% of males and females being alive after 35m. 

This suggests that the animals could show ageing phenotypes from around 15 mo to 30 mo. As 

very few mice are able to survive after 30 mo, it is likely that the health of any surviving mice 

after this time would be very poor. 

 
Figure 3.2.1: Representative survival curves for the C57BL/6 mouse strain adapted from the Jackson Laboratory 
website for male and female mice. 

  

Taking into account the median lifespan and mortality over time for C57BL/6 males, we 

designed our study along the guidelines outlined in part 3.1.4 of this thesis. We therefore used 

young animals that had finished their development (3 mo), mice at early to middle age (12 mo 

and 15 mo), and aged mice (24 mo and 30 mo). The details of the mice used in our study are 

shown below in table 3.2.1.  

 
 
 
 
 
 
Footnote 1: Graph adapted from https://www.jax.org/research-and-faculty/research-labs/the-harrison-
lab/gerontology/available-data 
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Table 3.2.1: Details of the 5 mouse age groups used in our study 

 
 
 
 
 
 
 

 

3.2.2 Morphological characterisation of the skin of young, middle age and aged 
mice  
 

To gain an understanding of how the skin presented histologically in the different age 

groups, sections of the skin taken from the back of each animal were stained with 

haematoxylin and eosin (H+E). Figure 3.2.2 shows that in the 3 mo animals (A, A’), the 

epidermis was several cells thick and the dermis was rich in both hair follicles and their 

accompanying sebaceous glands. Many cells also populated the dermal compartment, shown 

by the presence of several nuclei. At 12 mo (B, B’), the epidermis became thinner and was 1-2 

cells thick in most regions. The dermis was still populated with several hair follicles, but the 

numbers of nuclei populating the dermal extracellular matrix (ECM) was reduced compared to 

3 mo animals. The 15 mo skin (C, C’) was similar to the 12 mo skin in terms of epidermal 

thickness and dermal cell numbers but by 24 mo (D, D’), the epidermis had thinned 

considerably (D’). At 30 mo (E, E’) fewer hair follicles and cells were present in the dermal 

region compared to younger animals. Like the 24 mo animals, epidermal thinning was 

prominent (E’) and in some areas of the epidermis cells were spaced further apart, leaving 

larger distances between the basal epidermal nuclei. These spaces were less frequent and 

extensive in 3 mo, 12 mo and 15 mo epidermis (black arrows D’, E’). 

In the 3 mo animals basal epidermal (BE) nuclei were typically rounded, tightly packed, and 

regularly shaped (green arrowheads-A’). In the 24 mo and 30 mo animals, epidermal nuclei 

became less regularly arranged, less circular and had a greater variation in their size (green 

arrowheads- D’, E’). 

 

Age mouse (months-mo) % survival (from plot) Number used in study 

3 100 4 

12 99 4 

15 98 4 

24 78 4 

30 30 4 
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Figure 3.2.2: Low magnification representative light microscope images of H&E staining of mouse skin epidermis and dermis (A-E) taken using a 20x objective lens and high magnification images 
showing the epidermis, DEJ and papillary dermis (A’-E’) taken using a 40x objective lens. Images are shown for mice at ages 3 months (A, A’), 12 months (B, B’), 15 months (C, C’), 24 months (D, 
D’) and 30 months (E, E’). e= epidermis, de= dermis, hf= hair follicle, sg= sebaceous gland. Black dotted lines indicate the DEJ. Scale same for A-E. Scale bar shown in E = 100 μm. Scale same for 
A’-E’. Scale bar shown in E’ = 50 μm. Black arrows show enlarged spaces between cells in the epidermis of aged animals. Green arrowheads show that BE nuclei become more irregular in 24 mo 
(D’) and 30 mo (E’) animals compared to 3 mo (A’) animals.  
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3.2.3 Decline in dermal cellularity with age 
 

As we had observed fewer nuclei in the dermal region of the aged skin samples, this was 

quantified to determine the extent of cellular loss in this area. In order to create un-biased 

analyses, we developed a grid system whereby equally spaced lines were placed perpendicular 

to the epidermis. Grids measuring 100 µm x 100 µm were placed to the right of the lines and 

the nuclei found within this area were counted. 

This procedure was applied to 4 grids per image, ensuring that hair follicles and other 

appendages were omitted from the analysis. 4 images for each mouse in each age group were 

quantified, effectively meaning 16 measurements per mouse and 64 measurements per age 

group were taken. An example of this methodology applied to 3 mo and 30 mo skin is shown 

below in figure 3.2.3. An identical methodology was applied to all of the images in all of the age 

groups (3 mo, 12 mo, 15 mo, 24 mo and 30 mo mice). The data collected is shown in table 3.2.2 

and figure 3.2.4. 

Figure 3.2.3.: Example of the grid system used to calculate the numbers of nuclei in the dermis of young (3 mo), 
middle aged (12 mo and 15 mo) and aged (24 mo and 30 mo) mice. A= 3 mo example, B= 30 mo examples of 
haematoxylin and eosin-stained skin images taken using a 20x objective lens on a light microscope. Vertical dotted 
lines indicate the grid system used to create un-biased points for data collection in the dermis, avoiding areas where 
appendages were present. Scale bar = 100 µm. Horizontal dotted line=DEJ. e= epidermis, de= dermis, hf= hair follicle, 
sg= sebaceous gland. Squares not to scale. 

Table 3.2.2: Mean and standard deviation values for dermal cellularity in 3 mo, 12 mo, 15 mo, 24 mo and 30 mo 
mice 

 
 
 
 
 
 

Mouse age Mean dermal cellularity 
(number of cells per 10000 µm2) 

Standard Deviation 

3 month  19.280 8.313 

12 month 10.815 3.195 

15 month 13.540 1.616 

24 month 10.830 3.361 

30 month 8.415 1.345 
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Figure 3.2.4: Counts of dermal nuclei in 3 mo, 12 mo, 15 mo, 24 mo and 30 mo mice. A= average dermal nuclei 
counts per 10000 µm2 for each animal with each data point representing the data collected from 4 images for 1 
mouse. Data point close in value show overlap in 15 mo animals. B= mean dermal nuclei per 10000 µm2 in each age 
group. Error bars represent standard deviations calculated from the values for the 4 animals in each age group.  

 

As table 3.2.2 and figure 3.2.4 show, the number of dermal nuclei decreased with age 

from 3 mo to 30 mo. At 3 mo dermal nuclei numbers were high, and varied considerably 

between animals. By 12 mo, fewer dermal nuclei were present in the dermis and the number of 

nuclei showed less variation between animals. The number of nuclei stayed approximately the 

same in the 12 mo, 15 mo and 24 mo animals before decreasing slightly in the 30 mo animals. 

By this stage, the variation in dermal nuclei numbers was very low. 

One-way ANOVA was used to assess the statistical significance of dermal nuclei 

numbers between age groups. The ANOVA showed that the differences between the groups 

was statistically significant (p= 0.029). Post-hoc analysis using Holm-Sidak testing was then 

completed to identify between which age groups the significant differences occurred and the 

results are summarised in table 3.2.3. The table shows that significant differences in dermal 

cellularity occurred between 3 mo and 30 mo animals but none of the other age groups tested. 

 

Table 3.2.3: Post-Hoc testing using Holm Sidak analysis. The only statistically significant difference in dermal 
cellularity was between 3 mo and 30 mo skin shown by green fill. 

Comparison Difference of Means P P<0.050 

3 month  vs. 30 month 10.865 0.030 Yes 

3 month  vs. 12 month 8.465 0.127 No 

3 month  vs. 24 month 8.450 0.115 No 

3 month  vs. 15 month 5.740 0.452 No 

15 month vs. 30 month 5.125 0.527 No 

15 month vs. 12 month 2.725 0.916 No 

15 month vs. 24 month 2.710 0.864 No 

24 month vs. 30 month 2.415 0.830 No 

12 month vs. 30 month 2.400 0.696 No 

24 month vs. 12 month 0.0150 0.996              No 
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3.2.4 Decline in epidermal cellularity with age 
 

As we had observed in figure 3.2.2 that thinning occurred in the epidermis with age, we 

speculated that fewer cells would be present in the epidermis of aged animals. We therefore 

quantified the total number of nuclei per unit length of the epidermis. We used fluorescent 

images that were also collected to analyse YAP1 as the nuclear and cytoplasmic location 

(analyses presented later in thesis) of YAP1 in epidermal cells allowed all of the cells within the 

epidermal compartment to be clearly outlined. DAPI was used as a nuclear counterstain. 

Nuclei from all layers of inter-follicular epidermis (IFE) were considered in this analysis and 

areas where hair follicles intersected with the epidermis were excluded. Figure 3.2.5 shows 

representative examples from 3 mo and 30 mo skin of the system used to score nuclei. The 

epidermal outline was identified by YAP1 staining (A, D). In the same area, nuclei were 

identified by DAPI staining (B, E). Counts of nuclei were made from merged images by 

measuring the dotted line located at the DEJ and counting the nuclei above within the 

epidermal boundary (individual nuclei shown by ‘x’- C, F). Single channel images were used for 

reference when necessary- i.e. when distinguishing overlapping nuclei (white arrows- B, C, E, F).  
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Figure 3.2.5: Representative examples of epidermal cell counting analysis using YAP1 primary antibody, Alexa 568 secondary antibody and DAPI nuclear counterstain in 3 mo (A,B,C) and 30 mo 
(D,E,F) mice. Images were taken using a Zeiss fluorescence microscope and 40x objective lens. e=epidermis, de= dermis, dotted line above de- DEJ, dotted line above e= epidermal boundary. 
A+D= YAP1 single channel, B+E= DAPI single channel, C+F=merged image. Scale bar (panel C and F) = 20 µm, and scale was identical for all images. x= denotes a single nucleus. White arrows= 
overlapping nuclei. Thick dotted line in C+F shows the measurement line used to measure length of epidermis. Fine dotted line shows epidermal boundary. Any cells falling outside of the two 
boundaries were excluded from the counts.  
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 The methodology shown in figure 3.2.5 was applied to 6 images from each of the 4 

mice in the 3 mo, 12 mo, 15 mo, 24 mo and 30 mo age groups. Results of the nuclei counted 

were expressed as the number of epidermal nuclei per 100 µm of the DEJ. The results of this 

analysis are shown in figure 3.2.6 and table 3.2.4. 

 

Figure 3.2.6: Counts of epidermal nuclei in 3 mo, 12 mo, 15 mo, 24 mo and 30 mo old mice per 100 µm of basement 
membrane. 4 mice in each age group. A= epidermal nuclei counts for each animal with each data point representing 
data collected from 6 images in 1 mouse. Data points close in value in 15 mo, 24 mo and 30 mo show overlap. B= 
mean number of nuclei per 100 µm of dermal-epidermal junction (DEJ). Error bars represent standard deviations 
calculated from the values for the 4 animals in each age group.  

 
Table 3.2.4: Mean epidermal cellularity and standard deviation values for 3 mo, 12 mo, 15 mo, 24 mo and 30 mo 
mice. 

 

 

Figure 3.2.6 and table 3.2.4 show that epidermal cell numbers steadily declined with 

age in the mouse IFE. The greatest variation in cell numbers per 100 µm of DEJ occurred in the 

3 mo and 12 mo animals. One-way ANOVA analysis on the data indicated that the differences 

between epidermal cell numbers in the age groups was highly significant (p= 0.003). Post-hoc 

analysis using Holm Sidak testing showed that this decline in cell number was highly significant 

between 3 mo and 30 mo animals (p=0.002) and significant between 12 mo and 30 mo animals 

(green fill- table 3.2.5). 

 

 

 

 

Mouse age Mean epidermal cellularity 
(number of cells per 100 µm of DEJ) 

Standard Deviation 

3 month 22.450 2.611 

12 month 20.725 3.622 

15 month 19.750 1.634 

24 month 17.775 0.550 

30 month 15.025 1.109 
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Table 3.2.5: Holm-Sidak post-hoc analysis of the one way ANOVA assessing epidermal cellularity in the mouse age 
groups. The analysis indicates statistically significant differences occurred between 3 mo vs 30 mo and 12 mo vs 30 
mo age groups. 

Comparison Difference of Means P P<0.050 

3 month vs. 30 month 7.425 0.002 Yes 

12 month vs. 30 month 5.700 0.020 Yes 

15 month vs. 30 month 4.725 0.064 No 

3 month vs. 24 month 4.675 0.060 No 

12 month vs. 24 month 2.950 0.382 No 

24 month vs. 30 month 2.750 0.400 No 

3 month vs. 15 month 2.700 0.352 No 

15 month vs. 24 month 1.975 0.531 No 

3 month vs. 12 month 1.725 0.488 No 

12 month vs. 15 month 0.975 0.540 No 
 

To express the significant decreases in cell numbers numerically, the percentage 

decrease of epidermal nuclei was calculated in the 3 mo vs 30 mo and 12 mo vs 30 mo animals. 

Compared to the 3 mo animals, the 30 mo animals had 33.2% fewer IFE cells and compared to 

the 12 mo animals they had 25.5 % fewer cells. These numbers suggest that the ageing process 

can reduce IFE cell numbers by up to a third. 

3.2.5 Loss of basal epidermal nuclei with age 
 

The basal layer of the epidermis is the region where epidermal proliferation occurs, and is 

the epidermal layer where keratinocyte stem cells reside and make an active contribution to 

epidermal cell numbers (Charruyer et al, 2009). As we had observed the increased presence of 

inter-nuclear gaps between cells in the epidermis of aged skin (figure 3.2.2 D’ and E’) and also a 

loss of epidermal cellularity (figure 3.2.6 A and B), we sought to determine whether this loss 

was caused by a reduced cellular presence in the basal epidermal layer.  

Keratinocytes are not the sole cellular population within the epidermis, as melanocytes, 

Merkel and Langerhans cells are also present in this region. Keratinocytes, however, form the 

vast majority of the cellular population, constituting over 95% of the epidermal cellular 

presence (Barker et al, 1991). So although we did not formally distinguish keratinocytes from 

other epidermal cells, it was likely that observations of cellular loss in this layer could represent 

depletion of at least some of the keratinocyte population residing here as they make up such a 

large proportion of the resident cells. To complete this analysis, we counted the number of 

basal epidermal nuclei interacting with the basement membrane (BM) along a certain length. 

We used collagen IV immunofluorescence staining to identify the BM and DAPI to identify 

nuclei. Figure 3.2.7 shows an example of our methodology in 3 mo and 30 mo skin.  
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Figure 3.2.7: Example images taken using a fluorescent microscope and 40x objective lens from 3 mo (A) and 30 mo 
(B) mice showing how nuclei along the BM were counted. Collagen IV primary antibody indirectly conjugated to 
Alexa 568 secondary antibody was used to mark the BM. Nuclei were counterstained with DAPI. White dotted line at 
DEJ= measurement line of BM length. White arrows represent nuclei counted along the measurement line. 
e=epidermis, de=dermis. Scale bars= 20 µm. 

 
Along with 3 mo and 30 mo skin, an identical methodology was applied to 12 mo, 15 mo 

and 24 mo age groups with 4 images being taken for each mouse using a fluorescent 

microscope and 40x objective lens. The entire basement membrane and nuclei in the field of 

view of each image were measured. Areas where hair follicles intersected with the IF epidermis 

were omitted. The data collected is shown in figure 3.2.8 and table 3.2.6. 
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Figure 3.2.8: Number of basal epidermal cells in 3 mo, 12 mo, 15 mo, 24 mo and 30 mo old mice. 4 mice in each age 
group. A= plots of average number of nuclei per 100 µm of basement membrane in each mouse with each marker 
representing the average of 4 images. Data points close in value show overlap in 24 mo animals. B= Plots of average 
number of nuclei per 100 µm of basement membrane within each age group. Error bars represent standard 
deviations calculated from the values for the 4 animals in each age group.  

 
Table 3.2.6: Mean basal epidermal nuclei and standard deviation values for 3 mo, 12 mo, 15 mo, 24 mo and 30 mo 
mice. *We observed that the variation in basal layer nuclei numbers was much higher in the 15 mo animals 

Age Group  Mean number of basal layer nuclei 
(per 100 µm of BM) 

Standard Deviation 

3 month 12.383 0.961 

12 month 11.893 0.923 

15 month 11.820 2.072* 

24 month 10.890 0.166 

30 month 10.195 0.834 

 
Figure 3.2.8 and table 3.2.6 show that the number of basal epidermal nuclei decreased 

with age. One-way ANOVA analysis assessing the differences between all of the age groups 

indicated that these observed decreases were not statistically significant (p= 0.110). However, 

one anomaly in the data was seen in the 15 mo animals. 3 out of the 4 animals assessed had 

basal layer nuclei values similar to the 3 mo and 12 mo animals and some of these values were 

greater than the 12 mo animals (figure 3.2.8- A). There was one 15 mo animal,which had a very 

low number of basal layer nuclei even smaller than the mean value generated from the 30 mo 

animals. This resulted in a very high standard deviation value in the 15 mo age group, which 

would have impacted subsequent downstream statistical testing. To account for this, we also 

completed an ANOVA test where the 15 mo animals were omitted from the analysis. This test 

did show that there were significant differences between the 3 mo, 12 mo, 24 mo and 30 mo 

age groups (p=0.009), which are summarised in table 3.2.7 below. 
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Table 3.2.7: Holm-Sidak post-hoc analysis of the one way ANOVA assessing numbers of basal epidermal nuclei in the 
mouse age groups with the data from 15 mo animals excluded. The analysis indicates that a statistically significant 
differences occurred between 3 mo vs 30 mo age groups (green fill) and that the difference between 12 mo vs 30 mo 
age groups was close to significance (*). 

Comparison Difference of means P P<0.050 

3 month vs. 30 month 2.188 0.012 Yes 

12 month vs. 30 month 1.697 0.051* No 

3 month vs. 24 month 1.492 0.079 No 

12 month vs. 24 month 1.002 0.266 No 

24 month vs. 30 month 0.695 0.419 No 

3 month vs. 12 month 0.490 0.398 No 

  

3.2.6 Epidermal thinning  
 

  As we had observed epidermal thinning with age in the mice (figure 3.2.2 A’-E’), we 

quantified this. We again used an un-biased approach by taking measurements at equidistant 

points in the epidermis. Figure 3.2.9 shows how we collected our data using an example using 

images of 3 mo and 30 mo skin. Measurement lines (m) were drawn at a perpendicular angle 

from the DEJ (dotted line) to the outermost cells of the granular layer (dotted line- upper 

epidermis). The stratum corneum (SC) was not included in analysis as it had been lost in the 

processing of some samples. This methodology was applied to 3 mo, 12 mo, 15 mo, 24 mo and 

30 mo mice with 2 images for each mouse and an average of ~10 measurements taken per 

image. This makes a total of approximately 20 measurements per mouse and 80 per age group. 

The results of the analysis are shown in table 3.2.8 and figure 3.2.10.  
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Figure 3.2.9: Representative example of data collection for epidermal thickness measurements using images of 
haematoxylin and eosin stained 3 mo (A) and 30 mo (B) skin taken using a light microscope and 40x objective lens. 
Scale bars= 20 µm. e= epidermis, de= dermis, sc= stratum corneum. Measurements (m) were made at equidistant 
points from the DEJ (lower dotted line) to the granular layer (upper dotted line). 

 
Table 3.2.8: Mean IFE thickness and standard deviation values for 3 mo, 12 mo, 15 mo, 24 mo and 30 mo mice. 
*samples in this age group failed to show equal variance.  

Age Group  Mean epidermal thickness Standard Deviation 

3 month* 17.67 5.34* 

12 month 8.85 0.91 

15 month 11.63 2.32 

24 month 7.82 2.03 

30 month 6.52 0.42 
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Figure 3.2.10: Epidermal thickness measurements in 3 mo, 12 mo, 15 mo, 24 mo and 30 mo mice with 4 animals per 
age group. A= measurements for each animal with each data point representing data collected from 2 images per 
mouse. Data points close in value show overlap in 3 mo, 12 mo, 24 mo and 30 mo animals. B= mean IFE thickness. 
Error bars represent standard deviations calculated from the values for the 4 animals in each age group. 

 

Figure 3.2.10 and table 3.2.8 show that the mean and standard deviation values for IFE 

thickness in 3 mo animals was very high, indicating a large variation in epidermal thickness in 

these animals. Two of the animals had a very high epidermal thickness at around 22 µm 

(overlapping data points, A) whereas the other two 3 mo animals had a thinner epidermis. The 

variation in epidermal thickness in 15 mo animals was also high. Overall mean IFE thickness 

decreased with age from 12 mo to 30 mo. Unexpectedly, 15 mo animals had a larger mean 

epidermal thickness than 12 mo animals. It was also apparent that the most marked decreases 

in epidermal thickness occurred early on in life between 3 mo and 12 mo animals.  

One way ANOVA testing involves working by the assumption that the variance in all of 

the populations being compared to one another are equal. Prior to ANOVA testing, data from 

each of the age groups within the mice is therefore subjected to Levene’s testing for equal 

variance (Levene, 1960). Due to the dramatic skew in variation of IFE thickness shown in the 3 

mo animals, the data from 3 mo animals failed to show equal variance by this test. 

The hair follicle cycle (HFC) of C57BL/6 mice is known to impact epidermal thickness 

(Chase and Eaton, 1959). The first two hair follicle cycle’s following birth are highly 

synchronized, and occur when the mice are approximately 4 weeks and 12 weeks old (Müller-

Röver et al, 2001). It is therefore likely that some of the 3 mo animals in this study had actively 

cycling hair follicles. To explore this further, sections of the 3 mo animals were examined to 

determine rough hair follicle cycle stages in relation to the epidermal thickness. This was made 

possible by the fact that follicle stages in mice are histologically distinct from one another (Paus 

and Cotsarelis, 1999). Examples of how we classified the hair follicles in the skin of mice of 

various ages is shown in figure 3.2.11.  
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In several of the 3 mo animals we observed actively growing (anagen) hair follicles 

which showed enlarged structures that extended deep into the dermis (black arrows-A= 

longitudinal view of HF). In some cases follicles had extended into the hypodermis, and showed 

a large, rounded morphology (black arrows and brackets- B=transverse views of anagen follicles 

in 3 mo skin). In the 12 mo animals the majority of hair follicles in the mice were in telogen and 

they were reduced in size and length compared to the actively growing follicles seen in the 3 

mo mice (C= Longitudinal view of telogen follicles in 12 mo mice). In the 15 mo mice some of 

the animals had catagen and late anagen follicles but the majority were in telogen and the 

number of anagen follicles was not as extensive or uniform as those seen in the 3 mo animals 

(data not shown). 

In the 24 mo and 30 mo mice almost all of the hair follicles were in telogen, suggesting 

that few hair follicles were actively cycling in the aged mice (D= longitudinal and transverse 

views of telogen follicles in 30 mo mice) (black arrows and brackets, D). From these 

observations it appeared that the 3 mo animals had the greatest numbers of actively cycling 

hair follicles and when the hair follicle stage of the skin was considered alongside epidermal 

thickness values, it was clear that the hair follicle stage impacted epidermal thickness (table 

3.2.9).  
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Figure 3.2.11: Classification of hair follicle staging in the skin of mice. Images A-D show Haematoxylin and Eosin 
staining of C57BL/6 back skin in 3 mo (A, B), 12 mo (C) and 30 mo (D) skin. Images were captured using a light 
microscope with 10x objective lens. A= longitudinal view of anagen follicles in 3 mo skin showing show enlarged 
structures that extend deep into the dermis (black arrows-A). B=Transverse views of anagen follicles in 3 mo skin 
show some follicles had extended into the hypodermis and show a large, rounded morphology (black arrows and 
brackets- B). C= longitudinal view of telogen follicles in 12 mo mice show that they are reduced in size compared to 
the 3 mo anagen follicles and do not extend into the hypodermis (black arrows and brackets, C). D= longitudinal and 
transverse views of telogen follicles in 30 mo mice showing reduced length and thickness compared to anagen 
follicles in 3 mo mice (black arrows and brackets, D). e=epidermis, de= dermis, hd= hypodermis, hf= hair follicle. 
Scale bars all 100 µm. 

 

Table 3.2.9: Hair follicle stages of the 3 mo month mice used in this study. 

 

 

 

 

 

Mouse ID#  Hair follicle stage Mean epidermal 
thickness 

H3464 
4273BN 
42722LN 
4273RN 

Many HF in anagen. Some in catagen 
Most in anagen 
Most HF in telogen. 
Some in catagen. Some telogen 

22.15 
22.24 
11.76 
14.53 
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The data in table 3.2.9 indicates that the actively cycling follicles caused increased 

epidermal thickness, which is consistent with previous reports in mouse (Hansen et al, 1984). 

After 12 weeks of age, hair follicle cycles in mice become less synchronised, and occur in 

distinct domains across the body (Plikus et al, 2008). Hair follicle cycles also become less regular 

with increasing age and aged animals typically have few actively growing hair follicles (Chen et 

al, 2014). This suggests that the hair follicle cycle would be less of a confounding issue for data 

collected from later-stage animals. As our analyses from 12 mo, 15 mo, 24 mo and 30 mo skin 

sections showed that the majority of hair follicle’s in these animals were in telogen phase, this 

meant that across the 12-30 mo age groups, variation in epidermal thickness was much less 

likely to occur due to the activity of hair follicles in the mouse skin. 

 The IFE thickness data from the 3 mo mice was highly variable due to the mice being in 

different stages of the hair follicle cycle, so it could confound the analysis of change in IFE 

thickness with age. This confounding factor coupled with the fact that the data from 3 mo mice 

did not show equal variance, meant that this age group was omitted from the subsequent one 

way ANOVA analysis. 12 mo animals are still relatively young, and so the assessment of change 

in inter-follicular epidermal thickness with age using these animals as the youngest age group 

was still a worthwhile analysis. Table 3.2.10 shows the results of the ANOVA, which indicated a 

statistically significant change occurred with age (p=0.029). Post-hoc testing showed that 

significant differences in IFE thickness occurred between 15 mo and 30 mo animals and 15 mo 

and 24 mo animals. This indicated that from our analyses, the IFE thickness significantly 

decreased with age between these age groups only.  

 

Table 3.2.10: Results of ANOVA analysis and Holm-Sidak post-hoc testing for assessment of change in IFE thickness in 
the different age groups. 

Comparison Difference of Means P P<0.050 

15 month vs. 30 month 4.007 0.009 Yes 

15 month vs. 24 month 3.083 0.048 Yes 

15 month vs. 12 month 2.118 0.225 No 

12 month vs. 30 month 1.889 0.251 No 

12 month vs. 24 month 0.966 0.607 No 

24 month vs. 30 month 0.923 0.394 No 
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3.2.7 Alteration of markers of terminal differentiation in aged epidermis  
 

Our previous observations of loss of epidermal cells in aged skin and epidermal 

thinning prompted us to explore the epidermal region in more detail. We therefore 

assessed if any changes occurred in the protein levels of specific keratinocyte cytoskeletal 

markers in the basal layer (keratin 14) and spinous layer (keratin 10) of the epidermis. 

Additionally, we looked at changes in the expression of loricrin, which is expressed in the 

superficial granular layers of skin and is the primary constituent (~70% of the total protein) 

of the cornified envelope (CE) (Nithya et al, 2015).  

To confirm the specificity of our antibodies, we completed Western blotting of whole 

skin lysates using rabbit antibodies against K10, K14 and loricrin. Additionally, we blotted 

skin lysates for E-cadherin, as this cell-cell adherens junction protein is expressed by all cells 

in the epidermal layers of mice (Tunggal et al, 2005). Figure 3.2.12 shows the results of 

these blots in 3 biological replicates each of 3 mo and 30 mo animals. Bands for E-cadherin 

(135kDa), keratin 10 (60kDa), keratin 14 (52kDa) and loricrin (26kDa) were observed at 

their predicted molecular weights. 

In the 3 mo and 30 mo animals, there was clear variation in the levels of E-cadherin, 

and particularly within the young animals. The variation in the young animals was to be 

expected, given that we had observed large variation in epidermal thickness in our 

histological analysis of 3 mo old mouse skin samples. Overall E-cadherin expression was 

reduced in the 30 mo animals, and in one sample detection was almost negligible. This 

observation is consistent with our reports of both a loss of epidermal cellularity and 

epidermal thinning, and indicates that the epidermal compartment forms a smaller 

proportion of the whole skin in aged animals. 

Keratin 10 expression was only slightly reduced in the 30 mo animals compared to the 

3 mo, and given that overall epidermal cellularity is reduced and the epidermis is 

proportionally thinner in the 30 mo animals, this suggests that cells of the spinous layer are 

mostly maintained in the aged epidermis despite overall cellular loss from this area. Keratin 

14 expression was generally higher in the 30 mo compared to 3 mo animals, which suggests 

that cells of the basal layer are preferentially retained in the aged epidermis, thus making 

up a greater proportion of the whole epidermis in young compared to aged animals.  

 

Loricrin protein expression was drastically decreased in all of the 30 mo biological 

replicates compared to the technical replicates, indicating that the main protein of the 

cornified envelope was reduced in the whole skin of 30 mo animals. 
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Figure 3.2.12: Protein expression of epidermal differentiation and cell junction markers in whole skin lysates of 
young 3 month and aged 30 month mice. 3 biological replicates each for young, and aged mice were used to 
complete Western blots of E-cadherin, K10, K14 and loricrin after SDS-PAGE. E-cadherin bands indicate both the pre-
cursor (upper band) and mature (lower band) form of E-cadherin (Geng et al, 2012). 

 

As our Western blotting had indicated stoichiometric changes in the levels of epidermal 

differentiation proteins between 3 mo and 30 mo animals, we used fluorescence 

immunohistochemistry to visualize the arrangement of K14, K10 and loricrin expression in 3 

mo, 12 mo, 15 mo, 24 mo and 30 mo epidermis to determine the extent of their change in 

expression over time. Figure 3.2.13 shows the results of the staining on paraformaldehyde-

fixed, paraffin embedded mouse skin subjected to citrate-based heat-induced antigen retrieval 

and antibody staining with the same antibodies used in the Western blots. 

Keratin 14 (K14) expression was prominent in the cells of the basal layer of epidermis from 

all age groups, but as the proportion of cells in the overall epidermis was reduced over time, 

the cells expressing K14 in the aged epidermis (D, E) occupied the majority of the cells within 

the epidermal compartment. This observation was consistent with our Western blotting data, 

as K14 expression was greater in the whole skin lysates of aged 30 mo animals compared to 3 

mo because proportionally, its expression within the epidermis as a whole becomes greater 

with age. Additionally, the basal epidermal cells showed a change in their arrangement along 

the basal layer with age. In the 3 mo animals, the DAPI and K14 staining showed that the oval 

nuclei and surrounding cell body adopted a vertical polarity (yellow arrow, A) whereas in the 30 

mo animals the nuclei had a horizontal polarity, and appeared to be spread horizontally along 

the basement membrane (yellow arrow, C). 

Keratin 10 (K10) expression was seen in several cellular layers in the young 3 mo and 12 mo 

skin (yellow double arrows, A, B’) but with age, its expression was reduced to a single layer in 

the outer epidermis (yellow double arrow, E’). Loricrin expression was prominent in the outer 

epidermis of 3 mo, 12 mo, 15 mo and 24 mo animals but in 30 mo skin, absence of loricrin was 
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seen in areas indicating that loss of this protein had occurred in some areas of the outer 

epidermis of the oldest 30 mo animals (yellow arrows, E’’). Our observations of protein 

expression of K10 and loricrin here are therefore also consistent with the previous Western 

blots, which showed that keratin 10 expression showed a marginal reduction whereas loricrin 

was reduced overall in 30 mo, compared to 3 mo whole skin. 
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Figure 3.2.13: Immunofluorescence staining of keratinocyte differentiation expression in the epidermis of 3 mo (A, A’, A’’), 12 mo (B, B’, B’’), 15 mo (C, C’, C’’), 24 mo (D, D’, D’’) and 30 mo (E, E’, E’’) mice. 
Mouse skin sections were incubated with rabbit primary antibodies against the basal layer marker Keratin 14 (column 1), the suprabasal/spinous layer marker keratin 10 (column 2) and the cornified 
envelope marker loricrin (column 3). The secondary antibody for all staining was anti-rabbit Alexa 568 and nuclei were counterstained with DAPI. Slides were imaged using CLSM and a 40x objective lens. 
Images shown a maximum 2D projections of 5 µm z-stacks with imaging conditions optimised to 1 Airy unit. e= epidermis, de= dermis, dotted line= DEJ.  Scale same for all images and scale bars shown in E, 
E’, E’’ all 10 µm. Yellow arrows in A and E show shape differences in 3 mo vs 3 mo cells. Yellow double headed arrows in A’, B’ and E’ indicate decreasing K10 levels over time. Yellow arrows in E’’ show 
absent loricrin expression in 30 mo skin..
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3.2.8 Changes to the morphology of basal epidermal cells with age 
 
 Intrinsic ageing has been known to be associated with increased abnormality in nuclear 

shape in the cells of humans (Scaffidi and Mistelli et al, 2006) and model organisms like 

Drosophila (Brandt et al, 2008). As Figure 3.2.2 showed that epidermal cell nuclei become more 

irregular with age (3.3.2, D’ and E’), and we observed a change in the orientation of cells in the 

basal layer using K14 and DAPI staining (Fig 3.2.13, A and E), we sought to quantify these 

observations. To complete our analysis, we assessed the circularity index of basal epidermal 

(BE) nuclei of 3 mo, 12 mo, 15 mo, 24 mo and 30 mo animals using high power Z-stack confocal 

images of epidermal cells, which were captured using a 63x objective lens. By imaging in the Z-

dimension as well as X and Y, we were able to gain more information about the shape of nuclei 

in each skin section, as a greater proportion of the whole nucleus was captured. One image was 

used for each mouse and 10 measurements were of made of the nuclei making a total of 40 

measurements per age group.  

Figure 3.2.14 depicts maximally projected images of BE nuclei from 3 mo (A), 12 mo (B), 

15 mo (C), 24 mo (D) and 30 mo (E) mice. In 3 mo animals, nuclei are rounded and regular in 

shape (yellow outline and arrow- A). Over time the nuclei become progressively flatter and 

more irregular. Marked cell flattening is evident in the nuclei of 24 mo and 30 mo animals 

(yellow outlines and arrows, D, E). Quantification of mean nuclear circularity of BE cells in each 

mouse (F) and each age group (G) showed that in the 3 mo and 12 mo animals, the circularity 

index of nuclei was similar. In the 15 mo animals it was slightly lower and in the 24 mo and 30 

mo animals, it was dramatically reduced and lowest in the 30 mo animals. The mean and 

standard deviations for nuclear circularity index values in each age group are shown in table 

3.2.11 

Table 3.2.11: Mean and standard deviation BE nuclear circularity values for 3 mo, 12 mo, 15 mo, 24 mo and 30 mo 
mice 

Age group  Mean Standard Deviation  

3 month 0.75 0.035 

12 month 0.74 0.031 

15 month 0.72 0.031 

24 month 0.66 0.026 

30 month 0.63 0.033 
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Figure 3.2.14: Morphological changes in epidermal basal nuclei with age. High magnification Z-stack images of 3 mo 
(A), 12 mo (B), 15 mo (C), 24 mo (D) and 30 m (E) nuclei were taken using a confocal microscope with 63x objective 
lens. Nuclei were visualised using DAPI. Nuclei become less circular in aged animals (yellow outlines and arrows A, D, 
E). White dotted lines indicate the epidermal-dermal junction in each image. e= epidermis, de= dermis. Scale the 
same for all images-scale bar in E=10 μm. F and G= Plots of nuclear circularity measurements in 3 mo, 12 mo, 15 mo, 
24 mo and 30 mo mice. F= measurements for each animal with each data point representing data collected nuclei in 
one image per mouse. 15 mo, 24 mo and 30 mo data points that were close in value showed overlap. G= Average 
nuclear circularity for each age group. Error bars represent standard deviations calculated from the values for the 4 
animals in each age group. 

 

We assessed the statistical significance of these observations using one way ANOVA, 

which indicated there was a highly significant difference between age groups (p <0.0001). Post-

Hoc analysis using Holm-Sidak testing showed several significant differences between the age 

groups as detailed in table 3.2.12. All of the significant differences occurred between 3 mo, 12 

mo, and 24 mo and 30 mo age groups, which suggests that nuclear circularity significantly 

decreases in older compared to younger age groups. 
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Table 3.2.12: Holm-Sidak post-hoc testing of the ANOVA analysis for the assessment of nuclear circularity in the 
different age groups. Green fill indicates statistically significant differences 

Comparison Difference of Means P P<0.050 

3 month vs. 30 month 0.119 <0.001 Yes 

12 month vs. 30 month 0.105 0.003 Yes 

3 month vs. 24 month 0.0936 0.006 Yes 

15 month vs. 30 month 0.0903 0.007 Yes 

12 month vs. 24 month 0.0797 0.017 Yes 

15 month vs. 24 month 0.0651 0.052 No 

3 month vs. 15 month 0.0285 0.632 No 

24 month vs. 30 month 0.0252 0.621 No 

12 month vs. 15 month 0.0147 0.771 No 

3 month vs. 12 month 0.0138 0.545 No 

 

3.2.9 Summary of significant morphometric changes to C57BL/6 skin with age 
 
 The morphometric changes occurring to C57BL/6 skin with age are summarized in table 

3.2.13, which shows that the most significant changes with age occurred within the epidermal 

compartment. Loss of epidermal cellularity and a decrease in regular epidermal nuclear shape 

were the most highly significant changes that we tested. Decreases in dermal cellularity and 

epidermal thinning were also significant to a lesser extent. 

 

Table 3.2.13: Summary of morphometric changes occurring to C57BL/6 skin with age. Green fill indicates highly 
significant changes (p <0.005) and yellow fill indicates significant changes (p<0.05). *= ANOVA completed with 15 mo 
animals being omitted from the analysis. 

Factor quantified Observed change with age ANOVA 
 p-value 

Dermal cellularity Rapidly decreases between 3 mo and 12 mo. 
Slower rate of decline 12 mo to 30 mo 

0.029 

Epidermal cellularity Cell numbers decrease steadily with age. 0.003 

Basal epidermal 
cellularity* 

Cell numbers decrease slightly with age 0.009* 

Epidermal thickness Rapid decrease in thickness between 3 mo 
and 12 mo. Slower rate of decrease 12 mo to 
30 mo  

0.029 

Basal cell nuclear shape Similar circularity index in 3 mo to 15 mo 
animals. Decreases at 24 mo and further 
decreases at 30 mo 

<0.0001 
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3.2.10 Discussion part 1: Morphometric changes have been identified in C57BL/6 
skin- Future work should focus on taking measurements under standardized hair 
follicle cycles. 
 

Our morphometric analysis of C57BL/6 has showed several key changes to the skin with 

age, but there are certain limitations in the data. One important limitation of carrying out a 

morphometric analysis on mice was shown by the fact that some of the 3 mo skin contained 

actively cycling hair follicles, which resulted in increased epidermal thickness in some of the 

animals.  

Additionally, the presence of actively cycling follicles in the 3 mo animals was also likely 

to impact some of our other analyses. For example, there was a large variation in the dermal 

cellularity values generated from the 3 mo animals, and dermal cellularity showed a marked 

decrease between the 3 mo and 12 mo animals, where the difference in mean dermal cell 

numbers from 3 mo to 12 mo was 8.47. Although not statistically significant, this difference was 

much higher than the difference in means between the relatively young 12 mo animals and the 

aged 30 mo animals (2.40= which was also not significant). This suggests that the dramatic 

change in dermal cellularity between the 3 mo and 12 mo animals could be due to the presence 

of actively cycling follicles in the younger animals. Alternatively, it could represent a 

maturational effect- perhaps of the immune cell population within this area.  

Whatever the reasons for this dramatic decline in dermal cellularity in between the 3 

mo and 12 mo animals, we must consider it carefully in the analysis of our data. Therefore, 

although it is technically correct to conclude that statistically significant changes in dermal 

cellularity values occurred between “young” 3 mo animals and “aged” 30 mo animals, we 

cannot rule out the fact that the hair follicle stage or other effects in the young mice could have 

contributed to this significant result. Future work could look at this in more detail by confirming 

the identity of this dermal cell population using fibroblast and immune cell markers to 

determine if they are part of an immune response or are resident fibroblasts (Adam et al, 

2015).  

Furthermore, it is possible to synchronize the hair follicle cycles of mice using 

depilatory techniques like shaving (Tasseff et al, 2014). This would help to overcome the issue 

of studying the skin of mice at different stages in the HF cycle, as all follicles in the mice of all 

age groups could be synchronized to be in telogen. This would standardize comparisons 

between the young (3 mo-12 mo) and aged (24 mo and 30 mo) mice and ensure that any 

identified changes were not a result of actively cycling follicles. 

Variation in measurements between animals is to be expected, but in the 15 mo age 

group, there was a very large variation in both epidermal thickness and numbers of basal 
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epidermal nuclei. This impacted some of our statistical analyses, as higher standard deviation 

values decreased the probability of identifying statistically significant differences between the 

different age groups. This variation could have occurred by chance, however, in this age group 

we had observed both catagen and late anagen follicles in two out of the four animals. HF cycle 

causes an increase in epidermal thickness, which may have accounted for the fact that 

significant differences in epidermal thickness between 15 mo and 30 mo animals were seen. It 

is therefore difficult to ascertain whether epidermal thinning with age was statistically 

significant due to this factor. As mentioned previously, HF follicle cycles become progressively 

asynchronous with age in mice (Müller-Röver et al, 2001), so with hindsight, it is clear that 

using techniques to standardize the HF cycle in all animals in each age group would have been 

optimal in order to delineate hair growth effects from ageing effects. 

Despite these limitations we have observed some marked changes between young and 

aged animals, with many changes being identified in the epidermal compartment. The presence 

of dysmorphic nuclei in ageing tissues has been previously reported in human skin (Scaffidi and 

Misteli, 2006), but to our knowledge this is the first report of a change in nuclear shape during 

ageing in mouse epidermis, which indicates that it could be a biomarker of ageing epidermis in 

this strain of mouse. 

The potential for future work in this field is vast, as our studies did not include 

measurements such as dermal and hypodermal thicknesses or numbers of pilosebaceous units 

and we therefore did not address in depth the dermal compartment or hair follicles in our 

morphometric analysis. Decreased dermal thickness and increased hypodermal thickness with 

age has been shown to occur in this strain of mice in previous reports (Giangreco et al, 2008), 

so future work may look to measure this over the lifespan of the mice. Furthermore, little data 

is available on the how the numbers of pilosebaceous units change with age in C57BL/6, so 

quantification of this could also form the basis of future studies. 

 

3.2.11 Discussion part 2: Observations of differences in epidermal terminal 
differentiation markers in aged skin 
 

Although no formal quantification was completed, we also observed through western 

blotting that the epidermal compartment, as measured by E-cadherin expression, occupies a 

reduced proportion of the overall skin in 30 mo animals. As E-cadherin is expressed in both the 

hair follicles and IFE (Young et al, 2003), this suggests that both the previously observed 

epidermal thinning, reduction in epidermal cellularity (from our histological analysis) and 

potential un-quantified changes in the numbers and structure of hair follicles that may occur in 
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aged skin could contribute to this overall reduction in E-cadherin protein expression in 30 mo 

animals. 

K14 is also expressed in the keratinocytes of hair follicles (Coulombe et al, 1989), and 

therefore cells from hair follicles in the mouse skin lysates that we prepared for western 

blotting could have also contributed keratin 14 protein. This suggests that, although we 

observed stable k14 protein levels in the whole skin lysates between 3 mo and 30 mo animals, 

like for E-cadherin expression, the contribution of hair follicles cells to these protein levels in 

both 3 mo and 30 mo animals were not known.   

K10 expression appeared marginally reduced in aged animals through both Western 

blotting and immunofluorescence observations and although epidermal thinning was apparent 

in aged animals, keratin 10 expression was still clearly displayed in suprabasal cells. The 

terminal differentiation marker loricrin, however, was clearly reduced in the aged skin 

compared to young skin. Reduced epidermal cell turnover in aged human skin has been 

previously reported (Grove and Kligman, 1983). In C57BL/6TgN mice, Charruyer et al (2009) 

have shown that the number of epidermal stem cells in young and aged animals is constant, 

but qualitatively, aged epidermal stem cells and transit amplifying cells have a reduced 

proliferative capacity, because the cell cycle is prolonged. The group found that aged transit-

amplifying cells persisted for a greater period of time in the epidermis of aged animals, taking 

longer to differentiate. As we have observed that basal K14 expression was maintained with 

age, but protein expression of the terminal differentiation marker loricrin, and overall 

epidermal thickness was reduced, this suggests a reduction in epidermal cell turnover in the 

aged 30 mo animals compared to young 3 mo and 12 mo animals. As loricrin is a critical 

component of the skin barrier, its reduction with age suggests that the barrier function in the 

aged mouse skin could have been compromised. The uptake of histological stains like toluidine 

blue can be used to assess the integrity of the skin barrier (Indra and Leid, 2011), so a future 

experiment could look to measure toluidine blue uptake in young and aged mice to determine 

if more dye is taken up in the aged animals   

Although we had 3 biological replicates in our Western blots for each of the 3 mo and 

30 mo age groups, we completed only one technical replicate for the antibodies K10, K14 and 

loricrin. Due to our limited number of technical replicates, optimisation of the best dilutions 

and blotting conditions for each antibody had not been completed. We therefore did not 

complete semi-quantitative analysis of these proteins in western blots, as future work is 

needed to optimise these procedures. 

Furthermore, we have yet to complete any quantitative analysis of the change in 

amount of k14, k10 and loricrin with age in our observations of epidermis using 
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immunohistochemistry. Future work should look to address this limitation. Ideally the levels of 

k14, k10 and loricrin could be quantified using analysis of fluorescence immunohistochemistry, 

with the results being expressed as the levels of these proteins as a proportion of the whole 

epidermis. This would allow us to standardise for the fact that the epidermis becomes thinner 

with age, thus allowing us to determine what proportions of the cells in the basal, spinous and 

granular layers are lost from the epidermis over time. 
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 3.3 Identification of Biomarkers of epidermal ageing in C57BL/6 mice 
 

3.3.1 Cellular Senescence occurs as part of physiological ageing 
 

 Senescent cells are morphologically distinct from healthy, proliferating cells, as they 

show an enlarged, flattened morphology (figure 3.3.1). Along with changes to cell shape, they 

undergo several transcriptional modulations, causing them to have their own secretory 

phenotype (known as the SASP- senescence associated secretory phenotype). Senescent cells 

can therefore produce and secrete large quantities of pro-inflammatory bioactive molecules 

such as interleukins, growth factors and matrix degrading enzymes that can impact the 

surrounding tissue micro-environment (Coppe et al, 2008).  

In the presence of nuclear instability, induction of senescence preserves cellular fitness 

as it behaves as a tumour suppressor mechanism, stopping the cell from entering a “crisis” 

state where mitosis becomes highly un-controlled (Campisi and d’Adda di Fagagna, 2007). 

However, along with these longevity promoting effects, the presence of senescent cells in 

ageing tissues can also result in deleterious consequences (Ohtani et al, 2012), partly because 

cellular senescence is associated with mitochondrial dysfunction and production of ROS, which 

can damage DNA and protein in excess amounts (Moiseeva et al, 2009). 

 

Figure 3.3.1: Senescent cells are morphologically distinct from proliferating cells. Proliferating (A) and drug-induced 
senescent (B) PC3 prostate cancer cells visualized under ×200 magnification using phase contrast microscopy. 
Senescent cells have an enlarged nucleus and cytoplasm. In this example the senescent cell is bi-nucleate, which is 
also a characteristic of the senescent phenotype. Scale bar = 100 μm. Image taken from Ewald et al, 2010. 

 

3.3.2 Senescent cells cause by-stander effects to neighbouring cells 
 

Senescent cells are known to accumulate in our tissues during physiological ageing 

(Jeyapalan and Sedivy, 2008) and in vivo studies looking at the impact of senescent cells in 

ageing tissues have shown that these cells cause “by-stander” effects, whereby the factors 

secreted from senescent cells drive neighbouring cells to become senescent (figure 3.3.2). 
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Nelson et al (2012) have shown that healthy fibroblasts co-cultured with senescent fibroblasts 

become senescent themselves due to ROS-induced DNA damage. This group also showed that 

senescent cells were organized in clusters in the livers of aged mice. The fact that senescent 

cells were not randomly arranged and occurred in distinct regions in the liver offered further 

evidence for a senescent cell by-stander effect.  

Furthermore, a proof-of-principle publication from Baker et al (2011), directly 

implicated senescent cells as propagators of tissue dysfunction in an eloquent experiment 

involving mice. The authors generated transgenic mice whereby inducible elimination of 

p16Ink4a expressing senescent cells occurred upon drug treatment. Selective removal of these 

cells over the lifespan of the mice resulted in reduced age-related tissue atrophy and number 

of lesions. This study showed directly that the presence of senescent cells in tissues can drive 

an age-related decline in tissue integrity, as targeted removal of these cells over the course of 

the mouse lifespan dramatically improved health. 

 

Figure 3.3.2: Senescent cell by-stander effects induce senescence in neighboring cells. A primary senescent cell (red 
cytoplasm, light blue nucleus) can produce and secrete molecules that induce senescence in neighboring healthy, 
proliferating cells (white cytoplasm and nucleus). This causes by-stander effects, which induce senescence within 
neighboring cells in the same tissue microenvironment (light pink cytoplasm, dark blue nucleus). Image= authors 
own. HGF= human growth factor, ROS= reactive oxygen species, IL6 and IL8: interleukins 6 and 8, respectively.  
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3.3.3 Identification of cellular senescence in C57BL/6 epidermis using DNA 
damage and cellular proliferation markers 
 

From our morphometric analyses in part 3.2 it was clear that changes to the epidermal 

nuclei were occurring with age. Two of the most statistically robust changes were the decline in 

epidermal cellularity and also epidermal nuclear circularity. We therefore completed further 

studies that allowed us to assess nuclear stability changes over time in more detail. We 

hypothesized that reduced epidermal cellularity could be a result of increased cellular 

senescence in the aged skin resulting in reduced keratinocyte proliferation and therefore 

reduced cell numbers. 

Giangreco et al (2008) have studied epidermal cellular proliferation during ageing in 

this strain of mice, where they considered the difference in Ki67 staining between “young” (2-4 

m) and “aged (24-26 m) animals. They found a decrease in Ki67 between these age groups that 

was close to being statistically significant (p= 0.09). As their analysis did not include older 30 mo 

animals or animals in mid-life stages, we developed their findings by completing Ki67 analysis in 

our 3 mo, 12 mo, 15 mo, 24 mo and 30 mo mice to examine the change in epidermal cell 

proliferation over time. 

 Many authors have sought to quantify the presence of cellular senescence in ageing 

skin by using assays such as senescence-associated β-galactosidase staining, which causes a 

blue colour change due to the enzyme activity of β-galactosidase in senescent cells (sen-B-gal) 

(Dimri et al, 1995). Other groups have looked for evidence of cell cycle arrest in the form of 

p16INK4A antibody staining as a marker of cellular senescence (Ressler et al, 2006). However, 

concerns have arisen as to whether β-galactosidase activity is actually causally related to 

senescence induction, which has lead to questioning about the efficacy of this assay in the 

identification of senescent cells (Lee et al, 2006). Furthermore, it is known that p16INK4A 

antibodies are notoriously difficult to use in mouse studies, due to lack of high-quality antibody 

availability and also the presence of non-senescent p16INK4A expressing cells confounding data 

analysis (Childs et al, 2015). 

Solutions to these caveats have been identified by Wang et al (2009), who used DNA 

damage foci counting to identify senescent cells in the tissues of ageing mice in vivo by working 

on the assumption that long-lived DNA-damage foci are induced by a permanent DNA damage 

response which is unique to senescent cells. Although a transient DNA damage response can 

occur as a result of DNA repair or apoptosis, these outcomes have only a short lifespan and 

thus have a much lower probability of detection (d’ Adda di Fagagna et al, 2003).  

 

 



94 | P a g e  
 

3.3.4 Section objectives 
 
 Our main objective going into this work was therefore to identify cellular senescence 

biomarkers in ageing C57BL/6 epidermal cells. In order to do so, we sought to fulfill the 

following objectives: 

 

1. Assess if DNA damage accumulates in the non-proliferating cells of 3 mo, 12 mo, 15 

mo, 24 mo and 30 epidermis. 

 

2. Assess if cell proliferation changed in the 3 mo, 12 mo, 15 mo 24 mo and 30 mo 

epidermis 

 

3. Given that lamin B1 expression has been shown to be decreased in aged human skin 

and is also modulated by senescence programmes (see thesis introduction part 1.15), 

we also sought to identify if lamin B1 protein levels changed in the C57BL/6 epidermis 

with age. 

 

3.3.5 Assessment of cell proliferation and DNA damage levels in ageing C57BL/6 
epidermis 
 

In order to identify senescence in epidermal cells, we completed assays similar to those 

of Wang et al (2009) by using Ki67 and P53BP1 double labelling in mouse epidermis. We 

selected P53BP1 as our marker for DNA damage as this protein forms bright, distinct foci at 

regions of DNA damage, therefore making it a suitable marker for this analysis (Nelson et al, 

2012). As the epidermis is a highly proliferative region of the skin, there was a probability that 

DNA damage foci present in replicating cells (such as in the presence of stalled replication 

forks) could confound our results. In order to overcome this, we developed a scoring system 

(figure 3.3.3) where we discounted cells positive for both Ki67 and P53BP1 (F- Ki67+ P53BP1+) 

in our DNA damage foci counts but included these cells in our counts for cell proliferation. As a 

result, DNA damage foci (DNA DF) were only counted if they occurred in non-proliferating cells 

(F- Ki67- P53BP1+) and the presence of at least one focus meant that the nucleus was scored 

positive. 

To further improve the accuracy of our analysis, we took Z-stack confocal-laser 

scanning microscopy (CLSM) images where we imaged through the entire tissue section using a 

high power objective lens (63x). This ensured that all of the nuclear material that was probed 

with the antibody was present in our analysis and meant that proper co-localisation of P53BP1 
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foci with nuclear material was completed (see previous works of Gerashchenko and Dynlacht, 

2009; Hewitt et al, 2012). 3 images were taken per animal and all nucleated cells in the 

epidermis were counted (approximately 100 nuclei were scored per animal).  

Figure 3.3.3 shows 2-dimensional maximum intensity projected examples of 3 mo, 12 

mo, 15 mo, 24 mo and 30 mo Z-stack images of epidermis double labeled with P53BP1 and Ki67 

antibodies. High levels of proliferating cells were observed in the basal layer of 3 mo skin (green 

arrows-A) and also the presence of minor levels of DNA damage (White arrows-A). Over time 

DNA damage levels increased whereas cell proliferation was reduced (White arrows, C, D, E).  
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Figure 3.3.3: Immunohistochemistry of DNA DF and cellular proliferation in 3 mo (A), 12 mo (B), 15 mo (C), 24 mo (D) 
and 30 mo (E) epidermis. Skin was double labelled with a rabbit Ki67 antibody directly conjugated to Alexa 488 
(direct label) and a biotinylated anti-rabbit P53BP1 antibody conjugated to Texas red avidin. Sections were imaged 
using CLSM where Z-stack images were taken using a 5 µm depth of the tissue section. F= scoring criteria for cells 
within the epidermis to quantify proliferating cells without DNA DF (Ki67+ P53BP1-), non-proliferating cells without 
DNA DF (Ki67- P53BP1-), proliferating cells with DNA DF (Ki67+ P53BP1 +) and non-proliferating cells without DNA DF 
(Ki67- P53BP1+). White dotted line = dermal-epidermal junction, e= epidermis, de= dermis. Scale same for images A-
E and scale bar is shown in E= 10 µm. Green arrows show proliferating cells marked by Ki67 expression. White 
arrows show presence of DNA damage foci marked by bright spots of P53BP1 staining. 
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We expressed our results as percentages of P53BP1 foci-positive cells and Ki67 positive 

cells out of all epidermal nuclei. The results of these analyses were assimilated into plots of the 

percentage of DNA damage foci-positive nuclei in the epidermis of each animal (figure 3.3.4-A) 

and of the average percentage of DNA damage foci-positive nuclei in the epidermis of each age 

group (figure 3.3.4-B). Levels of cellular proliferation were shown by percentages of Ki67 

positive nuclei in the epidermis of each animal (figure 3.3.4-C) and in each age group (figure 

3.3.4-D). The mean and standard deviation values for DNA damage and cellular proliferation 

levels are also depicted numerically in table 3.3.1 (DNA damage) and table 3.3.2 (cellular 

proliferation). 

As figure 3.3.4 A and B show, DNA damage levels were lowest in the 3 mo animals then 

increased progressively from 3 mo to 24 mo. After 24 mo, levels were reduced down to a level 

similar to that of 12 mo animals (table 3.3.1). The aged 24 mo and 30 mo animals showed the 

greatest variation in DNA damage levels out of all of the age groups (figure 3.3.4 B and table 

3.3.1).  

In the 3 mo animals cell proliferation levels were high but also variable between 

animals. A large drop in cellular proliferation between 3 mo and 12 mo animals was observed 

and following this, a minor reduction in proliferation was observed from 12 mo to 24 mo. Cell 

proliferation values were also variable in the 15 mo animals. Between the 24 mo and 30 mo 

age groups, proliferation levels increased and returned to levels similar to those observed in 12 

mo animals (figure 3.3.4 D and table 3.3.2).  
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Figure 3.3.4: Quantification of DNA damage (A ,B) and cellular proliferation (C, D) in 3 mo, 12 mo, 15 mo, 24 mo and 30 mo mice. A= counts of numbers of epidermal DNA DF positive nuclei 
expressed as percentages of total epidermal nuclei. Each data point represents 1 animal and 4 animals were in each age group. B= average percentage of foci positive nuclei in each age group 
with error bars representing standard deviations calculated from each the 4 animals. C=percentage Ki67 positive cells in the epidermis of each animal, D= average percentage of Ki67 positive 
cells in each age group with error bars representing standard deviations calculated from all animals within the age group
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Table 3.3.1 Mean and standard deviation values for the percentage of DNA damage foci (DF) positive cells in the 
epidermis of 3 mo, 12 mo, 15 mo, 24 mo and 30 mo mice. 

Age Group  Mean percentage DNA DF positive cells Standard Deviation 

3 month 15.83 6.51 

12 month 27.88 2.79 

15 month 31.83 4.49 

24 month 35.68 11.71 

30 month 26.90 7.60 
 
 
Table 3.3.2: Mean and standard deviation values for the percentage of Ki67 positive nuclei in the epidermis of 3 mo, 
12 mo, 15 mo, 24 mo and 30 mo mice 

Age Group  Mean percentage Ki67 positive cells Standard Deviation 

3 month 38.13 14.90 

12 month 17.25 2.93 

15 month 17.30 9.82 

24 month 14.80 4.98 

30 month 18.33 4.83 
 
 

One way ANOVA was used to assess if there were significant differences in DNA 

damage and cell proliferation levels within the different age groups and the results showed a 

significant change in DNA damage levels (p=0.02) and cell proliferation (p=0.01). Post-Hoc 

analysis using Holm-Sidak testing was therefore subsequently employed to identify the age 

groups where significant differences had occurred. The results are summarized in tables 3.3.3 

and 3.3.4, which indicates that significant differences in DNA damage levels occurred between 

3 mo and 24 mo age groups and significant differences in cell proliferation levels occurred 

between 3 mo animals and all of the other age groups. 

 
Table 3.3.3: Holm Sidak post-hoc analysis of the one way ANOVA testing differences in DNA damage levels in the 
epidermis of 3 mo, 12 mo, 15 mo, 24 mo and 30 mo animals. Differences in epidermal DNA damage levels were 
significant between the 3 mo and 24 mo age groups only (green fill)  

 
 

 
 

Comparison Difference of means P P<0.050 

24 month vs. 3 month  19.85 0.015 Yes 

15 month vs. 3 month   16.000 0.063 No 

12 month vs. 3 month  12.050 0.239 No 

30 month vs. 3 month   11.075 0.292 No 

24 month vs. 30 month   8.775 0.499 No 

24 month vs. 12 month  7.899 0.558 No 

15 month vs. 30 month   4.925 0.826 No 

15 month vs. 12 month   3.950 0.838 No 

24 month vs. 15 month   3.850 0.715 No 

12 month vs. 30 month            0.975 0.852 No 
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Table 3.3.4: Holm Sidak post-hoc analysis of the one way ANOVA testing differences in cellular proliferation levels in 
the epidermis of 3 mo, 12 mo, 15 mo, 24 mo and 30 mo mice. Differences in epidermal cellular proliferation levels 
were significant between the 3 mo + 24 mo, 3 mo + 12 mo, 3 mo + 15 mo and 3 mo + 30 mo age groups (green fill). 

Comparison Difference of Means P P<0.050 

3 month vs. 24 month 23.325 0.017 Yes 

3 month vs. 12 month 20.875 0.034 Yes 

3 month vs. 15 month 20.825 0.031 Yes 

3 month vs. 30 month 19.793 0.038 Yes 

30 month vs. 24 month 3.532 0.994 No 

15 month vs. 24 month 2.500 0.997 No 

12 month vs. 24 month 2.450 0.991 No 

30 month vs. 12 month 1.082 0.997 No 

30 month vs. 15 month 1.032 0.983 No 

15 month vs. 12 month 0.0500 0.994 No 

 
This analysis therefore showed that DNA damage in the absence of cellular 

proliferation accumulated in the C57BL/6 epidermis during ageing, which suggests that 

senescent cells accumulate in this region with age. However, the oldest age group assessed, the 

30 mo mice had lower DNA damage levels than 24 month mice.  

Additionally, like the DNA damage levels, cellular proliferation levels were most marked 

between 3 mo and 24 mo mice. In the oldest age group assessed (30 mo) cellular proliferation 

was still significantly lower than at 3 mo, but this difference was less significant compared to 

the difference between 3 mo and 24 mo animals. 
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3.3.6 Identification of lamin B1 as a biomarker of ageing in C57BL/6 epidermis 
 

As we had observed significant decreases in cellular proliferation in the C57BL/6 

epidermis, we next asked whether, like in human skin, lamin B1 protein was also reduced in the 

epidermis during ageing (decreased lamin B1 in aged human skin along with decreased Ki67 

expression has been shown by Dreesen et al, 2013- Figure 1.16 in intro).  

To our knowledge, studies of changes to lamin B1 levels in ageing mouse epidermis 

have not been completed therefore, in order to identify if epidermal lamin B1 protein levels 

changed in mouse, we completed immunohistochemical staining on 3 mo, 12 mo, 15 mo, 24 

mo and 30 mo skin sections and imaged the results using Z-stack confocal laser scanning 

microscopy (CLSM- figure 3.3.5). Like for our DNA damage assessments, this imaging method 

was preferable over others as it allowed us to capture the arrangement of lamin B1 relative to 

nuclear material in both the X, Y and Z planes of view, which gave us the maximum information 

about the organisation of lamin B1 in the epidermal nuclei of the mouse skin sections.  

Figure 3.3.5 shows lamin B1 staining was strong in the basal layer of some of the cells in 

3 mo animals where mostly peri-nuclear staining was observed (white arrows, A) whereas 

other cells were more weakly labelled in this layer. We also observed weaker lamin B1 staining 

in the centre of some nuclei (grey arrowheads- A, C) which could represent intra-nuclear lamin 

B1. Alternatively, this staining could also represent peri-nuclear lamin B1 staining on the top of 

nuclei given that our images were 2D maximal projections of images taken at regular intervals 

of a ~5 µm slice of skin tissue. There was variation in the levels of lamin B1 in the different 

epidermal layers, with lower expression generally being seen in suprabasal nuclei (green 

arrows- A, B, C). Some exceptions to this rule were observed, shown by the presence of 

prominent lamin B1 staining in the occasional suprabasal cell (green arrow-D).  

Reduction in cell numbers over time meant that the overall numbers of lamin B1, 

stained nuclei decreased, but there was not a noticeable difference in the lamin B1 levels in the 

basal layer nuclei of 3 mo, 12 mo, 15 mo and 24 mo animals despite there being different 

nuclear numbers present in these age groups. Like the other age groups, there was variation in 

the level of lamin B1 in the basal layer nuclei in 30 mo animals. However, lamin B1 appeared 

reduced in this layer overall compared to the other age groups (green arrows- E). 
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Figure 3.3.5: Immunofluorescence staining of lamin B1 in 3 mo (A),12 mo (B),15 mo (C),24 mo (D) and 30 mo (E) skin. 
Sections were stained with a rabbit lamin B1 primary antibody conjugated to an anti-rabbit Alexa 568 secondary 
antibody. Nuclei were counterstained with DAPI. Z-stack images were taken using CLSM with a 40x oil objective and 
the pinhole optimised to 1 airy unit. Images represent 2D maximal projections of all of the images in one 5 µm stack. 
e= epidermis, de= dermis, white dotted line= DEJ. White arrows represent high levels of lamin B1 in some of the 
nuclei in the basal epidermis. Green arrows represent low levels of lamin B1 in the nuclei of suprabasal cells and also 
in the basal cells of 30 mo animals. Grey arrowheads= areas where lamin B1 staining was seen in the middle of nuclei 
(intranuclear). Scale bar was same for all images and shown in E= 10 µm. 
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To analyse the average epidermal level of lamin B1 for each animal, 3 individual Z-stack 

confocal images with a Z-depth of 5 µm were captured for each animal in each age group. 

Fluorescence intensity levels of lamin B1 in all of the epidermal nuclei from the 3 images were 

quantified in ImageJ to give relative levels of mean epidermal lamin B1 expression for each 

animal (figure 3.3.6 A) and for each age group (figure 3.3.6 B, table 3.3.5). The plots of these 

results show that lamin B1 expression was highly variable in the 3 mo animals and in 2 of the 

animals epidermal lamin B1 exprssion was high (figure 3.3.6 A;- 3 mo-2.40, 2.45). This level of 

expression was not observed in any of the other age groups.  

In the 12 mo and 15 mo animals lamin B1 was reduced and less variable. At 24 mo, 

variation in lamin B1 levels were high again, with animals showing relative expression levels 

greater than those seen at 12 mo and 15 mo (figure 3.3.6 A-24 mo-1.70, 1.23, 1.24) but also 

animals with lower levels of lamin B1 (0.34). At 30 mo all 4 mice had relatively low values of 

epidermal lamin B1 and the variation between levels was low compared to other age groups. In 

2 of the 30 mo animals expression was dramatically reduced compared to the other age groups 

(Figure 3.3.6 A- 30 mo- 0.12, 0.08).   

Overall lamin B1 expression was reduced over time. Initially, mean expression level 

declined markedly between 3 mo and 12 mo then stayed relatively constant between 12 mo, 

15 mo and 24 mo until 30 mo where expression levels were at their lowest.  

 

 

Figure 3.3.6: Quantification of mean epidermal lamin B1 levels in 3 mo, 12 mo, 15 mo, 24 mo and 30 mo mice. A= 
relative mean epidermal lamin B1 expression in each animal with each data point representing 1 of the 4 mice in 
each age group. B= mean epidermal lamin B1 in each age group. Data points close in value show overlap in 3 mo and 
24 mo mice. Error bars represent standard deviations calculated from the recordings taken in all 4 animals in each 
age group.  
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Table 3.3.5: Mean and standard deviation values of epidermal lamin B1 levels in 3 mo, 12 mo, 15 mo, 24 mo and 30 
mo age groups 

 

To assess the statistical significance of these changes, differences between mean lamin 

B1 levels in the 5 age groups were analysed by one way ANOVA, which indicated that a 

significant change in lamin B1 levels occurred with age (p= 0.020). Post-hoc analysis of the 

ANOVA to identify which age groups showed significant differences indicated that the 

difference was significant between the 3 mo and 30 mo age groups only (p=0.016, table 3.3.6). 

 
Table 3.3.6: Post-hoc analysis of the one was ANOVA using Holm-Sidak multiple comparison testing. These tests 
indicated that differences in mean epidermal lamin B1 were statistically significant between the 3 mo and 30 mo age 
groups only (green fill) 

 
 

As the most significant differences were observed between 3 mo and 30 mo animals, 

we also assessed the change in lamin B1 in these age groups using western blotting of whole 

skin. We generated lysates from 3 biological replicates of 3 mo and 30 mo C576BL/6 mice. 

Traditional cellular loading controls such as GAPDH and β-actin proteins have both been shown 

to be reduced in ageing skeletal muscle (Viglesø et al, 2015), and other authors have shown 

that total protein quantification techniques are more reliable loading controls in the 

quantification of proteins in tissues from C57BL/6 mice (Eaton et al, 2013). We therefore 

determined equal protein loading between our skin samples by using in-gel Coomassie blue 

protein staining (Diezel et al, 1972), before proceeding to blot the equalized protein volumes 

on subsequent gels. Figure 3.3.7 shows the results of our Coomassie blue protein staining, 

Group Name  Mean epidermal lamin B1 Standard Deviation 

3 moonth 1.683 0.924 

12 month 0.693 0.282 

15 month 0.873 0.130 

24 month 1.117 0.553 

30 month 0.290 0.252 

Comparison Diff of Means P P<0.050 

3 moonth vs. 30 month 1.393 0.016 Yes 

3 moonth vs. 12 month 0.990 0.133 No 

24 month vs. 30 month 0.827 0.267 No 

3 moonth vs. 15 month 0.810 0.256 No 

15 month vs. 30 month 0.583 0.565 No 

3 moonth vs. 24 month 0.566 0.529 No 

24 month vs. 12 month 0.424 0.703 No 

12 month vs. 30 month 0.403 0.634 No 

24 month vs. 15 month 0.244 0.762 No 

15 month vs. 12 month 0.180 0.628 No 
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which indicated equal loading from an even intensity and distribution of protein bands in each 

lane of the gel. 

Once we had determined equal loading of our protein samples, we proceeded to 

blotting. As western blotting of 3 mo and 30 mo C57BL/6 whole mouse skin lysates is a novel 

experiment that has not completed by others, we also carried out blotting of traditional loading 

controls to determine if they showed any variance. Figure 3.3.8 shows the results of the blots, 

which indicated that lamin B1 was reduced in 2 out of the 3 animals aged 30 mo in comparison 

to the 3 mo animals. The cellular loading controls showed similar levels to one another in 3 mo 

samples, but in the 30 mo samples β-actin was more highly expressed than β-tubulin and 

GAPDH. 

 
Figure 3.3.7: Coomassie blue in-gel protein staining of 3 mo and 30 mo skin lysates showing an equal amount of 
protein present in each lane of 3 different 3 mo animals and 3 different 30 mo animals. The presence of strong 
bands between ~70 kDa and ~40kDa were observed in all animals. As keratins have a molecular weights in a similar 
range to this and are highly abundant in the skin, these bands could represent keratin proteins (Moll et al, 2008). 
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Figure 3.3.8: Western blotting of lamin B1 (66 kDa), β-tubulin (50 kDa), β-actin (42 kDa) and GAPDH (36 kDa) in 3 
month and 30 month skin lysates. Lamin B1 expression was reduced in 2 of the 30 mo animals in comparison to the 3 
mo animals. However, variation in levels of cellular loading controls were observed between the 30 mo samples. 

3.3.7 Discussion: Lamin B1 is a biomarker of epidermal ageing in C57BL/6 mice 
 

We have studied the impact of age on cellular proliferation, DNA damage and lamin B1 

levels in the epidermis of C57BL/6 mice of various ages and observed as a trend that DNA 

damage increases with age whereas cellular proliferation and lamin B1 levels are reduced. 

Using whole skin lysates, we also observed a decrease in lamin B1 protein levels by western 

blot. Together these observations support the hypothesis that cellular senescence increased in 

the ageing mouse skin. 

To our knowledge there is only one other published report that has quantified DNA 

damage levels in the epidermis of mice of several age groups (Schuler and Rübe, 2013) and 

these authors saw a significant increase in P53BP1-positive foci per cell in the inter-follicular 

epidermis of 24 mo old C57BL/6 mice compared to younger animals. Our data is consistent 

with these reports and furthermore provides additional information about DNA damage in 

older C57BL/6 mice, where surprisingly, we observed that DNA damage levels are reduced. 

According to the lifespan curve for C57BL/6 males (section 3.2 figure 3.2.1), approximately 40% 

of mice are able to live until age 30 mo and less than 10% are able to survive until 35m. It thus 

follows that by keeping animals until they are 30 mo, we are considering animals that show 

some selection bias towards cellular longevity and survival.  

DNA repair proficiency is crucial for longevity (Vermeij et al, 2016) and longer lived 

species have shown up-regulated expression of DNA repair factors in comparison to shorter 

lived species (Mac Rae et al, 2015). The reduced levels of DNA damage we observe in our 30 

mo age group may therefore represent a survivorship effect, whereby the animals that are able 
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to live to this age have improved DNA repair capacities compared to shorter-lived animals of 

the same genetic background and thus they exhibit less DNA damage. This improved repair in 

an identical genetic background may be the result of epigenetic mechanisms or the 

contribution of other factors such as feeding or exercise levels, which reduce overall cellular 

stress and senescence levels (Wang et al, 2010). As the epidermal cells from 30 mo mice had 

less DNA damage, and the induction of a DNA damage response induces cell cycle arrest 

(Ishikawa et al, 2006), it was perhaps un-surprising that the reduced DNA damage in 30 mo 

mice meant that they exhibited greater epidermal proliferation levels compared to the 24 mo 

animals.  

Variation in cellular proliferation levels were greatest in the 3 mo animals and we had 

previously identified through histological staging that two of our 3 mo animals had actively 

cycling hair follicles whereas the other two mice in this age group had hair follicles in catagen 

and telogen (ie less mitotically active stages of the hair follicle cycle). Inter-follicular epidermal 

cells have shown an increase in proliferation during active hair follicle cycling in mice (Roy et al, 

2016) and as our 3 mo epidermal data shows two animals with high levels of cell proliferation, 

one animal with medium levels and one animal with low levels, it might be the case that the 

animals with actively cycling hair follicles had greater levels of epidermal proliferation, which 

impacted their epidermal thickness as previously seen in section 3.2.6. We also observed a 

small number of actively cycling follicles in our 15 mo animals, so this may also explain why 

Ki67 levels in these animals were also variable compared to other age groups. As the 

differences between cellular proliferation levels were significant between the 3 mo animals and 

all other age groups tested, the presence of actively cycling hair follicles in the 3 mo animals 

makes it difficult to ascertain whether these observed differences are solely due to ageing, or 

whether the hair follicle cycle of these mice had impacted our results. 

Our observed organization of lamin B1 in the epidermis of mice, with higher expression 

in the basal layer and reduced expression in suprabasal layers, is consistent with reports from 

Hanif et al (2009), who observed a similar organization in the epidermis of FVB/NCrl mice. 

Additionally, Oguchi and co-workers have seen similar lamin B1 arrangements in the cells of the 

epidermis of human skin (Oguchi et al, 2002). To our knowledge however, this is the first report 

of reduced lamin B1 in the epidermis of aged mice.  

Reduced lamin B1 is associated with cellular senescence (Shimi et al, 2011; Freund et 

al, 2012, Dreesen et al, 2013), and is a potential biomarker of ageing in human epidermis 

(Dreesen et al, 2013). Lamin B1 is known to regulate the cell cycle through p53 dependent 

mechanisms (Dreesen et al, 2013) and this may potentially work through a feedback loop 

(Shimi et al, 2011). Therefore, reduced lamin B1 in aged tissues may be a result of reduced 
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cellular proliferation. One caveat to this hypothesis shown by our data is the fact that cellular 

proliferation levels were greater in 30 mo animals compared to 24 mo animals whereas lamin 

B1 expression was lower in the 30 mo animals. As the numbers of epidermal cells were lowest 

in the 30 mo animals, this may reflect a difference in the epidermal cell populations observed in 

the epidermis of 24 mo and 30 mo age groups. Although they form the majority, keratinocytes 

are not the only cells found in the epidermis, and it is therefore possible that the presence of 

melanocytes and Langerhans cells, which express different levels of lamin B1 compared to 

keratinocytes, could confound our analyses at the later age groups when keratinocyte cell 

numbers are sparse. Additionally, as lamin B1 staining was variable in the basal epidermal layer 

nuclei at other ages, it might be the case that these strongly-labelled cells seen in younger age 

groups are lost with age. 

 Clearly future work is needed to understand these subtle differences in relationships 

between cellular proliferation and lamin B1 levels in 24 mo and 30 mo mouse epidermis. The 

use of cell specific markers for melanocytes and Langerhans cells alonside markers for 

proliferation in the basal epidermis would help us to study this in more depth, as we would be 

able to differentiate keratinocytes from other epidermal cell populations.  

Lamin B1 levels were highly variable in the 3 mo age group, with two animals showing 

very high expression, one medium and one relatively low. Hanif et al (2009) have identified an 

increase in interfollicular epidermal lamin B1 levels during active hair follicle cycling, and we 

speculate that active hair cycles in two of our 3 mo month mice may be driving these high 

expression levels. This observed variation and the conclusions drawn from our cellular 

proliferation data presents a clear need for hair follicle cycle standardization in all skin ageing 

studies completed on mice, as we are unable to say for certain that our observed decreases in 

lamin B1 and cellular proliferation between 3 mo and 30 mo animals are independently due to 

ageing. As identified in our morphometric analysis, future work could address this by using 

shaving methods to standardize the hair follicle cycle in mice of all age groups. Additionally, 

interim age groups, such as mice aged 6 months, could be added to future studies to increase 

the robustness of the data by confirming our observed trends at further interim age groups. 

Western blotting of whole skin showed than lamin B1 was reduced in 30 mo animals 

compared to 3 mo animals. As identified previously, Western blotting of whole tissues in ageing 

studies presents several caveats in terms of suitable cellular loading controls (also covered in Li 

and Shen, 2013) and a comparison of young vs old mouse skin has its own individual issues. 

Epidermal and dermal thinning, along with reductions in the numbers of cells in the epidermal 

and dermal compartments reduce the overall presence of cells in aged skin, and furthermore, 

change the proportions of the different skin layers. This must be taken into account when 
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considering reductions in cellular proteins like lamin B1, as an observed reduction in this 

protein validated only by Western blotting of whole skin lysates could represent nothing more 

than a decline in nuclear numbers, and not a cell-specific reduction in lamin B1 protein. 

Under some conditions routinely used loading controls could be employed to 

circumvent this problem, but the expression of several of these controls are not stable in 

ageing tissues (Viglesø et al, 2015). In our hands there was variation between the expression of 

the cellular loading controls β-Actin, β-tubulin and GAPDH in blots of equally loaded protein 

samples, so future work is needed to establish a suitable cellular loading control from these 

skin samples. Additionally, extra control methods along with Coomassie blue protein staining, 

such as staining of the membrane with Ponceau S following gel-membrane protein transfer 

(Romero-Calvo et al, 2010), would have increased our confidence that we had loaded equal 

amounts of protein between our samples. 

To develop the Western blotting work completed here, an additional possible future 

step would be to mechanically or enzymatically separately the epidermis and dermis by using 

previously established methods (Maharlooei et al, 2011). Levels of lamin B1 protein could then 

be assessed alongside E-cadherin, which is expressed by all nucleated cells in the epidermis and 

does not change its expression in the skin of humans with age (Mahfouz et al, 2012). We did 

not address changes to lamin B1 in the dermis and therefore a marker such as vimentin could 

be used to identify mesenchymal cells in the dermis (Driskell et al, 2013) and identify if lamin 

B1 expression changes in the cells of this compartment with age along with the epidermis. 
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3.4 Identification of dermal and basement membrane collagen 
changes in aged C57BL/6 mouse skin 
 

3.4.1 Introduction 
 

The dermal layers in human and mouse skin are morphologically distinct, with the 

upper dermis, known as the papillary dermis (PD), having a looser arrangement of fine collagen 

III fibrils in both species. Further down in the reticular dermis (RD) collagen I fibrils, which are 

thicker and more tightly packed, are abundant (Lovell et al, 1987). Overall the dermis in mice is 

thinner compared to human skin, and proportionally, the papillary dermis is also thinner in 

mouse skin (Watt and Fujiwara, 2011), indicating similar, but also individual dermal 

characteristics between mice and humans. 

As identified in the introduction to this chapter, histological changes to the collagens in 

the PD and RD in C57BL/6 mice with age have not been characterized in detail. In our 

morphometric analysis, we observed a reduction in the number of cells within the dermis with 

age and although we did not use specific cell identification markers, it is likely that some of 

these cells were fibroblasts. As fibroblast senescence and atrophy during ageing results in 

reduced collagen production (Varani et al, 2002), we therefore sought to understand whether 

the content and ratio of type I and type III collagens changed in the C57BL/6 dermis with age. 

Additionally, ageing of the basement membrane in C57BL/6 mice is not well characterised. We 

therefore sought to identify if changes occurred to the collagen proteins in this region- collagen 

IV and collagen VII. 

To complete our analyses, we had access to formalin-fixed, paraffin embedded skin 

samples, whole skin snap-frozen in liquid nitrogen and skin samples prepared for transmission 

electron microscopy (TEM). Our objectives were therefore as follows: 

3.4.2 Objectives of this section 
 

1. Use western blotting and immunohistochemistry to identify changes in content of the 

dermal collagens, collagen I and collagen III in 3 mo and 30 mo animals. 

2. Use immunohistochemistry to identify changes in the content and arrangement of 

collagens IV and VII at the basement membrane. 

3. Use TEM to image ultrastructural changes at the basement membrane of young and 

aged animals 
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3.4.3 Factors for consideration in the immunostaining of dermal collagens in 
mice: Antibody Selection 
 

The majority of antibodies are produced in small mammals such as mice, rats and 

rabbits (Wakayama et al, 2006). Commonly, monoclonal antibodies are produced in mice, but 

their use on mouse tissue presents a technical challenge because secondary antibodies 

directed against the mouse monoclonal primary antibody of interest will also detect 

endogenous mouse immunoglobulin in the tissue, along with the target of interest. This can 

result in the production of false positive data (Goodpaster and Randolph-Habecker, 2014). For 

this reason, we selected to complete our immunostaining for type I and type III collagens using 

antibodies produced in rabbits, as anti-rabbit secondary antibodies had a significantly reduced 

likelihood of binding non-specifically to mouse immunoglobulins present in the tissue.  

A further issue with regards to identifying collagens in the dermis using immuno-

histochemistry concerns the macromolecular structure of collagen fibres and their organisation 

in the dermal compartment. Collagen fibres are formed from the assembly of several collagen 

fibrils (Shoulder and Raines, 2009) and several non-collagenous molecules bind collagen fibres, 

such as glycosaminoglycans (Munakata et al, 1999). The natural molecular conformation of 

collagen, coupled with the fact it has several molecules bound to its surface in the dermal ECM, 

both increase the likelihood that the epitope sites for antibody binding will be masked. It could 

therefore be the case that, despite the presence of collagen in a tissue, antibody binding to 

epitope sites may not occur, leading to an absence of signal realization. 

Polyclonal antibodies are typically produced in rabbits because of their convenient size, 

ease of handling and bleeding, relatively long life span, and adequate production of high-titer, 

high-affinity, precipitating antiserum (Leenaars et al, 2005). Additionally, these antibodies are 

able to recognize several antigenic epitopes, thus increasingly the likelihood of antibody 

binding to collagen antigen sites (Ivell et al, 2014). For these reasons, along with the reasons 

expressed above, rabbit polyclonal antibodies against collagen I and collagen III were used for 

our immunohistochemical studies. 

3.4.4 Factors for consideration in the immunostaining of dermal collagens in 
mice: Use of paraffin embedded tissues 
 
 Another important consideration in the design of our experiments concerned the fact 

that the tissue available to us was subjected to paraformaldehyde-based fixation and was 

embedded in paraffin. Tissue fixation using reagents such as paraformaldehyde cause cross-

linking of antigenic sites on the tissue, which obscures the presence of epitopes. This prevents 

antibody binding, so to overcome this, fixed and paraffin embedded tissues are typically 
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subjected to heat, acid or enzyme-mediated antigen retrieval methods (or a combination of the 

above) in order to re-expose the epitopes to allow antibody binding (Jiao et al, 1999). As 

different methods of antigen retrieval tend to expose antigenic sites in different ways (Shi et al, 

2011), we experimented with both heat-induced antigen retrieval (HIAR) and enzymatic 

antigen retrieval (Enz AR) methods in order to determine the most suitable method for our 

collagen I and collagen III analysis. 

3.4.5 Confirmation of antibody specificity and decline of collagen I and collagen 
III in aged mouse 
 
 Western blotting is routinely used to determine the specificity of an antibody, as the 

presence of a single band in a complex biological sample, at the expected molecular weight, 

confirms that the antibody selectively binds to its target protein (Signore and Reeder, 2011). In 

order to determine the specificity of our collagen I and collagen III rabbit polyclonal antibodies 

before proceeding to immunohistochemical analysis, we therefore completed Western blotting 

of whole skin lysates from 3 mo and 30 mo animals. We had 3 biological replicates for each of 

the 3 mo and 30 mo age groups and completed 2 technical replicates. 

Additionally, we sought to determine whether our Western blotting would show us if 

there was any change in collagen I and collagen III protein levels with age. We therefore also 

determined equal protein loading between samples as part of our analysis so that we could 

confirm any detected differences in collagen I or collagen III were a result of genuine 

differences between samples and not unequal protein loading. As we had previously observed 

profound differences in the epidermal and dermal cellularity levels with age, conventional 

cellular loading controls (housekeeping genes such as GAPDH, actin, tubulin) were not a 

suitable method for the determination of equal protein loading in this instance, as they could 

result in an over-representation of protein content in the aged skin (where overall cellular 

levels were reduced). Instead, we considered total protein content in each sample by staining 

our gels with Coomassie blue, which identifies all protein bands within the sample (Chrambach 

et al, 1967) (See figure 3.3.7 in section 3.3.6 for representative gel image).  

Once we had determined equal loading of our protein samples, we then proceeded 

with the Western blotting analysis of our mouse skin lysates using collagen I and collagen III 

antibodies. The results of the blots are shown in figure 3.4.1, which indicate that the collagen I 

and collagen III antibodies were specific to their targets as the detected bands were located at 

the predicted molecular weights for collagen I α1 (130kDa), collagen I α2 (139kDa) and collagen 

III α1 (138kDa).  

Multiple strong banding was observed in the 3 mo samples for collagen I. Therefore, 

along with the bands for collagen α1 and α2, bands above these could represent heavier 
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collagen proteins where the collagen had polymerised or become cross-linked to other 

molecules. In the 30 mo samples the bands were much weaker indicating loss of collagen I α1 

and collage I α2 protein. Collagen III α1 was weakly detected in the 3 mo samples in 

comparison to collagen I proteins in the same age group and in the 30 mo samples collagen III 

was barely detectable in these lysates.  

The Western blotting data suggests that collagen I is more abundant in the skin 

compared to collagen III in both 3 mo and 30 mo animals and that both dermal collagens are 

reduced in aged C57BL/6 skin. However, it is important to note that these Western blots 

represent only the soluble fraction of dermal collagens and anything that was highly cross-

linked or insoluble will not have been detected.  

 

 

Figure 3.4.1. Dermal collagens are reduced in aged mouse skin. Western blotting of collagen I and collagen III using 
equal amounts of protein prepared from whole back skin lysates of mice aged 3 months and 30 months. Collagen I 
α1 chain (130kDa), collagen I α2 chain (139kDa), and collagen III α1 chain(138kDa) were all identified on the 
membrane. Note that the collagen I and III protein levels are drastically reduced in 30 mo animals compared to 3 mo 
animals. 

 

3.4.6 Identification of dermal collagens in formalin-fixed, paraffin embedded 
mouse skin. 
 

Our western blots indicated that the soluble fraction of collagen I and collagen III was 

decreased in the 3 mo and 30 mo animals. However, the blots did not give us information 

concerning how the collagen fibrils were arranged, or whether this reduction in soluble 

collagen impacted the dermal architecture of the mice. 

In order to qualitatively identify how dermal collagens are reduced with age, we 

completed immunofluorescence on skin sections using collagen I and collagen III antibodies 

(details in materials and methods section 2.3). Figure 3.4.2 shows representative images of 

collagen I immunofluorescence in 3 mo (C, D) and 30 mo (E, F) mouse skin. In order to 

determine the most suitable method of antigen retrieval (AR) for antibody binding, we 

experimented with the use of an acidic HIAR using citrate buffer (C, E) and an Enz-AR using 

proteinase K enzyme in an alkaline buffer (D, F). Additionally, we completed control tissue 
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staining on 3 mo tissue sections subjected to HIAR (A) and Enz-AR (B) by omitting the primary 

antibody in the first incubation step (slides were incubated in primary antibody diluent 

instead). All other parts of the staining protocol were standardised between the control and 

primary antibody tissue sections, and the HIAR and Enz-AR tissue sections. Therefore, we could 

identify that any differences in staining observed would be a result of the behaviour of the 

primary antibody under the different AR conditions. 

Comparison of the 3 mo (C) and 30 mo (E) tissues showed that the HIAR method 

produced a greater amount of labelling in the 30 mo skin, where this labelling was most 

prominent in the lower, reticular dermal area. (green arrowheads, E). Labelling of collagen was 

weaker in the 3 mo skin (C), and it showed a similar, but less pronounced pattern of staining 

with the strongest labelling being found in the reticular dermis (green arrowheads, C). Despite 

thorough washing, non-specific binding of large antibody molecules were present on the skin 

sections (white arrows, C and E), which were present on HIAR control slides in much lower 

numbers (white arrow, A). 

 Like in the HIAR, Enz-AR also showed that the greatest amounts of collagen were 

present in the lower, reticular dermis in 3 mo (D) and 30 mo (F) skin. However, the Enz-AR 

resulted in a different appearance of collagen staining compared to HIAR. This method allowed 

the resolution of some fine collagen I fibrils in areas; and surrounding hair follicles and other 

appendages they were particularly prominent (green arrowheads D, F). Using, Enz-AR, collagen 

I levels appeared to be similar in both the 3 mo and 30 mo skin. This method also resulted in 

non-specific antibody binding, which was located in the nuclei of the epidermis (white arrows 

D) and did not occur in control slides (B). 
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Figure 3.4.2: Optimisation of collagen I antibody staining using two different AR methods. 3 mo (C, D) and 30 mo (E, 
F) skin was subjected to HIAR (C, E) and Enz-AR (D, F) prior to staining with collagen I primary antibody, anti-rabbit 
Alexa 568 secondary antibody and DAPI nuclear counterstain. These slides were then compared to 3 mo control 
slides incubated with secondary antibody only (A= control subjected to HIAR), (B= control subjected to Enz-AR). All 
slides were imaged on a fluorescence microscope using a 20x objective lens. e= epidermis, de= dermis, hf= hair 
follicle, sg= sebaceous gland, cp= capillary, white dotted line= DEJ. Scale same for all 6 images, scale bar shown in F= 
50 µm. White arrows show non-specific antibody binding in dermis (C, E) and nuclei (D) of HIAR and Enz-AR slides 
treated with primary antibody. White arrows also indicate autofluorescence of hair follicles in slides without 
antibody (A, B). Green arrowheads show collagen labelling in the reticular dermis (C, E) and surrounding hair follicles 
and capillaries (D, F). 
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We subsequently applied an identical methodology using a collagen III antibody and 

like for collagen I, the results were variable (figure 3.4.3). The HIAR method resulted in a 

homogenous labelling of collagen III in the dermis of 3 mo skin (A) and areas of reduced 

labelling in the 30 mo skin (green arrowheads, C). Large granules of antibody were non-

specifically bound to the tissue (white arrows, A and C) in a similar fashion to tissue subjected 

to HIAR and collagen I antibody staining. 

The young (B) and aged (D) skin subjected to the Enz-AR and collagen III antibody 

staining showed a poor signal. The signal was slightly greater in the 30 mo (D) skin and could be 

detected around hair follicles and other structures (green arrows, D). In the 3 mo skin the signal 

was barely detectable and was similar to control slides incubated with the secondary antibody 

only (B). 

 
Figure 3.4.3: 3 mo (A, B) and 30 mo (C, D) skin subjected to HIAR (A, C) and Enz-AR (B, D) prior to staining with rabbit 
collagen III primary antibody, anti-rabbit Alexa 568 secondary antibody and DAPI nuclear counterstain. All slides 
were imaged using a fluorescence microscope and 20x objective. e= epidermis, de= dermis, hf= hair follicle, sg= 
sebaceous gland, cp= capillary. White dotted line= DEJ. Scale same for all 4 images, scale bar shown in D= 50 µm. 
White arrows show non-specific antibody binding (A, C). Green arrowheads show collagen labelling in the reticular 
dermis (C) and surrounding hair follicles and capillaries (D). 
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Altogether, immunostaining of collagen I and collagen III presented variable results. For 

the staining using the collagen I antibody, the HIAR showed greater staining levels of collagen I 

in the 30 mo skin whereas for the Enz-AR, similar levels were observed in both 3 mo and 30 mo 

skin. For the staining using the collagen III antibody, the HIAR produced a strong equal signal in 

3 mo and 30 mo skin whereas the Enz-AR produced a weak signal in both 3 mo and 30 mo skin 

that was slightly increased in the 30 mo skin. Additionally, both AR methods and antibodies 

resulted in non-specific binding in different areas of the skin sections. 

These immunofluorescence results conflict with our Western blotting data that shows 

that collagen I and collagen III levels decrease in 30 mo skin compared to 3 mo skin. Together 

these observations suggest that, despite exploring different AR methods, the 

immunofluorescence-staining for the dermal collagens produced sub-optimal results and for 

this reason we decided to explore alternative staining methods. 

Although it was possible to try other methods of antigen retrieval or purchase different 

antibodies, this would have resulted in both a high financial and time investment. Alternatively, 

we decided to try methods that did not rely on unmasking of antigenic site and high-quality 

antibody binding. Polychrome histological stains are able to differentiate cellular structures 

from the surrounding ECM and several stains are highly specific for certain ECM structures such 

as collagens and elastins (Kazlouskaya et al, 2013). Histological staining involves the use of dye 

molecules, which typically are much smaller in size compared to antibodies. For example, the 

typical MW of an anti-mouse IgG is 150kDa (footnote 1) whereas a molecule of acid fuchsin dye 

display a molecular weight of 0.585 kDa(footnote 2). Dye molecules can therefore be over 250 

times smaller than antibodies. This is advantageous when one considers the structures of 

collagen molecules, as a dye molecule is more likely to be able to penetrate the small gaps 

between closely cross-linked fibrils compared to an antibody.  

Additionally, dye molecules bind ECM structures due to being attracted to charged 

amino acids on their surfaces whereas antibody molecules rely on the presence of an epitope 

for binding. Collagens are rich in basic amino acids, which easily attract negatively charged dye 

molecules as they are protonated and therefore overall are positively charged (Motta and 

Ruggeri, 1984). Due to aforementioned issues regarding the potential for antibodies to bind 

collagens in a highly variable manner, exploring use of dyes that are selective and sensitive to 

the presence of collagen was a logical future step.  

 

Footnote 1:(http://www.agrisera.com/en/info/molecular-weight-and-isoelectric-point-of-various-
immunoglobulins.html. 
Footnote 2: ( https://pubchem.ncbi.nlm.nih.gov/compound/5464362 ). 
 

http://www.agrisera.com/en/info/molecular-weight-and-isoelectric-point-of-various-immunoglobulins.html
http://www.agrisera.com/en/info/molecular-weight-and-isoelectric-point-of-various-immunoglobulins.html
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The Van Gieson stain uses acid fuchsin dye (despite the name the overall charge of this 

dye in staining solution is negative and it therefore has a high affinity for collagen) in the 

presence of picric acid to distinguish collagen from other ECM material (Prentø, P, 1993). A 

variation on the Van Gieson stain is the Herovici polypichrome stain, which used picro acid 

fuchsin and picro aniline blue to differentiate young and mature collagens (Lillie et al, 1980). 

The stain has been used to show that the papillary dermis, and in particular the site at the DEJ 

is rich in young, type III collagen fibrils (Fitzgerald et al, 1996) and also to demonstrate the 

structural differences in the dermal compartment of mouse and human skin (Watt and 

Fujiwara, 2011). These previous reports have demonstrated that the Herovici stain is able to 

resolve type I and type III collagen along with nuclei and other dermal structures, indicating 

that it could be a useful method for distinguishing changes to the dermal collagens in the 

C57BL/6 skin with age. 

A detailed example of how the Herovici stain presented in the dermal compartment of 

young mouse skin is shown in figure 3.4.4, which indicates that the stain was able to 

successfully differentiate between type I and type III collagens in the dermal region and showed 

a high resolution of collagen fibres. Furthermore, unlike the antibody staining for collagen, the 

staining showed little non-specific binding in either the dermal compartment or in epidermal 

nuclei. As the Herovici stain resolved the young and mature dermal collagens without non-

specific binding and did not result in highly variable staining levels like the fluorescent 

immunohistochemistry, we therefore applied the technique on our 3 mo, 12 mo, 15 mo, 24 mo 

and 30 mo mouse skin samples in order to determine changes to the dermal collagens with 

age. 
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Figure 3.4.4: An example of Herovici staining in 3 mo (young) skin. Epidermal and dermal nuclei are stained 
blue/black. Young type III collagen is stained blue and mature type I collagen is stained magenta. Image taken using a 
light microscope and 40x objective. White arrows indicate the presence of fine, blue coloured collagen III fibrils in 
the upper dermis and green arrows show thick bundles of pink (collagen I) and blue-stained collagen fibres in the 
lower dermis. Black dotted line indicates DEJ. e= epidermis, de= dermis. Scale bar= 20 µm.  

 

Figure 3.4.5 shows representative, low magnification images of Herovici stains of the 

epidermis and dermis of 3 mo-30 mo mice. At 3 mo, young collagen (i.e. collagen III) is 

abundant in the papillary dermis (PD), shown by the presence of fine blue and magenta stained 

fibrils running parallel to the DEJ (black arrows, A). Similarly, many thick, mature collagen I 

fibrils are present (green arrowhead, A) in the reticular dermis (RD). In the 12 mo skin, some of 

the young collagen III in the PD region is lost, shown by a reduction in the band of fine, blue 

fibril staining in the PD, indicating that the PD could be reduced in thickness compared to the 3 

mo skin (black arrows, B). At 15 mo the PD remained similar in structure to the 12 mo skin, but 

there was some loss of mature collagen I in the lower RD (green arrowheads, C). The 24 mo 

skin was similar to the 15 mo skin with a thin band of fine collagen fibrils, some of which 

stained blue, running parallel to the DEJ in the PD (black arrow, D) and the presence of thicker 

magenta collagen bundles in the RD (green arrowhead, D). By 30 mo there was a noticeable 

loss of type I and type III collagen in the PD, with few blue fibres present and sparse bundles of 

magenta stained fibres remaining in some areas (black arrows, E). In the RD of 30 mo skin, 
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thinning of magenta-coloured mature collagen bundles was also observed and they appeared 

to take on a sparser arrangement compared to younger animals (green arrowheads, E). 

 
Figure 3.4.5: Herovici staining in 3 mo (A), 12 mo (B), 15 mo (C), 24 mo (D) and 30 mo (E) skin. Nuclei are stained 
blue/black, young, type III collagen is stained blue and mature, type I collagen is stained magenta. Images were 
taken using a light microscope and 20x objective. e-epidermis, de= dermis, black dotted line= DEJ. Scale same for all 
images and scale bar shown in E= 50 µm. Black arrows (A, B, D) represent fine collagen fibrils in the PD, which are 
reduced in number in 30 mo animals (E). Green arrowheads represent thick collagen bundles (A, B, C, D) in the 
reticular dermis that are lost in number with age and become thinner at 30 mo (green arrowheads, E).  

 

In order to observe the papillary dermis (PD) and the arrangement of collagen at the 

DEJ in more detail, we used a 100X oil objective to image skin. Figure 3.4.6 shows the 

arrangement of collagen staining in the PD and at the DEJ of 3 mo (A), 12 mo (B), 15 mo (C), 24 

mo, (D) and 30 mo (E) mice. At 3 mo the papillary dermis and the DEJ were rich in fine, collagen 

III fibrils (stained blue, black arrows, A). In deeper dermal areas there was a mixture of pink and 

blue fibre staining, suggesting the presence of both type I and type III collagen (green 

arrowheads, A). Although reduced in number, many fine collagen fibrils were also present in 

the papillary dermis of 12 mo and 15 mo animals (black arrows, B and C). Additionally, some of 

the fibrils were less blue and more magenta in colour, suggesting the presence of more mature, 

type I collagen in this region compared to the 3 mo skin. There was a reduction in number of 
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blue and magenta collagen fibrils in the PD of 24 mo and 30 mo skin, where very few young 

collagen fibrils were present in the PD. In the 30 mo there was a sparse arrangement of 

collagen I in the PD (green arrowheads, E) and type I and type III collagen loss at the DEJ was 

prominent (black arrows, E). 

 
Figure 3.4.6: High magnification examples of Herovici staining in the PD and at the DEJ in 3 mo (A), 12 mo (B), 15 mo 
(C), 24 mo (D) and 30 mo (E) skin. Nuclei are stained blue/black, young, type III collagen is stained blue and mature, 
type I collagen is stained magenta. Images taken using a light microscope and 100x oil objective. e-epidermis, de= 
dermis, black dotted line= DEJ. Scale same for all images and scale bar shown in E= 10 µm. Black arrows (A, B, C) 
represent fine collagen fibrils in the PD. Green arrowheads (A, B, C) represent thick type I collagen bundles. Green 
arrowheads (E), represent thin type I collagen bundles. Black arrows (E) show collagen loss at the DEJ. 

 

Overall, the Herovici staining showed that collagen I and collagen III were lost from the 

dermis with age. It appeared that there was a dramatic loss of young type III collagen in the 

papillary dermis and at the DEJ between 3 mo and 12 mo mice that could be a maturational 

and therefore not an ageing-associated effect. However, type III collagens levels also declined 

from 12 mo to 30 mo in this region, and by 30 mo, type III collagen levels were significantly 

reduced in the PD and at the DEJ. This suggests that collagen III is lost in the PD of C57BL/6 

mice during ageing. Collagen I levels also declined in both the PD and RD during ageing, but this 

effect only became marked in the 30 mo animals. Collagen I loss did not appear to occur 

specifically from one region, suggesting that over time intrinsic ageing causes a global loss in 

mature, type I collagen from the dermis of C57BL/6 mice. 
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3.4.7 Identification of basement membrane (BM) changes in the C57BL/6 
mouse skin with age 
 

Several changes to the two epidermal BM collagens have been identified in aged 

human skin, including loss of collagen IV and VII (Langton et al, 2016), and fewer collagen VII 

anchoring fibrils at the DEJ (Craven et al, 1997), but relatively little is known about changes to 

the BM in ageing mouse skin. We therefore sought to identify if the epidermal basement 

membrane is modulated by ageing processes in C57BL/6 mice by using immunohistochemistry 

against type IV and type VII collagens. We also studied ultrastructural changes at the DEJ using 

transmission electron microscopy (TEM).  

3.4.8 Collagen IV expression is altered in the epidermal BM of aged mice 
 

As mentioned in the introduction of this thesis, collagen IV is the main protein found in 

the lamina densa, the lower part of the BM. In order to identify if collagen IV protein 

expression is changed in the basement membrane during ageing, we completed collagen IV 

immunohistochemistry on 3 mo and 30 mo mouse skin and imaged the results using confocal 

laser scanning microscopy (CLSM). Figure 3.4.7 shows representative 2D maximum projection z-

stack images of 3 mo (A) and 30 mo (B) paraformaldehyde-fixed, paraffin embedded skin 

sections stained with a rabbit polyclonal collagen IV antibody following enzymatic antigen 

retrieval. 

There was no apparent change in collagen IV levels, but the difference in organisation of 

collagen IV at the basement membrane of aged mice was marked. In the 3 mo mice, collagen IV 

protein expression was seen in a thin, dense band under the basal epidermal nuclei 

(presumably marking the lamina densa), whereas in the 30 mo animals it appeared thickened in 

areas (white arrows, B) and in other areas the staining was more diffuse compared to 3 mo skin 

(green arrows, B). We quantified the thickness of the collagen IV staining at the DEJ in 3 mo and 

30 mo animals by taking perpendicular measurements across the band of collagen staining 

seen in this region. Examples of how we made these measurements are shown in figure 3.4.7 

(A’ = 3 mo, B’= 30 mo). Using a 100x oil objective and a fluorescent microscope, we captured 

5images from each mouse and took 10 measurements at regular intervals in each image. 4 

animals were present in each of the 3 mo and 30 mo age groups. 
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Figure 3.4.7: Analysis of change collagen IV protein levels and arrangement in 3 mo (A, A’) and 30 mo (B, B’) skin. 
C57BL/6 back skin was stained with a rabbit polyclonal collagen IV primary antibody then anti-rabbit Alexa 568 
secondary antibody with DAPI nuclear counterstain. Images were captured using CLSM and a 63x oil lens. 
Representative examples of collagen IV staining in 3 mo (A) and 30 mo (B) skin are shown. A’ and B’ show magnified 
images of the two white dotted rectangles in A and B. White double-headed arrows (A’ and B’) show example 
measurements taken of collagen IV thickness at the DEJ. e= epidermis, de= dermis. Scale same for A and B, Scale 
same for A’ and B’. Both scale bars shown in B, B’ are 20 µm. White arrows (B) show thickening of the band of 
collagen IV in the BM of 30 mo animals. Green arrows (B) show diffuse collagen IV staining in 30 mo animals. 

 
The results of our quantifications are shown below in figure 3.4.8, which depicts the 

thickness of collagen IV protein expression in the BM of 3 mo “young” and 30 mo “aged” mice. 

Figure 3.4.8 A shows the measurements of collagen IV/lamina densa thicknesses in the images 

taken from each of the 4 mice in each age group. The measurements from each mouse are 

represented by a colour coding system, with a different colour for each mouse (yellow, green, 

black and red). A shows that the majority of 3 mo measurements gave a BM thickness of 

around 1.25µm (several overlapping data points in this region) with a few outliers present. In 

the aged animals however, there was a huge level of variation in the average BM thickness, 

with one animal (black dots) having a relatively thin BM with little variation in thickness but 

other animals (red, yellow and green dots) showing high levels of variation in their mean BM 

thickness as measured by collagen IV expression. Figure 3.4.8 B shows the average BM 

thickness in the 3 mo “young” compared to 30 mo “aged” mice. There was a clear increase in 

the mean thickness of the BM marked by collagen IV in this area. We assessed the statistical 

significance of this difference using an un-paired t-test. This test showed that the difference in 

mean thickness between 3 mo and 30 mo animals was highly significant (p < 2x10-4). 
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Figure 3.4.8: A The average BM thickness of young 3 mo vs aged 30 mo animals. Measurements from 4 animals were 
used for each age group and individual data points represent the average BM thickness in a single image taken from 
an animal. The 4 different mice in each age group are colour coded: red, yellow, green and black. B The mean BM 
thicknesses in young and aged mice as measured by collagen IV staining. Error bars represent standard deviations for 
each age category. Un-paired t-testing showed that the difference in mean BM thickness as measured by collagen IV 
staining was statistically significant  

 

3.4.9 Loss of collagen VII from the basement membrane with age 
 

Collagen VII expression at the BM was also assessed by immunohistochemical staining 

in 3 mo and 30 mo mice. As figure 3.4.9 shows, a thin line of collagen VII expression staining at 

the BM was observed in 3 mo animals along with some non-specific antibody binding in the 

stratum corneum (green arrows, A’). In the 30 mo animals, collagen VII expression at the 

basement membrane was negligible, indicating that expression was dramatically reduced in the 

aged 30 mo animals. 

Figure 3.4.9: Immunofluorescence staining of collagen VII in 3 mo (A, A’) and 30 mo (B, B’) animals. Staining was 
completed using a rabbit collagen VII primary antibody coupled to Alexa 568 anti-rabbit secondary antibody with 
DAPI nuclear counterstain. Slides were imaged using CLSM and 40x objective lens. A’(3 mo) and B’(30 mo) show 
magnified images of the two white dotted rectangles in A and B. Scale the same for A+B and same for A’+B’, both 
scale bars= 20 μm. Green arrowheads represent non-specific binding of the antibody in the stratum corneum.  
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3.4.10 Ultrastructural changes at the basement membrane in aged mice 
 
 As we had observed both a loss of collagen VII and abnormal BM architecture through 

collagen IV immunofluorescence in the 30 mo mouse skin, we sought to understand what ultra-

structural changes were occurring at the basement membrane in young (3.75 mo) vs aged (23.5 

mo) mice. We therefore employed the use of transmission electron microscopy (TEM) to study 

changes in this area in greater detail. Figure 3.4.10 shows example micrographs of young (A) 

and aged (B, C) C57BL/6 skin at the DEJ. 

 As the figure shows, the basement membrane was flat and uniform in thickness in 

young skin. Hemidesmosomes on the cell surface were regularly spaced (black arrowheads), 

without gaps between the basal cell cytoplasm and the BM. In the young skin collagen fibrils 

resident in the papillary dermis (PD) were regularly arranged in parallel bundles that were 

tightly packed (black arrow, A). 

In the aged skin, the BM was typically less well defined and was more irregular in shape 

(black arrow, C). Additionally, the hemidesmosomes on the surface of basal keratinocytes were 

no longer regularly spaced along the BM and appeared more varied in shape (black 

arrowheads, C). In some areas, gaps were present between the cell cytoplasm and the 

basement membrane in aged skin (black arrows, B) that were not seen in younger tissues. 

Compared to the young tissue, the organisation of collagen fibrils in the papillary dermis (PD-C) 

was haphazard and collagen fibril loss was evident at the DEJ under the basement membrane 

(under black dotted line, B). It therefore appeared that the ultrastructural architecture of the 

BM and the collagen fibrils residing in the papillary dermis were modified with age. 
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Figure 3.4.10: An ultrastructural comparison of the basement membrane in “young” (3.75 mo-A) and “aged” (23.5 mo-B, C) mice. Back skin from post-natal, left-ventricular infarct-induced mice 
(see materials and methods for more detail) was fixed in Karnovsky’s fixative, sectioned for TEM and imaged using a Hitachi H7600 TEM at high magnification. Shown in all 3 images are E= 
epidermis, PD= papillary dermis, BM- basement membrane, nuc= nucleus, coll= collagen. Black arrowheads in A, C show hemidesmosome arrangement. Black arrowheads in B show gaps 
between cell cytoplasm and BM. Arrow in A= regularly arranged, dense collagen fibrils. Arrow in C= thickening and disorganisation of the BM in aged animals.  
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3.4.11 Discussion: Basement membrane and dermal collagen changes in aged 
mouse skin are similar to intrinsically aged human skin 
 
 The data presented in this section has explored the changes to the dermal and 

basement membrane (BM) collagens with age. Additionally, ultrastructural observations of the 

arrangement of young and aged skin at the DEJ have been made. 

 Our analysis has shown that the dermal collagens, collagen I and collagen III, are lost 

during the intrinsic ageing process in C57BL/6 mice and furthermore, these changes appeared 

to differ depending on the region of the dermis. In the papillary dermis, a marked loss of 

collagen III occurred between 3 mo and 12 mo mice, which could be representative of a 

maturational effect in these animals. Similar observations have been made in humans, as a 

quantification of the ratio of type I to type III collagen showed that in foetal skin, collagen I and 

collagen III are expressed in an ~1:1 ratio whereas in adolescent skin, there is 2.27 times more 

collagen I compared to collagen III (Cheng et al, 2011), indicating that decline in collagen III 

occurs in the skin of youthful humans as well as mice. 

Over time we observed that collagen III levels continued to decline from the papillary 

dermis in ageing mice, suggesting that this is an ageing as well as maturational effect. Indeed, 

studies on intrinsically aged human skin have also shown similar, where between adolescent 

and elderly skin, type III collagen was lost at a greater rate than type I in the dermis (type I/III 

changed from 2.27±0.13 in adolescent to 2.97±0.40 in elderly- Cheng et al, 2011).  

In the reticular dermis, where mature, collagen I was predominant in all age groups, 

levels were relatively stable from 3 mo to 24 mo but decreases in this protein were apparent in 

Herovici staining of skin from the aged 30 mo animals, which was also confirmed by Western 

blot analysis. In intrinsically aged human skin, changes in collagen levels only become apparent 

after the 8th decade of life (El-Domyati et al, 2002). This suggests that both human skin and 

C57BL/6 mouse skin show a similar trajectory of change in dermal collagen content during 

intrinsic ageing, with effects only becoming noticeable at very late stages in life in both models. 

Quantification of collagen changes in several other rodent models have shown dramatic 

decreases in the collagen content of aged animals, where other authors have shown that 

synthesis rates of dermal collagens in male lewis rats decreases 10 fold in 1m compared to 24 

mo animals (Mays et al, 1991). In the skin of hairless mice, Boyer et al (1991), calculated a 30% 

decrease in total collagen content between mice aged 2m and 22m.  

To our knowledge only one study has quantified the change in collagen levels with age 

in the C57BL/6 strain. Sayama et al (2010) used a Sircol™ colorimetric collagen assay to 

compare collagen content in the skin of 11 wk (2.75 mo) and 16 wk (4 mo) animals. This group 

found a significant decrease in collagen levels between the younger and older animals (510 ± 
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44.8 µg/ml in 16 wk animals compared to 672±56.7 µg/ml in 11 wk animals, p <0.05). This study 

was limited in the sense that it detected changes between age groups that are not far apart in 

age in terms of the mean lifespan of this strain of mouse (a difference of 1.25 mo is not a 

significant period of time in an animal that can live for up to 35 mo) and therefore our report of 

decreased collagen I and III between 3 mo and 30 mo mice is more significant in identifying 

age-related loss of collagen from the dermis in this strain with age. Our work, however, is 

limited by a lack of quantitative analysis of these observed collagen losses. Future efforts 

should look to develop our findings by completing densitometry on both biological and 

technical replicates of Western blots from 3 mo and 30 mo C57BL/6 skin samples to provide a 

semi-quantitative evaluation of changes to collagen I and collagen III protein levels with age. 

Additionally, quantitative collagen assays, such as measurement of hydroxyproline residues can 

even be completed in paraffin embedded tissues (Schwartz et al, 1985), which would allow us 

to express these changes in collagen levels in young vs aged skin in numerical terms.  

 Collagen loss also occurred at the BM, where collagen VII levels were markedly 

declined in aged 30 mo compared to young 3 mo mice. The paucity of data available on 

protein-based changes in the BM of ageing mice makes our observation novel, and it is 

consistent with data from intrinsically aged human skin that has shown a decline in collagen VII 

(Langton et al, 2016). Interestingly, collagen IV loss was not visible in this region, which may 

reflect the insensitivity of our immunohistochemical technique, as collagen IV is highly 

abundant in this region, and therefore a small change in amount of this protein would need a 

sensitive technique to be detected. Alternatively, this observation may be genuine, which 

would mean that changes to collagen IV in ageing mouse skin are different to human skin, 

where Langton et al, 2016 have shown a decrease in collagen IV protein in this region with age. 

What was clear however, from both this collagen IV immunofluorescence and from our TEM 

studies, was that the thickness of the basement membrane increases and shows greater 

variance with age, which was also observed by Vázquez et al, 1996 during intrinsic ageing in 

female human skin. Additionally, other reports have shown similar in the BM’s of aged human 

corneal epithelia, which indicates that BM thickening may not be an age-associated effect that 

is confined to the skin only (Alvarado et al, 1983). 

At the ultrastructural level, we observed that the BM becomes increasingly more 

disorganised with age, with striking loss of regular hemi-desmosome arrangement and the BM 

itself taking on a corrugated (bumpy) appearance. TEM studies from photo-aged human skin 

have shown re-duplication of the lamina densa in this region (Amano, S. 2009), which was not a 

regular occurrence in our intrinsically aged mouse skin, suggesting that this feature may not 

occur during intrinsic skin ageing. One important caveat to mention from our TEM analysis was 
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the fact that the data collected was completed on mice that had a compromised cardiac 

output, where a left-ventricular infarct had been induced after birth. Future studies should 

therefore determine that the observed ultra-structural differences in the young and aged mice 

occur in additional control animals. 

Despite several attempts we were unable to identify collagen IV and collagen VII in our 

whole skin lysates through Western blot and were therefore unable to complete a semi-

quantitative analysis of protein levels in 3 mo and 30 mo skin through this technique. It is 

challenging to de-lineate whether this was a result of poor antibody performance under 

blotting conditions or whether protein abundance in the whole skin sample was too low for 

obvious detection. This suggests that a different approach would be needed to perform 

quantitative evaluation of the change in levels of these proteins with age. This could be 

assessed by quantifying fluorescence intensity in this region in immunohistochemical stainings 

from young and aged mice.  

 Ultrastructurally, our TEM data revealed profound changes in BM architecture with age 

and one of the most prominent changes appeared to be occurring in the hemidesmosomes. 

Future work could look to quantify changes in their spacing along the BM with age. 

Additionally, the increased disorganisation of the basal lamina in this area caused the BM to 

appear much less flat in nature. To determine the extent at which this occurs with age, the 

length of BM per unit area in the skin could be measured to determine if this increases with 

age. 
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3.5 Identification of YAP1 modulation in aged C57BL/6 epidermis 
 

3.5.1 Introduction and objectives 
 

In our aged mice, we have observed several changes in the skin properties of aged 

animals that prompted us to inspect a change in the levels and localisation of YAP1. They are 

outlined bullet points below: 

1. Epidermal cell proliferation changes 

Cell proliferation is decreased in epidermis of young (3 mo and 12 mo) compared to aged 

(24 mo and 30 mo) animals. As YAP1 regulates epidermal cell proliferation, the changes we 

observe could reflect differences in YAP1 expression levels and its localisation in young 

compared to aged skin. 

2. Changes to dermal ECM with age 

We saw several changes to the dermal ECM, in the form of loss of collagen I and collagen III 

from the dermis, and in particular, collagen III loss at the papillary dermis (PD) and a decrease 

in the thickness of the PD with age. The PD in human skin is softer than the reticular dermis 

(RD) (Achterberg et al, 2014) and overall, dermal ageing is associated with an increase in tissue 

stiffness (Pawlaczyk et al, 2013). The changes we observe in our aged mouse skin therefore 

suggest (although do not directly prove) that the dermal compartment may change its 

biomechanical properties with age. As YAP1 is responsive to the biomechanical properties of 

the tissue microenvironment, these observed changes may modulate its expression and 

subcellular distribution in the epidermal cells, which are situated above the dermal 

compartment. 

3. Loss of basement membrane organization 

We have shown a loss of collagen VII at the DEJ of aged mice, coupled with an increasingly 

disorganized BM architecture seen by collagen IV labelling and ultrastructural studies. These 

changes could impact the mechanical properties of the BM and in a similar way to dermal 

collagen changes, modulate YAP1 biology in basal epidermal keratinocytes. 

4. Basal cell flattening in aged epidermis 

At low cell density, when cells become flattened, YAP1 is typically localised to the nucleus 

whereas at high cell density, when cells are rounded and tightly packed, YAP1 localises to the 

cytoplasm (Wada et al, 2011). Furthermore, in the developing lens, YAP1 is crucial for 

maintaining the apical-basal polarity of lens epithelial cells, and in its absence, cells become 

disorganised and flattened (Song et al, 2014). In aged mouse epidermis, we have shown that 
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both the density of cells in the basal layer and their nuclear shape, undergoes a prominent 

change. We therefore wanted to know, given that both cell-shape and cell-density changes 

have been shown to modulate YAP1 localisation in previous reports, if this contributed to a 

change in YAP1 in the aged mouse epidermis. 

The above changes, and their potential to regulate the localisation of the Hippo pathway 

effector YAP1 in aged skin, therefore prompted us to investigate YAP1 in more detail. Our 

objectives in this section were therefore: 

 

1) Use immunohistochemistry to assess the level and arrangement of YAP1 in C57BL/6 

mouse skin of various ages. 

2) Identify if there is a difference in the amount of nuclear YAP compared to cytoplasmic 

YAP in young vs aged epidermis. 

3.5.2 Validation of YAP1 antibody 
 

Reports of expression of YAP1 in mouse embryonic skin and neonatal mouse have been 

previously published (Silvis et al, 2011; Zhang et al, 2011; Schlegelmilch et al, 2011), but studies 

of its expression in aged skin have not been completed. We therefore completed 

immunofluorescence staining of YAP1 in skin sections taken from 3 mo, 12 mo, 15 mo, 24 mo 

and 30 mo animals. Beforehand, we confirmed the sensitivity of our antibody by completing 

immunofluorescence on HaCaT cells cultured at low and high cell density and Western blotting 

in whole skin lysates. Figure 3.5.1 shows the results of the immunofluorescence staining, which 

showed that YAP1 was predominantly localised to the cytoplasm in cells cultured at a high 

density (white arrows, A) and was predominantly localised to the nucleus in cells cultured at a 

low density (white arrows, B). The suggested that the antibody identified differential 

modulation of YAP1 depending on cell density, thus showing it behaved in a manner consistent 

with previous reports (Wada et al, 2011; Piccolo et al, 2014). 

Figure 3.5.2 shows Western blotting of 3 mo and 30 mo whole skin lysates using the 

same antibody. Faint bands of protein were seen at the predicted molecular weight for YAP1 

(65kDa). As this antibody showed protein bands present in whole skin at the correct molecular 

weight, and demonstrated predicted re-localisation of YAP1 in cells cultured at low and high 

cell density, we therefore deemed it suitable for immunohistochemical staining. 
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Figure 3.5.1: Expression of YAP1 in HaCaT cells cultured at high (A) and low (B) cell density. HaCaT cells were cultured 
on poly-D-lysine coated glass coverslips prior to fixation and staining with an anti-rabbit YAP1 antibody, Alexa 568 
secondary antibody and DAPI nuclear counterstain. At high cell density, YAP1 was mostly absent from the nucleus 
(white arrows, A) whereas at low cell density YAP1 was abundant in the nucleus (white arrows, B). Scale bars= 20 
µm. 

 
Figure 3.5.2: Expression of YAP1 in young and aged whole skin lysates confirmed by Western blot. Equal protein 
levels of lysates from three mice aged 3 months and three mice aged 30 months were subjected to gel 
electrophoresis and immunoblotting. Bands were seen at the correct molecular weight for YAP1, suggesting 
specificity of the antibody. 

3.5.3 Expression of YAP1 in young, middle age and aged mouse skin 
 

We stained 3 mo, 12 mo, 15 mo, 24 mo and 30 mo mouse skin with the anti YAP1 

antibody, and then used confocal laser scanning microscopy (CSLM) to take Z-stack images of 

our results. By capturing images in both the X, Y and Z planes, we were able to obtain maximum 

information concerning the nuclear and cytoplasmic location of YAP1 in the tissue sections. 

Results of our staining and imaging is shown below in figure 3.5.3, which depicts 2D maximally-

projected images of the Z-stacks, showing the arrangement of YAP1 in the cells of the 

epidermal and dermal regions. In the epidermis, YAP1 localisation was variable and we noted 

high levels of nuclear staining in the granular layer of the epidermis in areas (white arrows in 

epidermis- A, C, E). In the basal layer, YAP1 localisation was also variable where some cells had 

predominantly nuclear YAP and others had cytoplasmic YAP. In the dermis, cells with both 

nuclear YAP (N-yap- A, D, E) and cytoplasmic YAP (C-yap-A, C, D, E) were present in tissues from 

all age groups. 
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Figure 3.5.4 presents magnified images of YAP1 staining in the epidermal region of 3 

mo, 12 mo, 15 mo, 24 mo and 30 mo mice. In the basal layer of 3 mo animals, we observed 

YAP1 nuclear staining (green arrows, 3.5.4 A) and also cytoplasmic staining. In the basal layer of 

12 mo and 15 mo animals, nuclear YAP in the basal epidermal layer appeared reduced (3.5.4 B, 

also 3.5.3 C). In the 24 mo and 30 mo animals, nuclear YAP1 in the basal layer was observed in 

many of the cells (Green arrows- 3.5.4 D, 3.5.3 E). In the outer epidermal layers, punctuate 

nuclear YAP was present in many of the cells in 3 mo, 12 mo, and 15 mo animals (White arrows, 

3.4.4 A, 3.5.3 B and C), which was seen to a lesser extent in 24 mo and 30 mo epidermis. 
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Figure 3.5.3: Organisation of YAP1 in the skin of 3 mo (A), 
12 mo (B), 15 mo (C), 24 mo (D) and 30 mo (E) mice. 
Sections were incubated with rabbit anit-YAP1 primary 
antibody, Alexa 568 secondary antibody and DAPI 
nuclear counterstain. Images represent maximal 
projections of 5 µm z-stacks taken using CLSM with a 40x 
objective lens. e=epidermis, de= dermis, sg= sebaceous 
gland. Scale same for all images and scale bar shown in 
E=50 µm. Dermal nuclei with cytoplasmic YAP (C-yap) 
and nuclear YAP (N-yap) were present in tissues of all 
age groups (white arrowheads- A, C, D, E). White arrows 
in epidermis show variation in YAP localisation in the 
different layers of this region (A, C, E). 
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Figure 3.5.4: Localisation of YAP1 in epidermis of 3 mo (A), 12 mo (B), 15 mo (C), 24 mo (D) and 30 mo (E) skin. 
Sections were prepared and imaged as for figure 3.5.3. e=epidermis, de= dermis. Scale same for all images and scale 
bar shown in E=20 µm. YAP1 staining in some cells of the upper epidermis showed intense, nuclear YAP staining 
(white arrows, A, B, C). In the basal epidermal layer YAP1 localisation was variable with some cells showing nuclear 
YAP (green arrows A, D, E) whereas in other regions YAP was cytoplasmic. 
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3.5.4 The nuclear to cytoplasmic ratio of YAP1 is altered in aged epidermis 
 
 Given our observations of differential localisation of YAP1 in the different layers of 

young and aged epidermis, we sought to investigate whether the localisation of nuclear YAP1 

changed in the resident epidermal cells with age. We therefore calculated the nuclear to 

cytoplasmic ratio of YAP1 in epidermal nuclei from 6 representative images taken from 2 mice 

aged 3 mo and 2 aged 30 mo. Previous authors have used binary masking techniques to 

calculate the nuclear to cytoplasmic ratio of cellular transcription factors such as NF-κB 

(Fujihara et al, 2002; Noursadeghi et al, 2008). We used a similar approach to isolate nuclear 

YAP1 from cytoplasmic YAP1 in the epidermis of images from 3 mo and 30 mo mice (details in 

materials and methods part 2.3.8).  

To capture the entire slice of the epidermis in each tissue section we imaged, we took 

Z-stack images prepared as described in figure 3.5.3, using a 63x oil objective lens and imaging 

conditions optimised to 1 Airy unit. Figure 3.5.5 shows the results of the analysis, which 

indicated that the nuclear to cytoplasmic ratio in young 3 mo animals was close to 1, therefore 

suggesting equal distribution overall of YAP1 in the cytoplasm and nuclei of the cells of the 

whole epidermis in this age group. In the 30 mo animals however, the average nuclear to 

cytoplasmic ratio value was 1.2, indicating a greater amount of nuclear YAP1 compared to 

cytoplasmic YAP1 in this age group. To determine if this change was statistically significant, an 

un-paired t-test was completed on the data, and the result indicated that the difference in the 

epidermal nuclear to cytoplasmic ratio of YAP1 in 3 mo compared to 30 mo was statistically 

significant (p=0.009). 
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Figure 3.5.5: Analysis of the nuclear to cytoplasmic ratio of YAP1 in the epidermis of young (3 mo) compared to aged 
(30 mo) mice. Measurements were taken from 6 images each from 2 mice in each age group using CLSM. Difference 
in the mean nuclear to cytoplasmic ratio in the 2 age groups was assessed by un-paired t-testing and shown to be 
statistically significant (p=0.009).  

3.5.5 Discussion: Increased nuclear localization of YAP1 in aged epidermis 
 

The data presented here demonstrated validation of the use of a rabbit polyclonal 

YAP1 antibody in order to produce novel staining of YAP1 in C57BL/6 mice of several age 

groups. Our analysis has shown that YAP1 localisation is changed in the cells of the epidermis of 

aged mice, where an increase in nuclear-localised YAP1 occurs. There are several reasons why 

more nuclear YAP1 may be present in the epidermis of aged animals compared to young 

animals. Nuclear-localised YAP1 drives epidermal cell proliferation in the basal epidermis 

(Zhang et al, 2011). We have observed that a dramatic loss of cells occurs in the epidermal 

compartment between 3 mo and 30 mo animals and from staining of undifferentiated (K14) 

and differentiated (K10, loricrin) cells in both 3 mo and 30 mo animals, it appears that basal 

epidermal cells (K14 positive) are maintained in 30 mo epidermis whereas terminally 

differentiated cell numbers are reduced compared to young epidermis. This was previously 

indicated by a loss of the terminal differentiation marker loricrin in aged skin (see section 

3.2.7). 

If it is the case that basal epidermal nuclei make up a greater proportion of the whole 

epidermis in aged animals as we have observed, this would mean that the most proliferative 

compartment of the epidermis is maintained during ageing. As YAP1 drives proliferation, and 

aged epidermal SC’s spend a greater amount of time in the cell cycle compared to young 

(Charruyer et al, 2009), the increased nuclear YAP1 calculated from our data here concerning 
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the overall epidermis in young and aged mice may reflect this change in the proportions of the 

k14 positive epidermal cells present in young compared to aged skin. A future experiment to 

validate this would be to analyse the nuclear to cytoplasmic ratio of the cells isolated in the 

basal epidermis only of 3 mo and 30 mo skin, by completing dual immunofluorescence of K14 

and YAP1. This would allow us to more accurately de-lineate the contribution of the basal 

epidermal cells to this change observed in YAP1 nuclear localisation with age. 

Additionally, many of the cells in the outer epidermis had intense nuclear YAP1 staining 

in the 3 mo, 12 mo and 15 mo animals. This was seen to a lesser extent in 24 mo and 30 mo 

animals.  As cells in this layer are undergoing several changes in order to form the cornified 

envelope, future research could look to understand if YAP1 plays a role in the flattening and 

programmed apoptosis known to occur in these cells to allow them to form the stratum 

corneum (Simpson et al, 2011). As a difference in the numbers of these cells is purely 

observational at present, future efforts to quantify the difference in their number in young and 

aged animals would also provide more information about a potential change in their numbers 

with age. 

Along with potential changes to YAP1 localisation due to proliferation-based reasons, 

the increased nuclear localisation of YAP in the aged epidermis could also be a result of 

mechanical changes occurring to the skin. Several methods are available to calculate the 

stiffness (Young’s modulus) of skin in vivo (reviewed in Liang and Boppart, 2010) and at 

present, no data is available indicating quantitatively how the skin of C57BL/6 mice changes 

with age. Future studies should therefore look to draw parallels between the stiffness of the 

epidermis and underlying dermis in young compared to aged animals of this strain to 

determine how this contributes to the differences in observed YAP1 nuclear localisation in the 

cells of the epidermis. As the fibroblasts of the dermis are a relatively quiescent cellular 

population in comparison to the keratinocytes of the epidermis, there is a potential that they 

are differentially responsive to both changes in the mechanical properties of aged dermis and 

proliferative cues. Future studies should therefore look to study this cellular population in more 

detail. 
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Chapter 4: Transcriptomic and proteomic analyses of a multi-
decadal cohort of photo-protected and photo-exposed female 
skin tissues. 

4.1 Introduction 
 

 Chapter 3 explored the use of C57BL/6 mice in the study of skin ageing and several key 

conclusions were drawn. To briefly summarise the key findings:  

 Several morphometric changes occurred in the tissue including loss of epidermal and 

dermal cells, epidermal thinning and epidermal cell flattening. 

 The primary dermal ECM constituents: The type I and type III collagens were lost with 

age resulting in a more loosely structured dermal matrix 

 Loss of youthful basement membrane architecture was shown by collagen VII loss. 

There was also alteration in the architecture of the aged BM shown by electron 

microscopy and collagen IV staining.  

 Loss of epidermal nuclear stability in the form of lamin B1 loss, reduced cellular 

proliferation and increased DNA damage occurred. 

 An increase in the nuclear localisation of the Hippo Pathway effector YAP1 in the 

epidermal cells was observed. 

4.1.1 Drawbacks of using mice in skin ageing research 
 

 The use of model organisms like mice in ageing research offers several benefits as 

described in section 3.1.1. There are however, drawbacks to be considered. The mouse and 

human genomes are highly similar in terms of their DNA content (Emes et al, 2003). However, 

there are differences between the gene expression patterns seen in immune response, 

metabolism and stress response mechanisms in mice compared to humans (Cheng et al, 2014). 

The roles of stress (Haigis and Yankner,2010) and metabolism (Barzilai et al, 2012) are highly 

implicated in ageing biology as they both contribute to cellular longevity mechanisms (Davalli 

et al, 2016). It thus follows that having genetic differences in these critical processes could 

impose limitations on the extent that murine ageing processes are able to model ageing in 

humans.  

The structure of mouse and human skin is also different. Human skin has a thicker 

epidermis and dermis with sparsely arranged hair follicles whereas in the mouse, hair follicles 

are densely packed. The primary protective layer in murine skin is the dense covering of hair 

found on the skin surface whereas for human skin, the stratum corneum plays this role (Younis 
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et al, 2014). There are also differences between the epidermal and dermal immune cell sub-

populations in mouse and human skin. For example, murine epidermis houses dendritic 

epidermal T cells (DETCs) that are not present in the human epidermis (Pasparakis et al, 2014). 

The difference in structure and immune cell populations in mouse and human skin raises the 

possibility that they will be subjected to different ageing mechanisms. As one of the objectives 

of this thesis is to understand human skin ageing alongside murine skin ageing, this provides 

further motivation to validate age-related changes found in mice in humans. Completing this 

objective will also enable us to determine to what extent the C57BL/6 male mouse can be used 

as a model of female human skin ageing. As male and female mammals demonstrate skin-

specific differences in steroid hormone profiles (Stevenson and Thornton, 2007), cross-

matching results from our studies will allow us to identify potential age-related changes that 

occur independently of these hormonal differences. 

4.1.2 Alternative ageing tools: 3D in vitro skin equivalent (SE) models 
 

As a more accessible, and ethical alternative to model organism use, several in vitro 3D 

models using human cells from both young and aged donors have been developed (Janson et 

al, 2013; Dos Santos et al, 2015; Diekmann et al, 2016). These models have allowed the study of 

intrinsic ageing (Janson et al, 2013) along with allowing the mimicry of photo-aging to an extent 

through the use of irradiation (Armento et al, 2015). In vitro SE models have also accelerated 

the development of therapeutics as they provide a controlled environment for study of 

compounds that can attenuate the ageing process, such as phytochemical photo-protectants 

(Evans-Johnson et al, 2013). In vitro skin ageing studies have therefore become a powerful tool 

for ageing biologists looking to study the molecular mechanisms behind skin ageing and for 

finding ways to ameliorate the aged skin phenotype.  

However, there are limitations to use of 3D cultures, with one of the fundamental issues 

being that skin equivalents are relatively short-lived compared to human skin in vivo (Dos 

Santos et al, 2015). It is also difficult to mimic natural extrinsic ageing processes in vitro, as it is 

difficult to artificially replicate the sporadic nature of un-controlled, low-level doses of UVA and 

UVB irradiation found in natural sun light, along with other environmental insults that occur in 

daily life (Naylor et al, 2011). Furthermore, 3D in vitro skin cultures rarely contain all of the 

different skin cells and adnexal structures found in human skin in vivo, like hair follicles. The 

majority of in vitro skin equivalents are based on keratinocytes and fibroblasts only, and 

therefore they provide a simplified model of human skin.  
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4.1.3 Humans as ageing models 
 

 Human tissues are difficult to obtain due to the need for strict guidelines involving 

ethical approval, patient consent and careful use of samples (Seppet et al 2011). Several factors 

must be considered in the design of experiments using human tissues. For example, human 

ageing has been shown to be heterogeneous in terms of displayed age-related phenotypes 

(Mitnitski et al, 2016). This has been seen in studies observing the ageing of identical twins who 

despite having the same DNA, are able to show different age-related phenotypes (Steves et al, 

2012). Additionally, current research emphasizes that there is a distinction between lifespan 

and “healthspan”, meaning that ageing is highly multi-factorial, and chronological age alone 

cannot measure the ageing process (Bansal et al, 2015). Statistically speaking therefore, in 

ageing studies, one must account for the fact that there could be increased phenotypic 

variation in age-matched individuals within a given population with increasing age. Sample 

sizes must therefore be large enough to account for this potential increase in variation if one 

wishes to express their findings in statistical terms (Halsey et al, 2015). 

As already mentioned, ageing is multifactorial, which presents problems in ageing 

research as the impact of diet, exercise and stress can heavily influence the ageing process 

(Mody et al, 2008). Additionally, it is well known that the role of gender is crucial in causing a 

differential in the trajectory of male and female ageing, which has been shown to be markedly 

different in terms of disease presentation and the timing of senescence (Franceschi et al, 2000). 

These limitations show that great care must be taken when considering the design of an 

experiment using human tissues. However, once these factors are taken into account, the use 

of human tissues in ageing studies allows us to observe first-hand how our bodies are impacted 

by the ageing process, which can offer the most direct route to further understanding of ageing 

mechanisms (Seppet et al, 2011). For this reason, their use is sometimes preferable to in vitro 

3D culture models and other animal models, because these tools only offer mimicry of natural 

human ageing. 

4.1.4 “Skinomics” emerges as a research tool 
 
 Genomic studies are becoming increasingly more prevalent in ageing biology research 

(Kaeberlein, M. 2006). Additionally, with the continued development of more powerful “omics” 

technologies, such as genome wide association studies (GWAS) (Newman et al, 2010), it has 

become feasible to comprehensively understand changes to the whole genome with age in 

several human tissues and organs. With reference to the skin, “skinomics” technology is a 

rapidly developing field where genetic tools, like DNA microarrays and RNA sequencing, can be 

used to study age-related changes (Younis et al, 2015).  
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Several biologists believe that DNA microarrays offer a powerful platform in order to 

deduce changes to gene networks with age (Benech and Patatian, 2014). Studies have 

identified changes to expression of general age-associated genes such as those that contribute 

to immune-response and metabolic pathways and also more specifically for the skin, ECM and 

protease genes (Lener et al, 2006). Two studies have independently identified Wnt signaling as 

being down-regulated with age in the skin of both males and females (Makrantonaki et al, 

2012) and in the skin of a cohort of females (Glass et al, 2013). This pathway controls 

progenitor cell proliferation and asymmetric cell division, which are crucial processes in skin 

biology (Lim and Nusse, 2013). Studies looking at transcriptional changes during intrinsic versus 

photo-ageing are sparse, but one publication suggests that many of the changes occurring 

during photo-ageing are similar to intrinsic ageing but tend to be more severe (Robinson et al, 

2009). 

4.1.6 Microarray analysis of our genes of interest during intrinsic and extrinsic 
ageing 
 
 We have identified that microarrays are powerful tools for studying transcriptional 

changes during ageing but the way that they are used depends heavily on the hypotheses being 

tested and the individual goals of the researcher (Naidoo et al, 2005). Our goals concerned the 

identification of differentially expressed genes during female skin ageing. Our target genes of 

interest were the dermal and basement membrane collagens, nuclear lamins and Hippo 

pathway components. As we had access to tissue from photo-protected and photo-exposed 

skin sites, we were also able to assess whether intrinsic or “chronological ageing” caused 

different transcriptional changes over time compared to extrinsic or “photo-ageing”. 

 In order to identify differentially expressed genes, Spearman’s rank correlation was 

used. This statistical testing method allowed us to assess to what degree gene expression 

changes (the first variable) changed in relation to the age of the subject (the second variable). 

Unlike other methods like Pearson’s correlation testing, Spearman’s correlation allows the 

assessment of the change in non-linear relationships. This is important for studies concerning 

biological ageing as it is a complex dynamic process (Higgins, J, 2002), with many gene 

expression changes not necessarily following a linear relationship (Cao et al, 2013). 

 

4.1.7 Quantifying significant gene expression changes in our microarray data 
 
 There are several different ways to assess significance of the transcriptional changes 

occurring in microarray data. Computational methods such as ANOVA and SAM (Jeffery et al, 

2006) can be used to calculate lists of differentially expressed genes from raw microarray data. 
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However, it is accepted that different statistical testing methods vary in their ability to identify 

differentially expressed genes (Jeanmougin et al, 2010). With our method, we have pre-

selected in advance which genes are of interest, and subsequently considered the extent that 

their expression changes with age.  

Along with our genes of interest, the microarray experiments completed assessed the 

differential expression of hundreds of other genes. Like other microarray experiments, our data 

is therefore subject to the high false discovery rate (FDR) that comes with multiple-testing 

experiments. The Bonferroni correction method (Nadon and Shoemaker, 2002) was used to 

overcome this problem. This correction method computes the possibility of a significant p-

value occurring by chance in a large data-set and thus generates a q-value, which indicates the 

likelihood of the implied p-value being a false-positive or type I error (Benjamini et al, 2001).  

Two key issues in the use of microarray technology are the ability for RNA molecules to 

non-specifically bind to probe-sets on microarray chips and also to the chip itself. To account 

for the former problem, mis-matched probes, which are highly similar in nucleotide sequence 

to the specific probes, aside from (typically) a single base pair are also present on the chip. The 

signal generated from transcripts binding to these mis-matched probes compared to the 

specific probes is used to control for non-specific mRNA hybridisation. To account for the latter 

problem, the background signal from the chip itself is measured and the value removed from 

subsequent downstream analyses (Schuster et al, 2007).    

As well as completing these data processing steps, we looked at the behaviour of each 

individual probe sets over time, by plotting the data of the mean expression taken from all of 

the female subjects at each decade. In this way, probe sets that targeted the same gene, but 

that behaved differently to one another could be identified and those that did not show any 

modulation with age could be eliminated from further analyses. We identified differentially 

modulated probe sets with robust changes during ageing as those which had a significant 

change from the 2nd to 7th decade. These probe sets had p ≤ 0.05 and q ≤ 0.05 in our statistical 

assessment by rank correllation. 

Our microarray experimental design used laser capture microdissection (LCD) to isolate 

epidermal and dermal compartments free from appendages as part of our analyses. This 

increases the likelihood of picking up significant changes to genes specific to the dermis, like 

the genes encoding collagen I and collagen III fibrils and those that have been more highly 

implicated to play a role in the epidermis, like YAP1 (see thesis introduction for further 

information). Additionally, we assessed gene expression changes in full thickness skin, which 

also had appendages such as hair follicles and sweat glands present. Having full thickness data 
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alongside separate epidermal and dermal compartment data allowed us to compare 

compartment-specific changes to whole-skin changes with age. 

4.1.8 Validating transcriptional changes at the protein level 
  

mRNA molecules are known to be highly un-stable. They are easily subject to 

degradation and require several post-transcriptional processes to occur, including efficient 

translation, in order to create their encoded protein (Plotkin, J.B., 2010). Furthermore, the 

correlation between mRNA presence and protein presence is not a linear relationship. In fact, 

only 1.9% of the human genome accounts for the mRNA variants that encode functional 

proteins (Int Human Genome Seq Consortium, 2004). The earlier principles of molecular 

biology worked on the rule that genomic DNA encodes the templates for mRNA which serve as 

protein-coding molecules (Hombach and Kretz, 2013). Many exceptions to this rule have now 

been identified, and it is becoming commonly accepted that non-coding RNA’s such as lncRNA’s 

(long non-coding RNA’s), miRNA’s (micro-RNA’s), rRNA’s (ribosomal RNA’s) and other variants 

have their own distinct roles in cellular biology and gene expression (Matera et al, 2007). 

Additionally, mRNA transcripts can also be subject to alternative splicing mechanisms. 

This impacts their proteomic fate as an alternatively spliced mRNA transcript can theoretically 

yield several different protein isoforms, which may be distinct in their structure and function 

(Graveley, B. R. 2001). Alternative splicing mechanisms, coupled with the action of non-coding 

RNA’s indicate the complexity of gene transcription, and show that mRNA presence represents 

only partial evidence for functional cellular changes. To compound matters, the cellular ageing 

process has been shown to be associated with less efficient mRNA splicing and maturation, 

which in turn leads to the decreased likelihood of proper protein formation (Harries et al, 

2011). For these reasons it was important to determine if any transcriptional changes we 

observed also caused changes in cellular protein levels. 

The sub-cellular localisation of proteins like the transcription factor YAP1 are of 

biological relevance. The nuclear presence of YAP1 places it in close proximity to chromatin, 

where it can bind an activate transcription of its target genes (Marti et al, 2015). Likewise, the 

lamin proteins form a meshwork under the inner nuclear membrane (INM) in healthy cellular 

conditions and can be mis-localised in diseased states, such as in cancers (Hutchison, C.J, 2002). 

For these reasons proteomic tools like immuno-histochemical staining (IHC) of human skin 

tissues can be advantageous, as they allow us to visualise both the levels and localisation of our 

proteins of interest. We therefore exploited the benefits of IHC using human skin samples 

taken from both photo-protected and photo-exposed sites of young and aged female subjects 

in order to analyse the expression of our target genes of interest at the protein level. 
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4.1.9 Histological presentation of our female skin samples 
 
 Before we began subsequent experiments, we observed the histological presentation 

of photo-exposed and photo-protected skin from young and old females using haematoxylin 

and eosin staining. Representative examples of the skin is shown below in figure 4.1.1. As the 

figure shows, both the young photo-protected (A) and young photo-exposed (B) skin had an 

epidermis (e) of similar thickness and prominent pink eosin staining in the dermis (de). In the 

old photo-protected skin (C), the epidermis was similar to the young skin, but there appeared 

to be less pink eosin staining in the dermis (de). In the old photo-exposed skin (D) the epidermis 

was thinner compared to the young photo-exposed skin and less pink staining was present in 

the dermis. Additionally, prominent melanin colouration (black arrows- D) was observed in the 

basal epidermal layer. As eosin is non-specific protein stains for both cytoplasm and 

extracellular matrix components, decreased eosin staining in the old skin suggests that the ECM 

protein levels decreased with age in the old photo-protected and old photo-exposed skin
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Figure 4.1.1: Haematoxylin and Eosin staining of human skin sections of young (22y) photo-protected (PP-A) and 
photo-exposed (PE-B) skin along with old (60y) photo-protected (PP-C) and old photo-exposed (PE-D) skin. Sections 
were imaged on a light microscope using a 20x objective lens. e=epidermis, de= dermis, black dotted line= DEJ. Scale 
same for all images and scale bar shown in D= 100 µm. Black arrows in D show the presence of prominent melanin 
pigmentation in the basal epidermis of old photo-exposed skin. 

 

4.1.10 Objectives 
 
 The objectives of this work were to identify transcriptional changes in the dermal 

collagen genes, the basement membrane collagen genes, genes of the nuclear lamina and the 

Hippo pathway effector YAP1. We also sought to validate identified transcriptional changes at 

the protein level, and where appropriate, determine age-associated changes in protein 

localization and arrangement. More detailed accounts of all objectives are given at the 

beginning of each results section within this chapter. 

 



147 | P a g e  
 

4.2. Identification of transcriptomic and proteomic changes to dermal 
collagens in ageing female skin 
 

4.2.1 Introduction and Objectives 
 

Intrinsic and photo-ageing are associated with collagen fragmentation by proteolytic 

enzymes, water loss and fibroblast senescence. Together these processes, along with 

modifications to other dermal ECM constituents (Watson et al, 2014) contribute to the aged 

dermal phenotype.  

 The mechanisms of intrinsic and photo-ageing share both common and distinct 

modalities. Photo-ageing results in a more marked degradation of the dermal components due 

to the potent damaging effects of UVA and UVB rays. Dermal atrophy in intrinsic ageing can be 

attributed to the decreased production of collagen due to fibroblast senescence along with 

increased degradation of the collagens already present by MMPs (Varani et al, 2002). The 

collagen fibrils become fragmented and are no longer able to support their resident fibroblasts, 

which collapse and lose their normal mechanical properties. The collapsed fibroblasts produce 

less collagen and more collagen-degrading enzymes and hence the net effect is a loss of dermal 

collagen, which subsequently perpetuates this cycle (Fisher et al, 2008). 

During extrinsic ageing the processes of intrinsic ageing are compounded by the 

presence of excessive ROS, which are produced as a result of UVR (ultra-violet ray) exposure 

(Poljsak and Dahmane, 2012). UVR themselves are direct protein and nucleic acid damaging 

agents. They cause defects to DNA such as dimerization of nucleic acid bases, mutagenic C-> G 

transversions and lesions such as 8-oxo-Gua. Free radical formation as a result of ROS can also 

cause protein cross-linking and aggregation (Pattison and Davies, 2006). Both the 

aforementioned direct damage to DNA and in-direct damage to protein occurs within the 

dermal matrix and impacts the resident fibroblasts. In response to ROS, damaged fibroblasts 

undergo senescence and apoptosis, which depletes the dermal population of healthy, ECM 

producing cells (Watson et al, 2014). Due to the additional damage from UVR, age-matched 

intrinsic and extrinsically aged skin thus commonly present with differing phenotypes, with a 

more severe phenotype being seen in photo-aged skin (Naylor et al, 2011).          

The plethora of literature concerning intrinsic and extrinsic dermal ageing indicates that 

this aspect of skin ageing biology is well studied, but this is the first detailed study of the 

change in dermal collagen transcription in a female ageing population over a series of time-

points. Having access to tissue of both young, pre-menopausal and post-menopausal females 

offers a fascinating insight into the impact of age-associated hormonal changes on dermal 



148 | P a g e  
 

collagen transcription. As HRT (hormone replacement therapy) was an exclusion criterion in the 

study, the transcriptomic changes identified concern natural hormonal changes only. The 

objectives are therefore to: 

1) Identify the impact of ageing on collagen I and collagen III transcription in the dermal 

and full thickness skin (FTS) compartments of photo-exposed and photo-protected skin. 

As our interest concerns fibroblast transcription only, and fibroblasts are the primary 

synthesizers of type I and type III collagens (Lemons et al, 2010), the epidermal 

compartment was omitted from the analysis. 

 

2) Use immune-based histological staining techniques to validate the mRNA changes at 

the protein level.   

 

4.2.2 Age-related decline in dermal collagen transcription is attenuated after 
menopause. 
 

To determine the change in collagen I and collagen III mRNA levels during intrinsic and 

photo-ageing, biopsies from female subjects were prepared as described in section 2.7- 

materials and methods. There were separate probe sets used to target the two alpha chains of 

the two collagen I genes- COL1A1 and COL1A2, which encode the α1 and α2 chains respectively 

(source: Genecards.org). The difference in the mean signal expression levels of the two alpha 

chains was high, and suprisingly the mean expression of COL1A2 was far greater than COL1A1 

although there are thought to be twice as many α1 chains making up collagen I fibrils compared 

to α2 chains (McBride et al, 1997). This may be due to the fact that the COL1A2 gene has a 

greater number of mRNA variants that do not appear to encode protein isoforms in comparison 

to COL1A1 (see table 4.2.1, info: AceView). This means that several of the COL1A2 mRNAs 

binding to targets could be non-coding mRNAs. To account for large differences in mean 

expression, the levels of COL1A1 and COL1A2 transcripts were presented separately. The probe 

sets used to target COL1A1, COL1A2 and COL3A1, along with details regarding the mRNA 

variants, protein isoforms and molecular collagen structures, are summarised in table 4.2.1 

below: 
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Table 4.2.1: Details of the dermal collagen genes, numbers of known mRNA variants and protein isoforms (information online from AceView). Also shown are the molecular structures and 
microarray probe set identities of dermal collagens. (Information on collagen molecular structure from Mienaltowski and Birk, 2014) 

Dermal collagen type Genes mRNA variants Protein isoforms Molecular Structure (s) Probe sets 

Collagen I COL1A1 

 

12  

(10 alternatively spliced, 2 

un-spliced) 

11 α1(I)2 α2(I) 

*α1(I)3 (present in development, 

cancer and fibrosis- Han et al, 2009. 

Modulation with age not known) 

  11760635_at 
  11746872_a_at 
  11715352_x_at 
  11715350_a_at 
  11715351_at 

Collagen I COL1A2 22 

(15 alternatively spliced, 7 

un-spliced) 

13 α1(I)2 α2(I) 

 

11715355_at 

11753294_a_at 

11715354_a_at 

11715356_x_at 

11753295_x_at 
11715353_s_at 

 

Collagen III COL3A1 10 

(6 alternatively spliced, 4 un-

spliced) 

6 α1(III)3 11715414_x_at 

11715415_a_at 

11744379_a_at 

11744380_s_at 

11758342_s_at 
 

 

The results of the microarray analyses using the probe sets presented in table 4.2.1 with RNA prepared from the female subjects in this study are 

presented below. Mean mRNA levels generated for each decade from age 20 to 70 are shown for dermal and FTS samples. As detailed in the introduction to 

this chapter, a formatting system (each individual probe set is colour coded) has been used to depict statistically significant changes. The level of signal 

expression for each probe set within each age group indicates the mean level of mRNA that bound to that probe set from all of the subjects. 

 



150 | P a g e  
 

COL1A1 and COL1A2 mRNA expression: Dermal compartment only 

Figure 4.2.1: Microarray analysis of mRNA levels of COL1A1 and COL1A2 in PP (A,C) and PE (B,D) dermis of individuals aged 20, 30, 40, 50, 60 and 70. Plots A-D show the change in mean signal 
expression of mRNA levels from the 2nd to 7th decade. The legends in the right hand corner of the page depicts the colour and format applied to each of the 5 probe sets for COL1A1 (A,B) and 6 
probe sets from COL1A2 (C,D). Thin dotted lines show probe sets that did not significantly change in expression level with age. Thin uniform lines show probes that significantly change with age 
(p ≤ 0.05). Thick uniform lines show probe sets that had a highly significant change with age (p ≤ 0.05 + q ≤ 0.05).  
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COL1A1 and COL1A2 mRNA expression: Full thickness skin 

Figure 4.2.2: Microarray analysis of mRNA levels of COL1A1 and COL1A2 in PP (A,C) and PE (B,D) FTS of individuals aged 20, 30, 40, 50, 60 and 70. Plots A-D show the change in mean signal 
expression of mRNA levels from the 2nd to 7th decade. The legends in the right hand corner of the page depicts the colour and format applied to each of the 5 probe sets for COL1A1 (A,B) and 6 
probe sets from COL1A2 (C,D). Thin dotted lines show probe sets that did not significantly change in expression level with age. Thin uniform lines show probes that significantly change with age 
(p ≤ 0.05). Thick uniform lines show probe sets that had a highly significant change with age (p ≤ 0.05 + q ≤ 0.05).  
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COL3A1 mRNA expression: dermal compartment and FTS 

Figure: 4.2.3: Plots of the change in mean signal expression of mRNA levels from the COL3A1 gene as analysed by microarray in PP and PE dermis (A,B) and FTS (C,D) of individuals of ages 20, 30, 
40, 50, 60 and 70. Plots A-D show the change in mean signal expression of mRNA levels from the 2nd to 7th decade .The legends in the right hand corner of the page depicts the colour and 
format applied to each of the 5 probe sets. Thin dotted lines show probe sets that did not significantly change in expression level with age. Thin uniform lines show probes that significantly 
change with age (p ≤ 0.05). Thick uniform lines show probe sets that had a highly significant change with age (p ≤ 0.05 + q ≤ 0.05).  
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With regards to figures 4.2.1 and 4.2.2, which depict the plots of probe sets targeting 

COL1A1 and COL1A2 mRNAs in PP and PE dermal and FTS compartments, it was observed that 

overall, the mean expression of COL1A1 and COL1A2 mRNAs declined with age in both the PP 

and PE dermis and FTS. In the dermis, this decline was attenuated at roughly age 55, where 

mRNA levels then increased in late life. The observed increases did not restore collagen mRNA 

levels to those observed in the younger decades (20’s and 30’s). This increase was most marked 

in the PP dermis (figure 4.2.1 A and C) and was more marked for COL1A1 mRNA at these latter 

stages in comparison to COL1A2. In the PE dermis COL1A1 (figure 4.2.1 B) and COL1A2 (figure 

4.2.1 D) mRNA levels also increased between the 5th and 7th decade but to a reduced extent in 

comparison to the PP skin. 

Figure 4.2.3 depicts the plots of probe sets targeting COL3A1 mRNAs and like for the 

collagen I genes, the mean expression levels of the probe sets in both the PP dermis (figure 

4.2.3 A) and the PE dermis (figure 4.2.3 B) decreased until ~age 55 then mean expression levels 

began to increase again into the 6th and 7th decade. Like for COL1A1 and COL1A2 mRNA’s, the 

increases were not robust enough to prevent a decrease in COL3A1 mRNA levels overall from 

the 2nd to 7th decade. This observation was slightly more marked in the dermal compartment of 

the PP skin compared to the PE skin (figure 4.2.3 A). 

Altogether, figures 4.2.1-4.2.3 therefore show that the COL1A1, COL1A2 and COL3A1 

mRNA’s shared a unique change in their mean expression levels over time, with levels declining 

until middle age, then increasing in the latter decades. These late life transcriptional increases 

however, did not restore mRNA levels to those observed in the 2nd and 3rd decades. This meant 

that statistically, ageing overall was associated with a decline in dermal collagen mRNA levels. 

The details of our analyses concerning COL1A1, COL1A2 and COL1A3 mRNA levels during 

intrinsic and photo-ageing are summarised in tables 4.2.2-4.2.4 below. 
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Table 4.2.2: Summary of changes to statistically significant probe sets for COL1A1 mRNA levels during intrinsic and 
photo-ageing. The PE and PP compartments that showed the most significant changes are highlighted in orange (PE 
skin) and blue (PP skin). 

 
 
Table 4.2.3: Summary of changes to statistically significant probe sets for COL1A2 mRNA levels during intrinsic and 
photo-ageing. The PE and PP compartments that showed the most significant changes are highlighted in orange (PE 
skin) and blue (PP skin). 

 
Table 4.2.4: Summary of changes to statistically significant probe sets for COL3A1 mRNA during intrinsic and photo-
ageing. The PE and PP compartments that showed the most significant changes are highlighted in orange (PE skin) 
and blue (PP skin). 

 

Table 4.2.2, which details significant changes to COL1A1 mRNA levels with age, shows 

that in the dermal compartment, signal expression ranges for the probe sets were similar in PP 

and PE skin. There were also the same number of statistically significantly changing probes, 

Skin sample/condition Signal expression range 
of statistically significant 
probe sets (to nearest 
100). ∆n= difference 
between the highest 
mean expression and 
lowest. 

Number of probes statistically 
correlating with age and in 
which direction (+ for up, - for 
down). Numbers in parentheses 
indicate the number of these 
probes that also had q ≤ 0.05. 

Photo-protected (PP) dermis 200-1200  (∆1000) -4 (1) 

Photo-exposed (PE) dermis 200-1300  (∆1100) -4 (4) 

Photo-protected FTS (PP)  200-1500  (∆1300) -4 (0) 

Photo-exposed FTS (PE) 400-800    (∆400) -2 (0) 

Skin sample/condition Signal expression range 
of statistically significant 
probes (to nearest 500). 
∆n= difference between 
the highest mean 
expression and lowest. 

Number of probes statistically 
correlating with age and in 
which direction (+ for up, - for 
down).  Numbers in 
parentheses indicate the 
number of these probes that 
also had q ≤ 0.05. 

Photo-protected (PP) dermis 500-4500    (∆4000) -6 (0) 

Photo-exposed (PE) dermis 2000-6000  (∆4000) -5 (3) 

Photo-protected FTS (PP)  NP NP 

Photo-exposed FTS (PE) 3000-3500  (∆3000) -1 (0) 

Skin sample/condition Signal expression range of 
statistically significant 
probes (to nearest 500). 
∆n= difference between 
the highest mean 
expression and lowest. 

Number of probes statistically 
correlating with age and in 
which direction (+ for up, - for 
down). Numbers in 
parentheses indicate the 
number of these probes that 
also had q ≤ 0.05. 

Photo-protected (PP) dermis 2000-6500  (∆4500) -5 (5) 

Photo-exposed (PE) dermis 2500-9000  (∆6500) -5 (5) 

Photo-protected FTS (PP)  NP NP 

Photo-exposed FTS (PE) 1500-5500  (∆4000) -4 (0) 
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although this significance was more marked in the PE skin, where all of the changes in mean 

expression had significant P and Q values. In the FTS, there were more instances of high mean 

expression levels and a greater range of mean expression levels in the PP skin compared to the 

PE skin. There were also more significant changes with age in the PP FTS (mean expression 

levels significantly changed in 4 probe sets) compared to the PE FTS (mean expression levels 

significantly changed in only 2 probe sets). 

Table 4.2.3 shows that COL1A2 mRNA levels were higher in the PE dermis compared to 

the PP dermis, although the signal expression range of the probe sets in each condition were 

similar (∆4000). There were similar numbers of probe sets with significantly decreasing mean 

expression levels in the PP and PE dermis for COL1A2. However, as the decline in mean 

expression of 3 probe sets in the PE skin had statistically significant Q values as well as P values, 

this suggests COL1A2 mRNA decreases could be more marked in the PE skin. In the FTS, few 

significant changes with age were present, with only one probe set significantly decreasing its 

mean expression with age in the PE FTS. 

Table 4.2.4 indicates that COL3A1 mRNA levels were generally higher in the PE skin 

compared to the PP skin in the dermis. Both the PE and PP dermis showed robust changes in 

mean COL3A1 expression with age, with all 5 probe sets showing a decline in mean expression 

that was highly significant (p ≤ 0.05; q ≤ 0.05). In the FTS significant changes occurred only in 

the PE skin. Mean expression levels of the significantly changing probe sets in the FTS were 

lower in comparison to the PE dermis and the decreases were less significant.  

Overall the tables detailing changes to COL1A1, COL1A2 and COL3A1 mRNA levels show 

that the dermal compartment was the source of the most significant mRNA changes. This was 

logical given that the genes studied here are transcribed by cellular populations within the 

dermal compartment only and not the epidermis or adnexal skin structures present in the FTS. 

Additionally, photo-ageing caused a more robust decline in dermal collagen mRNA levels 

compared to intrinsic ageing. This was shown by the greater numbers of probe sets that 

showed both significant P and Q values for mRNA changes in all 3 dermal collagen genes in the 

PE skin compared to the PP skin. Furthermore, significant changes to the dermal collagen genes 

in the FTS occurred mostly in the PE and not the PP skin. In the presence of epidermal and 

adnexal skin structure mRNA, the overall level of collagen mRNA would be diluted. Therefore, 

the fact that significant changes were still detected in the PE FTS but not the PP FTS suggests 

the changes in mean expression were more robust in the PE skin. 
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4.2.3 Herovici staining: A versatile alternative to identifying protein expression 
changes to dermal collagens with age 
 

Collagen fibrils undergo several post-translational modifications including modification 

to amino acid residues and assembly of pro-collagen chains into triple helices (Koivunen et al, 

2005). Additionally, the net presence of collagens within the dermis is dependent on the 

balance between their production and degradation by resident proteases (Fisher et al, 2008). 

As several processes must occur following collagen gene transcription in order for production 

of mature collagen fibrils, it thus follows that the cellular presence of collagen mRNA presents 

only partial evidence for its manifestation at the protein level. These are important facts to 

consider in the study of functional protein changes to ageing tissues 

Immuno-histochemical validation of collagen I levels was therefore subsequently 

carried out on female young and aged skin sections using a rabbit polyclonal collagen I antibody 

(ab 34710) and a citrate based antigen retrieval protocol (details: section 2.8.4-Materials and 

Methods). Figure 4.2.4 shows the resulting immuno-staining, which had weak Collagen I 

immuno-labelling regardless of skin age and biopsy site and non-specific binding in the stratum 

corneum (SC) of the young skin biopsies and the aged buttock skin (white arrows C, D, E). The 

antibody binding present in the SC is most probably due to the action of the primary collagen I 

antibody, as sections from both young and aged tissue that were incubated in secondary 

antibody only (figure 4.2.4 A, B) do not show this non-specific binding. 

We had already observed in-consistent staining results using collagen I and III 

antibodies in mouse skin, and there are several reasons why binding of collagen “specific” 

antibodies in paraffin-embedded tissues shows a poor performance. Collagen antibodies can be 

highly cross-reactive, so unambiguous identification of collagen I and collagen III in the dermis 

may be difficult to achieve (Buchwalow et al, 2011). Furthermore, the presence of 

proteoglycans and other ECM ground substances, which have a high affinity for collagen, may 

mask antigenic sites, preventing complete reaction of the antibody with all of its target sites. 

Additionally, the production of the collagen antibodies themselves is challenging as one must 

remove all of the tightly-bound, non-collagenous proteins from the collagens themselves in 

order to isolate the antigens needed to produce pure, specific antibodies (Montes and 

Junqueira, 1991). 

Figure 4.2.5 shows a comparison between collagen I immunostaining and Herovici 

staining in human skin. The resolution of nuclei using Weigerts’ iron haematoxylin and DAPI are 

similar, but there is a clear difference in the dermal collagen labelling in the dye-stained 

samples compared to the antibody stained samples. The Herovici stain shows superior collagen 

labelling compared to the collagen I antibody we assessed and bands of collagen fibrils could 
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clearly be depicted (black arrows, figure 4.2.5 A) that were not observed in antibody staining. 

Due to the superior collagen fibril resolution offered by the Herovici stain, we completed 

subsequent analysis on changes to the levels and arrangement of the dermal collagens in 

intrinsically aged and photo-aged skin using this dye-based method. 
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Figure 4.2.4: Immunofluorescence staining of type I collagen in 22y buttock (C), 22y forearm (E), 64y buttock (D) and 
64y forearm (F). Also shown are control sections of 22y buttock (A) and 22y forearm (B). The primary antibody 
(Rabbit polyclonal anti-collagen I) was bound to Alexa 568 secondary antibody with DAPI used to counterstain 
epidermal and dermal nuclei in C-F. In the control sections the primary antibody was omitted from the staining but 
all other procedures were the same. All images were taken on a fluorescence microscope with a 20x objective lens. 
White dotted line= DEJ. e=epidermis, de=dermis. Scale the same for A and B and shown in B=20 µm. Scale the same 
for C-F and shown in F= 50 µm. White arrows show non-specific binding in the stratum corneum of C, D and E.  
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Figure 4.2.5: Direct comparison of Collagen staining in 20y buttock skin using a Herovici stain with Weigerts Iron 
Haematoxylin nuclear stain (A) and collagen I immunostaining with the same staining procedure as seen in figure 
4.2.4.(B). In the Herovici stain nuclei are stained blue/black, young type III collagen is stained blue and mature type I 
collagen is stained magenta. Scale bars= 20 µm. Labelling of collagen bundles using the Herovici stain offers a much 
greater source of information regarding collagen fibril density and arrangement. Labelling of collagen fibril bands are 
shown by black arrows. 

 

Although it is widely accepted that collagen is lost from the dermis with age, there are 

inconsistencies in the literature with regards as to whether type I or type III collagen is lost to a 

greater extent with some authors reporting greater loss of type I collagen (Lovell et al, 1987; 

Oikarinen, A. 1990) and others reporting that type III collagen is pre-dominantly lost (Rong et al, 

2008; Cheng et al, 2011). Our mRNA data has shown robust decreases in the transcription of 

both collagen I and collagen III genes during intrinsic and photo-ageing, which suggests that 

both collagens decrease during female skin ageing. We sought to address this inconsistency at 

the protein level by using Herovici staining to look at the levels of type I and type III collagens in 

young and aged PP and PE skin. 

 

4.2.4 Differential colouration of the dermal layers by Herovici staining and 
identification of age-related changes 

 

Figure 4.2.6 shows a paraffin-embedded skin section taken from young arm skin 

subjected to Herovici staining and it was observed that the ratio and arrangement of the 

collagen fibrils varied in the different dermal layers. At the DEJ and in the papillary dermis, type 

III collagen was predominant, with many blue interwoven fibrils (dark blue arrowheads). In the 

upper reticular dermis, type I and type III collagens were present in a meshwork composed of 

both fine (black arrowheads) and thick (white arrows) collagen bundles. Fine collagen bundles 
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had more blue staining and were particularly prominent surrounding appendages within the 

skin (black arrowheads) whereas the thick collagen bundles were stained a deep pink. In the 

lower reticular dermis the staining was predominantly pink, suggesting the presence of more 

mature, type I collagen fibrils. The fibrils were in a densely packed arrangement, forming thick 

bundles in contact with one another (white arrows).  

 

 
Figure 4.2.6: Schematic of the change of colour in Herovici staining in the various epidermal and dermal layers in 20y 
buttock skin. Nuclei are stained blue/black, type III (young) collagen= blue, type I (mature) collagen = magenta. Black 
dotted line= DEJ. Scale bar= 50 µm. Dark blue arrowheads indicate high levels of type III collagen at the DEJ. Black 
arrowheads= loosely arranged type III collagen at the site of adnexal skin structures in the papillary and upper 
reticular dermis. White arrows= densely packed regions of type I collagen in the upper and lower reticular dermis. 
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Figure 4.2.7: Low magnification images taken using a light microscope and 20x objective lens of epidermis and 
dermis of 20y buttock (A), 20y arm (B), 60y buttock (C) and 60y arm (D) stained with Herovici’s polychrome reagent 
which selectively stains type I (mature) collagen magenta, type III (young) collagen blue and nuclei blue/black. 
Images A-D have the same scale shown in D (Scale Bar= 50 µm), e= epidermis, de= dermis. 
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Figure 4.2.8: High magnification images of Herovici staining taken using a light microscope and 100x oil objective lens showing type I (magenta) and type III (blue) collagen fibril arrangement at 
the DEJ (A’-D’) and in the upper reticular dermis (A’’-D’’) of 20y buttock (A’, A’’), 20y arm (B,B’’), 60y buttock (C’, C’’) and 60y arm (D’,D’’). Nuclei have been stained with Weigerts’ iron 
haematoxylin (blue/black). Black arrows in C’, D’ indicate type III collagen loss at DEJ. Black arrows in C’’ show loss of type I collagen in the reticular dermis. Black arrows in D’’ indicate collagen 
fibril fragmentation in reticular dermis. Asterisks in C’’and D’’ show the presence of gaps in the collagen meshwork in the upper reticular dermis. Scale for images A’-D’ is shown in D’= 10 µm. 
Scale for images A’’-D’’ is shown in D’’= 10 µm. Dotted lines in A’-D’= DEJ. 
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In figure 4.2.7, the arrangement of type III collagen fibrils in both 20y buttock (A) and 

arm (B) dermis is similar to the description above for figure 4.2.6, with areas of type III collagen 

(blue staining) concentrated under the DEJ, in the papillary dermis, and surrounding adnexal 

skin structures. Type I collagen staining (pink) was also similar in the young arm and buttock 

dermis, with densely packed, pink-coloured, mature collagen being present mostly in the 

reticular layers but also to some extent in the papillary dermis. 

In the 60y buttock skin (Figure 4.2.7 C), the band of blue type III collagen under the DEJ 

was thinner compared to the 20y skin and loss of collagen III at the DEJ was obvious at a high 

magnification (black arrowheads, 4.2.8-C’). Collagen I staining was maintained in the upper 

papillary dermis of the PP aged skin (white arrowheads 4.2.8-C’). Further down in the reticular 

dermis of 60y buttock skin the collagen I bundles were thinner and more sparsely arranged 

than in the young skin (black arrows, 4.2.8- C’’) and some small gaps were apparent in areas 

(asterisks, C’’). The most predominant losses of collagen from the PP aged skin therefore came 

from collagen III loss in the papillary dermis and collagen I loss from reticular dermis. 

In the 60y arm skin (Figure 4.2.7 D) collagen loss was extremely pronounced in all layers 

of the dermis (D). At the DEJ, type III collagen fibril loss caused gaps in the collagen meshwork 

(black arrowheads, D’) and there was a marked loss of the pink type I fibril staining that was 

previously observed in the papillary dermis of the young arm skin. Blue, type III collagen 

staining was still present in this region, but appeared to be at a lower level in comparison to the 

young PE skin. In the upper and lower reticular dermis pronounced collagen I loss had occurred, 

leaving a loosely arranged collagen fibril network that was composed of both type I and type III 

collagens. The network was poorly structured in comparison to the young arm skin, and had 

several gaps (asterisks- D’’) along with significant fibril fragmentation (black arrowheads, D’’). 

The staining observed in the aged PE skin suggests that dramatic loss of both type I and type III 

collagens had occurred within the dermis. As more blue staining remains in comparison to pink 

staining, it is possible that the loss of collagen I was more marked than collagen III. 

 

4.2.5 Discussion: A novel identification of transcriptional changes to dermal 
collagens following menopause. 
 

To our knowledge a systematic report on changes to dermal collagen mRNA levels with 

age in Caucasian females has not been published. Here we show that overall, ageing causes a 

decrease in COL1A1, COL1A2 and COL3A1 mRNA levels with these effects being more marked in 

the PE skin. However, our plots of the change in mean expression of mRNA at each decade of 

age from 20-70 years showed a more complicated relationship across the dermal collagen 

genes. Collagen I and III mRNA levels decreased with advancing age but this decline was 
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attenuated at menopausal age and mRNA levels increased in late life. This identification of 

collagen transcription increases in elderly female dermis has not been shown to our 

knowledge, as it is commonly accepted that menopause causes decreased collagen synthesis in 

the skin (Brincat et al, 2005; Hall and Phillips, 2005).  

The increases in collagen mRNA levels occurred after the age of 55 and given that the 

average age for female menopause in developed countries is 51.4 years (Henderson et al, 

2008), the observed increases were most likely occurring after menopause in the majority of 

the female cohort. As estrogen levels decline following menopause, and estrogen signaling 

induces collagen synthesis (Stevenson and Thornton, 2007), it is unlikely that the 

transcriptional increases observed are a result of estrogen signaling.  

The ageing process is heavily associated with increased inflammation (Franceschi and 

Campisi, 2014), and inflammatory markers like NF-kB can drive excess collagen production in 

ageing tissues (Brack et al, 2007). It could therefore be the case that the increased presence of 

inflammatory factors in aged skin is driving this collagen transcription. Another possibility is 

that a compensatory mechanism is occurring, whereby fibroblasts respond to age-related 

collagen decline and loss of youthful dermal architecture by producing more ECM mRNA’s in 

order to restore the quality of the dermal ECM. The molecular mechanisms behind these late-

stage mRNA level increases should be the goal behind future research. 

Additionally, until the same genes are studied in males aged 40 to 70 and in subjects 

with other ethnic backgrounds, it will not be known whether the effects we observe are related 

to female menopause only, or are restricted to ageing processes in Caucasian subjects. 

Furthermore, we did not make any statistically valid, comparative changes to quantify to what 

extent COL1A1, COL1A2 and COL3A1 mRNA increased in elderly subjects in comparison to 

middle age subjects. This means that although late-life transcriptional increases of dermal 

collagen genes have been observed, the extent of their importance has not been expressed in 

statistical terms. These limitations could also be addressed with future work. 

 At the protein level, collagen I and III loss in PP and PE dermis of aged skin was 

apparent. Furthermore, like at the mRNA level, protein decline was particularly marked in PE 

skin. Losses of collagen III from the DEJ of PP and PE skin were observed, but perhaps the most 

marked change to dermal collagens was a loss of collagen I during photo-ageing. Collagen I 

gives connective tissues tensile strength, and within the skin this collagen in particular allows 

our skin to cope with mechanical loading (Shoulders and Raines, 2009). We observed a loss of 

collagen I from the dermis during both intrinsic and photo-ageing, which suggests that the 

ability of this area to withstand mechanical loading could be compromised over time. As 

outlined in the main introduction, ageing causes increased levels of collagen-degrading MMP’s 
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to be present in the dermis over time, which causes a perturbation of the balance between 

collagen production and degradation (Naylor et al, 2011). Collagen proteins have long half-lives, 

lasting several months (Gineyts et al, 2000) and their turnover decreases with age due to age-

induced decreases in fibroblast numbers and synthetic capacity (Farage et al, 2013). Reduced 

collagen turnover rates, coupled with metalloproteinase digestion over time, could be 

responsible for the collagen degradation observed in the aged skin. 

Recent research has shown that dermal collagen fragmentation has deleterious 

consequences for the resident fibroblasts, as it disrupts healthy cytoskeletal architecture, 

causing them to collapse (Fisher et al, 2008). This results in an increase in MMP-1 expression 

through an induction of the stress signaling transcription factor c-Jun. A positive feedback loop 

is established whereby elevated MMP-1 levels drive collagen degradation and further fibroblast 

collapse (Qin et al, 2014a). ROS are also potent inducers of c-Jun signaling and elevation of 

cellular ROS can decrease type I collagen transcription through this pathway (Qin et al, 2014b). 

As mentioned previously, ROS levels are elevated during both intrinsic (Poljṧak et al, 2012) and 

photo-ageing (Farage et al, 2013), and it is widely accepted that ROS and MMP-1 levels tend to 

be elevated in photo-aged skin (Naylor et al, 2011). It is therefore possible that the c-Jun-

induced MMP-1 levels are elevated in photo-aged skin in comparison to intrinsically aged skin, 

causing a more marked collagen I loss.  

Much less well studied however, is the potential for ROS to directly fragment the 

collagens themselves. A publication by Watson et al (2013) proposed that direct dermal 

collagen fibril damage induced by ROS are actually limited. Instead, they believe that damage 

to other ECM proteins such as fibronectin and elastic fibre-associated fibrillin plays a more 

pertinent role in the UVR-induced pathogenesis of dermal photo-ageing. The causative 

mechanisms behind ROS induced-protein damage during skin ageing remain somewhat poorly 

defined but what is clear however, is that extrinsic ageing caused a more robust decrease in 

type I collagen levels in comparison to intrinsic ageing. 

In our hands, the study of declining collagen levels in human skin using 

immunohistochemistry presented technical challenges. We overcame these challenges to some 

extent by using Herovici staining and were able to identify several benefits of this staining 

protocol over the use of collagen antibodies. Aside from its improved resolution of dermal 

collagen levels, Herovici staining offers several benefits over the use of collagen antibodies, 

which have been summarized in table 4.2.5. However, explosive reagents such as picric acid, 

which form part of the dye preparation, must be used with extreme caution. Additionally, the 

protein-based studies completed using this reagent were limited in their quantitative nature. 

Future work should look to address these limitations by employing alternative methods of 
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measuring dermal collagen levels. It is possible that collagen antibodies may perform better in 

methods that do not involve tissue fixation, which is known to mask antigenic sites (Dapson, 

R.W. 2007). Semi-quantitative protein based methods such as Western blotting, do not require 

tissue fixation and could therefore be pursued. Alternatively, the histological dyes used in the 

Herovici procedure, like acid fuchsin, can behave as fluorochromes (Hals, E, 1977). If it is 

possible to differentially excite the methyl blue and acid fuchsin dyes, which label collagen III 

and collagen I respectively during the procedure, semi-quantitative evaluation of type I and 

type III collagens could take place using fluorescence microscopy. 
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Table 4.2.5: Factors to be considered concerning the use of the Herovici stain as a replacement for collagen I and 
collagen III antibodies 

Factor Herovici Polychrome Stain Collagen I antibody 

Degree of 
molecule 
binding 

High. We observed strong staining in 
the dermal region. The acidic dye 
molecules used in the Herovici stain 
(methyl blue and acid fuchsin) have a 
high affinity for many of the basic 
amino acids present on type I and type 
III collagen fibrils  (Motta and Ruggeri, 
1984). 

Low- Staining in the dermal 
compartment was weak and non-
specific binding was present in the 
stratum corneum. Collagen 
molecules are highly cross-linked to 
one another and form close 
associations that could prevent 
antibodies from reaching amino acid 
targets (Shoulders and Raines, 2009).  

Specificity of 
molecule 
binding 

Correct binding of dye molecules to 
their targets requires that stringent 
attention be paid to incubation times 
and tissue washes in order to prevent 
non-specific dye binding. In order to 
create differential type I and type III 
collagen binding, the presence of picric 
acid is thought to displace dye 
molecules from non-specifically-bound 
areas so they remain bound to collagen 
only. The differences in the 
composition and arrangement of type I 
and type III collagen molecules allows a 
differential affinity of type III collagen 
for methyl blue and Type I collagen for 
acid fuchsin (LLewylln, B 2008). This 
information suggests the reagent is 
specific if incubation times are 
followed correctly. 

Antibodies are produced from 
animals immunised against a specific 
target protein sequence and thus in 
their purified form, should be highly 
specific (Leenars et al, 2005). 
However, we showed empirically that 
non-specific binding occurs in the 
stratum corneum of human skin and 
also saw inconsistent results from 
use of the collagen I antibody in 
mouse skin. 

Time required Comparably short- staining can be 
completed in one afternoon. 

Need for visualisation with 
fluorescently conjugated secondary 
antibody and overnight incubation of 
primary antibody means experiment 
takes 24 hours minimum. 

Expense Dye reagents and acids can be 
purchased at a fraction of the cost 
compared to antibodies. 

Primary and secondary antibodies 
must be purchased which cost 
several hundreds of pounds 

Harm to the 
environment 

Picric acid is a high-level irritant and is 
explosive. It must be used with 
extreme caution 

Antibody production involves the use 
of animals. According to the National 
Centre for the Replacement, 
Refinement & Reduction of Animals 
in Research (NC3Rs), use of animals 
in biomedical research should be 
avoided if alternatives are available 
(Kilkenny et al, 2010). From an ethical 
standpoint Herovici staining is a 
preferable method. 
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4.3 Transcriptomic and Proteomic changes to basement membrane 
collagens in human photo-protected and photo-exposed skin with age 
 

4.3.1 Introduction 
 

Collagens IV and VII are two specialised ECM proteins found in the basement 

membrane at the dermal-epidermal junction (DEJ). Collagen IV forms a mesh-like network of 

filaments in the lamina densa, which provides a support for the adherence of other BM 

proteins such as laminins (Poschl et al, 2004). Collagen VII filaments form anchoring fibrils that 

join the BM to the underlying dermis and together the two collagens promote structural 

integrity and mechanical stability at the DEJ (Keene et al, 1987; Aumailley et al, 1996). Collagen 

VII filaments are composed of 3 identical alpha chains encoded for by the COL7A1 gene 

(www.genecards.org) whereas collagen IV filaments are made up of several different alpha sub-

units depending on the hetero-trimer identity of the collagen IV molecule. Each chain is 

encoded for by its own gene and the collagen IV gene family consists of 6 genes (COL4A1, 

COL4A2, COL4A3, COL4A4, COL4A5 and COL4A6) encoding the alpha chains known as α1(IV) 

through to α6(IV). Collagen IV alpha chains assemble into 3 distinct hetero-trimers: [α1(IV)]2α2, 

α3(IV), α4(IV), α5(IV) and [α5(IV)]2α6, which are found in unique arrangements depending on 

the tissue location and architecture (Behrens et al, 2012).  

[α1(IV)]2α2 and [α5(IV)]2α6 are the two molecules found in varying proportions within 

skin tissue, whereas the α3(IV)α4(IV)α5(IV) is absent, except from within the dermal 

vasculature (Hasegawa et al, 2007; Saito et al, 2000). The two skin-specific collagen IV hetero-

trimers are found in the epidermal BM, the BM’s of skin appendages and lining the dermal 

vasculature. Their regional-specific expression levels are detailed in table 4.3.1 below: 

Table 4.3.1: Distribution of type IV collagen heterotrimers in skin and its appendages (table information taken from 
Hasegawa et al (2007)). +++= high expression, ++= medium expression, +=low expression, - = absent expression 

Basement membrane/skin 
region 

Collagen IV molecule 

[α1(IV)]2α2 α3(IV)α4(IV)α5(IV) [α5(IV)]2α6 

Epidermal epithelium +++ - +++ 

Eccrine sweat gland- 
secretory portion 

+++ - + 

Eccrine sweat gland- ductal 
portion 

+ - +++ 

Sebaceous gland ++ - +++ 

Arrector pili muscle of hair +++ - ++ 

Hair follicle sheath ++ - +++ 

Dermal vasculature ++ ++ ++ 
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Previous publications have detailed changes to collagen IV mRNA and protein with age 

in both photo-exposed and photo-protected conditions. Several publications showed a 

decrease in collagen IV protein content at the DEJ in both intrinsically aged (Vazquez et al, 

1996; Langton et al, 2016) and photo-aged (Contet-Audonneau et al, 1999; Le Varlet et al, 

1998) skin. In many of these publications the authors also implicated structural changes at the 

DEJ with age including rete ridge loss, DEJ flattening (Langton et al; 2016) and basement 

membrane thickening (Vazquez et al, 1996). These findings all suggest, but do not prove, a 

correlation between declining collagen IV expression and a loss of normal DEJ integrity. 

Protein changes with age at the DEJ are not unique to collagen IV however, as several 

authors have reported a decline in collagen VII in photo-protected (Langton et al, 2016) and 

photo-exposed (Naylor et al, 2011; Contet-Audonneau et al, 1999) skin with age. 

Transcriptional changes to basement membrane (BM) components with age have also shown 

that collagen VII expression declines at the mRNA level (Craven et al, 1997; Langton et al, 2016) 

whereas some evidence indicates that collagen IV mRNA levels increase with intrinsic ageing 

(Langton et al, 2016; Vasquez et al, 1996). Langton et al (2016) looked at the changes in protein 

levels of several other BM markers in intrinsically aged skin and reported decreases in collagen 

XVII, integrin β4 and laminin-332 as well as collagens IV and VII.   

The studies that have been completed so far on changes to the levels of collagen IV and VII 

mRNA and protein with age are limited by the number of subjects (Langton et al: n=3; Craven 

et al: n=10 for collagen VII mRNA) and gender (Langton et al= males only; Craven et al= males 

and females mixed). Specifically, basement membrane protein changes in females during 

intrinsic and photo-ageing have not been studied in depth. Herein, the data presented in this 

results section constructs on what has already been discovered in several ways: 

4.3.2 Novel concepts in our data 
 
1) Statistical power 

At the time of writing, this is the first study of its kind to have considered 5 separate 

age groups with a subject number of n ≥ 22 for participants in their 20’s, 30’s, 40’s, 50’s, 

60’s and 70’s. The standard deviations in age range for each cohort do not exceed 1.5 and 

the high numbers of participants in our study improved the probability of un-covering 

statistically valid, genuine results. This is because, in statistical terms, the sample mean we 

generate from our population is likely to reflect the population mean (i.e. females 

undergoing intrinsic and photo-ageing (Halsey et al, 2015). 
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2) Transcript analysis of all genes within each collagen gene family 

By looking at changes in the transcript levels of all the alpha chains encoded for by 

collagen gene families with multiple different alpha chains (like collagen IV) we can detect 

chain-specific transcriptional differences. This has not been done before and is important 

because only certain alpha chains of collagen IV are expressed at high levels in the skin (see 

table 4.3.1). 

 

3) Laser capture microdissection (LCD) compartmentalisation analyses 

By using LCD to isolate epidermal and dermal compartments free from appendages the 

likelihood of picking up transcriptional changes specific to the dermis and to the epidermis 

are increased. Given that both keratinocytes and fibroblasts are able to produce collagen IV 

and collagen VII mRNA it will also be interesting to look at potential differences to the 

changes in mRNA levels with age in these two different cell types of the epidermis and 

dermis. Furthermore, having full thickness data along with the separate epidermal and 

dermal compartments will allow us to compare compartment-specific changes to whole-

skin changes. Additionally, the FTS will allow us to take into account how adnexal skin 

structures such as hair follicles contribute to the mRNA present (as well as the epidermis 

and dermis). 

4.3.3 Objectives 
 
The objectives of this section are therefore:  

1) Identify transcriptional changes to collagen IV and collagen VII mRNA in separate 

epidermal and dermal compartments as well as full thickness skin (FTS) during intrinsic 

ageing and photo-ageing in female subjects. 

 

2) Determine how both intrinsic and photo-ageing impact collagen IV and collagen VII 

protein levels in female subjects using immunohistochemistry. 

 
 

3) Consider if the levels and arrangement of collagen IV and VII at the DEJ in intrinsically 

aged female skin show a similar change with age compared to C57BL/6 mice. 

4.3.4 Collagen IV and VII transcriptomic analysis 
 

Subject selection and sample preparation for mRNA analysis was performed as 

described in section 2.7- Materials and Methods. For collagen IV transcript analysis, several 

probe-sets specific to each gene encoding each alpha chain sub-unit were used as detailed in 
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the table below. For collagen VII transcript analysis a single probe set targeting COL7A1 mRNA 

transcripts was used. Details of the probe sets are summarised below in table 4.3.2. 

 

Table 4.3.2: Details of probe sets used in the microarray design for the Collagen IV gene family and the COL7A1 gene. 
Also detailed are the known mRNA transcript variants for the gene and also the number of known protein isoforms. 
Transcript variant and protein isoform information (columns 4 and 5 in the table) were taken from AceView online: 
(https://www.ncbi.nlm.nih.gov/ieb/research/acembly/)  

Collagen 
gene 

Alpha chain 
encoded for by 
gene transcript 

Number of probe sets 
designed to bind 
transcripts in this study 

mRNA 
transcript 
variants 

Known 
isoforms 

COL4A1 α1 3  

11716639_a_at 

11760558_at 
11716638_s_at 

 

11 5 

COL4A2 α2 3 

11715453_a_at 

11715452_s_at 

11715451_a_at 
 

18 10 

COL4A3 α3 2 

11735153_a_at 

11735154_a_at 
 

12 7 

COL4A4 α4 2 

11725266_at 

11725265_at 
 

6 4 

COL4A5 α5 3 

11760523_at 

11724094_a_at 

11757903_s_at 
 

13 10 

COL4A6 α6 7 

11725910_a_at 

11759994_a_at 

11751888_x_at 

11751893_a_at 

11750015_a_at 

11751887_a_at 

11741797_a_at 
 

12 10 

COL7A1 α1 1 
  11721705_at 

 

30 25 

 

Due to the high number of probe sets for collagen IV, a thresholding approach was 

applied to eliminate probe sets that had low mean expression levels from the analysis. A cut-off 

value of 100 was applied and hence any probe set showing a mean expression value of ≤100 at 

age 20 was removed from the analysis. The value 100 was chosen because the majority of 

https://www.ncbi.nlm.nih.gov/ieb/research/acembly/
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probes at this level or below showed negligible change to their expression levels with age and 

likely represented background signal or non-specific binding of mRNA (Seo and Hoffman, 2006).  

Once this threshold had been applied probe sets targeting COL4A1, COL4A2, COL4A5 

and COL4A6 mRNA’s but not COL4A3 and COL4A4 remained. Plots of the change in mean mRNA 

levels for the thresholded probe-sets with age in the different skin compartments are shown in 

figures 4.3.2-4.3.4, where a formatting system (see figure 4.3.1) has been used to depict 

statistically significant changes. The level of signal expression for each probe set within each 

age group indicates the mean level of mRNA that bound to that probe set from all of the 

subjects. For collagen IV mRNAs, the probe sets targeting each individual alpha chain have been 

colour coded. Dermal and epidermal compartments were analysed separately along with full 

thickness skin for both photo-protected (PP) and photo-exposed (PE) conditions. 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.1: Formatting system assigned to the probe sets used to analyse the different mRNA transcripts from the 
collagen IV gene family (A) and the single probe set used to analyse transcripts from the COL7A1 gene (B). n/s = non-
significant. 
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Collagen IV and VII mRNA levels: Dermal Compartment only 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3.2: Microarray analysis of mRNA levels for basement membrane collagens IV and VII in PP (A, C) and PE (B, D) dermis of individuals aged 20, 30, 40, 50, 60 and 70. Plots A-D show the 
change in mean signal expression of mRNA levels from the 2nd  to 7th decade. The different colours depict the probe sets targeting COL4A1 (black), COL4A2 (green), COL4A5 (grey), COL4A6 
(blue) and COL7A1 (black) mRNAs as shown in figure 4.3.1. Thin dotted lines show probe sets that did not significantly change in expression level with age. Thin uniform lines show probes that 
significantly change with age (p ≤ 0.05). Thick uniform lines show probe sets that had a highly significant change with age (p ≤ 0.05; q ≤ 0.05). 
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Collagen IV and VII mRNA levels: Epidermal Compartment only 

Figure 4.3.3: Microarray analysis of mRNA levels for basement membrane collagens IV and VII in PP (A,C) and PE (B,D) epidermis of individuals aged 20, 30, 40, 50, 60 and 70. Plots A-D show the 
change in mean signal expression of mRNA levels from the 2nd to 7th decade. The different colours depict the probe sets targeting COL4A1 (black), COL4A2 (green), COL4A5 (grey), COL4A6 (blue) 
and COL7A1 (black) mRNAs as shown in Figure 1. Thin dotted lines show probe sets that did not significantly change in expression level with age. Thin uniform lines show probes that 
significantly change with age (p ≤ 0.05). Thick uniform lines show probe sets that had a highly significant change with age (p ≤ 0.05; q ≤ 0.05). 
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Collagen IV and collagen VII mRNA levels: Full-thickness skin 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3.4:  Microarray analysis of mRNA levels for basement membrane collagens IV and VII in PP (A,C) and PE (B,D) FTS of individuals aged 20, 30, 40, 50, 60 and 70. Plots A-D show the 
change in mean signal expression of mRNA levels from the 2nd to 7th decade. The different colours depict the probe sets targeting COL4A1 (black), COL4A2 (green), COL4A5 (grey), COL4A6 (blue) 
and COL7A1 (black) mRNAs as shown in Figure 1. Thin dotted lines show probe sets that did not significantly change in expression level with age. Thin uniform lines show probes that 

significantly change with age (p ≤ 0.05). Thick uniform lines show probe sets that had a highly significant change with age (p ≤ 0.05; q ≤ 0.05).. 
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4.3.5 Age-related changes in collagen IV mRNA levels 
 

For collagen IV mRNA, the different probe set expression levels and arrangements 

formed a distinctive pattern within the different skin compartments. In the PP (figure 4.3.2 A) 

and PE (figure 4.3.2 B) dermis, the two probe sets 11716638_s_at (black) and 11715452_s_at 

(green) which bound COL4A1 and COL4A2 mRNA respectively, showed the highest levels of 

mRNA binding. These two probes also showed the greatest change in their mean expression 

levels with age in the PE dermis. The dermis showed the greatest variation in probe set 

expression levels of all the compartments, with some probes having a mean expression level of 

~1500 units and others ~100 units.  

In the epidermis the probe sets were less variable in their mean expression levels 

compared to the dermis. However, like in the dermis, the probe sets which showed the highest 

level of mean expression at age 20 were also the ones that showed the greatest change with 

age. This occurred in both PP (figure 4.3.3 A) and PE (figure 4.3.3 B) skin. These probes were 

11757903_s_at and 11724094_a_at, which both bound to COL4A5 mRNA. 

 The two probe sets which had showed high levels of mean expression and changes 

with age in the PP and PE dermis (11716638_s_at and 11715452_s_at which bound COL4A1 

and COL4A2 mRNA) also had the greatest mean expression in the PP (figure 4.3.4 A) and PE 

(figure 4.3.4 B) FTS. However, their level of mean expression here was reduced and did not 

significantly change with age. This may be because they could have been at more concentrated 

levels in the isolated dermal compartment instead of the FTS where the epidermal 

compartment and skin appendages are also present. Generally, more significant changes were 

yielded from the isolated epidermal and dermal compartments compared to the FTS, with each 

compartment showing the most robust changes to different collagen IV genes. In the dermis 

the most marked changes were occurring to COL4A1 and COL4A2 mRNA levels whereas in the 

epidermis COL4A5 and COL4A6 levels changed most dramatically. 

4.3.6 Age related changes in collagen VII mRNA levels. 
 

In the separate epidermal and dermal compartments, collagen VII mRNA levels showed 

the most significant changes in the PP (figure 4.3.3 C) and PE epidermis (figure 4.3.3 D). In the 

PP and PE dermis (figure 4.3.2 C and D), probe set binding was low and yielded no significant 

age-related changes. In the FTS, collagen VII mRNA increased with age(Figure 4.3.3 C) but in the 

PE FTS the mRNA level did not change (figure 4.3.4 D). Together this data suggests that the 

epidermal compartment was the main source of age-related changes to collagen VII mRNA as 

this is where significant changes to COL7A1 mRNA levels occurred during both intrinsic and 

photo-ageing. 
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4.3.7 Summary of age-related modulation of collagen IV and collagen VII 
mRNA. 
 

The information gathered from the plots in 4.3.6 was put into summary tables found 

below 

Table 4.3.2: Details of statistically significant changes to collagen IV in each compartment. Orange fill indicates the 
compartment with the most significant changes in PE skin and blue fill indicates the PP skin. * PP dermis showed 2x 
COL4A1 probe-sets increasing in expression and 1x COL4A5 probe set decreasing in expression 

Skin sample/condition Signal expression 
range of statistically 
significant probes 
(to nearest 100) 

Number of upregulated (+) or 
downregulated (-) probes 
statistically correlating with age 
with p ≤ 0.05. (numbers in 
parentheses indicate the number of 
these probes that also had q ≤ 0.05) 

Photo-protected (PP) dermis 200-1000 -2 (2) +1 (0)* 

Photo-exposed (PE) dermis 100-1500 -7 (4) 

Photo-protected (PP) 
epidermis 

100-400 +3 (1) 

Photo-exposed (PE) 
epidermis 

100-700 +4 (4) 

Photo-protected FTS (PP)  100-300 +3 (3) 

Photo-exposed FTS (PE) NP NP 

 
Table 4.3.3: Details of the alpha chain identity and probe set ID for significant probes within each skin compartment. 

Skin sample/condition α-chain identity of highly 
significant probes (P≤0.05, 
Q≤0.05) 

α-chain identity of significant 
probes (P≤0.05, Q≥0.05) 

Photo-protected (PP) dermis α1 11716638_s_at 
α1 11716639_a_at 

α5 11715453_a_at 

Photo-exposed (PE) dermis α1 11716638_s_at 
α1 11716639_a_at 
α2 11715451_a_at 
α2 11715452_s_at 

α2 11715453_a_at 
α5 11724094_a_at 
α5 11757903_s_at 

Photo-protected (PP) 
epidermis 

α5 11724094_a_at α5 11757903_s_at 
α6 11725910_a_at 

Photo-exposed (PE) 
epidermis 

α5 11724094_a_at 
α5 11757903_s_at 
α6 11725910_a_at 
α6 11751888_x_at 

NP 

Photo-protected FTS (PP)  α5 11724094_a_at 
α5 11757903_s_at 
α6 11725910_a_at 

NP 

Photo-exposed FTS (PE) NP NP 

 
Table 4.3.3 shows that there were differential changes to the mRNA levels for collagen 

IV in the epidermal and dermal compartments of PP and PE skin. Collagen IV mRNA levels 

increased in the epidermal compartment and decreased in the dermal compartment during 

both intrinsic and photo-ageing. The majority of the transcriptional changes in the PP and PE 
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dermal compartments were a result of decreasing COL4A1 and COL4A2 mRNA and there were 

more significantly changing probe sets in the PE dermis compared to the PP dermis. 

 In the epidermal compartment COL4A5 and COL4A6 transcription increased in the PP 

and PE skin. Like in the dermis, there were more significantly changing probes in the PE 

condition. The separate epidermal and dermal compartments therefore showed different 

changes to collagen IV alpha chain transcription with age. In the dermis decreased transcription 

of mRNAs encoding the alpha chains that form the heterotrimer [α1(IV)]2α2 occurred with age. 

In the epidermis mRNAs encoding the alpha chains for the heterotrimer [α5(IV)]2α6 increased. 

Both the transcriptional decreases in the dermis and increases in the epidermis were more 

marked in the PE skin compared to the PP skin, suggesting photo-ageing modulated collagen IV 

gene transcription to a greater extent than intrinsic ageing. 

In the FTS samples fewer significant changes to the probe set expression levels were 

present compared to the epidermis and dermis in isolation. Despite a greater number of 

significantly changing probe sets in the separate epidermal and dermal compartments in the PE 

skin compared to the PP skin, there were more significant changes in the PP FTS compared to 

the PE FTS. In the PP FTS three probe sets significantly changed expression levels with age 

whereas in the PE FTS none of the probe sets showed age-related changes. 

Collagen VII mRNA levels (see table 4.3.4) showed the most robust changes in the 

epidermis, where mRNA expression increased in both intrinsically aged and photo-aged tissue. 

This increase was also statistically significant in the PP FTS. The probe set for COL7A1 did not 

show any highly significant changes with age demonstrated by the observation that there were 

no instances where P ≤ 0.05 and Q ≤ 0.05. 

Table 4.3.4: Details of statistically significant changes to collagen VII in each compartment. Orange fill indicates the 
compartment with the most significant changes in PE skin and blue fill indicates the PP skin.  

Skin sample/condition Signal expression 
range of 
statistically 
significant probe 
(to nearest 100) 

Number of upregulated (+) or 
downregulated (-) probes statistically 
correlating with age with p ≤ 0.05. (numbers 
in parentheses indicate the number of these 
probes that also had q ≤ 0.05) 

Photo-protected (PP) 
dermis 

NP NP 

Photo-exposed (PE) 
dermis 

NP NP 

Photo-protected (PP) 
epidermis 

300-400 +1 (0) 

Photo-exposed (PE) 
epidermis 

500-600 +1 (0) 

Photo-protected FTS 
(PP)  

600-800 +1 (0) 

Photo-exposed FTS (PE) NP NP 
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A summary of the main changes to collagen IV and collage VII mRNA levels with age is shown 

below in table 4.3.5 

Table 4.3.5: Summary changes of activity for the individual genes encoding for collagen IV alpha chains and the 
collagen VII alpha chain 

Condition collagen IV collagen VII 

Photo-ageing COL4A5, COL4A6 ↑ (epidermis)      

COL4A1, COL4A2 ↓ (dermis) 

↑ epidermis 

Intrinsic ageing COL4A5, COL4A6 ↑ (epidermis)      

COL4A1, COL4A2 ↓ (dermis) 

↑ epidermis 

 

4.3.8 Basement membrane collagen protein expression is lost with age  
 

The change in collagen IV and collagen VII protein expression was studied by 

performing fluorescent immunohistochemistry on human skin using collagen IV and collagen 

VII primary antibodies (details in 2.8.4- materials and methods). The collagen IV antibody used 

was specific to the αI chain encoded for by the COL4A1 gene, therefore future references to 

“collagen IV” protein refer to α1 chain of collagen IV  

Figure 4.3.5 shows representative examples of collagen IV (αI) staining in skin samples 

from PP and PE young and aged skin. In all skin samples collagen IV was located as previously 

described in aforementioned publications: at the basement membrane and lining the hair 

follicles, sweat glands, sebaceous glands and dermal vasculature. The levels of collagen IV were 

similar in the young PP (4.3.5 A, A’) and PE (4.3.5 B, B’) skin where a strong, wavy band of 

collagen IV was found at the DEJ. Thick, smooth Collagen IV labelling was also present in the 

dermal capillaries (white arrowheads 4.3.5 A, B, C) (some non-specific antibody binding was 

also present in the dermis).  Collagen IV expression levels did not change in the PP aged (4.3.5 

C, C’) skin but were dramatically reduced in the aged PE skin (4.3.5 D, D’), which had a thinner, 

less intense band of collagen IV labelling located at the DEJ (green arrowheads- D’) compared 

to the other samples. 
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Figure 4.3.5: Representative low and high power images of photo-protected young (A, A’) and old (C, C’) and photo-
exposed young (B, B’) and old (D,D’) epidermis (e) and dermis (de) stained with an Alexa 568-conjugated collagen IV 
antibody with DAPI nuclear counterstain. All sections were imaged on a confocal microscope using a 40x oil 
objective. Scale bar (low power images A-D) = 50 µm (Shown in D), (high power images A’-D’= 10 µm (Shown in D’). 
Dotted squares in A-D mark the corresponding magnified region in A’-D’. Prominent labelling of dermal vasculature 
was observed in A, B and C (white arrowheads). Green arrowheads indicate loss of collagen IV in PE aged skin. 
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Figure 4.3.6: Representative low and high power images of photo-protected young (A, A’) and old (C, C’) and photo-
exposed young (B, B’) and old (D, D’) epidermis (e) and dermis (de) stained with a collagen VII primary antibody, 
Alexa 568-secondary antibody with DAPI nuclear counterstain. Scale bar (low power images A-D) = 50 µm shown in 
D, (high power images A’-D’) = 10 um shown in D’.Dotted squares in A-D mark the corresponding magnified region in 
A’-D’. Small green arrows in C’ indicate loss of Collagen VII labelling at the DEJ. Larger arrows in D’ represent more 
dramatic collagen VII loss. 

 
Despite more high powered imaging settings, collagen VII immunofluorescence (figure 

4.3.6) in the young age groups was less intense than age-matched collagen IV expression from 

the same biopsy site. This was expected given that collagen IV is thought to be more abundant 

than collagen VII at the DEJ (Kalluri, R, 2003). Collagen VII staining was located exclusively at the 

DEJ where labelling was wavy and continuous at the site of the BM. In the aged PP skin (4.3.6 C, 

C’), the thickness of the Collagen VII band appeared the same but the staining was less intense 

(green arrows, C’) compared to the young counterpart (A, A’). In the young (B, B’) vs aged (D, 

D’) PE skin the thickness of the collagen VII band was reduced along with a dramatic decrease 
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in intensity of expression (large green arrows D’). Labelling was so limited in the old PE skin that 

the collagen VII no longer formed a continuous line at the DEJ. 

Differences in the protein expression of collagen IV and collagen VII at the DEJ of young 

versus aged skin were quantified by assessing the mean expression levels in the PP and PE 

epidermis of young (n=3) and old (n=3) subjects. Details of the analyses to generate the levels 

of fluorescence intensity (FI) for each condition can be found in 2.8.7- Materials and Methods. 

 
Figure 4.3.7: Mean expression levels of collagen IV protein at the DEJ of PP and PE biopsies of young (Y) and old (O) 
subjects. The subjects making up the data pool are detailed in the start of the chapter. Each individual data point 
represents the mean pixel intensity of all of the fields taken from forearm and buttock of young (21-22y) and old (60-
65y) subjects. Y-PP= young photo-protected, O-PP= old photo-protected, Y-PE = young photo-exposed, O-PE= old 
photo-exposed. Error bars represent standard deviations calculated from the mean pixel intensity values for all of 
the fields imaged within each condition. Un-paired t-testing indicated that the change in expression with intrinsic 
ageing was not significant (n/s) but was highly significant with photo-ageing (**). 
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Figure 4.3.8: Mean expression levels of collagen VII protein at the DEJ of PP and PE biopsies of young (Y) and old (O) 
subjects. The subjects making up the data pool are detailed in the start of the chapter. Each individual data point 
represents the mean pixel intensity of all of the fields taken from forearm and buttock of young (21-22y) and old (60-
65y) subjects. Y-PP= young photo-protected, O-PP= old photo-protected, Y-PE = young photo-exposed, O-PE= old 
photo-exposed. Error bars represent standard deviations calculated from the mean pixel intensity values for all of 
the fields imaged within each condition. Un-paired t-testing indicated that the change in expression with intrinsic 
ageing was highly significant (**). The change in expression with photo-ageing was close to significance- indicated by 
n/s*. 

  

Figures 4.3.7 and 4.3.8 detail the change in mean protein expression of collagen IV and 

collagen VII young and old PP and PE skin. There was a small, non-significant, decrease in 

collagen IV expression in the PP aged skin and a marked decrease in aged PE skin. Collagen VII 

levels decreased during both intrinsic and photo-ageing with this being more marked in the PP 

skin. The results of the protein expression analyses are summarised below in tables 4.3.6 and 

4.3.7. 

Table 4.3.6: Mean expression values of collagen IV and VII at the DEJ as calculated by the average fluorescence 
intensity in the different skin biopsy samples. Green fill indicates a decrease with age whereas orange fill indicates an 
increase with age. The numbers in brackets show the relative increase or decrease with age. Numbers in brackets 
indicate the change in expression with age. 

Skin sample/ condition Mean collagen IV expression 

(accurate to 1 decimal place) 

Mean collagen VII expression 

(accurate to 1 decimal place) 

PP- young (buttock) 18.3 9.5 

PP- old (buttock) 16.8 (-1.5) 4.1 (-5.4) 

PE- young (forearm) 14.2 5.4 

PE- old (forearm) 3.9 (-10.3) 3.1 (-2.3) 
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Table 4.3.7: Summary of the p-values generated from statistical testing. Green fill represents the most significant 
results from all of the analyses. 

Epidermal sample/ 

condition 

T-test p value: change in 

mean collagen IV level. 

T-test p value: change in mean 

collagen VII level. 

PP- young (buttock) PP young vs old 

0.44 

PP young vs old 

0.003 PP- old (buttock) 

PE- young (forearm) PE young vs old 

3.8 x 10-5 

PE young vs old 

0.08 PE- old (forearm) 

 

4.3.9 Discussion: Novel identification of transcriptional changes in the collagen 
IV alpha chain genes with age 
 

The objectives of this section were to look at how the mRNA and protein levels of 

collagen IV and collagen VII changed in both intrinsically aged and photo-aged female skin. At 

the mRNA level, there was a general trend for the collagen IV transcripts to show differential 

changes with age depending on their alpha chain identity. This presented as decreased COL4A1 

and COL4A2 mRNA transcripts present in the dermis and increased COL4A5 and COL4A6 

transcripts present in the epidermis. The 6 collagen IV genes are clustered into pairs due to 

their chromosomal location and transcriptional activity. [COL4A1 and COL4A2] and [COL4A5 

and COL4A6] are gene pairs which have a highly unusual head-to-head orientation on opposite 

gene strands within the same chromosomal region. The gene pairs share a bi-functional 

promoter as well as enhancer elements (Sund et al, 2005). It is therefore logical that the two 

gene pairs would group together in terms of statistically significant transcriptional changes to 

age given that their activity is coupled, with transcription occurring from the same region under 

the same promoter.  

Basement membranes are specialized ECM’s that determine the polarity of basal 

keratinocytes. Basal epidermal stem cells (Epi SC’s) adhere to the BM via integrins, which are 

trans-membrane proteins present on the Epi SC surface which modulate signalling involved in 

cell proliferation and motility (Choi et al, 2015). Stem cell homeostasis is maintained by cross-

talk between Epi SC’s and the underlying basement membrane structure. Additionally, it is 

thought that both the mechanical integrity and the protein composition of the BM regulate this 

communication (Brizzi et al, 2012). Both intrinsic and UV ageing are associated with increased 

levels of collagen-degrading enzymes such as Matrix Metallo-Proteinases (MMP’s) and in 

particular, MMP-2 and MMP-9 degrade collagens IV and VII. Loss of type IV and VII collagens 

dramatically impacts the BM architecture and as a result negatively impacts the Epi SC niche 

(Panich et al, 2016). 
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Collagen IV α1 and α2 chains are expressed in the BM’s of both epidermal epithelia and 

dermal vasculature whereas α5 and α6 chains are restricted to epithelial BM’s only. The 

significant decreases in COL4A1 and COL4A2 mRNA we observed in the dermis could represent 

a decline in the presence of dermal vasculature in this region which has been shown to occur 

with age (Gunin et al, 2015). Given the aforementioned impact of ageing on the BM 

architecture and stem cell niche, the increases in α5 and α6 chain transcription, particularly 

within the PE epidermis, may represent a compensatory transcriptional mechanism. 

Replenishing the dramatic loss of collagen IV protein that was observed to occur with age could 

help to maintain the integrity of the Epi SC niche. This may also be the case for collagen VII, 

which showed increase in epidermal mRNA levels in both intrinsically aged and photo-aged 

tissues. 

Despite this putative compensatory transcriptional increase of collagen IV and collagen 

VII mRNAs during ageing, both of these components decreased at the protein level in both 

aged PP and PE skin. This suggests that the synthesis of the BM collagens was lower than their 

degradation in the aged skin, either as a potential result of poorer collagen protein translation 

and assembly at the BM or increased degradation by proteases. In the PP skin, the collagen IV 

decline was not statistically significant whereas in the PE skin dramatic collagen IV loss occurred 

at the DEJ. Collagen VII decline at the protein level was significant in the PP aged skin and very 

close to conventional significance in the PE skin. Unexpectedly, collagen VII levels in the young 

PE skin were considerably lower than in the PP counterpart. This finding could represent either 

a structural difference in terms of collagen VII content at the BM of forearm and buttock skin or 

potential premature degradation of DEJ structures. Premature collagen VII loss has been shown 

to occur in photo-exposed skin of relatively young, 30 year old females, in previous reports 

(Amano, S 2010).  

Altogether ageing decreased the levels of the BM collagens at the DEJ. There was a 

minor, non-significant loss of collagen IV during intrinsic ageing, suggesting that collagen IV 

levels are retained during this process. This is in agreement with our studies using young and 

aged C57BL/6 mouse tissues. Collagen VII loss was marked during intrinsic ageing, which we 

have also observed in mouse. This suggests that the protein changes to collagens IV and VII at 

the DEJ are similar in intrinsically aged mouse and human skin. 

For the first time we have shown that modulation of collagen IV expression at the 

transcriptional level with age was different for the genes encoding the collagen IV alpha chains. 

However, as the immunostaining completed here was specific to the α1 chain of collagen IV, an 

important future step in this research would be to use other alpha-chain specific antibodies. 

This would allow us to determine if, like at the mRNA level, the decreases in collagen IV protein 
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we observed occurred to other alpha chains aside from α1. This would give further insight into 

the protein changes occurring at the BM during intrinsic and photo-ageing. 
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4.4 Investigation of mRNA and protein changes in the nuclear lamina 
during intrinsic and photo-ageing. 
 

4.4.1 Introduction Lamin protein organisation in normal skin 
 

Immuno-histochemical studies of lamins A, C, B1 and B2 in the skin of normal subjects 

show a distinctive pattern of expression in the different skin layers, which are summarised in 

table 4.4.1. Generally, A-type lamins are expressed at high levels in the upper epidermal layers 

and in dermal fibroblasts, while low expression levels are exhibited by cells belonging to the 

basal epidermal layer. B-type lamins are highly expressed in the basal epidermis and in 

melanocytes and Langerhans cells. In the upper epidermis lamin B1 expression is reduced 

compared to the basal layer. B-type lamins are expressed at much lower levels in the dermal 

fibroblasts compared to the epidermal region. Table 4.4.1 shows that the levels of A- and B-

type lamins within different compartments of the skin and their constituent cellular 

populations is variable, and it is thought that high levels of lamin B1 mark proliferating cells 

(Broers et al, 1997).  

There is conflict in the literature regarding the levels of B-type lamins in dermal 

fibroblasts (marked with * in table 4.4.1). Oguchi et al, (2002) and Broers et al, (1997) show 

that lamin B1 is absent from dermal fibroblasts whereas lamin B2 is present at a medium level 

whereas information from the Human Protein Atlas (http://www.proteinatlas.org/) indicates 

that lamin B1 levels are high and lamin B2 levels are low. 

 

Table 4.4.1: Using the combined information from the publications Libotte et al, 2005, Tilli et al, 2003, Oguchi et al, 
2002 and Broers et al, 1997 and the online Human Protein Atlas, levels of the different A and B-type lamins in skin 
cells are summarised. ++ (dark green) indicates high level, + (light green) indicates medium level, +/- (grey) indicates 
weak expression or only some cells labelled, - (white) indicates no expression, N/A information not available. 
Asterisk’s (*) mark conflicting reports of levels. 

Skin 

Compartment 

lamin A lamin C lamin A/C lamin B1 lamin B2 

Basal layer - + + ++ ++ 

Spinous layer ++ ++ ++ + + 

Granular layer ++ ++ ++ +/- + 

Dermal fibroblast + + + +/-* +/-* 

Melanocyte N/A N/A + ++ + 

Langerhans cell N/A N/A + ++ +/- 

 

 

http://www.proteinatlas.org/
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4.4.2 Objectives of this section 
 

From reviewing the literature concerning lamins in skin development, oxidative 

defence and ageing biology (see main thesis intro parts 1.13-1.18) it appears that a systematic 

genomic and proteomic approach to answer the question of what happens to the levels and 

organisation of the A-type and B-type lamins in both intrinsic and extrinsic skin ageing had not 

been addressed. As lamin B1 and lamin A/C are the most heavily implicated in both skin ageing 

and development these two proteins were studied in depth. The objectives of the data 

presented were to:  

1. Use microarray data of human tissue to identify age-related (intrinsic ageing) 

transcriptional changes to the LMNA and LMNB1 genes. 

2. Use microarray and protein data to assess whether photo-ageing causes a 

differential change to LMNA and LMNB1 mRNA and protein levels with age 

compared to intrinsic ageing. 

3. Complete Immuno-histochemical staining on human skin sections in order to assess 

if lamin B1 and lamin A/C protein levels and organisation changed during intrinsic 

and extrinsic ageing. 

 

4.4.3 Identification of transcriptional changes to the LMNA and LMNB1 genes 
with age 
 
 In order to fulfil the aims of objective’s 1 and 2, changes in transcriptional activity of 

the LMNA and LMNB1 genes was assessed in female subjects from ages 20-70. The Affymetrix 

microarray chip uses multiple probe sets for each gene in order to detect alternatively spliced 

gene products and to increase the probability of effective mRNA binding. There were 7 probe 

sets designed to target mRNA transcripts from the LMNA gene, which is known to produce 22 

alternatively spliced mRNA variants, 19 of which putatively encode proteins.Footnote 1 5 probe-

sets targeted LMNB1 mRNA, which has 10 mRNA splice variants, 7 of which putatively encode 

proteins.Footnote 2  

Plots of the change in mean mRNA levels for each probe-set with age in the different 

skin compartments are shown in figures 4.4.1-4.4.3, where a formatting system (each individual 

probe set is colour coded) has been used to depict statistically significant changes. The level of 

signal expression for each probe set within each age group indicates the mean level of mRNA 

that bound to that probe set from all of the subjects. 

1: http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/av.cgi?db=human&c=Gene&l=LMNA 
2: http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/av.cgi?db=human&c=Gene&l=LMNB1) 

http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/av.cgi?db=human&c=Gene&l=LMNA
http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/av.cgi?db=human&c=Gene&l=LMNB1
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LMNA and LMNB1 mRNA expression: Dermal compartment only 

Figure 4.4.1: Microarray analysis of LMNA and LMNB1 in PP (A, C) and PE (B, D) dermis of individuals of ages 20, 30, 40, 50, 60 and 70. Plots A-D show the change in mean signal expression of 
mRNA levels from the 2nd to 7th decade. The legends in the right hand corner of the page depict the colour and format applied to each of the 7 probe sets for LMNA and 5 probe sets for LMNB1. 
Thin dotted lines show probe sets that did not significantly change in expression level with age. Thin uniform lines show probes that significantly change with age (p ≤ 0.05). Thick uniform lines 
show probe sets that had a highly significant change with age (p ≤ 0.05; q ≤ 0.05).  
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LMNA and LMNB1 mRNA expression: Epidermal compartment only 

Figure 4.4.2: Microarray analysis of LMNA and LMNB1 in PP (A,C) and PE (B,D) epidermis of individuals of ages 20, 30, 40, 50, 60 and 70. Plots A-D show the change in mean signal expression of 
mRNA levels from the 2nd to 7th decade. The legends in the right hand corner of the page depict the colour and format applied to each of the 7 probe sets for LMNA and 5 probe sets for LMNB1. 
Thin dotted lines show probe sets that did not significantly change in expression level with age. Thin uniform lines show probes that significantly change with age (p ≤ 0.05). Thick uniform lines 
show probe sets that had a highly significant change with age (p ≤ 0.05; q ≤ 0.05). 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

10 20 30 40 50 60 70 80

M
e

an
 E

xp
re

ss
io

n

Age

B LMNA mRNA PE epidermis 11719261_s_at

11752506_s_at

11752673_x_at

11719260_x_at

11762162_x_at

11752340_x_at

11752507_x_at

0

20

40

60

80

100

120

140

160

180

10 20 30 40 50 60 70 80

M
e

an
 E

xp
re

ss
io

n

Age

D LMNB1 mRNA PE epidermis 11750442_s_at

11732533_a_at

11744889_a_at

11744888_a_at

11750441_a_at

0

20

40

60

80

100

120

140

160

180

10 20 30 40 50 60 70 80

M
e

an
 E

xp
re

ss
io

n

Age

C LMNB1 mRNA PP epidermis 11750442_s_at

11732533_a_at

11744889_a_at

11744888_a_at

11750441_a_at

0

200

400

600

800

1000

1200

1400

1600

1800

2000

10 20 30 40 50 60 70 80

M
e

an
 E

xp
re

ss
io

n

Age

A LMNA mRNA PP epidermis 11719261_s_at

11752506_s_at

11752673_x_at

11719260_x_at

11762162_x_at

11752340_x_at

11752507_x_at



191 | P a g e  
 

LMNA and LMNB1 mRNA expression: Full Thickness Skin  

 
Figure 4.4.3: Microarray analysis of LMNA and LMNB1 in PP (A,C) and PE (B,D) FTS of individuals of ages 20, 30, 40, 50, 60 and 70. Plots A-D show the change in mean signal expression of mRNA 
levels from the 2nd to 7th decade. The legends in the right hand corner of the page depict the colour and format applied to each of the 7 probe sets for LMNA and 5 probe sets for LMNB1. Thin 
dotted lines show probe sets that did not significantly change in expression level with age. Thin uniform lines show probes that significantly change with age (p ≤ 0.05). Thick uniform lines show 
probe sets that had a highly significant change with age (p ≤ 0.05; q ≤ 0.05). In the plot showing LMNB1 levels in PE FTS (D) the probe sets 11744889_a_at and 11732533_a_at overlap leaving 
the latter obscured from view in the graph.
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4.4.4 Intrinsic and photo-ageing alter LMNA and LMNB1 transcription 
 

Figures 4.4.1-4.4.3 show that there was variation in the mean signal expression levels, 

and their change with age, in the different probe sets targeting the same gene. For the probe 

sets targeting the LMNA mRNA, this variation was greatest in the FTS samples (figure 4.4.3 A 

and B) where the lowest level of expression was shown by the probe 11762162_x_at (light 

yellow ~200 units) and the highest by 11752507_x_at (grey ~1800 units) giving a difference of 

∆1600 units. The probe sets targeting LMNB1 mRNA also showed variability but this was less 

marked, with a difference in the highest (11732533_a_at-green, 170 units) and lowest 

(1174488_a_at-yellow, 70 units) probe expression values being ∆100 in the PE epidermis 

(figure 4.4.2 D). Between the two genes, the measured mRNA levels were consistently higher in 

the probe sets targeting LMNA mRNA, but this could be due to the fact there were more probe 

sets for LMNA compared to LMNB1 and therefore there could be more mRNA binding due to 

the increased number of targets. 

Generally, higher levels of mean expression and hence mRNA binding tended to occur 

in the same probe sets in the different skin compartments for each gene. The probe sets that 

had the highest levels of initial mean expression at age 20 were also the ones that were most 

likely to statistically significantly increase or decrease their expression level with age and 

conversely, low initial mean signal expression in a probe set generally meant that it showed 

little significant change to mean mRNA expression levels with age. For example probe set 

11752507_x_at (shown in grey) targeting LMNA mRNA was the most highly expressed probe in 

all skin compartments and also showed significant changes with age in the PP and PE FTS and 

PE dermis, whereas probe set 11762162_x_at (shown in yellow) showed the lowest mRNA 

expression levels and no significant changes in expression with age. It is therefore likely that 

highly expressed probes are those that show specific binding from the target gene transcripts 

and depict most accurately the changes occurring with age. Probes with low expression levels 

and no significant changes with age could be representative of non-specific “off target” mRNA 

binding and therefore were eliminated from further analytical consideration (table 4.4.2).   

The classifications used to assess significant changes to mRNA levels with age were the 

P and Q values generated from Pearson’s Rank Correlation tests completed on the data (details 

in chapter 2-section 2.7.5), with the most robust changes being identified as those that had 

both significant P and Q values. The number of probes that significantly changed expression 

levels with age for each gene thus provides a parameter of the extent of significant LMNA and 

LMNB1 transcriptional changes with age and these values are summarised in the tables below: 
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Table 4.4.2: Summary of statistically significant changes to LMNA mRNA levels in the different skin compartments 
under intrinsic and photo-ageing conditions. The PE and PP compartments that showed the most significant changes 
are highlighted in orange (PE skin) and blue (PP skin). NP= no significant probes in the compartment. Signal 
expression range data values have been rounded to the nearest whole 100 for simplicity. 

Skin sample/condition Signal expression 
range of statistically 
significant probes  

Number of upregulated (+) or 
downregulated (-) probes 
statistically correlating with age 
with p ≤ 0.05 (numbers in 
parentheses indicate the number of 
these probes that also had q ≤ 0.05)  

Photo-protected (PP) 
dermis 

NP NP 

Photo-exposed (PE) dermis 500-1100 +4 (0) 

Photo-protected (PP) 
epidermis 

NP NP 

Photo-exposed (PE) 
epidermis 

300-400 +1 (0) 

Photo-protected FTS (PP)  300-1700 -6 (4) 

Photo-exposed FTS (PE) 300-1800 +6 (6) 
 
Table 4.4.3: Summary of statistically significant changes to LMNB1 mRNA levels in the different skin compartments 
under intrinsic and photo-ageing conditions. The PE and PP compartments that showed the most significant changes 
are highlighted in orange (PE skin) and blue (PP skin). NP= no significant probes in the compartment. Signal 
expression range data values have been rounded to the nearest whole 10 for simplicity.  

Skin sample/condition Signal expression 
range of statistically 
significant probes  

Number of upregulated (+) or 
downregulated (-) probes statistically 
correlating with age with p ≤ 0.05 
(numbers in parentheses indicate the 
number of these probes that also had 
q ≤ 0.05)  

Photo-protected (PP) 
dermis 

40-70 -4 (3) 

Photo-exposed (PE) 
dermis 

70-100 -3 (1) 

Photo-protected (PP) 
epidermis 

50-110 -4 (0) 

Photo-exposed (PE) 
epidermis 

160-180 -2 (1) 

Photo-protected FTS (PP)  60-80 -3 (0) 

Photo-exposed FTS (PE) 60-80 -2 (2) 

 
As seen in table 4.4.2, LMNA mRNA decreased with age in the PP skin and increased 

with age in PE skin. The separate PP epidermal and dermal compartments showed no 

significant changes to LMNA mRNA with age but the decrease in LMNA mRNA in the PP FTS was 

highly significant, with 6/7 probes significantly decreasing mRNA expression level with age. The 

increases in LMNA mRNA in PE skin were consistent across the epidermal, dermal and FTS with 

the greatest changes occurring in the FTS.  
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Table 4.4.3 shows that LMNB1 mRNA decreased with age in both the PP and PE skin 

with the total number of significantly down-regulated probes from the epidermis, dermis and 

FTS combined being greater in the PP (11 probes total) compared to the PE (7 probes total) 

skin. This suggests that a more robust decrease in transcription to LMNB1 occurred in the 

intrinsically aged skin compared to the photo-aged skin. The highest mean expression levels of 

LMNB1 mRNA were seen in the epidermal compartments, which one might expect as they are 

very cell rich and the lamins are nuclear envelope proteins. However, loss of LMNB1 mRNA 

levels with age were most robust in the dermal compartments of PP and PE skin as shown by 

orange and blue highlighting in the table. 

The distribution of significantly changing probe sets in the epidermis, dermis and FTS 

was different for LMNA and LMNB1 probes. For LMNB1, the numbers of significantly changing 

probe sets were well spread across the different epidermal, dermal and FTS compartments in 

both the PP and PE skin. On the other hand, the LMNA probe sets showed the most significant 

changes in the FTS skin during intrinsic and photo-ageing, with only minor changes occurring in 

the separate epidermal and dermal compartments The main changes occurring to LMNA and 

LMNB1 mRNA levels with age are summarised in table 4.4.4: 

 

Table 4.4.4: Summary changes to LMNA and LMNB1 mRNA during intrinsic and photo-ageing in human skin 

Skin Condition LMNA LMNB1 

Photo-ageing ↑ ↓ 

Intrinsic ageing ↓ ↓ 

 
 

4.4.5 Lamin A/C protein expression is maintained during skin ageing, while 
lamin B1 protein decreases 
 
 For reasons alluded to in the introduction of this chapter (section 4.1.8), the mRNA 

changes observed in LMNA and LMNB1 were validated at the protein level. Previous reports 

have detailed the organisation and levels of nuclear lamins in skin taken from breast and 

abdomen (Tilli et al, 2003) but to our knowledge skin from young and aged photo-exposed sites 

had not been studied.  

Figure 4.4.4 shows lamin A/C expression in young (22y) and aged (64y) skin samples 

taken from the buttock (sun-protected) and forearm (sun-exposed) of the same individual. In 

the epidermal layers of the young tissue (A= buttock, B=arm) lamin A/C organisation was 

similar, with most cells showing lamin A/C labelling. In the suprabasal layers expression levels 

were highest, with cells showing the uniform ring-like pattern typical of nuclear lamina staining. 

In the basal epidermis lamin A/C staining was heterogeneous, with some cells showing medium 
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levels of expression (white arrowheads- A’ and B’) and others appeared to be more weakly 

labelled (green arrowheads- A’ and B’). These observations are consistent with a previous 

report (Broers et al 1997). As Tilli et al (2003) have shown lamin A is absent from the basal layer 

whereas lamin C is present it may be the case that the basal layer staining observed here using 

the Jol2 antibody is picking up predominantly lamin C in this region. Some cells in the dermis of 

young arm and buttock skin showed strong labelling of lamin A/C (white arrowheads, A) 

whereas in others staining was reduced or absent (green arrowheads, A). The heterogeneity of 

staining in this region could be representative of the different cell types present in the dermis, 

as dermal fibroblasts stain strongly for lamin A/C whereas lymphoid cells have low lamin A/C 

and high lamin B1 (Broers et al, 1997). 

  Lamin A/C expression was maintained in the aged buttock (C) and forearm (D), 

particularly in the cells above the basal layer where ring-like labelling of the majority of nuclei 

remained strong. The heterogeneity in levels of lamin A/C observed in the cells of the basal 

epidermis of young tissue (As depicted by white and green arrowheads in A’ and C’) became 

more marked with age, causing the basal epidermis in PP and PE aged skin to be populated by 

cells with strong lamin A/C staining (white arrowheads, C, D, C’,D’) and also cells with weak 

staining (green arrowheads, C,D,C’,D’). The epidermal layer thinned considerably with age in 

both arm and buttock skin and also showed a loss of rete ridges (fine white arrows A,B showing 

rete ridges, lost in C,D). The strong lamin A/C staining seen in the suprabasal layers of the 

young PP and PE epidermis was maintained with age, aside from a few cells in the upper 

epidermis that showed a reduction in lamin A/C in aged PP aged skin (green arrowheads in 

upper epidermis, C,C’). In the dermis labelling of lamin A/C was similar in the aged skin 

compared to the young skin, with similar levels of lamin A/C positive and negative cells being 

observed in both intrinsically aged and photo-aged skin in comparison to their younger 

counterparts. 
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Figure 4.4.4: Immunofluorescence examination of lamin A/C expression using low (A-D) and high (A’-D’) 
magnification confocal microscopy. Images of 22y buttock (A,A’) and forearm (B,B’) and 64 year buttock (C,C’) and 
forearm (D,D’) were stained with Jol2 primary antibody (detects both lamin A and lamin C isoforms) and anti-mouse 
Alexa 568 secondary antibody with DAPI counterstain for nuclei. Images A-D show epidermal and dermal regions. 
Images A’-D’ show a magnified portion of the epidermis, which is marked with an asterisk in the corresponding low 
mag image. e= epidermis, de=dermis, dotted line= dermal-epidermal junction, scale bar (A-D same scale) = 50 µm 
shown in D, scale bar (A’D’ same scale) =20 µm shown in D’. White arrowheads show examples of cells with high 
lamin A/C expression and green arrowheads show examples of cells with weak/absent lamin A/C expression. Long 
white arrows at the DEJ in A,B mark rete ridges. 

 

Figure 4.4.5 documents lamin B1 staining in the PP buttock and PE arm from the same 

young and old individuals seen in figure 4.4.4. In the young tissue lamin B1 expression in the 

epidermis was heterogeneous in the basal layer, with some cells staining strongly (white 

arrowheads A’, B’) whereas in others lamin B1 expression was reduced (green arrowheads A’, 

B’). In the suprabasal layers the majority of cells had strong lamin B1 labelling. In the upper 

epidermis staining was reduced (green arrowheads, A’,B’). These observations are consistent 

with previous reports by Broers et al (1997). Most of the dermal cells were un-labelled aside 

from some cells making up appendages within the skin (white arrowheads, C, D) and the 

occasional dermal cell in isolation, which could be a putative immune cell (white arrowheads, 
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D). The lamin B1 labelling observed in the dermis also matches the previous reports of Broers 

et al, 1997; Tilli et al, 2003; Oguchi et al, 2002 but not the information provided on the Human 

Protein Atlas. 

Due to the heterogeneity of cellular populations found in the dermal compartment, use 

of fibroblast specific markers such as CD34 (Driskell et al, 2013) or TE-7 (Goodpaster et al, 2008) 

would need to be used in co-staining experiments to definitively confirm that low/absent lamin 

B1 marks dermal fibroblasts. In the aged skin samples lamin B1 expression appeared reduced in 

both the forearm (D,D’) and buttock (C,C’) skin. This reduction occurred primarily in the basal 

epidermal layer where the majority of cells in both PP and PE skin were weakly stained (Green 

arrowheads, C’,D’). In the suprabasal layers of PP aged epidermis lamin B1 levels were similar 

to young epidermis, and labelling remained strong. The levels of lamin B1 in the outermost 

epidermal layers were consistently low in the young and aged skin. 
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Figure 4.4.5: Immunofluorescence examination of lamin B1 expression using low (A-D) and high (A’-D’) magnification 
confocal microscopy. Images of 22y buttock (A, A’) and forearm (B, B’) and 64 year buttock (C, C’) and forearm (D,D’) 
stained with anti-rabbit lamin B1 primary antibody and anti-rabbit Alexa 568 secondary antibody with DAPI 
counterstain for nuclei. Images A-D show epidermal and dermal regions. Images A’-D’ show a magnified portion of 
the epidermis which is marked with an asterisk in the low mag images. e= epidermis, de=dermis, dotted line= 
dermal-epidermal junction, (A-D same scale) = 50 µm shown in D, scale bar (A’D’ same scale) =20 µm shown in D’. 
White arrowheads show examples of cells with high lamin B1 expression and green arrowheads show examples of 
cells with weak/absent lamin B1 expression. Long white arrows at the DEJ in A,B mark rete ridges. 

4.4.6 Photo-exposure in the epidermal compartment causes the greatest 
change in lamin A/C and lamin B1 protein levels 
 

To compare differences in the protein expression of lamin B1 and lamin A/C in the 

young versus aged skin the mean expression levels in the PP and PE epidermis of young (n=3) 

and old (n=3) subjects was quantified. Details of the analyses to generate the levels of 

fluorescence intensity (FI) for each condition and information on the subjects making up the 

data pool can be found in section 2.8.1 of materials and methods. 

As there are several cellular sub-populations with different levels of lamin expression 

present within the dermis, the epidermis in isolation was chosen for this analysis as it has the 
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least variability in cellular populations, with over 95% of the cells present in this region being 

keratinocytes (Thingnes et al, 2012).  

Uncovering statistically significant differences to lamin B1 cellular levels with age in the 

dermal region would require more samples that the 3 available in this study in order to account 

for the increased cellular variation in this region as well as the use of appropriate markers of 

dermal cell sub-populations. Figure 4.4.6 shows the mean expression levels of lamin A/C in the 

epidermis of young and old PP (buttock biopsy) and young and old PE (forearm biopsy) skin. 

 
Figure 4.4.6: Mean expression levels of lamin A/C protein in the epidermis of PP and PE biopsies of young (Y) and old 
(O) subjects. Each individual data point represents the mean pixel intensity of all of the fields taken from forearm 
and buttock of young (21-22y) and old (60-65y) subjects. Y-PP= young photo-protected, O-PP= old photo-protected, 
Y-PE = young photo-exposed, O-PE= old photo-exposed. Error bars represent standard deviations calculated from 
the mean pixel intensity values for all of the fields imaged within each condition. Un-paired t-testing indicated that 
the change in expression with age in either condition was not significant. 

  

As shown in figure 4.4.6, the mean level of lamin A/C expression showed a minor, non-

significant decrease with age in the PP skin and a slightly more robust but still non-significant 

increase in the PE skin. Although the changes were not statistically significant, they did mirror 

the changes that were occurring at the mRNA level.  
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Figure 4.4.7: Mean expression levels of lamin B1 protein in the epidermis of PP and PE biopsies of young (Y) and old 
(O) subjects. Each individual data point represents the mean pixel intensity of all of the fields taken from forearm 
and buttock of young (21-22y) and old (60-65y) subjects. Y-PP= young photo-protected, O-PP= old photo-protected, 
Y-PE = young photo-exposed, O-PE= old photo-exposed. Error bars represent standard deviations calculated from 
the mean pixel intensity values for all of the fields imaged within each condition. Un-paired t-testing indicated that 
the change in expression with age in either condition was not significant. n/s* indicates that the difference was close 
to conventional significance. 

 

As shown in figure 4.4.7, there was a small but non-significant decrease in lamin B1 

expression with age in the PP skin whereas in the PE skin the decrease with age was greater 

and extremely close to being statistically significant. These changes match the decline in mRNA 

levels in lamin B1 with age but the decrease in lamin B1 was more marked in PE skin at the 

protein level whereas at the transcriptional level the decreases were more robust in the PP 

skin. The results of the fluorescence quantification experiments are summarised in tables 4.4.5 

and 4.4.6. 

 Table 4.4.5 details mean expression values for lamin A/C and lamin B1. As laser settings 

were changed to optimise the imaging conditions for lamin A/C and lamin B1 separately, the 

levels of the two different proteins cannot be compared to one another. Comparisons of the 

same protein within the different biopsy samples however can be made, as settings were kept 

constant between samples stained for the same protein in order to detect age-related 

differences. 
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Table 4.4.5: Mean epidermal expression levels of lamin A/C and lamin B1 as calculated by the average fluorescence 
intensity in the different skin biopsy samples. Green fill indicates a decrease with age whereas orange fill indicates an 
increase with age. The numbers in parentheses show the relative increase or decrease with age. 

Epidermal sample/ condition Mean lamin A/C expression 

(accurate to 1 decimal 

place) 

Mean lamin B1 expression 

(accurate to 1 decimal place) 

PP- young (buttock) 12.9 18.6 

PP- old (buttock) 12.3 (-0.7) 17.0 (-1.6) 

PE- young (forearm) 11.4 17.2 

PE- old (forearm) 12.5 (+1.1) 13.1 (-4.1) 

 
 Un-paired t-testing was used to assess the statistical significance of the differences in 

mean lamin A/C and mean lamin B1 epidermal protein levels between young and aged PP 

epidermis and then a separate test for young and aged PE epidermis. The p-values generated 

from these tests are summarised below in table 4.4.6 

 

Table 4.4.6: Summary of the p-values generated from statistical testing. Green fill represents the most significant 
results from all of the analyses. 

Epidermal sample/ 

condition 

T-test p value: change in mean 

lamin A/C level. 

T-test p value: change in mean 

lamin B1 level 

PP- young (buttock) PP young vs old 

0.45 

PP young vs old 

0.65 PP- old (buttock) 

PE- young (forearm) PE young vs old 

0.45 

PE young vs old 

0.06 PE- old (forearm) 

 
 

As table 4.4.6 shows, most of the changes to lamin A/C and lamin B1 with age were not 

significant. The decrease observed in lamin B1 expression in the PE aged skin (p = 0.06) was 

extremely close to being significant by conventional standards (p ≤ 0.05). 

 

4.4.7 Discussion: Lamin B1 and lamin A/C show robust transcriptional changes 
with age which are mirrored to a lesser extent at the protein level. 
 

The investigation of transcriptional and protein changes in lamin A/C and lamin B1 in 

PP and PE skin with age has uncovered several key trends. At the mRNA level lamin A/C 

expression decreased with intrinsic ageing and increased with photo-ageing whereas lamin B1 

mRNA decreased in intrinsically aged and photo-aged skin. At the protein level these changes 
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followed the same pattern but from the quantification completed, appeared to be less robust. 

The only change validated at the protein level that approached statistical significance was the 

decrease in lamin B1 in PE skin.  

Our mRNA data yielded robust results, but inconsistencies were present, such as the 

fact there was no significant differences in mRNA levels of LMNA in the separate PP epidermal 

and dermal compartments with age but robust LMNA mRNA decreases were observed in the 

PP FTS samples. One may expect to see at least minor changes in the separate epidermal and 

dermal compartments given that they constitute the majority of human skin (ie the FTS). 

However, the FTS samples contained adnexal skin structures such as hair follicles and sweat 

glands not present in the isolated epidermis and dermis and furthermore, the samples used in 

the microarrays were also prepared differently. The FTS samples yielded enough mRNA to 

avoid an RNA amplification step whereas the epidermis and dermis, when isolated by LCD, did 

not. These factors could be responsible for the inconsistencies seen because the presence of 

the cells in the adnexal structures and the differences in RNA processing could cause the RNA 

pool in the FTS to be different from the epidermis or dermis. The fact that the changes with age 

in both the PP and PE FTS were so marked gives significant evidence for changes to LMNA gene 

expression in human skin despite these inconsistencies in the separate epidermal and dermal 

compartments. 

 Lamins are intermediate filaments, and several studies using Fluorescence Recovery 

After Photobleaching (FRAP) analysis in vitro have indicated that they have a low protein 

turnover rate in interphase cells (Broers et al, 1999; Moir et al, 2000; Daigle et al, 2001). It is 

thought that turnover rates last several days (Daigle et al, 2001) and that A-type lamins form 

more stable, long-lived nuclear complexes than B-type (Moir et al, 2000). The possible weak 

correlation between mRNA and protein levels coupled with the high stability of lamin proteins 

seen at the cellular level may explain why there is a discrepancy between mRNA and protein 

changes, as un-stable mRNA’s could represent more transient changes. 

There were differences in the experimental design between the separate mRNA and 

protein measurement experiments. The subjects contributing to the mRNA studies were much 

greater in number, with at least 20 samples from different individuals used to generate the 

mean expression data within each age group. For the protein studies, only 3 subjects for each 

age group and condition were analysed and hence the probability of finding statistically 

significant changes are limited unless the change with age is extremely marked and the 

variation between subjects is minimal. Additionally, there was variation in the lamin A/C and 

lamin B1 protein levels between subjects, particularly in the PP aged skin. There will be 

considerable genetic variation in the subjects used for this study and furthermore, the ageing 
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process is associated with an increased heterogeneity in the efficiency of transcriptional and 

translational processes between subjects (Bahar et al, 2006). This could account for the 

increased diversity seen in the lamin B1 protein levels in PP aged epidermis. With more 

samples from different subjects and more specific measurements, it could be the case that the 

marginal changes seen with age could become more pronounced. For example, epidermal 

changes to lamin B1 appeared most pronounced in the basal layer, so scoring lamin B1 levels in 

the separate layers of the epidermis instead of calculating whole epidermal expression could 

reveal more significant changes with age. To increase the accuracy of determining differences 

to lamin expression in the different epidermal layers with age keratinocyte markers specific to 

the basal, spinous and granular layers could also be used to mark these specific epidermal cell 

populations. 

The reduction in sample size and genetic variability in the intrinsically aged human skin 

used in this study may also explain why there was not a more robust trend between the 

significant decline in lamin B1 seen in the aged C57BL/6 mice epidermis in section 3.3.6 and the 

intrinsically aged human epidermis here. 

 Despite lack of clear change at the protein level, intrinsic and photo-ageing processes 

did appear to modulate LMNA and LMNB1 transcription, with LMNB1 mRNA levels decreasing 

during both intrinsic and photo-ageing. As alluded to earlier, B-type lamins have roles in cellular 

proliferation, chromosomal stability and their expression is modulated during senescence 

(Dreesen et al, 2013). In tissues that have been irradiated as a means of inducing premature 

ageing, lamin B1 mRNA and protein levels decline due to the induction of tumour suppressor 

pathways p53 and pRb as a result of cellular DNA damage. It is widely accepted that DNA 

damage accumulates in intrinsically aged mammalian tissues (Wang et al, 2009; Jeyapalan et al, 

2007) and although not systematically proven to our knowledge, it is likely to also occur in 

ageing human epidermis. Aged human epidermis has less cellular proliferation than young 

(Gilhar et al, 2004), so the decline in LMNB1 mRNA with age we observed may represent 

slowed cellular proliferation as a result of increasing levels of DNA damage, preventing cell 

cycle progression (Manju et al, 2006). 

Furthermore, p53 and pRb are key modulators of DNA Damage response and cell cycle 

arrest pathways (Li et al, 2013) and direct stimulation of human cells through either p53 or pRb 

signalling has been shown to trigger lamin B1 loss and cellular senescence (Freund et al, 2012). 

The decline in LMNB1 transcription here could therefore represent increased senescence due 

to increased DNA damage in the ageing tissues through p53 and pRb dependent mechanisms. 

Further studies looking at DNA damage, cell proliferation, p53 and pRb levels in young vs aged 

keratinocytes would contribute more evidence towards this hypothesis.  
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Intrinsic ageing also reduced LMNA transcription, which could represent epidermal 

atrophy, leading to fewer cells within the skin overall and therefore a depleted mRNA pool in 

the aged samples.  

UVR (Ultra-Violet Rays) are potent nucleotide damaging agents and a plethora of 

studies have implicated increased UVR, found to penetrate the skin with sunlight exposure, as 

inducers of cellular damage and ageing (Panich et al, 2016). It is commonly accepted that 

intrinsic and extrinsic ageing have both distinct and common patho-mechanisms (Gilchrest, B.A. 

2013) and reduced genomic stability with age is common to both. Telomere attrition occurs 

due to multiple rounds of cell division in intrinsic ageing. Compounded with this in photo-

ageing is the induction of DNA breaks, lesions and other forms of damage due to ionising 

radiation (Gilchrest et al, 2009). Genomic damage induces p53 signalling (Reinhardt and 

Schumacher, 2012) so the fact that lamin B1 decline was more marked in the photo-exposed, 

aged epidermis could again potentially be indicative of increased DNA damage in this 

compartment causing increased p53 or pRb signalling which are known to negatively impact 

LMNB1 mRNA stability (Freund et al, 2012). 

 Our lamin A/C data in photo-aged skin matches previous studies, who have shown 

increases in LMNA mRNA and lamin A/C protein in skin from aged individuals (Marji et al, 

2010). Unlike our study, this study data was generated from skin biopsies of male and female 

photo-protected and photo-exposed skin pooled together, with several fewer samples used. 

Observed epidermal cellular increases in A-type lamin expression in PE skin with age may occur 

for several reasons. Lamin A is important in cellular DNA damage response mechanisms, where 

it stabilizes the response protein 53BP1, preventing abnormal localisation and proteasomal 

degradation (Redwood et al, 2011). Futhermore, the lamina also maintains the positional 

stability of reparative foci (Mahen et al, 2013) and it is believed to be important in replication 

fork stability during repair of DNA through non-homologous end joining (Singh et al, 2013). As 

mentioned previously, it also plays roles in cellular tolerance to ROS, and without proper levels 

of lamin A, cells undergo premature senescence under oxidative stress. Photo-ageing is the 

result of exposure to UVR, which induces both DNA damage and increased cellular ROS (Naylor 

et al, 2011). Increased LMNA transcription and lamin A/C protein expression during photo-

ageing may therefore be representative of increased cellular defence mechanisms, in order to 

improve cellular tolerance to ROS and also to maintain DNA repair efficiency.  

Aged skin is associated with biomechanical changes (Simpson et al, 2011) and skin 

stiffness is shown to increase in both intrinsically and extrinsically aged tissues (Smalls et al, 

2006). Skin is subject to mechanical stress throughout our lifespan and cellular lamin A protein 

levels have been shown to positively correlate with the levels of stiffness and mechanical stress 
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load exhibited by various tissues in mouse (Swift et al, 2013). The increase in LMNA mRNA and 

lamin A/C protein in photo-aged skin could therefore also possibly represent a change in the 

cellular mechanics of epidermal keratinocytes with age, where tissue stiffening could induce 

LMNA gene expression and protein production in response to this biomechanical change. 

The Jol2 antibody used in these studies is able to detect lamin A, lamin C and progerin 

(Shackleton et al, 2005) so this study did not show specifically whether increased lamin A/C was 

due to specific increases in one of these 3 proteins. Future studies using more specific 

antibodies would allow us to confirm whether epidermal and dermal increases in lamin A do 

mark hypothesized increases in tissue stiffness and furthermore, an antibody specific to 

progerin would allow us to uncover if and where this protein accumulates in intrinsically aged 

and photo-aged skin. 
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4.5 A transcriptomic and proteomic assessment of YAP1 during 
intrinsic and photo-ageing in human skin. 
 

4.5.1 Objectives of this section 
 

The studies covered in section 1.19 of the main introduction to this thesis indicate that 

the majority of work concerning the role of YAP1 in skin biology has focused on how the Hippo 

pathway regulates mouse skin development and homeostasis. However, the potential for the 

Hippo Pathway to be modulated by the ageing process in the skin of humans has not been 

studied in detail.  

Our previous data shows reduced epidermal proliferation in aged C57BL/6 mice which 

appears to manifest as epidermal thinning. Furthermore, we have observed flattening of basal 

keratinocytes and a lower level of loricrin expression in the outermost epidermal layers of aged 

skin. Interestingly many of these observations, which together imply that epidermal cellular 

proliferation and turnover is lost with age, mimic the phenotype Schlegelmilch et al (2011) 

observed in their epidermal-specific YAP1 knock out mice. 

In our studies looking at YAP1 protein in mouse epidermis using fluorescent 

immunohistochemistry, we have observed a significant increase in nuclear YAP1 levels with age 

in young (3 month) vs old (30 month) mice. These observations implicate that YAP1 could be 

modulated by the ageing process in mammalian epidermis. The objectives of the data 

presented here regarding the Hippo pathway and ageing human skin were therefore to: 

 

1. Identify transcriptional changes to YAP1 with age in epidermal and dermal 

compartments along with full thickness skin (FTS) using microarrays and furthermore 

determine any differences between intrinsically aged and photo-aged human skin. 

2. To our knowledge, there is only one published report showing the organisation of YAP1 

in human skin (As a publication from Elbediwy et al, 2016 used information from the 

Human Protein Atlas this is technically the only source). Furthermore, any potential 

change to the amount of YAP1 protein during intrinsic and photo-ageing is not known. 

Fluorescent immunohistochemistry was therefore used to quantify the level of YAP1 

protein in young and aged epidermis  

3. YAP1 transcription factor activity is highly dependent on its sub-cellular localisation 

(see section 1.19-1.22 of thesis introduction) and in order to in induce transcription of 

its target genes, it must locate to the nucleus. We therefore quantified changes to 

nuclear YAP1 levels, by assessing if there was a change in the nuclear to cytoplasmic 
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ratio- N:C of YAP1 in young vs aged tissues. Like in our mouse studies of epidermal 

YAP1, an increase in the nuclear:cytoplasmic ratio would indicate a higher level of 

nuclear YAP1 and potentially increased activation of YAP1 target genes. 

4.5.2 Identification of YAP1 transcriptional changes with age 
 

In order to fulfil the aims of objective 1, changes in transcriptional activity of YAP1 was 

assessed in female subjects at ages 20, 30, 40, 50, 60 and 70. The Affymetrix U219 array plate 

had 8 different probe sets designed to target YAP1 mRNA transcripts and the YAP1 gene is 

known to produce 15 mRNA variants (10 alternatively spliced and 5 un-spliced). 11 mRNA 

variants putatively encode proteins (source- footnote 1), indicating that a high number of 

cellular transcripts are able to produce functional proteins. Plots of the change in mean mRNA 

levels for each probe-set with age in the different skin compartments are shown in figures 4.5.1 

and 4.5.2, where a formatting system (each individual probe set is colour coded) has been used 

to depict statistically significant changes. The level of signal expression for each probe set 

within each age group indicates the mean level of mRNA that bound to that probe set from all 

of the subjects. 

There was a clear trend in the mean expression levels of the 8 different probe sets 

across the skin compartments. The probe sets 11717920_a_at (red), 11717921_x_at (green), 

11717923_s_at (yellow) and 11740548_a_at (grey) were expressed at high levels in all 

compartments and showed the most dramatic changes in mean expression levels with age. 

11717922_a_at (blue), 11717924_a_at (purple), 11717925_s_at (black) and 11746496_a_at 

(brown), were expressed at much lower levels and showed minor differences in their change of 

expression with age. It is likely that the design of the latter 4 probes did not allow optimal 

mRNA binding, given their consistently low expression levels in all compartments.  

Although it is possible that these probe-sets represented low, steady-state mRNA levels 

of some transcripts over time, the objective was to identify the probe sets that did change 

during ageing, so they did not form part of further analyses. To depict this on each plot a 

threshold line, shown by a black double-ended arrow, has marked the boundary of the lowest 

expression level considered to produce significant changes with age. In further descriptions the 

4 probe sets that had mean expression levels above the threshold (11717920_a_at (red), 

11717921_x_at (green), 11717923_s_at (yellow) and 11740548_a_at (grey)) will be described 

as “AT-probe sets” ie above-threshold probe-sets. 

 

 

Footnote 1: https://www.ncbi.nlm.nih.gov/ieb/research/acembly/
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YAP1 mRNA expression: Dermal and Epidermal compartments 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5.1: Microarray analysis of YAP1 in PP (A,C) and PE (B,D) isolated dermis and epidermis of individuals aged 20, 30, 40, 50, 60 and 70. Plots A-D show the change in mean signal 
expression of mRNA levels from the 2nd to 7th decade. The legend in the right hand corner of each plot depicts the colour and format applied to each probe set. Thin dotted lines show probe 
sets that did not significantly change in expression level with age. Thin uniform lines show probes that significantly change with age (p ≤ 0.05). Thick uniform lines show probe sets that had a 
highly significant change with age (p ≤ 0.05 + q ≤ 0.05). Black double ended arrows indicate the threshold of mean expression considered to be above background levels (≥ 200). 
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YAP1 mRNA expression: Full thickness skin 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.5.2: Microarray analysis of YAP1 in PP (A) and PE (B) Full thickness skin of individuals aged 20, 30, 40, 50, 60 and 70. Plots A and B show the change in mean signal expression of mRNA 
levels from the 2nd to 7th decade. The legend in the right hand corner of each plot depicts the colour and format applied to each probe set. Thin dotted lines show probe sets that did not 
significantly change in expression level with age. Thin uniform lines show probes that significantly change with age (p ≤ 0.05). Thick uniform lines show probe sets that had a highly significant 
change with age (p ≤ 0.05 + q ≤ 0.05). In (A) background level probes 11717925_s_at (black),11746496_a_at (brown) ,11717922_a_at (blue) and 11717924_a_at (purple) show overlap in their 
mean expression levels thus 11717925_s_at (black) and 11717924_a_at (purple) are obscured from view. In (B), 11717925_s_at (black) and 11746496_a_at (brown) also overlap. Black double 
ended arrows indicate the threshold of mean expression considered to be above background levels (≥ 200). 
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4.5.3 Changes to YAP1 mRNA with age as shown by 4 probe-sets with high 
mRNA binding 
 
 The probe sets in figure 4.5.1 A and 4.5.1 B, which document the change in mRNA 

levels in the isolated PP and PE dermis, are similarly organised and show little statistically 

significant change to YAP1 levels with age. In both PP and PE skin, the AT-probe sets clustered 

together and showed levels of mRNA expression at ~500-700 units (PP skin) and ~650-850 units 

(PE skin). Figure 4.5.1 C and 4.5.1 D show the YAP1 mRNA levels of the probe sets in the 

epidermal compartment during intrinsic (C) and photo-ageing 1D). In the AT-probe sets, mean 

expression was generally higher in the PE epidermis (~650-850 units), compared to the PP 

epidermis (~400-600). 

Figure 4.5.2 A and 4.5.2 B show changes to YAP1 mRNA in intrinsically aged (A) and 

photo-aged (B) FTS. The mean expression levels were slightly greater (~700-1000 units) for AT-

probe sets in the PP FTS (A) compared to the separate epidermis (C: ~400-600 units) and 

dermis (A: ~500-700 units). In the PE skin a similar trend in the organisation of the probes was 

observed, with AT-probe-sets also having a higher level of expression (~700-900 units) in the 

FTS compared to the epidermis (D: ~650-850 units) and dermis (B: ~650-850 units). 

 

4.5.4 YAP1 mRNA levels increase with intrinsic and photo-ageing. 
 
 Taking information from the AT-probe sets only, significant changes to mRNA levels 

with age were assessed using the P and Q values generated from Pearson’s Rank Correlation 

tests completed on the data. The most robust changes were identified as those that had both 

significant P and Q values. The number of AT-probes sets that significantly changed expression 

levels with age provides a parameter of the extent of significant YAP1 transcriptional changes, 

with greater numbers of significantly changing probe sets indicating a more robust change with 

age. These values are summarised in table 4.5.1 below. 
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Table 4.5.1: Details of statistically significant changes to YAP1 mRNA probe sets with age within the different 
compartments of PP and PE skin. NP= no probe sets. The PE and PP compartments that showed the most significant 
changes are highlighted in orange (PE skin) and blue (PP skin) 

Skin sample/condition Signal expression 
range of statistically 
significant probes 
(to nearest 100) 

Number of upregulated (+) or 
downregulated (-) probes statistically 
correlating with age with p ≤ 0.05. 
(numbers in parentheses indicate the 
number of these probes that also had 
q ≤ 0.05)  

Photo-protected (PP) 
dermis 

NP NP 

Photo-exposed (PE) dermis NP NP 

Photo-protected (PP) 
epidermis 

NP NP 

Photo-exposed (PE) 
epidermis 

650-900 +3 (1) 

Photo-protected FTS (PP)  750-1000 +4 (4) 

Photo-exposed FTS (PE) 700-900 +4 (0) 
 

The FTS showed the most robust changes with all 4 AT-probes in both the PP and PE 

tissue increasing significantly in expression with age. This was particularly marked in the PP 

skin, where all 4 probes had both significant P and Q values. The only isolated compartment 

showing probes that statistically significantly changed their expression with age was the PE 

epidermis. In this compartment 3 probe-sets significantly increased their mRNA expression 

levels with age with one of these probe sets also having a significant Q-value. Taking all the 

data together, we concluded that YAP1 mRNA levels increased in the skin during both intrinsic 

and photo-ageing. 

4.5.5 YAP1 protein expression in human skin as analysed by fluorescent 
immunohistochemistry. 
 

Aside from fulfilling objective 2 (see 4.5.1-intro), changes in YAP1 mRNA were 

subsequently validated at the protein level for several reasons. Although the majority of the 

known mRNA transcripts transcribed from the YAP1 gene yield functional proteins, there are 

still a number that do not. Microarray analysis quantifies all of the different mRNA variants 

together, and thus the proportion of protein-coding and non-protein coding transcripts that 

bound our microarray chips was not known. This introduces the possibility that the 

transcriptional changes we observed may not manifest to the same extent at the protein level.  

Furthermore, the mRNA data for the PP skin showed a discrepancy given that the 

separate epidermal and dermal compartments showed no significant mRNA changes with age 

whereas there were highly significant changes present in the FTS. This suggests that the mRNA 

pools for the separate epidermal and dermal compartments were markedly different to the FTS 

although the epidermis and dermis constitutes part of the FTS. Finally, as objective 3 describes, 
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YAP1 sub-cellular localisation also contributes to its activity, and this information cannot be 

provided from mRNA data alone. The levels of YAP1 in human epidermis were therefore 

analysed using fluorescent immunohistochemistry (F-IHC) on human skin biopsies taken from 

young and old female subjects 

The epidermis was chosen as the compartment to be analysed due to the fact that it is 

the most cell-rich compartment in the skin and the PE epidermal compartment had shown 

significant changes to YAP1 at the mRNA level with age. Furthermore, alluded to in the 

introduction to this thesis, previous publications have implicated the importance of YAP1 in 

epidermal biology. Confocal laser scanning microscopy (CLSM) presents a powerful tool to 

capture image data in both the X, Y and Z- dimensions. This tool was exploited to capture Z-

stack images of immunofluorescence staining on human skin sections which formed the basis 

for analyses of both absolute levels of epidermal YAP1 and its localisation in both the nucleus 

and cytoplasm expressed as the nuclear to cytoplasmic ratio: N:C. 

As shown in figure 4.5.3, which is a representative image of epidermal YAP1 staining 

taken from a 21 year old arm biopsy, both the levels of expression of YAP and its sub-cellular 

localisation were different in the various epidermal layers of skin. In the basal layer (bl-C and I), 

which consists primarily of un-differentiated, highly-proliferative stem-cells and progenitor 

cells, high levels of YAP were present as shown by the intense staining in this region (outlined 

with fine, dotted line, I). The localisation of YAP1 in the basal layer varied, with some cells 

showing YAP1 retained in the cytoplasm (green arrowheads, I) and others showing nuclear 

YAP1 (white arrowheads, I). In the supra-basal layers, YAP1 was predominantly retained in the 

cytoplasm. In addition, YAP1 expression levels were lower than in the basal layer, with the 

overall staining being less intense. Within the granular layer, where cells become flattened and 

lose their columnar/cuboidal morphology, YAP1 expression was high in the nuclei of the 

flattened cells, shown by the intense YAP1 staining overlying with the DAPI staining (white 

arrowheads, F). This was the most intense nuclear staining seen in all the layers of the skin, 

indicating that YAP1 becomes concentrated in the nuclei of these cells along with the cells of 

the basal layer. 

The organisation of staining that was observed in human skin was consistent with those 

found online at the Human Protein Atlas. Like the staining here, these records show high YAP1 

expression and nuclear localisation in the basal layer of the skin, cytoplasmic staining in the 

supra-basal layers and intense nuclear YAP staining in some cells of the granular layer. Given 

that the staining is in agreement to previous records, and the antibody specificity had already 

been confirmed using immunofluorescence and western blot (section 3.5.2 of this thesis) it was 

assumed that the staining observed was specific for YAP1 in human epidermis. 
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Figure 4.5.3: Overview of YAP1 immunofluorescence 
staining with Alexa 568 secondary antibody (red) with 
DAPI nuclear counterstain (blue) in young arm epidermis 
(21y) showing single channel images (A= DAPI, B=YAP1) 
and a merged image (C). BL= basal layer, SB= supra-basal 
layers, GR= granular layer. Coarse dotted line= dermal-
epidermal junction. e= epidermis, de= dermis, scale bar= 
20 µm. 
 
D,E,F: Magnified inset  showing the granular layer (GR). 
Single channel images (D=YAP1, E=DAPI). Merged image 
(F). YAP1 positive nuclei are marked with white 
arrowheads in F. Scale bar= 10 µm. 
 
G,H,I: Magnified inset showing  the basal epidermal 
layer (BL). Single channel (G= YAP1, H= DAPI). Merged 
image (I). The coarse dotted line indicates the DEJ and 
the fine dotted line outlines the region in the basal layer 
where strong YAP1 staining was present. Basal 
epidermal cells with nuclear YAP1 are marked with 
arrowheads, cytoplasmic YAP1, green arrowheads. Scale 
bar= 10 µm. 
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Figure 4.5.4 shows representative images of YAP1 staining in the epidermis and dermis 

of PP and PE young (21y) and old (64y) subjects. The epidermis of young arm and young 

buttock samples showed the same YAP1 organisation as seen in figure 4.5.3, with high levels of 

YAP1 in the basal layer with some of the YAP1 signal being localised to basal cell nuclei (white 

arrowheads, A, B). Lower YAP1 levels were retained in the cytoplasm in the supra-basal layers 

(green arrowheads, A,B) and intense nuclear YAP1 staining was detected in some of the 

flattened cells in the granular layer (white-arrowheads in upper epidermis, A,B).  

In the old arm and old buttock samples the expression pattern of YAP1 was similar to 

younger tissues in the basal layer but in the supra-basal and granular layers there were 

considerably fewer cells, which manifested as epidermal thinning. Although fewer cells were 

present, the organisation of YAP1 in the supra-basal layers was generally uniform across the 

two different tissue biopsy sites and age groups with most cells retaining the transcription 

factor within the cytoplasm at relatively low levels compared to the basal layer. Interestingly, in 

the young buttock samples there were some instances of intense cytoplasmic staining in a 

cluster of cells in the supra-basal layers (white arrows, A). This area could represent part of a 

hair follicle or perhaps an area of wound healing, which is known to be associated with high 

levels of cellular YAP (Lee et al, 2014). The organisation of YAP1 in the granular layer was 

similar in all tissue samples with intense punctuate YAP1 nuclear staining present in some of 

the flattened nuclei in the outermost 2 layers of the epidermis (white arrowheads, upper 

epidermis C, D). 
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Figure 4.5.4: Representative low 
power images of PP and PE young 
(21y) and old (64y) epidermis and 
dermis stained with an Alexa 568-
conjugated YAP1 antibody with 
DAPI nuclear counterstain. Skin 
was imaged on using CSLM using a 
40x objective lens. A= young PP, B= 
young PE, C= old PP, D= old PE e= 
epidermis, de=dermis, scale bar= 
50 µm. White arrowheads indicate 
examples of cells with high nuclear 
YAP1 and green arrowheads 
indicate examples of with low 
nuclear YAP1. Long arrows in A 
identify intense staining in 
suprabasal layers 
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4.5.6 YAP1 protein changes with age mirror mRNA changes. 
 
 The mean expression levels in the PP and PE epidermis of young (n=3) and old (n=3) 

subjects was quantified in Image J using 3 representative fields taken from the arm (PE) and 

buttock (PP) of each subject. Details of the analyses to generate mean levels of fluorescence 

intensity (FI) can be found in section 2.8.8-materials and methods. The data was collated to 

create figure 4.5.5, which shows the values of the mean epidermal protein levels of YAP1 for 

both PP and PE young and old skin.  

 

 

Figure 4.5.5: Mean expression levels of YAP1 protein in the epidermis of PP and PE biopsies of young (Y) and old (O) 
subjects. Each individual data point represents the mean pixel intensity of all of the fields taken from forearm and 
buttock of young (21-22y) and old (60-65y) subjects. Y-PP= young photo-protected, O-PP= old photo-protected, Y-PE 
= young photo-exposed, O-PE= old photo-exposed. Error bars represent standard deviations calculated from the 
mean pixel intensity values for all of the fields imaged within each condition. n/s=non-significant change. 

  

As figure 4.5.5 shows, the mean expression levels of YAP1 increased with age in the PP 

and PE epidermis. Un-paired t-testing was used to assess the statistical significance of the 

difference between the mean expression of YAP1 between young and aged PP epidermis and 

as a separate analysis, young and aged PE epidermis. These tests showed that neither the 

increase observed in YAP1 levels in the epidermis of PP aged skin or PP aged skin was 

statistically significant, but the YAP1 increase with age was slightly more dramatic in the PE 

epidermis- p=0.15 compared to the PP epidermis–p=0.26. 
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4.5.7 YAP1 shifts to the nucleus in aged epidermis 
 
 As mentioned previously, the localisation of YAP1 determines its activity, with a nuclear 

localisation indicating active YAP1 that is able to bind its target genes and cytoplasmic YAP1 

indicating it is transcriptionally inactive. Assessing the levels of nuclear YAP1 in PP and PE aged 

skin would therefore give a simple indication of potential changes to YAP1 activity with age 

during intrinsic and photo-ageing. The images which were previously used to generate the 

mean expression data shown in figure 4.5.5, were also used to calculate the 

Nuclear:Cytoplasmic ratio- N:C of YAP1 in the epidermis of the PP and PE young and old skin 

biopsies. The details of how binary masking was used to generate independent quantifications 

of nuclear and cytoplasmic levels of YAP1 for each image in order to calculate the N:C is 

detailed in materials and methods section 2.3.8 (same method used in both mouse and human 

skin). Figure 4.5.6 shows the results of these analyses. 

In the epidermal regions of both PP and PE young and old skin the N:C ratio of YAP1 

was below 1, indicating that regardless of age or biopsy site, there was more YAP1 present in 

the cytoplasm when all the cells of the epidermis are considered together. There was almost no 

difference between the N:C value in the PP young compared to the PP old skin. The difference 

between the PE young and old skin N:C values was greater (details- table 4.5.2).  

Un-paired t-testing was used to assess the statistical significance of the difference 

between the mean N:C ratio of YAP1 between young and aged PP epidermis and as a separate 

analysis, young and aged PE epidermis. In the young vs old PP epidermis, this difference was 

not statistically significant (p=0.82). The difference between the N:C ratio of young and old PE 

epidermal tissue was much greater, and this was reflected in the fact that the p value 

generated in this test was much smaller: p=0.09 and was almost statistically significant. 
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Figure 4.5.6: Mean N:C values of YAP1 protein in the epidermis of PP and PE biopsies of young (Y) and old (O) 
subjects. Each individual data point represents the mean N:C of all of the fields taken from forearm and buttock of 
young and old subjects. Y-PP= young photo-protected, O-PP= old photo-protected, Y-PE = young photo-exposed, O-
PE= old photo-exposed. Error bars represent standard deviations calculated from the mean N:C values for all of the 
fields imaged within each condition. n/s=non-significant difference. n/s*= difference was close to conventional 
significance. 

The analysis of mean epidermal YAP1 and the mean N:C in the epidermal 

compartments of both young and old PP and PE skin is summarised in 4.5.2 and 4.5.3 below 

which show that YAP1 protein level increased in both intrinsically aged and photo-aged 

epidermis but only photo-ageing appeared to cause movement on YAP1 into the nucleus 

(although not statistically significant). 

 
Table 4.5.2: Mean epidermal expression levels of YAP1 and the mean nuclear to cytoplasmic ratio as calculated by 
the average fluorescence intensity in the different skin biopsy samples. Green fill indicates a decrease with age 
whereas orange fill indicates an increase with age. The numbers in brackets show the relative increase or decrease 
with age.  

Epidermal sample/ condition Mean YAP1 level- 

(fluorescence intensity) 

Mean N:C of YAP1  

PP- young (buttock) 7.29 0.88 

PP- old (buttock) 8.77 (+1.48) 0.89 (+0.01) 

PE- young (forearm) 7.92 0.89 

PE- old (forearm) 9.06 (+1.14) 0.98 (+0.09) 

 

 

O-PP O-PE 

n/s* 
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Table 4.5.3: Summary of the p-values generated from statistical testing. Green fill represents the most significant 
results from all of the analyses.* Difference in mean expression level between PE young and old was smaller than PP 
young and old but there was less variation in mean expression in the PE old epidermis leading to a more significant 
result through statistical testing. 

Epidermal sample/ 

condition 

T-test p value: change in 

mean YAP1 level. 

T-test p value: change in N:C 

value 

PP- young (buttock) PP young vs old 

0.26 

PP young vs old 

0.82 PP- old (buttock) 

PE- young (forearm) PE young vs old* 

0.15 

PE young vs old 

0.09 PE- old (forearm) 

 

4.5.8 Discussion part 1: YAP1 mRNA and protein increases during photo-ageing 
 

The microarray data for YAP1 shows that there was a general trend for YAP1 mRNA 

levels to increase in the skin regardless of whether photo-exposure had occurred or not. By 

considering the number of probe sets that significantly changed in expression with age, how 

significant these changes were according to their P and Q values and the mean signal of these 

probe sets, the degree of change to mRNA levels in the different skin compartments (epidermis 

and dermis) as well as full thickness skin was assessed. The most significant increases in YAP1 

mRNA were observed in the photo-exposed epidermal and full thickness compartments.  

Each of the 8 different probe sets targeting YAP1 mRNA in the Affymetrix Human U219 

Array is formed of 11 short, 25-nucleotide long (25mer) sequences, with each probe set having 

sequences designed to target different areas of the YAP1 mRNA transcripts. Online 

transcriptome resources such as ENSEMBL, NCBI’s GenBank and NCBI’s UniGene are used in 

probe design as these platforms provide large and regularly-updated bodies of information on 

different nucleotide sequences making up transcripts for a given gene. Thorough probe-set 

design is an important pre-requisite for good quality microarray results and thus using 

information from both a reputable and up-to-date resource is crucial (Liu et al, 2010). The 

quality of the Affymetrix probe design can be verified at their online analysis centre 

(https://www.affymetrix.com/analysis/netaffx/fullrecord), where probes are assigned an 

“Annotation Grade” of A-E indicating the quality of the probe design. “A” probes are those that 

match online transcript data (In this case taken from ENSEMBL and NCBI online databases) 

perfectly and are therefore considered to be of very high quality. All of the 8 probe sets that 

were designed to target the YAP1 gene had the highest quality “A” annotation grade assigned 

to them. 

Despite this, it seemed that transcripts bound more efficiently to 4 probe sets out of 

the 8 used on the microarray chip. This suggests that use of online transcript data, which is a 

https://www.affymetrix.com/analysis/netaffx/fullrecord
http://www.ensembl.org/Homo_sapiens/Transcript/Summary?g=ENSG00000137693;r=11:102110461-102233423;t=ENST00000345877
http://www.ncbi.nlm.nih.gov/nuccore/NM_001130145
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common information source for probe-set design, should be coupled with empirical records of 

microarray experiments that detail the quality of mRNA binding to the probes. This would 

better inform the user of probe-sets showing robust changes in previous experiments. These 

records are widely available online at resources such as ArrayExpress: 

(www.ebi.ac.uk/arrayexpress) 

Alternatively, the low levels of expression observed in some probe sets and not others 

may occur for biological reasons. YAP1 is also known to be subject to alternative splicing and 

has 8 different known protein isoforms (Sudol, M. 2013). It might therefore be the case that 

some of these isoforms are expressed at very low levels in the skin and are not modulated by 

the ageing process, meaning fewer of their encoding mRNA transcripts are present or showing 

modulation with age. This could explain the clear differential in the high expression levels in 4 

of the probe sets and low expression levels in the other 4 remaining probe sets. In order to 

explore this further sequence alignment analyses could be carried out where sequences from 

each of the different 8 probe sets could be aligned with the most up-to-date versions of the 

different mRNA transcript variants to determine if the highly expressed probes aligned with 

transcripts coding for certain isoforms. 

4.5.9 Discussion part 2: YAP1 protein changes with age are less marked that 
mRNA changes 
 

The analyses indicated that the changes observed at the mRNA level were similar, but 

less marked at the protein level, and implicated photo-ageing as the only condition where both 

YAP1 level increases and nuclear localisation increases were borderline statistically significant. 

So why might photo-ageing in particular modulate the level and sub-cellular localisation of 

YAP1? 

 Changes to the protein composition of photo-aged dermis have been well publicised in 

the literature. Dermal ECM modifications are numerous, and reports indicate a reduction in 

type I and type III collagens as being a prominent change (Domyati et al, 2002). Additionally, 

this is something that we have observed in our photo-aged skin samples using Herovici staining. 

There is also an increased activity of ECM-degrading proteases (Naylor et al, 2011) and reduced 

collagen synthesis and accelerated collagen degradation results in dermal atrophy. Also 

characteristic of ageing skin is a loss of elastin and an increase in fibrosis (Cerimele et al, 1990). 

Together these processes cause tissue stiffening, which has been found to occur in human skin 

with age (Pawlaczyk et al, 2013). This stiffening impacts the mechanical properties of skin, 

causing it to be less resilient to deformation (Makrantonaki and Zouboulis, 2007).  

As the stiffness of culture substrate has shown to modulate YAP1 sub-cellular 

localisation (see section 1.21 of thesis introduction), it is feasible that the epidermal 

http://www.ebi.ac.uk/arrayexpress
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keratinocytes in PE aged skin are responsive to the mechanical changes that could be taking 

place in the underlying dermis during photo-ageing. This could explain the increases in the 

levels of nuclear YAP1 in the epidermis of photo-exposed skin, as stiffening of the dermal 

compartment below could modulate the localisation of YAP1 in the basal keratinocytes above. 

Photo-exposure has been shown to accelerate the ageing skin process (Naylor et al, 2011) This 

may explain why the change in YAP1 nuclear localisation was much more prominent in the 

photo-aged arm skin compared to the intrinsically aged buttock skin, as the mechanical 

changes associated with ageing skin could be more marked in the aged PE tissue compared to 

the intrinsically aged tissue. 

 At the molecular level, changes in the proliferative index of keratinocytes with age is 

well documented, with several reports indicating decreases in keratinocyte proliferation during 

intrinsic ageing (Gilhar et al, 2004; Waaijer et al, 2012). On the other-hand, there are also 

reports of instances of epidermal hyperplasia during photo-ageing (Armento et al, 2015), which 

creates epidermal thickening (Domyati et al, 2002). As nuclear YAP1 is associated with active 

cellular proliferation, and was found to be more abundant in the photo-exposed skin, it is 

possible that the increased YAP1 mRNA and protein levels in photo-exposed skin could be a 

result of photo-damaged induced hyperplasia. In order to conclude if this was the case, Ki67 

staining could be carried out on human skin sections to indicate any change in the proliferative 

index of the keratinocytes in old PE epidermis compared to old PP epidermis. 

 Photo-exposure to the skin is highly associated with increased levels of DNA damage 

that can result in cellular apoptosis if the UV-induced insult is large enough (Lee et al, 2013). 

Photo-exposure is also commonly associated with carcinomas of the skin, indicating a causal 

link between UV exposure and skin cancers (de Gruijl et al, 2001). YAP1 has demonstrated 

specific roles in modulating DNA damage-induced apoptosis in epithelial cells in order to 

prevent oncogenic transformation (Cottini et al, 2014). The significant changes we observe in 

YAP1 mRNA levels in PE skin, and the movement of YAP1 into the nucleus could thus be a result 

of a protective cellular response to the presence of DNA damage due to UVA and UVB 

damaging irradiation during photo-ageing (Naylor et al, 2011). Future analysis of DNA damage 

levels in intrinsically aged and photo-aged skin would allow a more robust correlation to be 

drawn between nuclear YAP1 levels and the presence of DNA damage during photo-ageing. 

Analysis of pixel data from high-quality confocal images presents a good early 

benchmark of indications of changes to protein expression levels with age. But several 

experiments could be done in future to improve this data. Microarray data results can vary 

greatly depending on sample preparation and platform use (Morey et al, 2006). To overcome 

discrepancies, several methods have been developed to validate microarray data, including the 
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use of RNA-Seq (RNA sequencing) and RT-PCR (Reverse transcription polymerase chain 

reaction) (Rajkumar et al, 2015). Use of these tools would provide further confirmation of 

transcriptional changes we have observed to YAP1 with age. Additionally, there are also more 

efficient methods to quantify protein levels within the skin, such as western blotting, and 2-

Dimensional gel electrophoresis. Some of the changes we observed to YAP1 at the protein level 

during photo-ageing were close to being statistically significant. It may therefore be the case 

that more accurate methods of protein quantification might reveal true statistically significant 

changes in YAP1 epidermal levels and YAP1 nuclear localisation during photo-ageing. 

 



223 | P a g e  
 

Chapter 5: Thesis summary and final discussion 
 

5.1 C57BL/6 mice demonstrate a skin ageing phenotype similar to 
human skin but future work is needed to understand the role of Hippo 
during epidermal ageing 
  

Using C57BL/6 male mice taken from periodic stages in their lifespan, we have assessed 

the morphometric changes that occur to skin over time. Our findings showed that cellular loss 

was a hallmark of both epidermal and dermal ageing, and for the epidermal compartment this 

manifested as epidermal thinning and a reduction in the density of cells in the basal epidermal 

layer. Accompanying this change, we showed that the epidermal nuclei become less circular 

over time and that the nucleus adopts a flattened morphology in the aged basal epidermal 

cells. 

Our subsequent studies within the murine epidermis showed that epidermal 

proliferation declined over time, and alongside this, we saw a reduction in lamin B1 expression. 

To our knowledge, this is the first report of decreased lamin B1 in aged mouse tissue, and it 

shows that like for human skin (Dreesen et al, 2013 and our data), lamin B1 loss is a marker of 

epidermal ageing. Curiously, our analysis of DNA damage alongside cell proliferation revealed 

an unexpected result. DNA damage levels increased between 3 mo and 24 mo animals, but in 

the 30 mo animals, where we may have expected DNA damage levels to be highest, DNA 

damage was actually reduced and cell proliferation was increased compared to the 24 mo 

animals. We suggest that mice living to this age may show survivorship effects, whereby 

selection bias over time allows this genotype to be revealed.  

One caveat to this theory is given by the fact that there are known changes to the 

proliferative properties of aged basal epidermal cells. Charruyer et al (2009), have shown that 

aged murine epidermal stem cells produce greater quantities of transit amplifying cells (TA 

cells). As TA cells have the potential to show markers of proliferation like Ki67, it is possible that 

our observations of increased cell proliferation in the 30 mo animals compared to the 24 mo 

animals may reflect a greater TA cell population. Future work should explore why the oldest 

mice showed these unexpected changes, and an important subsequent experiment would be 

to assess whether the expression of DNA surveillance and repair genes, like RAD51 (Wood et al, 

2001), are increased in these animals, as this could explain why they have reduced levels of 

DNA damage. Additionally, it is possible to distinguish between Epi SC’s and TA cells in the basal 

epidermal layer by analysis of β1 integrin levels, as it has been shown that Epi SC’s have greater 

expression of this marker compared to TA cells (Watt, F.M. 1998). This experiment would allow 
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us to uncover whether our increased observation of proliferation in the 30 mo animals is a 

result of a greater TA cell population. 

Through Western blotting and immunofluorescence, we showed that the keratinocyte 

terminal differentiation protein loricrin was lost with age. Loricrin loss in aged human skin has 

been shown in previous reports (Rinnerthaler et al, 2013), so despite the fact that structurally, 

C57BL/6 mouse skin is different to human skin, it appears that the two show this common 

marker of epidermal ageing. An additional important finding that warrants future study was the 

observation that K14 levels were maintained in the aged epidermis whereas K10 and loricrin 

levels decreased. This finding is of notable importance when considering our observation of 

increased nuclear YAP1 in the aged epidermis. 

YAP1 nuclear localisation can occur as a result of low-cell density conditions, stiffer 

ECM substrates, modulation of the actin cytoskeleton and mitogenic signalling (see thesis 

introduction parts 1.20-1.22). In our aged C57BL/6 epidermis, all four of these factors have the 

potential to modulate YAP1 localisation. We have seen that fewer nuclei are present in the 

epidermis, so cell density is reduced in this region and we have observed changes in the 

morphology of the basal epidermal cells that could impact their cytoskeletal properties. 

Additionally, our characterisation of the dermal and basement membrane collagens showed 

that collagen VII protein expression decreased in aged animals, and also that collagen III and 

collagen I protein levels decreased in the dermis. Changes in the levels of dermal and basement 

membrane collagens could impact the biomechanical properties of these skin regions, and as 

basal epidermal cells are connected to the basement membrane, changes in the biomechanical 

properties in the underlying skin layers could modulate the localisation of YAP1 in these cells.  

Because all of these changes have the potential to drive nuclear localisation of YAP1, 

future work should aim to delineate the cause of this observation. Potential changes in the 

cytoskeletal properties of basal epidermal cells could be assessed by looking at F-actin and 

keratin expression and organisation, and analysis of changes to the stiffness of these cells using 

atomic force microscopy (AFM- see Achterberg et al, 2014) could be completed to assess if 

there is a difference in their biomechanical properties of epidermal keratinocytes that is driving 

nuclear localisation of YAP1. 

It is important to mention one key, common limitation in some of our assessments; 

that we computed the change in the nuclear location of YAP1 and percentage of Ki67 positive 

cells using the whole epidermis over time. It is now clear that the cells of the different layers of 

the epidermis are not lost equally during C57BL/6 epidermal ageing, as cellular loss appears to 

occur mostly as a result of fewer terminally differentiated (K10 and loricrin positive) 

keratinocytes in aged skin. This raises the question as to what extent our observation of 
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increased nuclear YAP1 in the oldest 30 mo animals is simply representative of the 

maintenance of the K14-positive cells, which contribute to the actively proliferating basal 

epidermal layer during epidermal ageing and the loss of non-proliferating, differentiated 

keratinocytes of the spinous and granular epidermal layers. 

Future work should aim to delineate this, and efforts should be focused on firstly un-

covering the proportions of cells from the basal, spinous and granular layers that are lost during 

epidermal ageing. This can be completed by using markers of keratinocyte differentiation like 

K10 and loricrin with the basal epidermal makers K14. Following this, assessment of changes to 

YAP1 nuclear localisation and Ki67 expression in the basal epidermal cells only should be 

completed, as this will determine if our observed changes are specific to this compartment. 

Finally, as this work was completed in an in-bred strain of mice with identical genomes, 

it is important to consider that our findings may be unique to this strain of mice only. Despite 

this limitation it is clear that the C57BL/6 strain shows characteristics of epidermal ageing that 

are also shown in humans and therefore analysis of ageing skin in this model is worthwhile in 

the consideration of intrinsic mammalian skin ageing. Our work focused heavily on the 

epidermal compartment, so future analyses must account for the role of the dermis and hair 

follicles in the ageing process of mice. Initial experiments could look at the change in the 

number of pilo-sebaceous units in this animal with age to determine the extent of hair follicle 

attrition during C57BL/6 skin ageing. 

5.2 Identification of increased dermal and basement membrane 
collagen transcription in later life 
 
 Through our transcriptional analysis of collagen I, collagen III, collagen IV and collagen 

VII mRNA levels during intrinsic and photo ageing, we identified novel findings. Firstly, although 

collagen I and collagen III mRNA levels declined until the 5th decade as one might expect, we 

found that in the two last decades assessed (6th and 7th- so subjects in their 60’s and 70’s), 

increased collagen I and collagen III transcription was observed. We propose either that this 

observation occurs as a compensatory mechanism- to restore youthful dermal ECM 

composition or alternatively it may represent an age-associated fibrosis effect.  

Like for collagens I and III, the mRNA expression of two particular alpha chains in the 

collagen IV protein family, collagen IV α5 and collagen IV α6, also showed increased mRNA 

expression during intrinsic and photo-ageing. However, un-like for the dermal collagens, mRNA 

levels increased steadily from the 2nd to 7th decades. Additionally, collagen VII mRNA levels 

increased steadily from the 2nd to 7th decades during intrinsic and photo-ageing. As the 

basement membrane houses the epidermal stem cell niche, it is possible that these 
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transcriptional increases over time occur in an attempt to maintain the integrity of the stem 

cell niche to be maintained during the ageing process. 

What is clear from our analysis of skin using Herovici staining and antibody staining 

against collagen VII, is that these transcriptional increases did not cause collagen levels to be 

restored in the dermis or the basement membrane, as we observed degradation of type I and 

type III collagens during intrinsic ageing, and to a greater extent, during photo-ageing and loss 

of collagen VII in both conditions. This suggests a dramatic change in the collagen synthesis and 

degradation balance in the dermis and basement membrane, and shows that our work 

presents only a partial picture of collagen ageing dynamics in this cohort of females. Future 

work should look to understand why these transcriptional increases do not manifest at the 

protein level, as it could be caused by increased expression of enzymes like MMP-1 and MMP-

9, that are able to degrade collagens. Alternatively, there could be an age-related perturbation 

in the protein synthesis and higher-order assembly of dermal and basement membrane 

collagens, perhaps due to reduced lysyl oxidase enzyme activity. 

One key limitation in this work was the fact that the collagen IV antibody available to us 

targeted the α1 chain only. As our results clearly show that α5 chain and α6 chain transcription 

increases, future research should look to validate this at the protein level using a collagen IV 

antibody specific to α5 and α6 chains (see Hasegawa et al, 2007 who used chain-specific 

antibodies to show differential expression in young skin). Additionally, on a general note, our 

study cohort was all female, and it is important to note that the steroid hormonal profile of 

women and men is different, due to the different levels of testosterone and oestrogen. As 

these hormones can impact the dermal compartment through collagen synthesis (Thornton, 

M.J. 2013), it is possible that our observations are unique to women and therefore similar 

studies would be needed in males to confirm whether our observations are specific to the 

female gender or are universal. 

 

5.3 YAP1 and lamin B1 transcriptional and protein changes occur during 
epidermal ageing in human skin. A more robust sample size should be used 
to confirm this at the protein level   
 
 From our transcriptional analysis of the nuclear lamins and YAP1, we identified robust 

changes. Expression of lamin A and YAP1 mRNA was increased during ageing, whereas lamin B1 

mRNA levels decreased. Our validation of these changes at the protein level, however, gave 

less robust evidence for a statistically significant change in these observations. In addition, 

YAP1 nuclear localisation increased in the epidermis during ageing, but this was not significant. 

These observations suggest that decreased lamin B1 and increased nuclear YAP are common to 
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the ageing epidermis of C57BL/6 mice and humans, but unlike the mice used in our studies, our 

human tissue samples came from genetically heterogeneous females, and thus our sample size 

number for our human protein-based validations was small (n= 3). To confirm that decreased 

lamin B1 protein expression and increased nuclear YAP1 are common markers of epidermal 

ageing in both mice and humans, additional subjects should be used for protein-based 

validations in the human tissue cohort. A greater sample size will help to account for the 

genetic heterogeneity that is part of human tissue use, as a greater sample size increases the 

reliability of the data (Halsey et al, 2015). 

Future work may also wish to consider the transcriptional fate of other components of 

the LINC complex during ageing. It is known that the nuclear lamins are crucial for assembly 

and stability of other parts of the LINC complex, like emerin (Vaughan et al, 2001) and also that 

nuclear lamins are required for the formation of cellular signalling complexes at the nuclear 

lamina, such as the formation of the complex of LAP2α and pRb (Markiewicz et al, 2002). It is 

therefore possible that several other components of the LINC complex show altered expression 

during ageing, which could be explored at the transcriptional and protein level in future 

studies. Finally, it is becoming increasingly well known that the homolog of YAP, TAZ, has its 

own unique roles in cell biology, which has been shown in the context of wound healing (Lee et 

al, 2014) and miRNA biogenesis (Moroishi et al, 2015). Future studies could therefore consider 

whether TAZ shows a differential modulation to YAP1 during epidermal ageing. 
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