
Sleat, Philip M. (1991). A static, transaction based design methodology for hard real-time systems.

(Unpublished Doctoral thesis, City University)

City Research Online

Original citation: Sleat, Philip M. (1991). A static, transaction based design methodology for hard

real-time systems. (Unpublished Doctoral thesis, City University)

Permanent City Research Online URL: http://openaccess.city.ac.uk/17414/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

'

?<7Z"-'.", \.. - 'j, .J

A Static, Transaction Based Design Methodology for Hard
Real-Time Systems

BY

Philip M. Sleat

Department of Computer Science,
City University.

This thesis is submitted as part of the
requirements for the degree of Doc
tor of Philosophy.

02016795~

"

Dedication
This is dedicated to Laura, whose love and encouragement has steered
me through the last two years; to our parents Doreen and Fred, Anne
and Chris, for their continuous love, and support of our educations.
Many, many thanks.

This is also dedicated to Holst, The Planets, Op. 32, for keeping me
entertained whilst typing1 •

11'm glad Earth wasn't included and that Pluto wasn't discovered in 1914 when
the Planets were written ... seven chapters were enough!

Contents

1 Introduction

1.1 Overview.
1.1.1 Real-Time Systems

1.1.2 The System Life Cycle

1.2 Research Objectives

1.2.1 Scope of The Research

1.3 Plan of the Thesis.

2 The Transaction Model in Real-Time Systems

2.1 Introduction

2.2 Characteristics of Real-Time Data.

2.2.1 A Historical Perspective ..

2.2.2 Real-Time Data ..

2.3 The Transaction Model .

2.3.1 Definition

2.3.2 Nested and Distributed Transactions

.....

13

13

13

15

16

16

17

21

21

22

22

22

24

25

26

2.3.3 Implementation of the Transaction Model 27

2.4 Failure of Commercial DBMSs in Real-Time Applications 29

2.4.1 Non-real time DBMSs ...

2.4.2 Real-Time Specific DBMSs .

2.5 Non-determinism in the model ...

2.6 Alternatives to the Transaction Model

2.7 A Proposal

30

31

31

33

33

"

CONTENTS

3 A Model for a Real-Time System 35

3.1 Introduction 35

3.1.1 The Need for a Model 35

3.2 A General System Model . . . 36

3.2.1 Summary of the Model. 36

3.2.2 A Task View .. 36

3.2.3 The Transaction 39

3.2.4 Critical Regions. 43

3.3 Real Time Aspects of the Model . 44

3.3.1 Ensuring Indivisibility of Critical Regions 44

3.3.2 Application Requirements Constraints .. 49

3.3.3 Introducing Timing Constraints 49

3.4 Decomposing Applications to Conform to the Model. 50

3.5 Modelling Tasks with Petri-nets .. 51

3.6 Conclusions 52

3.6.1 Glossary of Common Terms 52

4 Data Entity Viewpoint Analysis 55

4.1 Introduction 55

4.1.1 Motivation . 55

4.1.2 Objectives of the analysis method. 56

4.1.3 Pre-requisites for the method ... 57

4.2 The New Notation - Data Dependency Rings. 62

4.2.1 Why Introduce Another notation? . 62

4.2.2 Structure of a ring 63

4.3 A Simple Example 66

4.3.1 The Bottling System 67

4.3.2 Subsystem Identification 68

4.3.3 Identification of Real-Time Triggers . 69

4.3.4 Definition of System Data Entities 69

4.3.5 Description of task database usgage . 70

4.3.6 Data Dependency Diagrams 73

11

"

CONTENTS

4.4 Uses of the Ring 74

4.4.1 As a specification of the Database Usage 75

4.4.2 Generating Transaction Precedence Graphs. 75

4.4.3 Allocation Schemes ;." . . 79

4.4.4 Critical regions and generating back off information 85

4.5 Summary of the Method 87

5 A Run-time Environment

5.1 Introduction

5.2 Real-Time Scheduling - A Survey

5.2.1 Deterministic Scheduling.

5.2.2 Nature of Tasks

5.2.3 Taxonomy of the scheduling solutions ..

5.3 A Combined Static/Dynamic Approach ..

5.3.1 Introduction

5.3.2 Chosing a Scheduling Heuristic

5.3.3 Worst Case Scenario Analysis

5.3.4 Unsound Task Sets

5.4 A Run Time Environment

5.4.1 The Schedulers ..

5.4.2 Managing distributed/replicated data.

5.4.3 Recovery and Failure

5.4.4 Replication of the Scheduling Components

5.4.5 Scheduler Overhead ..

5.5 Other Overheads

5.6 Conclusions ...

6 Evaluation of the Work

6.1 Introduction

6.2 Evaluation of the Methodology

6.2.1 Overview of the Method

6.2.2 Real-Time triggers .

III

89

89

89

90

90
91

.102

· .102

· 103

· . 104

· .113

.115

.115

· 118
.120

· . 120

· 123

· 125

.125

127

· 127

· . 127

· 128

· 128

6.2.3 Subsystem/Task Decomposition

6.2.4 Database Design
6.2.5 Transaction Decomposition

6.2.6 DDR Notation

6.2.7 TPG Notation.

6.2.8 Allocation Schemes .

6.2.9 Static Analysis ..
6.3 Evaluation of the Execution Platform .

6.4 Reliability and the Method.

6.4.1 Overview of Reliability Issues

6.5 Conclusions
6.5.1 Research Objectives

6.5.2 Contribution To The State of the Art .

6.5.3 Final Comments

7 Conclusions

7.1 Overview.

7.2 Further Directions

7.2.1 Integration with other methods

7.2.2 Moving from specification to design

7.2.3 Improvements to the CASE tool.

7.2.4 Evaluation of design quality

7.3 Concluding Remarks

A An Interactive CASE Tool

A.1 Introduction To Methodology

A.2 The WIMP Environment.

A.2.1 Drop Down Menus

A.2.2 Forms ...

A.2.3 Windows ..

A.3 Creating A Real-Time System .

A.3.1 Entering the System Devices.

iv

CONTENTS

· 129

· 131

· 132

.132

.133

.136

.137

· 139

.140

.140

.143

.144

.146

.146

149

.149

.151

.151

.152

.152

· 153

· 153

165

· 165

.166

.166

.167

.168

.170

.170

.

CONTENTS

A.3.2 Displaying the Real-Time System .

AA Creating a Data Entity

AA.l The Data Entity Viewpoint

A.5 Creating a Task

A.6 Creating a Transaction

A.7 Task View of the Real-Time System.

A.8 Allocation Schemes

A.9 Static Temporal Analysis ..

A.9.1 Analysis Levell ..

A.9.2 Analysis Level 2 .

A.9.3 Analysis Level 3 ..

A.I0 Saving, Loading and Printing .

A.10.1 File Formats

A.l1 CASE Tool Implementation Details

B A Ship Control System

B.l The Ship Control System - Requirements .

B.1.1 Overview of the ships function .. .

B.1.2 The Physical Environment

B.1.3 The Real-Time Triggers and Tasks

B.2 Database Design

B.2.1 The Database

B.2.2 Tasks and Database Actions .

B.3 Data Dependency Analysis

BA Transaction/Data Entity allocation

BA.l An allocation

BA.2 Analysis

B.5 Conclusions ..

C An analysis Example

.171

· 172

... 173

.174

.174

· 175

.176

.176

.176

.177

· 177

.177

.178

.180

183

· 184

.184

.186

.186

.193

· 194

.197

.206

.206

.218

.225

.229

231

D Example Execution Traces For The Scheduler Hierar-
chy 237

v

CONTENTS

o

VI

List of Figures
o

3.1 High level representation of a task. 38

3.2 Decomposition into serial, synchronous subtasks . . 39

3.3 Decomposition into parallel, asynchronous subtasks 40

3.4 Further decomposition into serial subtasks

3.5 A select of one of two subtasks. . .

3.6 A Transaction Precedence Graph

3.7 A Molecule (Connected Critical Regions) .

3.8 Relationships between two critical regions

40

41

43

45

46

4.1 Context Diagram for a simple Chemical Control Plant . 58

4.2 Subsystem decomposition diagram (SDD) for a chemical
vat . 59

4.3 Task Decomposition Diagram a chemical vat

4.4 Primary DDRs for Two Data Entities ..

4.5 Secondary DDRs for Two Data Entities ..

4.6 DDRs for A Decomposed Data Entity ..

4.7 Expressing Partial Ordering on the DDR

4.8 DDR Showing Selection

59

63

64

65

66

67

4.9 Subsystem decomposition diagram for the bottling plant 70

4.10 Data Dependency Rings for the Bottling Plant. 73

4.11 Data Dependency Rings for the Bottling Plant (cont.) . 74

4.12 Example DDRs for a simple task 76

4.13 Generating precedence graph from the transactions .. 77

4.14 Precedence Constraints for the transactions in figure 4.12 77

4.15 Transaction Precedence Graph. 78

vii

LIST OF FIGURES

4.16 A better TPG . 79

4.17 Example rings to demonstrate data entity concurrency
degrees. 80

··4.18 Transaction precedence graph for figure 4.13 . . . 81

4.19 Allocating Entities and transactions to processors 82

4.20 Allocation of figure 4.13 to four processors 83

4.21 Reducing the number of processors in an implementation 84

5.1 Taxonomy of scheduling solutions 92

5.2 Worst Case Triggerings for Simple Task Set 1 . 106

5.3 Execution trace for Simple Task Set 1 107

504 Execution trace for Simple Task Set 1 beyond T IO • 108

5.5 Triggerings for Simple Task Set 3 109

5.6 Distributing The Transaction Scheduler. 122

5.7 Distributing the Transaction and Critical Region Sched-
ulers . 122

6.1 Representing Time Continous Data Entities .134

6.2 A Task with Multiple Triggers136

A.I Selecting Options from a Submenu .167

A.2 An Example Data Entry Form. . . .168

A.3 Initial Title Screen in a Message Window. . 169

AA DDRs displayed in a Permanent Window. .170

A.5 Transaction Precedence Graph in a Temporary Window. 171

A.6 An Example Context Diagram. . 172

A.7 An Example DDR173

B.1 Extended Context Diagram for the Ship Control System 187

B.2 Subsystem Decomposition Diagram for the Ship Control
System.187

B.3 The Crew Display Terminal 188

BA Data Dependency Rings for the Ship Control System .207

B.5 Data Dependency Rings for the Ship Control System .208

Vlll

'.

"
LIST OF FIGURES

B.6 Data Dependency Rings for the Ship Control System . 209

B.7 Data Dependency Rings for the Ship Control System . 210.

B.B Data Dependency Rings for the Ship Control System .. 211

B.9 Data Dependency Rings for the Ship Control System . 212

B.ID. Data Dependency Rings for the Ship Control System .. 213

B.ll Data Dependency Rings for the Ship Control System . 214

B.12 Data Dependency Rings for the Ship Control System . 215

B.13 Transaction Precedence Graphs: Tasks 1 to 8 215

B.14 Transaction Precedence Graphs: Tasks 9 to 13 .. . 216

B.15 Transaction Precedence Graphs: Tasks 14 to 19 . . 216

B.16 Transaction Precedence Graphs: Tasks 20. to 21 . . 217

B.17 Transaction Precedence Graphs: Tasks 22 to 23 . . 217

D.1 Transaction Precedence Graphs for tasks T1 and T2 . . 238

D.2 The Allocaton of Tasks, Schedulers and Data Entities to
Processors 238

D.3 Execution of task T1•........•...... 241

IX

,"

10 ACKNOWLEDGEMENTS

Acknowledgements
There are many people that I would like to thank for their help during
my research. As a SERC 'CASE' student, I have come into contact with
many professionals both in industry and academia, too many to thank
individually. Some 'names' do however require acknowledgement and
thanks. First of all at SEMA Group, I would like to thank Dr. Mike
Christie, Mr. Brian Hardwick, Mr. Fraser Beady and Mr. Dave Britten
for passing on their extensive knowledge of real-time systems design.
After spending the last seven years at The City University, London for
both my BSc. and research, there are many people to thank. Thanks
must go to the department support staff; Nigel Mitchem for promptly
answering all my stupid questions and Chris Marshall for converting
my CASE tool to X-windows. My acknowledgements are extended
to Majid Mirmehdi and Mohammad Nejad-Sattery for help with the
content and layout of my thesis. Thanks go to Mr. Phil Winterbottom,
now of AT&T Bell Labs and Professor Bernie Cohen for their comments
and useful suggestions. Thanks must also go to Mr. Ken Jackson and
Professor Mike Moulding for kindly reviewing the work and being so
helpful with their comments. Finally, my greatest thanks go to my
supervisor, Professor Peter Osmon, whose many ideas, enthusiasm and
confidence in my abilities have made this possible.

Declaration

I grant powers of discretion to the University Librarian to allow this
thesis to be copied, in whole or in part, without further reference to
me. This permission covers only single copies made for study purposes,
subject to normal conditions of acknowledgement.

ABSTRACT 11

ABSTRACT

This thesis is concerned with the design and implementation stages of
the development lifecycle of a class of systems known as hard real-time
systems. Many of the existing methodologies are appropriate for meet
ing the functional requirements of this class of systems. However, it
is proposed that these methodologies are not entirely appropriate for
meeting the non-functional requirement of deadlines for work within
these real-time systems. After discussing the concept of real-time sys
tems and their characteristic requirements, this thesis proposes the use
of a general transaction model of execution for the implementation of
the system.

\Vhereas traditional methodologies consider the system from the flow
of data or control in the system, we consider the system from the view
point of the role of each shared data entity. A control dependency is
implied between otherwise independent processes that make use of a
shared data entity; our viewpoint is known as the data dependency
viewpoint. This implied control dependency between independent pro
cesses, necessary to preserve the consistency of the entity in the face of
concurrent access, is ignored during the design stages of other method
ologies. In considering the role of each data entity, it is possible to
generate other viewpoints, such as the dataflow through the processes,
automatically. This however, is not considered in the work.

This thesis describes a staged methodology for taking the requirements
specification for a system and generating a design and implementation
for that system. The methodology is intended to be more than a set
of vague guidelines for implementation; a more rigid approach to the
design and implementation stages is sought. The methodology begins
by decomposing the system into more manageable units of processing.
These units are known as tasks with a very low degree of coupling
and high degree of cohesion. Following the system decomposition, the
data dependency viewpoint is constructed; a descriptive notation and
CASE tool support this viewpoint. From this viewpoint, implemen
tation issues such as generating control flow; task and data allocation
and hard real-time scheduling concerns, are addressed. A complete run
time environment to support the transaction model is described. This
environment is hierarchical and can be adapted to many distributed
implementations.

Finally, the stages of the methodology are applied to a large example, a
Ship Control System. Starting with a specification of the requirements,
the methodology is applied to generate a design and implementation of
the system.

ABSTRACT

12

Chapter 1

Introduction

Mars, the Bringer of War

1.1 Overview

1.1.1 Real-Time Systems

This thesis is coricerned with real-time systems. The term 'real-time
system' has been defined by a number of authors in the literature
[AIlS 1], [BenSS], [LA90], [BWS9], [LMSS], [Sta8S]. In considering these,
there is not one definition for a real-time system that sufficiently covers
all members of this class of systems. Instead, the best that can be done
in defining a real-time system is to describe those characteristics that
stand it apart from non real-time systems.

According to [NS90], a real-time system interacts with its environment
within certain timing constraints. The system has to respond to a set of
conditions from some external environment within certain, predefined,
response times. In addition, the system must carry out other tasks at
regular intervals dictated by the system clock.

The existence of timing contraints, leads to a further division within the
class of real-time systems. There are those real-time systems where the
timing constraints are 'hard'; in a hard real-time system if any of the
timing constraints are not met, the system has failed. There are also
'soft' real-time systems where it is desirable to satisfy as many of the
timing constraints as possible but it is not catastrophic if some timing
constraints are not met. The existence of timing contraints within
a system does not necessarily make it a real-time system. Consider

13

CHAPTER 1. INTRODUCTION

the payroll system that must finish the payroll for a month before the
next pay date of the employees. In this respect the payroll system
could be considered real-time because there are temporal contraints on
when work must be done. The definition of a real-time system must be
refined somewhat. The timing constraints imposed are often difficult to
achieve using the conventional hardware or software techniques of on
line systems. Often, 'clever-tricks' as dictated by system 'gurus' must
be used to meet the deadlines.

Further characteristics of real-time systems include the need for high
degrees of reliability. Often real-time systems work in safety critical
environments where lives, or at best, large sums of money, are at stake
should the real-time system fail in some way. If the system fails then
greater costs than those to replace the systems are incurred. As an ex
ample of the increased reliability of a typical real-time system consider
'SIFT' a fault tolerent flight system [MSS82]. The requirements for
this system state that the probability of life threatening failure must
be no greater than 10-9 during a ten hour flight. This is equivalent to
a mean time between failures of 10 million years assuming maintenance
after each ten hour flight.

[HP88] states that the past and present events that a real-time system is
subjected to, change its behaviour. This change may simply be altered
output based on updated input. Alternatively, this change may require
that some subset of the systems processes is now made redundant or
that some subset is made active. For many real-time systems we have
no way of knowing what system processes are going to be active at any
time until the system is run.

This work is aimed at those systems that have 'hard' timing constraints.
The system consists of a number of tasks that must complete before
well specified deadlines. The system may also contain a number of 'soft'
tasks which can be executed on a 'best effort' basis. The actions of each
task are well specified before the system is defined. The actual tasks
that are active at any particular moment in time not however specified
prior to run-time. The set of active tasks is determined by past and
present actions in the system. In addition, the real-time system may
have the requirement for a high degree of reliability. Examples of this
sort of real-time system occur in process control environments and C3
(Command, Control and Communications) systems for ships. Such
systems are often termed 'embedded' real-time systems [Zav82]. These
systems must often react to rapidly changing environments and have
high degrees of reliability.

14

1.1. OVERVIEW

1.1.2 The System Life Cycle

The work presented in this thesis is concerned with one part of the
'life- cycle' of a real-time system. The life cycle of a computer system
is often considered using some variation of the waterfall model. The
stages of this model are as follows [Som89], [NS90]:

1. Requirements analysis and definition. The systems services, con
straints and goals are established by consultation with the even
tual users of the system.

2. Specification of requirements. A precise definition of the system
services is stated. This statement is in a form which is under
standable by the eventual system user (or procurer) as well as
the systems engineers that are to build the system. The user
can use the specification to check that the eventual system will
meet the requirements. The systems engineers use the specifica
tion to aid the design and then prove that this design meets the
requirements.

3. Design. This stage states the way in which the system services
are to be provided. In addition, the environment in which the
system is to operate is defined.

4. Implementation. The design is converted into actual software and
hardware modules.

5. Testing. The implementation is tested to ensure correct operation
as specified by the earlier requirements stage.

6. Commissioning. A further set of testing is carried out by the
eventual users in the actual environment that the system is to
execute in.

7. Maintenance. The system is changed as a result of the discovery
of errors, ommisions and changes to the initial requirements.

Much work has been done to ensure that the requirements and specifica
tion documents are as complete and unambiguous as possible [HoaS5],
[HenSO], [NS90], [BatS7], [WMS6],

[Jac83]. Many of these approaches provide notations for expressing
various aspects of the lifecycle of the system. They improve the com
munication paths between the system designer and eventual user and
highlight problems and errors in a design early on. However, not many

15

CHAPTER 1. INTRODUCTION

of these methods concentrate on the design and implementation stages.
The system designer often has to rely on his/her own experience, a set
of heuristic guidelines and perhaps a set of notational tools, to generate
the design.

1.2 Research Objectives

Existing methodologies consider the design of the real-time system from
the traditional control or data flow viewpoints. This leads to a natural
specification of the behaviour of the system. However, these viewpoints
do not guide the designer in the quest to meet the non-functional re
quirements of the system. The main aim of the research is to consider
the non-functional requirement of meeting hard real-time deadlines for
systems that are well specified. The ability of existing methodologies
to address this problem should be considered and the suitability of the
datal control flow models of the systems discussed.

1.2.1 Scope of The Research

- -
This thesis concentrates on the design and implementation stages of
the system lifecycle. Given a precise and unambiguous specification
of the requirements of the application, a staged methodology to lead
to a design is proposed. This methodology, together with supporting
notations, provides guidelines for the design of hard real-time systems
and describes essential run-time structures for an implementation. The
methodology is aimed at providing more than the set of heuristic guide
lines for system partitioning as in other methodologies.

The methodology described in this work considers a real-time appli
cation from a different, but complementary, viewpoint to that taken
by existing methods. Methodologies such as in [WM86) , [Bat87j, (1)
consider the application from the flow of data viewpoint. Data flow
diagrams are constructed to aid the designer decompose the applica
tion into more manageable units of processing. To implement these
'modules' the designer needs to consider the flow of control through,
even finer grained, chunks of processing. The viewpoint taken by the
methodology described in this work considers the system from the use
each independent activity makes of a set of shared resources; this is
known as the data dependency viewpoint and shows the relationship
between independent activities through the use of shared resources.
The flow of control through the components of each independent activ-

16

"

,-

1.3. PLAN OF THE THESIS

ity is automatically generated from the data dependency viewpoint.

One of the major problems with existing methodologies that consider
the design and implementation stages of the system lifecycle, is that
they concentrate on the functional requirements of the system, perhaps
at the expense of the non-functional requirements. [Som89] describes
the functional requirements of the system as those ~ervices which are
expected by the user and the non-functional requirements as the con
straints under which these services must be provided. For example,
a functional requirement of a chemical control plant might be to shut
down the plant if the temperature exceeds 100°C. An associated non
functional requirement might state that the plant must be shut down
within 100 ms.

The work described in this thesis considers the temporal, non-functional,
requirements of the real-time system as being very important from
early on in the design process. The methodology uses the data de
pendency viewpoint to guide the design and the temporal requirements
of the application to guide the implementation. Other non-functional
requirements affect the temporal properties of the implementation. As
an example, the provision of increased reliability through redundancy
changes the system in that the redundant copies of software and hard
ware components need to be maintained. These non-functional require
ments need to be considered carefully in the design and implementation
stages of the lifecyc1e of the real-time system.

1.3 Plan of the Thesis

The following chapter prc:>vides further motivation for the study of real
time systems. An execution model, the transaction is presented and
its suitability for use in real-time systems discussed. The chapter goes
on to consider commercial database systems, both 'conventional' and
real-time, that implement the transaction model and discusses their
suitability for use in hard real-time systems.

Chapter 3 introduces a model for an executing real-time system. This
chapter describes how the real-time system may be constructed from
a set of independent 'tasks'. The chapter further describes how these
tasks are constructed from sets of transactions that conform to the
model presented in Chapter 2. The constraints under which these trans
actions may execute are discussed.

Chapter 4 is logically split into two sections. The first describes a step
by step methodology for generating a design for an implementation of a

17

"
CHAPTER 1. INTRODUCTION

real-time system from the application requirements specification. The
second part of the chapter describes two supporting notations; one to
define the data dependencies between the otherwise independent tasks
and the second to describe the control flow through the actions of a
task that results from these data dependencies.

Chapter 5 describes the problem of ensuring real-time tasks meet their
hard timing constraints. Some existing solutions to this problem, and
their ability to meet the deadlines of all tasks are considered. In this
chapter it is proposed that in order to meet successfully the deadlines
of all tasks under all circumstances, some static analysis of the timing
properties is required before the system is implemented. The chapter
goes on to describe such a static analysis that uses information gen
erated by the design methodology of Chapter 4. Following this the
chapter describes, in overview, a hierarchy of scheduling mechanisms
for executing the tasks and transactions in an implementation. This
forms the basis of the run-time system for an implementation of the
designs generated by the methodology of Chapter 4.

Chapter 6 compares aspects of the methodology with the equivalent in
other, well established methodologies. The chapter goes on to consider
other general requirements of real-time systems, such as high reliability,
and discusses how the methodology and ~xecution platform of chapters
4 and 5 meet up to these requirements. The chapter concludes with
a discussion of the advantages and disadvantages of the new design
methodology.

Chapter 7 summarises the work described in the preceeding chapters. In
addition, the chapter describes areas of further research that are needed
before a completely usable, and general, real-time design methodology
is developed.

There are four appendices at the end of the thesis. The first appendix
describes the use of a simple CASE tool developed to support the
methodology. This tool is written in 'C' and runs under GEM and
X-Windows. The CASE tool allows automatic generation of the na
tations that support the method and provides help for carrying out
the static analysis necessary to evaluate the design of a real-time sys
tem. The second appendix describes a large, and relatively complex,
real-time application: a ship control system. This application is used
to demonstrate the steps of the methodology described in chapters 4
and 5 of the thesis. The third appendix describes some simple static
examples that demonstrate the worst case analysis necessary to test
the schedulability of a design. The final appendix describes the execu
tion of the hierarchy of scheduling components that form the run-time

18

'.

1.3. PLAN OF THE THESIS

system for the eventual implementation of the real-time system.

19

CHAPTER 1. INTRODUCTION

20

"

Chapter 2

The Transaction Model in
Real-Time Systems

Venus, the Bringer of Peace

2.1 Introduction

This chapter discusses the characteristics of the data that is stored in
and used by real-time systems. It then introduces a model of computa
tion that is embodied in· most database management systems and has
great potential for building reliable distributed computer systems. This
computational model is the transaction. It is argued that a real-time
system should be composed of these transactions. An 'off the shelf'
database management system might then be usable as the data store
for the real-time system. Although the transaction model is appropri
ate, it is not often feasible to use a conventional DBMS. The reasons
for this are discussed. The non-deterministic parts of the transaction
model, where it is difficult or impossible to predict accurately the in
fluence of the model on the temporal properties of the system are then
considered. Finally, it is proposed that, in order to build predictable
real-time systems based on the transaction model, the design must
consider, amongst other aspects, the concurrency control necessary be
tween concurrent transactions.

21

"

"

CHAPTER 2. THE TRANSACTION MODEL IN REAL-TIME SYSTEMS

2.2 Characteristics of Real-Time Data

2.2.1 A Historical Perspective

Today's large real-time systems have developed from traditional em
bedded systems. With this development has come a greater need for
the control and manipulation of large volumes of real-time data. Early
embedded systems typically used very small amounts of data. Memory
was expensive and the early applications didn't demand the storage of
a great deal of information. [Ast84) describes some of the early control
systems. In 1959 a process control system controlled the flow of 26
chemicals, 72 temperatures and 3 pressures. The volume and complex
ity of the stored data in such systems was not great. The complexity
of the applications has, however, changed over time. Today's real-time
applications require the storage of large volumes of data and need to
manipulate them in sophisticated ways. As an example, modern C3
systems 1 often maintain a track table [Tay89) that records the po
sitions of any other vehicle within radar sight of the C3 system. A
complete history of the positions is stored so that the 'track' or path of
the other vessels may be monitored and future positions of the vessels
predicted. Track tables in C3 systems can become very large indeed.

2.2.2 Real-Time Data

The data held by real-time systems has different properties from that
held in conventional, non real time computer systems [Sta88), [Sle91).
Data in a real-time system typically has some subset of the following
properties :-

• short lifetimes.

• often out of date.

• high update to read ratio.

• high availability.

• potential for large volume.

• predefined and limited query paths.

1 C3 stands for Command, Control and Communications.

22

2.2. CHARACTERISTICS OF REAL-TIME DATA

These properties are now explained. Data held in a real-time system
often has a very short useful lifetime. This lifetime is the period in
which the data accurately models, or reflects, the environment from
which it originates. It is often the case that this external environment
is changing very rapidly. The period during which a data entity in
the real-time system correctly represents the environment is therefore
short. As an example, consider the real-time system which is 'tracking'
the position of some external vessel. If the vessel is an aircraft travelling
at Mach 1 its position changes by approximately 300m every second.
A data entity modelling this position becomes out of date very quickly.
Compare this typically very short lifetime with that of a non real
time data entity such as a payroll balance. The external attribute i.e.
monthly pay of an employee, changes very slowly. The data entity
modelling the monthly pay has a lifetime of a month.

Associated with the short lifetime of real-time data is the characteristic
that the data held by the system is very often out of date. If the
environment being modelled changes faster than the computer system
can read in and store the physical attributes of the environment then the
computer system holds out of date data. At best, the computer system
is a constant 'step' behind the physical environment. At worst, the
computer system gets progressively more out of date with the physical
environment. It is often a requirement that real-time applications must
be able to tolerate some degree of 'staleness' of the data that is used.

The update to read ratio of real-time data is generally higher that that
for non real-time data processing systems [Dix88b]. It is often the case
that the real-time system spends most of its time keeping data entities
as accurate as possible by continually updating them with fresh data
from the environment. The data entities might be read only when the
user wishes to prepare some report or inspect the state of some part of
the controlled environment. In this case, the data entities are updated
more often than they are read. Compare this with the non real-time
payroll system where the data entities are updated once each month
but inspected for the preparation of management reports every day.
For this non real-time data, the update to read ratio is low.

Real-time data must be stored with an assured high degree of availabil
ity to the real-time applications. Long periods of 'downtime' during
which the data is unavailable are typically not tolerated in real-time
systems. As an example, consider a real-time air traffic control system.
The data used by the application must be available, approaching 100%
of the time. If some part of the system should fail then it is critical
that the data be made available by alternate means as soon as possi-

23

"

CHAPTER 2. THE TRANSACTION MODEL IN REAL-TIME SYSTEMS

ble. Lives are potentially at risk if the data is unavailable. Compare
this with non real-time data. It is argued that no lives are lost if some
payroll data is unavailable for a whole week out of a given four week
period. In this situation, at worst, people are inconvenienced. 2

Even though real-time systems typically model and control fairly re
stricted environments there is still the potential for the storage of very
large amounts of data. This is because real-time data is often kept for
'historical' as well as backup reasons. Maintaining a regular 'snapshot'
of the state of the data entities allows the history of the controlled en
vironment to be considered. In addition, training exercises can take
place using this history information. Typica.l storage sizes are given in
[LCS5]; an example is the US Coast Guard Vehicle Tracking System
that can have 52Mbytes of live information at anyone time. In non
real-time systems, there is typica.lly more data. In these systems, there
is often more current, live, data than in a real-time system and copies
are periodically backed up for security purposes.

Real-time data is often used only in predefined and limited ways. The
user examining a set of data may only be able to access it in cer
tain ways perhaps using a 'query-by-forms' technique of extracting the
required data from the stored database. The reason for this is that pro
viding the user with a sophisticated query language for manipulating
the database introduces a great deal of processing overhead that often
cannot be tolerated in the real-time environment. Providing limited ac
cess mechanisms means that these can be fine tuned at system design
time to get the best possible performance out of the system. Compare
this situation with a non real-time data processing application. For
example, the database management system in a payroll processing sys
tem may provide the user with a sophisticated, run-time interpreted
'query' language such as SQL. The user of such a system can prepare
programs in the query language, to access the database exactly to his
or her requirements.

2.3 The Transaction Model

The transaction model can be the basis for the construction of reliable,
fault tolerant computer systems [MuI89]. This section discusses the
transaction model and describes two typica.l methods for its implemen-

2In a real payroll system, an uptime percentage of 75% is probably a little low.
Non real-time designers still strive for as high availability as p088ible, although this
is typically not as high as the availability requirements for real-time data.

24

2.3. THE TRANSACTION MODEL

tation. In addition, extensions for nested and distributed transactions
are considered briefly.

2.3.1 Definition

A transaction is a collection of operations grouped together between a
start transaction marker and an end transaction marker. The transac
tion reduces the attention the programmer must pay to concurrency
control and failures by providing three properties [Gra78],[PBG87]'
[BW89],[Spe89],[Lis85] :-

1. failure atomicity.

2. permanence of results.

3. serialisability.

Failure atomicity ensures that if a transaction is interrupted by some
hardware failure, then the partially completed work of the transaction
is undone. The transaction can then be restarted when the fault is
repaired.

If a transaction completes successfully, then the results of its opera
tions are never lost and those results are made available to all other
transactions.

Serialisability ensures that even though transactions may execute con
currently, their results are the same as some serial execution of the
set of transactions. Serialisability ensures that concurrently executing
transactions cannot observe the partial, perhaps inconsistent, results of
other transactions.

We now refine the definition of a transaction as being a collection of
operations bracketed by start and end transaction markers. Each trans- .
action may be represented by the triple:

(R,P,W)

The R field is the read set of the transaction. This is the data that
is used as input to the transaction. In a real-time system, this input
may come from either the systems database or from some physical
sensor reading data from the environment being controlled. The P field
defines the set of operations, or processing, that must be carried out
on the input data. A characteristic of the transactions model is that
the processing does not have a state which is 'remembered' between

25

.-
CHAPTER 2. THE TRANSACTION MODEL IN REAL-TIME SYSTEMS

invocations of the transaction. (For a state based system where the
processing to be carried out depends not only on R but also on previous
invocations of the same transaction, then the previous state needs to be
saved in the database. This state can then be read in as part of R.) W
represents the results of the transaction, or the write set. In a real-time
system, W may be written either to the system database or to some
physical device 'controlling' the environment. Each transaction may be
considered as a 'function' that has a set of input parameters and yields
one result (i.e. W is an update to one database entity). On completion
a transaction, can either abort or commit. If the transaction aborts,
all its work is lost. If the transaction commits then the results are
made permanent. Some commit protocol is required to ensure that
future transactions can access the results of the committed transaction
[Gra78].

2.3.2 Nested and Distributed Transactions

The basic transaction model just described can be extended to better
s~pport the parallelism of a distributed system and limit the effects of
failures. Two typical extensions provide nested and distributed trans
actions. In the nested transaction concept, a transaction may 'spawn'
multiple child transactions before it has completed itself. All the child
transactions may execute in parallel. The net outcome of these par
allel sub-transactions is the same as if they had executed sequentially.
Each subtransaction can either commit or abort. H the sub-transaction
aborts, the parent transaction should detect this and perhaps complete
the work in some other way. If the sub-transaction commits, then its
write set should not be made available to transactions outside the par
ent until the parent itself has committed. H the parent aborts then all
results of completed sub-transactions should be lost. This concept may
be altered slightly to encompass a network of transactions whereby on
committing a transaction, a number of child or successor, transactions
are created. In this extension, committing the child transactions does
ensure their permanence.

The distributed transaction concept allows a transaction to reference
data that is not stored at the place where the transaction was initi
ated. A set of remote sub-transactions are executed on the remote
nodes where the data is stored. The sub-transactions are executed au
tonomously, out of the control of the initiating transaction. However,
if the distributed transactions are nested in a parent transaction, then
aborting the parent should also cause the nested, distributed, transac
tions to be aborted.

26

"

2.3. THE TRANSACTION MODEL

2.3.3 Implementation of the Transaction Model

Although the three properties of the transaction concept are equally im
portant, the control of the concurrency within a distributed transaction
processing system is often the first aspect to be considered. This section
describes two related implementation approaches under the heading of
the Client/Server model. Following this is a very brief description of
how transactions might commit and how rollback and recovery can be
implemented.

Client/Server Model For Concurrency Control

For reasons of security, abstraction and maintenance, data entities are
often contained within and controlled by, protective subsystems or
servers [Spe89]. There are then several ways in which the data can be
accessed from these servers. Examples of these are the protected pro
cedure call used in Multics [Sa174], capabilities [Fab74] and the client
server model. In the client server model, each data entity is managed
by a server that defines the operations that may be used by the client
processes. A remote procedure call interface can then be used to invoke
these operations.

The primary function of the data server is then to ensure that conflict
ing operations on the protected data entity do not occur. A description
of the types of problems that occur if conflicting transactions are not
controlled is beyond the scope of this chapter. For a summary of the
need for concurrency control and the accompanying serialisability the
ory, see [PBG87], [BS79], [BG81], [KET76], [Pap79], [AT88], [TIM87].

Distributed Approaches
In distributed approaches to the client/server model there are multiple
servers and transactions are directed towards these. The server consid
ers the operations required on the data, and providing no conflicting
operation is being executed, the operations of the transaction proceed.
The server is structured as an infinite loop that continually receives
transactions to be executed on the protected data entities. The server
may have multiple threads so as to allow some transactions, such as
multiple reads, to execute concurrently.

Centralised Approaches
In a centralised approach, as is often used in conventional database
management systems, there is a central server that controls access to all
data entities. For each data access, this central server is first consulted
to check whether the data entity is available for the level of access

27

CHAPTER 2. THE TRANSACTION MODEL IN REAL-TIME SYSTEMS

required. The main problem with the centralised approach is that the
server can become a serious system bottleneck.

Implementing the Server
The are many ways in which the server can ensure that concurrent
transactions cannot observe the partial effects of other, as yet incom
plete, .transactions. The serialisability guarantee of the transaction con
cept is often implemented using the conventional two phase locking
protocol [PBG87], [KET76], [Gra78], [Men79], [WoI87]. Each server
maintains a lock table for the data entities that it controls. This lock
table records the current use of a transaction. When a new transaction
wishes to gain access to an entity, the lock for that entity is consulted.
If the required access does not conflict with the current access on the
entity, then the transaction may proceed. If the required access does
conflict then the new transaction is blocked until the current access on
the data entity is released. The locking mechanism is known as 'two
phase' locking because the transaction proceeds in two phases. In the
first, the transaction obtains all the locks that it requires. In the second
phase the transaction uses the data and releases the locks. In order to
prevent deadlock problems, if a transaction is waiting for some entity,
then it must release all the locks it currently has and start afresh. In
addition, a transaction must not request any new locks after it has
released a single lock.

A complementary approach allows each transaction access to the re
quired data entities without any control. Problems of consistency are
then dealt with when the transaction commits. This is called 'optimistic
approach' lets each transaction execute as soon as is it submitted to the
server. When the transaction commits, the server checks to see if the
data entities had changed since the commiting transaction read them.
If they have then the transaction is backed off and restarted. Optimistic
approaches are often implemented by timestamping the transactions;
this requires a global knowledge of time. [KR81] describes optimistic
concurrency control in some detail.

Commiting, Rollback and Recovery

As with the concurrency control itself, there are numerous methods
of committing a transaction. If there is only one copy of any data
entity and a centralised server approach is used then the commit is
simple. Any changes the transaction made to data entities are fixed
and the locks on these entities released. If there is more than one
copy of a data entity on multiple sites, the situation becomes more

28

2.4. FAILURE OF COMMERCIAL DBMSS IN REAL-TIME APPLICATIONS

complex. A simple method to commit transactions in a replicated data
environment is attibuted to [Gra7S], the two phase commit. Each copy
of a data entity has a controlling server, the server that was consulted by
a committing transaction is known as the coordinator. The coordinator
sends a 'prepare to commit' request to each other server (subordinates).
If these do not hold locks on the data entity, they are placed in commit
mode and they reply to the coordinator with a confirmation message. If
the coordinator receives confirmation messages from each subordinate,
it commits the transaction and applies the updates made locally and
remotely by sending an update propagation to each subordinate. On
receipt of the update, the subordinate leaves commit mode.

If any subordinate server, in response to the prepare to commit message,
replies with a denial message, then the coordinator server aborts the
transaction and re-submits it at a later time. If a transaction was
aborted at the commit stage then some other transaction was possibly
also trying to commit at the same time.

There are many situations when a transaction needs to abort. An
example is when some other transaction has committed and updated
some data that the first transaction was using. Rollback is then the
process of undoing the effects of a transaction. The simplest way of
doing this is to record the database entity state before the entity is up
dated. Should the transaction abort halfway through, this copy can be
reinstated. The technique called write ahead logging uses this simple
approach. Other approaches to recovery also ensure that a transac
tion is both permanent and atomic. [LamS!] describes the concept of
intentions lists which can be used to guarantee atomicity and perma
nence. Every change that a transaction wants to make to the database
is stored in an intentions list for the transaction. This list is saved in
non-volatile storage. If the transaction commits successfully, then the
updates are made to the data entities in non-volatile storage. The in
tentions list is then deleted. If some part of the system fails before the
commit is complete, then the intentions list can be used to finish the
commit when the system is functioning again.

2.4 Failure of Commercial DBMSs in Real
Time Applications

This section comments on some of the more general problems of using
an existing database management system for an implementation of the
transaction model in a real-time system. The section is split into two

29

,.

CHAPTER 2. THE TRANSACTION MODEL IN REAL-TIME SYSTEMS

subsections. The first deals with commercial non real-time DBMSs
and the second deals with database management systems specifically
designed for real-time use.

2.4.1 Non-real time DBMSs

Most commerically available, off the shelf, distributed and centralised
database management systems use the transaction as a basis for an ex
ecution model. There are, however, several reasons why these products
are not generally well suited to real-time applications. Among these
reasons are :-

• Response times. It has been estimated that real-time systems
have much higher transaction rates in comparison with non real
time systems [Dix88b]. The smaller the response time, the more
transactions can be processed in each time period. Typical trans
action rates of up to 1000 simple database updates each second
may have to be dealt with. Very few commercial DBMS prod
ucts can claim to successfully match these requirements. [Dix88b]
quotes that Oracle running on a MicroVax can process 20 update
transactions each second. This is not nearly enough to be of u~ _
in many real-time environments.

• Excess functionality. Many commercial DBMS products provide
excess functionality. Traditional real-time systems have fairly
rigid requirements and, often, all database accesses are through
standard queries rather than through the use of a complex and
powerful query langage. Excess functionality implies additional
and intolerable overheads in transaction processing.

• Generally lower resilience to failure. As stated in the section
on the characteristics of real-time data, commercial, non real
time database products generally do not provide the resilience to
failure that is required in real-time systems. Commercial DBMSs
do not generally guarantee an 'uptime' approaching 100%.

• Closed architecture. Commercial DBMS products are generally
based on a closed architecture. To extend the DBMS would
require great involvement from the DBMS manufacturer. This
could be costly, especially for the real-time system which is to
develop and extend in the future.

• Non-determinism in processing times. The reason for non de
terminism in the processing times of transactions executed by

30

"
2.5. NON-DETERMINISM IN THE MODEL

a commercial DBMS is explained in the next section. There is
no guarantee that a given transaction completes within a certain
time. This guarantee is of utmost importance in a hard real-time
system.

2.4.2 Real-Time Sp'ecific DBMSs

There are several real-time specific database management systems that
are available commerically. Among these is the Ferranti Relational
Processor (DVME-785) [Dix88b], [Dix88a] and the Software Sciences
Ltd, Diomedes Distributed Database Product [Law88]. These hard
ware database products aim to alleviate the problems suffered by con
ventional database management systems in real-time applications. The
most important differences from conventional DBMSs are in the areas
of response time, resilience to failure and expandability. [Dix87] quotes
the Ferranti Relational Processor as processing 3000 transactions per
second compared with the 20 tps achieved using Oracle on a MicroVax.
No performance figures were available for the Diomedes product.

Both the Relational Processor and the Diomedes product can be con
figured in distributed systems. Many Relational Processors can be con
nected using the VME bus. The Diomedes product is based on a Trans
puter and as such incorporates the transputer's ease of construction of
distributed systems. These products claim to provide better reliability
and availability of data through distribution and replication.

A problem still arises with these real-time specific database products
and that is the non-determinism in the execution time of transactions.
Although the Ferranti Relational Processor claims to partly tackle the
problem (search times of data are independent of the size of the searched
data set) there are still elements of non-determinism. This is inherent
in the concept of the transaction model and is considered in the next
section.

2.5 Non-determinism in the model

There are some aspects of the transaction model that make it near
impossible to guarantee with 100% certainty that a particular trans
action is executed before a given deadline. This is referred to as the
non-determinism of the transaction model. For a real-time system with
very specific, hard deadlines for tasks, this non-determinism is a seri
ous problem. This section considers these non-deterministic aspects

31

.-
CHAPTER 2. THE TRANSACTION MODEL IN REAL-TIME SYSTEMS

and discusses what can be done to alleviate them.

Communications
In a distributed system there is always communication, of one sort
or another, between the connected nodes. The time it takes for a
message to flow between two nodes (latency) depends on the load on
the communications channel between the nodes. Knowledge of worst
case latency is needed to guarantee that deadlines are met.

A partial solution to the non-determinism of the network latency cuts
down on the amount of communication that is actually required, for
example, by having transactions 'sited' at the same nodes as the data
that they require and only replicating data for resilience reasons.

Disk Accesses
Similar to the problem of the non-determinism of the communications
latency is the latency of accessing data entities stored on magnetic
disk media. Disk latency is dependent on the state of the disk at the
time the access is required. To reduce this non-determinism, we could
remove the disk completely and introduce a main memory database
architecture [Eic89]. The latency of access to main memory is less
than that of disk storage and so the determinism of the transaction is
improved. The main problem that then exists is how to ensure that the
data in the main memory database is backed up to non-volatile disk
storage for security reasons. This problem is beginning to be addressed
[AJ89].

Concurrency Control
In a distributed database system, where there is concurrent access to
shared, replicated, data entities, the major source of non-determinism
is the concurrency control protocol. Whether or not a transaction is
granted immediate access to a data entity depends on influences outside
the transaction itself. The access is granted provided no other transac
tion is currently using the data entity. The problem is that at system
design time there is no way of knowing what transactions are going to
be executed at what time; the transactions are executed in response to
external stimuli beyond the control of the system designer.

For some situations, an optimistic approach to the concurrency control
may be sufficient. Transactions are allowed to execute on their local
copies of a shared data entity and conflicts are sorted out at a later
date. As an example suppose a transaction changes some part of the
environment based on some shared and replicated data entity that it
has read. Suppose also that another transaction changes the shared
data entity during the lifetime of the first. In an optimistic approach,
both these conflicting transactions execute concurrently and when both

32

,-
2.6. ALTERNATIVES TO THE TRANSACTION MODEL

are complete we decide what to do. In this example we may backoff the
first transaction and restart it. Backing off the transaction has no effect
on the database since it didn't update any data entities; restarting the
transaction means that the latest copy of the data entity is applied to
the external environment.

For most situations however, a strict concurrency control protocol is
needed to ensure the continuous consistency of the database. Opti
mistic approaches are worse than locking for example when considering
the determinism of a transaction. In optimistic approaches we may
have to completely re-execute a given transaction; for locking based
approaches we can have non- preemptive transactions in which once a
transaction has started it runs through to completion.

2.6 Alternatives to the Transaction Model

Using the transaction model means that we have a data driven design;
we consider the system from the transformations that are required on
the real-time data entities. An alternative approach would be to use a
process model. In the process model we specify explicity the steps to
transform data from a triggering event through to the stimulus event.
Each process can be considered a program that defines explicity the
steps needed to transform the data and the order in which they are re
quired. These programs may treat the shared data in the same way that
a program treats local data but enclose access to the data within tradi
tional program critical sections markers. The program requests the use
of the data, and on completion relinquishes control of the data. The
disadvantages of this approach compared with the transaction model
are that the application. programs have to explicitly consider the or
derings of operations on shared data in order to preserve consistency;
the concept of concurrency control is not implicit and manipulation of
locks, or semaphores needs to be handled within the model and finally
the application program needs to be aware of the problems of process
failure and leaving shared data in inconsistent states.

2.7 A Proposal

The benefits of the transaction model are obvious. The transaction pro
vides a recoverable, serialisable and permanent execution environment
where the programmer does not need to consider the control of shared
resources. However, as stated in the previous sections, the concurrency

33

CHAPTER 2. THE TRANSACTION MODEL IN REAL-TIME SYSTEMS

control protocol of a real-time system has a serious effect on all timing
aspects of the the application. It is important to realise these effects
and at best remove them, but more likely, attempt to reduce them.

[StaBS] states that :-

The fundamental challenge of real-time databases seems to
be the creation of a unified theory that will provide us with a
real-time concurrency control protocol that maximises both
concurrency and resource utilization subject to three con
straints at the same time: data consistency, transaction cor
rectness, and transaction deadlines.

We therefore propose that in designing real-time database systems with
a significant shared data content and hard timing constraints on the
execution of transactions, both the timing constraints and the effects
of concurrency control must be considered.

The following chapters, while not providing a unified theory of concur
rency control and real-time scheduling as requested by [Sta88], never
theless describe a methodology and supporting execution environment
for the development of real-time database applications. This methodol
ogy considers the effects of concurrency control on the temporal aspects
of the system from the first stages of the system design.

34

Chapter 3

A Model for a Real-Time
System

Mercury, the Winged Messenger

3.1 Introduction

3.1.1 The Need for a Model

A requirements specification, derived from a systems analysis states
what a systems must do. This is often expressed as a model. The sys
tem design methodology then describes how to progress from a state
ment of the problem in terms of some requirements specification, to the
design of the system that conforms to the model. Before developing a
real-time design methodology we need to specify the model that the
resulting system will conform to.

By specifying this model, we can identify its parameters. The system
design methodology can then be tailored to generating these parameters
from the application specification. Most system design methodologies
present a system model on which the methodology is based. Some
describe the model in detail, others present a rather imprecise model.

35

"

CHAPTER 3. A MODEL FOR A REAL-TIME SYSTEM

3.2 A General System Model

3.2.1 Summary of the Model

A system consists of a set of tasks. Each task is independent and has
a separate, identifiable trigger. Tasks may be synchronous or asyn
chronous with respect to each other. A task will have access to the
system database, which is a set of data entities. Communication be
tween two tasks is via any shared data entities. There is no direct
message passing communication between two tasks.

A task instance is a particular triggering of a task. A task instance
will use the latest versions of appropriate data entities. These versions
are given increasing version numbers. On completion of a task, new
versions of any updated entities are generated. Only one task may
update a given data entity at anyone time. This serialisation of updates
is necessary to ensure that the integrity and consistency of the data
entities is preserved.

A task consists of a number of transactions, ordered by a thread of
control within the task. Transactions may read any number of data
entities and, optionally, update a single data entity. The thread of
control within a task is necessary to serialiseconfiicting transactions.

The use a task makes of a data entity may be described by a critical
region. This represents the duration of the entities use. Within a
critical region, the entity may be updated many times by the task.
These updates will not be visible outside the task. When the task has
completed, the final state of the entities that are updated by the task
are made available to the rest of the tasks. These final states comprise
the next versions of the entities.

3.2.2 A Task View

A computing system consists of a set of tasks. The definition of a task
is as follows.

Definition 3.1 (TASK) A task is that processing, data and control
required in response to a single trigger /rom a source outside the task.

The definition of a task is hierarchical. That is to say that a task is
composed of subtasks, and these in tum are also composed of subtasks,
where the definition of a subtask is the same as that of a task.

36

.-
3.2. A GENERAL SYSTEM MODEL

A task may be decomposed into serial, synchronous subtasks. In these,
when a subtask has completed, it will send a control signal (triggering
event) to the subtask that follows it. Any subtask B, that waits for a
trigger from some other subtask A, is said to be a 'successor' of Aj A
is said to be a 'predecessor' of B. Besides serial, synchronous subtasks
there may be parallel, asynchronous subtasks. With these, a task will
send multiple control signals to each of the parallel subtasks that follow
it i.e. to each of its successors. These will then execute asynchronously
with respect to each other. When all of these parallel, asynchronous
subtasks have completed, a single subtask is often needed. This subtask
will be the successor of all the previous parallel tasks. Consequently,
it is not triggered until all the predecessors have completed. In order
to maintain the definition of a task being executed in response to a
single trigger, there will be a 'merge' of triggers from parallel subtasks
to trigger the common successor subtask.

The response triggers from tasks are optional. A task mayor may not
have any successor tasks to trigger on its completion. A task may also
have a conditional triggering response. With this, the task will send
triggers to a subset of its asynchronous successor tasks.

A real-time system consists of a set of special tasks. These tasks con
form to definition 3.1 in addition to the following defintion.

Definition 3.2 (REAL-TIME TASK) A real-time task is a task that
has a trigger that originates in the controlled or monitored external en
vironment.

Real-time tasks are asynchronous with respect to each other. A real
time task has a single trigger which represents some event in the real
world. For example, an· event in a chemical control plant may be a
temperature reaching a critical state. The controlling computer system
has an associated task to handle this situation. The task is executed
when it receives a trigger to indicate the criticality of the temperature.
Any communication between real-time tasks is through a shared data
entity. This is similar to the State Vector Inspection of JSD [Jac83],
[Sut88], but the communication can be bi-directional and the 'sending'
real-time task has no knowledge of the state of the receiving real-time
task. The only relationship, or coupling, between two tasks is that they
can use the same shared data entities.

A task instance is a particular triggering of a task from the set of tasks
that make up the system. A task instance is always given access to
the latest versions of the data entities that it requires. If the latest
version of the data entity is version n, then on completion of a task

37

CHAPTER 3. A MODEL FOR A REAL-TIME SYSTEM

trlgg.,

Task

r.sponse

Figure 3.1: High level representation of a task

that updates the entity, version n:l-l will be available to other tasks.

Pictorial Representation of Tasks

A task may be represented pictorially by a box. Flowing into the box
we have a trigger and leaving the box we have an optional response.
This is shown in figure 3.1. This represents the highest

level of description of a task. In real-time tasks, this trigger will be
from the external environment. The diagrams used to illustrate the
nature of a task only consider the triggering and control flow through
a task. The processing and data flow are not considered for the mo
ment. Figure 3.2 shows the same task decomposed into three serial
subtasks numbered 1.1 through 1.3. Each subtask is represented as a
box. The enclosing 'dotted' box shows that these subtasks were de
composed from some larger task. The response from subtask 1.1 acts
as the trigger to task 1.2; the response from task 1.2 acts as the trig
ger to task 1.3. These subtasks therefore represent serial, synchronous
tasks. Figure 3.3 shows the same task but with subtask 1.2 further
decomposed into two parallel, asynchronous 8ubtasks. When subtask
1.1 finishes it triggers both subtasks 1.2.1 and 1.2.2 at the same time.
These subtasks then execute asynchronously to each other. Subtask

38

"
3.2. A GENERAL SYSTEM MODEL

trigger

response

Figure 3.2: Decomposition into serial, synchronous subtasks

1.3 is executed when subtasks 1.2.1 and 1.2.2 have both finished. Fig
ure 3.4 shows subtask 1.2.1 further broken into two serial, synchronous
subtasks. Figure 3.5 shows a subtask 2 that on completion selects
one of the serial subtasks 3 or 4 to execute. This conditional execution
is represented by a 'dotted' line from the parent to each of the subtasks
in the select. On completion of either sub task 3 or 4, subtask 5 may
begin execution. This is represented by the 'merged' triggers leaving
subtasks 3 and 4.

3.2.3 The Transaction

A task may be indefinitely decomposed into subtasks each with a finer
grained description of the processing activities. However, there will
come a point when there is no value to be obtained in further de
composition into subtasks. At this point, a task is decomposed into
transactions. A transaction is defined by Definition 3.3.

Definition 3.3 (TRANSACTION) A transaction is an atomic ac
tion that performs, at most, one update.

A transaction is a set of transformations that can generate an update to
a particular data entity. This set of transformations is not considered

39

"
CHAPTER 3. A MODEL FOR A REAL-TIME SYSTEM

Figure 3.3: Decomposition into parallel, asynchronous subtasks

"',e,

Figure 3.4: Further decomposition into serial subtasks

40

"
3.2. A GENERAL SYSTEM MODEL

trigger

Figure 3.5: A select of one of two subtasks

to have any flow of control visible from outside. In an implementation,
however, the transaction may have some control flow within it. This
control flow is not recognised outside the transaction. A transaction is
an atomic piece of processing. Each transaction will take a known time
to execute. If the internal processing within the transaction requires
iteration then maximum bounds on the number of iterations must be
specified.

The execution of a transaction is controlled by a set of pre-conditions.
These pre-conditions represent control flow from each of the other trans
actions that must complete before this one may begin execution. When
a transaction has completed, then a control flow token can be sent to
each member of its post-conditions. The post-conditions represents
each transaction that waits for this one to complete before it may be
gin execution.

Controlling the Order of Execution of Transactions

The set of transactions within a task is ordered by the use that each
transaction makes of the data entities used by that task. For example,
suppose two transactions each use the same data entity and one of these
transactions updates the data entity. To preserve the consistency of the

41

CHAPTER 3. A MODEL FOR A REAL-TIME SYSTEM

data entity and avoid the common problems found in concurrent access
to shared data, the two transactions must be executed serially. Control
flow within a task is dictated by such data dependencies (definition 3.4)
between transactions. Where transactions have a data dependency they
must be serialised. Where the transactions have no such dependency,
they may execute concurrently with no control flow between them. It
is the data dependencies that define the internal structure of a task
in terms of serial and parallel subtasks. Serial subtasks can be used
when there are data dependencies between the components. Parallel
subtasks are possible when there are no dependencies.

Definition 3.4 (DATA DEPENDENCY) A data dependency ex
ists between two transactions if either they both update the same data
entity or one of them reads the entity and the other writes the entity.

Where two transactions have a data dependency, unless otherwise stated,
the order in which the two transactions are serialised is arbitrary. In
some circumstances, a task may be allowed to use 'stale' or out of date
data. This implies that the task is using the data either at the same
time as some other task is generating a more up to date version of the
data or after another task has generated the new version of the data
but before this version has reached the firSt task. It is impotnnt that
the task that uses stale data does not generate a new version of that
data since this 'illegal' new version is based on old data. Tasks that
use stale data typically do not update the real-time database.

We distinguish between two sorts of transactions within & task. There
are those transactions that transform one state of the internal database
into another state. There are also those transactions that directly
'communicate' with the outside world via i/o devices such as consoles,
sensors and actuators. The first type of transaction is the 'invisible'
transaction; its effect are not immediately obvious to its environment.
The second type is the 'visible' transaction; its effects are immediately
obvious to its environment.

Pictorial Representation of Transactions

A transaction is a special instance of a task. As such, we can represent
the transactions of a task in much the same way as we represent tasks
themselves. Figure 3.6 shows a transaction representation of the task
shown in figure 3.4. The transactions are drawn as circles instead of
boxes. In the diagram control flow proceeds from the top to the bottom
of the diagram unless explicitly shown with arrows. Each transaction

42

3.2. A GENERAL SYSTEM MODEL

trigger

response

Figure 3.6: A Transaction Precedence Graph

is given a unique number based on the decomposition of higher level
modules used to derive the transaction. A particular transaction is
unique to the parent task. We decomposed subtask 1.2.1.2 of figure
3.4 into the three transactions 1.2.1.2.1, 1.2.1.2.2, and 1.2.1.2.3. Trans
actions 1.2.1.2.2 and 1.2.1.2.3 have no data dependency and can execute
concurrently. Transaction 1.2.1.2.1 has a data dependency with both
1.2.1.2.2 and 1.2.1.2.3 and as a consequence is serialised with these two.

A representation of the transactions of a task in a graphical form as
shown in figure 3.6 is kriown as a Transaction Precedence Graph. The
graph shows the flow of control through the task necessary to ensure
that each transaction is presented with and leaves, a consistent state of
any data entities used.

3.2.4 Critical Regions

The use a transaction makes of a data entity has been described. The
use a task, or subtask, makes of a data entity is more complex. Within a
task, there may be many transactions that use a particular data entity.
For each such entity there will be a critical region. A critical region is
defined by Definition 3.5.

43

CHAPTER 3. A MODEL FOR A REAL-TIME SYSTEM

Definition 3.5 (CRITICAL REGION) A critical region on a data
entity represents the duration of a task's use of the data entity. The
critical region is delimited by the task's first use and last use of the data
entity. A critical region represents indivisible use of the data entity.
Other tasks are only permitted conflicting access to the data entity before
or after the critical region.

Critical regions need to be indivisible because any updates to the entity
within the task (or subtask) represent partial results. The final update
is the only one of significance outside the task (or subtask). The crit
ical region needs to be indivisible to ensure that the entity remains
consistent within the task (or subtask).

3.3 Real Time Aspects of the Model

The task/critical region/transaction model so far described can be used
to model any com pu ting system. The only reference to real-time aspects
came with the introduction of a real-time task. The real-time task is
a special type of task with a trigger from the external, controlled or
monitored environment.

3.3.1 Ensuring Indivisibility of Critical Regions

The definition of a critical region states that a task should have indi
visble use of its data entities. There are two ways in which a critical
region can be made to appear indivisible to other tasks. The first is to
block any other task from accessing the data entity during its critical
region. The second is to allow a second task access to the data entity
and ba.ckoff and restart the first critical region when the second task
has completed its own use of the entity. Since other tasks are only per
mitted access to the results of the final write of a critical region, at the
task level each data entity appears to change at most once. This view
of a task is the case even though within a critical region there may be
many writes and reads to the data entity.

Critical Region Relationships

A task does not always consist of a set of unconnected critical regions.
Two critical regions become connected when a given transaction ap
pears in both regions. For example figure 3.7 shows a. task consisting

44

3.3. REAL TIME ASPECTS OF THE MODEL

Critical region on C
Critical region on B

Critical region on ~ 1
ra
ra
rbwa
ra rbwc
rb rc wa
rbwc
wb

~- connection between regions

Figure 3.7: A Molecule (Connected Critical Regions)

of seven serial transactions. The task has three critical regions, on data
entity 'a', data entity 'b' and data entity 'c'. These critical regions are
connected because they share transactions. A connected critical region
is known as a 'molecule'; the components of the molecule are connected,
atomic critical regions. The critical region of 'a' is connected to that
of 'b' through the third and fifth transactions. The region on 'a' is
connected to that on 'c' by the fourth transaction. The region for 'c' is
connected to those for 'a' and 'b' by the fourth transaction.

When backing off a critical region because some other task has changed
the associated data entity, we need to consider any connected critical
regions. For example, in the task of figure 3.7 suppose the fifth trans
action had just completed when the task was interrupted by another
which changed the value of entity 'b'. On restarting the sixth trans
action, the value of 'b' has been changed by some external task. To
ensure the consistency of the changed entity within the task, we have
to backoff the task to the start of the critical region. This means we
restart the task from transaction three. However, in the fifth transac
tion, the value of 'a' was affected by a now no longer valid value of 'b'.
Consequently we should back off to the start of critical region 'a'.

In reality, molecules are made up of more than two atomic critical
regions. The molecule will consist of many critical regions, woven to-

45

"

CHAPTER 3. A MODEL FOR A REAL-TIME SYSTEM

~ b I~ i[J ib
(1) (2) (3) (4)~

complex/independent __ ----------~A~----------~ r)
i~[J i b i{] L

(5) ,:{j (7) ~{J a -.- b ::: transaction In b must w&« lor
one In a Icomplex/independent)

~ b ~ b a -+-b = value of b depends on value ~~~~
(9) " D) "') ,,2) of a ,compleX/dependent)

l~---------,v)
compleX/dependent

Figure 3.8: Relationships between two critical regions

gether by transactions that use more than one data entity. We need to
know where to back off to, given that a particular critical region is being
backed off. The process of determining this back off point is iterative.
We first consider the interrupted critical region with each other critical
region that it is connected to. Should any of these need to be backed
off as a result, then we need to consider those other critical regions that
these are connected to. This process continues until no more critical
regions need to be backed of. The earliest point in the task that we
have reached by successively backing off each critical region in turn if
necessary, is the desired backoff point.

Figure 3.8 illustrates the possible combinations between two critical
regions within a task. The combinations were generated by first of
all considering the different 'overlappings' of the execution time of two
critical regions. These were then extended to cover the case where there
is a distinct relationship between these two regions. Figure 3.8 shows
that there are twelve possible relationships between two critical regions.
The first four are known as simple, or 'run-time', connectives. There
are no shared transactions within the critical regions and no ordering
constraints imposed on respective transactions by the application. The
first four relationships represent the possible relationship between two
critical regions based on their relative execution orderings. Relationship

46

3.3. REAL TIME ASPECTS OF THE MODEL

1 represents sequential execution. Relationships 2,3 and 4 represent
concurrent execution of the critical regions. If two critical regions are
related according to any of the first four relationships, then we may
back-off either of the two critical regions without affecting the execution
of the other critical region.

Relationships 5 to 8 are known as the complex and independent critical
region relationships. Although the critical regions in these relationships
still do not share any common transactions (hence their independence)
some application requirement specifies a constraint between their exe
cution orderings that must be observed. The dotted arrow represents
a transaction in one critical region that must wait for some transaction
in the other critical region.

Relationships 9 to 12 are known as the complex and dependent critical
region relationships. The bold arrow from la' to Ib' suggests that at
some point in the two critical regions there will be a common transac
tion. This will read the current value of la' and use this to update the
current value of 'b'.

We can now establish back off points for the relationships. We need
to consider where to back off a critical region to given that the other
critical region is being completely restarted. For relationships 1 to 4 we
do not need to back off a critical region given that the other is being
backed off. The critical regions are independent in all respects; neither
has an influence on the other. For relationships 5 through to 12 we need
to consider where to back off to given that both tasks are executing and
one of them needs to back off. The results are summarised in Table
3.1.

47

CHAPTER 3. A MODEL FOR A REAL-TIME SYSTEM

Relation Executing Backing off Back off executing CR to
5 a b first trans that waits for one in b
5 b a no back off
6 a b no back off
6 b a first trans that waits for one in a
7 a b no back.off
7 b a first trails that waits for one in a
8 a b first trans that waits for one in b
8 b a no back off
9 a b first trans in a that uses b
9 b a no back off
10 a b first trans in a that uses b
10 b a no back off
11 a b no back off
11 b a first trans in b that uses a
12 a b no back off
12 b a first trans in b that uses a

Table 3.1 : Back off points for interruption of two critical regions.

-
In an implementation, there are two ways in which the problem of
connected critical regions can be handled. In the first way, which has
already been described, in backing off a critical region we can iteratively
'scan back' through the connected critical regions to find the primary
back off point. In the example of figure 3.7 in backing off the critical
region on 'b' we had to also back off that on 'a' to undo unwanted
results.

An alternative approach is to recognise what entities are dependent on
that critical region. At the start of this critical region, the state of
these dependent entities is saved. In backing off the critical region, we
restore the state of these entities. This avoids the necessity of having
to back off any other critical region. In the example, at the start of
the critical region on 'b', the state of entity 'a' is saved at the start of
the critical region. If the region on 'b' is backed off then this state is
restored, thus avoiding the need to repeat the first two transactions of
the critical region on 'a'. The advantage of the state saving approach
is that the minimum amount of work is backed off; the disadvantage is
that large state saves are required.

48

3.3. REAL TIME ASPECTS OF THE MODEL

3.3.2 Application Requirements Constraints

The order of execution of two transactions has so far been determined
by the existence of a data dependency between the two transactions.
There are some circumstances when there is a need to serialise several
transactions even when there is no data dependency. This serialisation
is known as the Application'Requirements Constraints (ARC) and is
defined in Definition 3.6.

Definition 3.6 (ARC) An Application Requirements Constraint (ARC)
represents the need to impose an ordering on two pieces of processing
(transactions) where there is no data dependency between the two.

As an example, suppose we have a task to shut down a chemical control
plant and when this is complete, report this to the operators console.
We may have a transaction to shut down the chemical processes and
one to write to the operators console. Although these two share no data
it is undesirable to have them executing concurrently; there is a danger
that the operator will be informed of the system shutdown before the
actual event.

Consequently we need an application requirement constraint between
these two transactions.

It is the authors opinion that we only need application requirements
constraints between visible transactions or between invisible transac
tions and visible transactions. The ARCs are needed to introduce sub
tle transaction orderings in the environment where there are no data
dependencies between the transactions.

3.3.3 Introducing Timing Constraints

Central to the concept of a real-time system is the ability of the system
to reason about and have a knowledge of time. In our model, tasks may
be triggered at specific or arbitrary times. Triggered tasks have dead
lines. A task will have a minimum time before it can be re-triggered.
The real-time system has to decide what to to next when presented
with a set of conflicting, triggered tasks. A later chapter describes how
these decisions are based on the time properties of the tasks.

There are two recognised ways to represent time [Lam78), [LA90). In
the time point based representation (TPB) the view of the world is as
a series of events that happen at some instant in time. The events take
zero time to occur and result in a change in the state of the system.

49

CHAPTER 3. A MODEL FOR A REAL-TIME SYSTEM

The major disa.dva.ntage of the TPB representation is that events are
not decomposable into sub-events such that a.n ordering can be imposed
between these events [AIlS3].

The a.lternative way to represent time is to use the time interval based
representation (TIB). In this representation the view of the world is as
activities that take a finite period of time to execute. Each activity will
have an associated start and stop time. The TIB approach to time rep
resentation is more expressive tha.n the TPB representation. It is easy
to decompose an interval into sub-intervals a.nd overlapping interva.ls
can be expressed. A disa.dvantage of the interval based representation
is that there may be a cummulative loss in time over a long period.
This does not occur in the point based representation, a.nd the time
point representation ca.n be used to represent intervals by expressing
start a.nd stop events.

In our model we need to be able to express a.nd reason about both
instantaneous events such as the triggering of tasks, as well as time
intervals such as the minimum time between successive triggerings of a
task. We thus need both types of time representation. Importa.nt times
that are associated with each task are shown in Table 3.2.

Event/ Activity TIB or TPB Comments
Trigger Time (S) TPB

Dea.dline TIB Start point for interva.l is S
Execution Time TIB Start point for interval is S

Min re-trigger time TIB Start point for interval is S
TIB = Time Interval Based, TPB = Time Point Based

Table 3.2 : Time Represented Events a.nd Activity

The trigger time for a task is represented by a TPB time. All other
times are interval based relative to the trigger time.

3.4 Decomposing Applications to Con
form to the Model

It is well recognised that there is a need to decompose large applica
tions into more ma.nageable units for detailed design [NS90], [BWS9],
[Par72].Often this decomposition is left to the intuition a.nd experience
of the systems designer. Some heuristics are often presented to guide
the decomposition. Such heuristics are for example to split the appli
cation into subsystems such that the partitions contain activities with

50

"

3.5. MODELLING TASKS WITH PETRI-NETS

similar timescales; or such that the partitions contain activities that
are closely coupled to the external environment. A further heuristic
is to group those activities such that communication across partition
boundaries is minimized [Ben88].

We favour a more rigid approach to application decomposition hinted
at in [NS90] and [YC78]. An initial decomposition is pf;rformed that
is still intuitive. This decomposition splits the application into sub
systems. A sub-system contains all activities that are functionally re
lated i.e. with a high degree of cohesion [YC78]. As an example,
consider a chemical control plant with several controlled chemical pro
cesses. The initial decomposition may yield a sub-system for each of
the chemical processes and a further one to handle operator interaction
with the system. Each chemical process sub-system contains activities
devoted to managing the respective chemical process. The operator
sub-system contains activities relating only to the operator.

Sub-systems are still too large to be manageable. A further decomposi
tion of each sub-system is requried. We use the real-time task concept
to identify a set of tasks of a more manageable size. As an exam
ple, the chemical process sub-system could be decomposed into a task
to handle extremes of temperature and another to handle extremes of
pressure. Further decomposing real-time tasks into transactions and
the design elf the computer system to implement the tasks is described
in the following chapter.

3.5 Modelling Tasks with Petri-nets

The transaction precedence graph (for example in figure 3.6 may be
considered as a special c~e of a Petri-net [Pet77], [PS89], [Mur]. The
transactions in the TPG represent the 'transitions' of the petri-net and
the precedence constraints between the transactions in the TPG rep
resent the 'places' of the petri-net. A transition (transaction) fires
(executes) when each of its input places (pre- condition execution con
straints) contains a token (is satisfied).

The petri-net model can then be used to guide an implementation of
an executing transaction precedence graph. A transaction scheduler
is responsible for counting the number of tokens each transaction has.
When a tranaction has enough tokens the scheduler executes the trans
action. On completion, the scheduler gives a token to each of those
other transactions that was waiting for the first to complete.

There is a problem with t he analogy between transaction precedence

51

CHAPTER 3. A MODEL FOR A REAL-TIME SYSTEM

graphs and petri-nets. The petri-net only describes 'enablement' of
a transition ie. the petri-net describes the conditions under which a
transition is enabled. An enabled transition may then fire but the
petri-net does not explain exactly when the firing takes place. The
petri-net could be considered a visual representation of temporal logic
[Har81], [Lam18]. If a transition is enabled then we know that all those
transitions it depended upon had fired at some point in the past. If a
transition is enabled then a token will eventually be passed to each of its
output places at some point in the future; those transitions connected
to these output places may then be fired. This model does not exactly
describe the characteristics of the transaction precedence graph where
a transaction is 'immediately' executed when each of its pre-conditions
are met.

3.6 Conclusions

This chapter has presented a model of a real-time system. The real
time system is constructed from a set of tasks; each task has a separate
and identifiable trigger. Real-time tasks are those tasks that a triggered

--0 by the occurrance of some event in the outside, controlled, world. Each
task is constructed from a number of transactions. The ordering of
transactions is defined by data dependencies and application require
ment constraints. A complete ordering of the transactions within a task
is depicted as a transaction precedence graph. The complete ordering
of transactions contains a number of critical regions. Each critical re
gion is associated with a particular data entity; the need to back off
the work carried out in these critical regions was explained.

3.6.1 Glossary of Common Terms

We now present a summary of some common terms which are used later
in the thesis.

• TASK. A task is that processing, data and control required in
response to a single trigger from a source external to the task .

• CRITICAL REGION. A given task has a critical region for
each data entity that the task uses. The critical region on a
data entity represents the duration of the tasks use of the entity.
Critical regions on different entities may overlap or be disjoint.

52

3.6. CONCLUSIONS

• TRANSACTION. A transaction is an atomic task that per
forms, at most, one update.

53

"

CHAPTER 3. A MODEL FOR A REAL-TIME SYSTEM

54

Chapter 4

Data Entity Viewpoint
Analysis

Jupiter, the Bringer of Jollity

4.1 Introduction

The previous chapter introduced a model for a real-time database sys
tem. In this chapter we describe a design methodology that transforms
the specification of a real-time system into a form consistent with this
model. A series of steps to transform the specification of the system
is described. In addition, a new notation is presented. Traditional no
tations consider the real-time system from the flow of data or flow of
control viewpoint. The new notation presents the real-time system from
a different aspect to that of traditional real-time design methodologies.
This notation has many uses. These are described.

4.1.1 Motivation

The previous chapter described the composition of a real-time system
from a set of tasks and transactions. This description considered the
real-time system from a flow of control viewpoint. This viewpoint is
also the basis for petri-net modelling of systems. A complementary
viewpoint considers the flow of data through the elements of the system.
This viewpoint is taken in approaches such as [YC78] and [Jac84]. A
combined viewpoint considers the effect that data access has on the
control flow of the real-time system.

55

,-

CHAPTER 4. DATA ENTITY VIEWPOINT ANALYSIS

In considering a single real-time task, a control or data How approach
is sufficient to model many aspects of the behaviour of the task. How
ever, when many tasks are considered and where those tasks share
common data, the control/data How approaches fail to capture some
important information. This information concerns how the tasks indi
rectly interact through constraints imposed on their access to shared
data. A major source of non-determinism in a. database system is the
concurrency control protocol and its effects owing to the backing off
or suspension of tasks wishing to access shared data. A fundamental
challenge for real-time database system designers is to design database
concurrency control protocols that ensure transactions meet deadlines
as well as ensuring consistency and correctness [StaBS]. We propose
that, by considering the concurrency control at design time, its effects
at run-time can be determined.

This chapter considers the real-time database from a data entity view
point. The role that each data entity plays in the system is considered
in this viewpoint. A diagrammatic notation is described to express
the role of each data entity in the real-time database. Considering the
real-time system from a data entity viewpoint has many advantages.
This chapter describes these advantages and shows how the data entity
viewpoint analysis is useful.

4.1.2 Objectives of the analysis method

The objectives of the Data Entity Viewpoint analysis are to describe
the role that each data entity plays in the real-time system and to use
this to consider the effects of concurrency control on the determinism
of the real-time transactions. The data. entity viewpoint analysis will
be seen to underly the data/control flow viewpoints and is used with
these to model all aspects of the real-time system.

The data entity viewpoint analysis can be used to generate a control
flow viewpoint of the real-time tasks. That is, given a task set of
transactions, their access requirements and some partial ordering that
represents the application requirements constraints (ARCs), consider
ing the transactions from a data entity viewpoint allows us to generate
a transaction precedence graph. This complete ordering will maintain
the partial ordering on the transactions imposed by the requirements
of the application. In addition, this complete ordering of transactions
will ensure the consistency of the database as well as the correctness of
the transactions. Although the ordering is seen as complete, an order
may not be expressed between some transactions. These can execute

56

4.1. INTRODUCTION

concurrently.

The data entity viewpoint analysis can also be used to determine effec
tive concurrency levels for each data entity. The concurrency level for
a data entity is the maximum number copies of the entity that can be
used at anyone time. In generating the transaction precedence graph
for a task, we can determine the worst case execution time for the task
and permit the static scheduling analysis described in a later chapter.

4.1.3 Pre-requisites for the method

This section will describe the stages of systems analysis necessary before
the data entity analysis can be carried out.

Step wise refinement to generate transactions sets

Step 1 : Identification and Definition of Real-Time Triggers
The first stage in decomposing a real-time application into a set of
transactions is to identify the triggering events from the controlled en
vironment. These triggers will cross the boundary between the external
environment and the computer system. The triggers will typically come
from external sensors. In addition, in this stage we must identify the
actuators and devices through which the real-time system controls the
environment. To represent these external influences we use a modified
context diagram. Suppose we have a control system for a chemical vat.
The vat has four sensors and two actuators associated with it. Two of
the sensors are related to the temperature in the vat; one is triggered
periodically and the other is triggered when the pressure is critical. The
two other sensors are for the pressure in the vat. Again, one is triggered
periodically and the other is triggered when the pressure in the vat goes
critical. The two actuators affect the temperature and pressure in the
vat. This system is represented by the context diagram shown in figure
4.1. Actuators are represented by circles and triggers by boxes. Those
triggers marked with a tilde are the periodic triggers. Where there is
no marking, the trigger is sporadic.

Step 2 : Decomposition of System into Subsystems
The second stage in the decomposition is to break up the real-time
system into subsystems. The goals to be met in this decomposition
are that the subsystems consist of modules that show a high degree
of functional relatedness i.e. a high degree of 'cohesion' and that the
'coupling' between the subsystems is as low as possible. Figure 4.2
shows a subsystem decomposition diagram (SnD) for the chemical vat

57

CHAPTER 4. DATA ENTITY VIEWPOINT ANALYSIS

Real Time System t--~~

Figure 4.1: Context Diagram for a simple Chemical Control Plant

control system.

Step 3 : Decomposition of Subsystems ~nto Tasks
The third stage in the decomposition process is to break up each subsys
tem into its constituent tasks. For each 'input' event to the subsystem,
there will be one associated task. A task may 'or may not be associated
with a number of the 'output' actuators. The task decomposition can
be shown on a Task Decomposition Diagram (TDD). An example of
this is shown in figure 4.3.

In some circumstances, a collection of processing activities should be
activated in response to more than one event triggering. For example,
in the chemical control plant, we may need to shut the chemical vat
down if the temperature and the pressure are both triggered. To do this
we can still have two separate tasks, one for the temperature trigger
and the other for the pressure trigger. When the temperature triggers,
it sets a flag to show that the temperature has gone critical. The task
then tests to see if a similar flag has been set by the pressure task. If
this second flag has been set then the task will shut down the vat. The
associated pressure task will work in a similar way.

At this stage, the timing characteristics of each task need to be deter
mined. For each task we need to known the minimum repeat time (or
interval). This is the minimum time between consequetive triggerings

58

..

'.

4.1. INTRODUCTION

temperature

Figure 4.2: Subsystem decomposition diagram (SDD) for a chemical
vat

temperatur.

Figure 4.3: Task Decomposition Diagram a chemical vat

59

CHAPTER 4. DATA ENTITY VIEWPOINT ANALYSIS

of the task. The minimum repeat time for a task will depend on the
external environment and the peripheral hardware e.g. sensors that the
task is associated with. For each task we also need to know the dead
line. This is a relative value and is expressed as a maximum execution
time allowed for the task.

Step 4 : Initial Design of Real-Time Database
In this stage we provide an idea of the final form of the database. It
is not necessary to know the exact form of each of the data entities in
terms of what fields and record structures will be used. Instead, we
need to know the major shared data items that will be used by the
real-time system. Refinement of the real-time database takes place at
a later stage. For example, in a real-time radar tracking system, we
would have a data entity to hold the current positions of all objects
within the field of view of the radar. We may also have another data
entity to record those objects that are on a potential collision path. At
this stage, we do not need to know that the track table is made up of
many records; each record being made up of a collection of fields.

Step 5 : Decomposition of Tasks into Transactions
The final decomposition stage is to generate a set of transactions for
each task. Each transaction will take the form:

(Pre-conditions,Readset,Processing,Writeset,Post
conditions)

Each member of the read and write set is a data entity identified in the
previous step of the decomposition method. The processing is that se
quence of actions necessary to transform the readset into the writeset.
The processing should be described as a series of transformations. The
description of the processing corresponds to the 'minispec' of other de
sign methodologies [NS90), [YC78). How the transaction boundaries
are identified is left to the intuition and experience of the designer.
Some heuristics are available. A sensible, smallest 'grain' size for a
transaction is that processing required to update one data entity. How
ever, a data entity may be an object any size. Consequently, the size of
the transaction is very much dependent on the size of the data entity
that it updates. If the entity is, for example, a record in a table, the
transaction could be very short. Alternatively, if the updated entity
was a large, complex table, the transaction may correspondingly be
large and complex. There are no 'hard and fast' rules that should be
applied to the size of the transaction, it is dependent on the structure
of the real-time database.

However, there are rules that can applied to ensure that the transactions

60

4.1. INTRODUCTION

are of the best size to allow full concurrency within the set of transac
tions. In adopting a functional approach to viewing each transaction,
the write set of the transaction consists of one member. Providing,
the write set of one transaction does not conflict with the read sets of
another transaction, these transactions may execute concurrently. An
other sensible heuristic would be to ensure that the minispec for the
transaction was no longer than half a side of A4 in length. Again this
corresponds to heuristics in other design methodologies and ensures
that the transactions are of a manageable length (although, again, this
length is often dependent on the size of the entity that is accessed).

The pre-conditions are those transactions that must have completed
before this one can begin execution. The post-conditions are those
transactions that may execute when this transaction has completed.
The pre- and post-conditions are used to implement any ordering con
straints imposed by the application (Le. the ARCs). For example in
the chemical control plant shut down task of the previous section, if
transaction 1 shut down the chemical vat and transaction 2 informed
the operator of this action then transaction 2 would appear as a post
condition of transaction 1. Similarly, transaction 1 would appear as a
pre-condition of transaction 2. By identifying the pre- and post- con
ditions for the transactions, we impose a partial ordering on the trans
action set. The pre- and post- conditions are found from the ARCs

. .
When all transactions for a task have been specified, iteration and
selection constructs need to be identified. The maximum number of
iterations needs to be found for later scheduling analysis. In addition,
the time a transaction takes to execute should be determined at this
stage. [Sh083] gives advice on how to estimate the size of a program.
This can be used to help estimate the execution time by counting in
structions. This stage represents a departure from a top-down approach
to the systems design. [LM88] states that detailed program design is
often necessary early on in the design of real-time systems to determine
the feasibility of meeting deadlines. The timing information gathered
at this stage is not necessary for generating a control flow viewpoint
for each task. The information is however needed to verify the timing
properties of the tasks. Where transactions contain loops and selection
within the processing part (iteration/selection within a transaction),
the worst case execution times should be determined. This requires an
understanding of the application as well as some assumptions. For ex
ample suppose we have a transaction to do some statistical analysis on
each member of a track table. We need to know the maximum size of
the table to predict the worst case execution time for the transaction.
The size of the table is connected to the maximum number of objects

61

.'
CHAPTER 4. DATA ENTITY VIEWPOINT ANALYSIS

that can appear in the radar scope at anyone time.

On completion of this stage, we have a set of transactions each trans
forming some real-time database entity in some way. This situation is

.·very similar to that of functional languages. We express what trans
formations we wish carried out on the real-time database (what we
want done) and not, at this stage, how this is accomplished. The order
of execution of the transactions is determined later. This 'functional'
approach is different from the more traditional control flow approaches
where the designer specifies both the actions to be taken and a complete
ordering of these actions.

4.2 The New Notation - Data Dependency
Rings

This section introduces a new notation for describing the role that the
data entities play in the real-time system. The notation has two main
functions. The first is as an aid for describing the behaviour of the
system. When used with data/control/event flow diagrams, a complete
picture of the behaviour of the system can be defined. The second use
for the notation is as an intermediate stage in the automatic creation
of a control How representation of the real-time tasks.

The data dependency ring notation is a hierarchical, graphical notation
that expresses the use that each task makes of each data entity in the
real-time system. In addition, the ring notation describes the partial
orderings of transactions in each task (ARCs) and any selection between
successive transactions. These are all the known facts about the control
flow within a task.

4.2.1 Why Introduce Another notation?

Existing diagrammatic notations consider the system from one of two
viewpoints. The first is the How of data viewpoint. The second is from
the flow of control through a set of activities. Neither of these express
the additional How of control that is introduced at run time to control
concurrent access to shared data. The new notation aims to show where
this type of additional flow control is necessary.

62

'.
?

4.2. THE NEW NOTATION - DATA DEPENDENCY RINGS

Figure 4.4: Primary DDRs for Two Data Entities

4.2.2 Structure of a ring

A ring notation describes the role of each data entity in the real-time
system. Each ring is known as a Data Dependency Ring. The ring
emphasises the closed and complete description of the data entity. The
description of the data entity is placed in the middle of the ring. All
tasks that use that data entity are then listed around the outside of the
ring. Within these tasks, each transaction that uses the data entity is
listed. The required type" of access is also shown; reads, writes or reads
and writes.

A primary ring is drawn for each data entity. The data entity name
is shown at the centre of the ring and each task that uses that entity
is listed on the edge of the ring. Figure 4.4 shows the primary rings
for two data entities 'A' and 'B'. Entity 'A' is used by four tasks and
entity 'B' is used by three tasks. Task 1 writes to entity 'A'. Task 2
reads and writes both entity 'A' and 'B'. The primary rings are useful
to illustrate the need for control between concurrently executing tasks.
In the example, tasks 1 and 5 do not share any data entities; there is
no control needed between these two tasks i.e. they are have functional
as well as data independence.

For each data entity, a secondary ring is drawn. This illustrates every

63

,-

CHAPTER 4. DATA ENTITY VIEWPOINT ANALYSIS

Figure 4.5: Secondary DDRs for Two Data Entities

transaction in every tas~at uses that entity. The transactions are
enclosed within their own task bounds. Again, the access that the
transaction requires is illustrated. If the transaction writes to the entity
an arrow points towards the entity. An arrow of the opposite direction
is used where the transaction reads the entity. Figure 4.5 shows the
secondary rings for two entities of figure 4.4. These DDRs show, for
example, that task 1 transaction 1 has a read set of 'B' and a write set
of 'A'. The main use for the secondary ring is to illustrate where there
is a need for control of concurrently executing transactions within a
task.

Where a data entity can be decomposed into smaller units, tertiary
DDRs may be drawn. For example, suppose data entity 'A' in the
previous examples consisted of three parts each describing the phys
ical characteristics of a particular chemical vat. The entity could be
decomposed into three parts A', A'll and A'''. Tertiary DDRs for these
sub-entities could look like those in figure 4.6. This figure shows that
A' is used by the four tasks whereas A" is used by tasks 1 and 3 only.
The figure also shows that within task 1, the three transactions 1 ,2 and
3 can execute concurrently with no control.

The use of primary, secondary and then tertiary DDR shows the hierar
chical nature of the notation. The primary DDRs show the concurrency

64

4.2. THE NEW NOTATION - DATA DEPENDENCY RINGS

Figure 4.6: DDRs for A Decomposed Data Entity

at the task level. This is the number of tasks that can concurrently re
quire access to the data entity. The secondary and tertiary DDRs show
the concurrency within a task i.e. at the transaction level. The level to
which tertiary DDRs are constructed is dependent on how well the en
tities can be decomposed into smaller units. Decreasing the 'grain' size
of the entities may improve the concurrency that is available but it does
increase the overhead of concurrency control that is needed [PBG87].

The description of the DDR presented so far ignores the control flow
that the designer explicitly states in the design of a task. This con
trol flow is the partial orderings of transactions (ARCs), iteration of
transactions and selection between a choice of transactions. Partial
ordering between transactions is expressed by listing next to a trans
action, all those transactions that it waits for. An example of this is
shown in figure 4.7. In this transaction 2 must wait for the completion
of transaction 1.

vVhere a transaction must choose between one of many successor trans
actions, a dotted 'choice' line is drawn from the transaction to the
outside of the ring. The 'arms' of this choice line then represent the
transactions that are optionally executed. The marking at the end of an
arm shows the selected transaction. An example of a selection is shown
in figure 4.8. This DDR shows that on completion of transaction 1,

65

CHAPTER 4. DATA ENTITY VIEWPOINT ANALYSIS

~
Indlca,es th .. v_sKU.., I

1 1 - wahs for v_s&C1lon 1

2

3

A

Figure 4.7: Expressing Partial Ordering on the DDR

either transaction 2 or 3 will be executed.

Iteration among transactions is expressed using the selection construct.
The top of the loop and the first transaction after the end of the loop
are listed as selection transactions of the bottom transaction in the
loop. Iteraction can occur in three ways:

1. Iteration of tasks. This represents continuous retriggerings of a
task and is not represented in the notation.

2. Iteration within a task i.e. at the transaction level. This could
be for example where we have a number of transactions within a
task being applied to a number of different parts of a data entity.

3. Iteration within a transaction. This iteration is invisible at the
transaction level and is not expressed in the notation. It is how
ever important to determine the worst case execution time of this
sort of iteration.

4.3 A Simple Example

This section presents a simple example to demonstrate the steps neces
sary in transforming a specification of a system into the structures used

66

"
4.3. A SIMPLE EXAMPLE

~'
A

QS
c

Figure 4.8: DDR Showing Selection

in an implementation. We will start with a simple, English, description
of an Automated Bottling System. This system is adapted from the
bottle-filling example of [WM86] and [NS90]. The steps necessary in
decomposing this vague specification into tasks and then transactions
are described. Finally the data dependency rings are constructed. From
these, the transaction precedence graphs may be drawn. For this sim
ple example, we go no further than constructing the data dependency
rings; generation of TPGs and allocation schemes is left as an exercise.

4.3.1 The Bottling System

The system consists of bottle filling lines fed by a single vat containing
the liquid to be bottled. The function of the control system is to control
the level and the pH of liquid in the vat, to open and close valves to
release liquid from the vat into the bottles, and to inform the human
operators of the state of the system.

The vat level control is accomplished by a periodic read of a sensor in
the vat and adjusting a liquid input valve accordingly. The pH value of
the liquid needs to be monitored because the pH of the liquid changes
over time. A constant pH is maintained by introducing a chemical
that reverses the pH change so as to keep the pH at a constant level.

61

CHAPTER 4. DATA ENTITY VIEWPOINT ANALYSIS

The amount of 'pH-leveling' chemical that is added depends on both
the current pH of the liquid and the rate of flow of liquid through the
tank. A sensor in the tank is used to measure the pH and this is read
periodically. Should the pH go outside a predefined range, all control
actions are suspended and the system shut down. The pH value of the
system is then restored to a safe level manually.

Bottles are filled from the tank as follows:

• A bottle drops onto the filling platform depressing a bottle contact
sensor. When this sensor is triggered, the bottle is in the correct
position to be filled.

• The valve from the vat is opened and a measured amount of
liquid flows into the bottle. The amount of liquid is controlled by
measuring the weight of the bottle and its contents.

• When the weight reaches a predetermined value, a further sensor
is depressed. The valve from the vat is closed and the bottle
is moved across to the final stage of the bottling process (not
considered in this example). Another bottle may now drop onto
the filling flatform to repeat the process.

In addition to the actual filling of the bottles, the control system records
the amount of liquid consumed, amount of bottles filled, volume of
liquid in the tank and the current pH of the liquid. All this information
is displayed on an operators console. The operator may close down the
entire system by pressing the 'off' button on the console.

4.3.2 Subsystem Identification

This simple bottle filling control system has three distinct areas of
control which are the separate subsystems from which the system is
constructed. These subsystems are:

• Bottle fill subsystem. This is responsible for filling the bottles
from the vat.

• Vat control subsystem. This is responsible for monitoring and
controlling the volume and pH of the liquid in the vat.

• Operator subsystem. This is responible for keeping the operator
informed of the state of the bottling line.

68

4.3. A SIMPLE EXAMPLE

4.3.3 Identification of Real-Time Triggers

The real-time triggers are identified by considering the devices that the
bottling system is connected to. The triggers are as follows:

• Off signal from the operator

• Bottle contact sensor indicates arrival of new bottle

• Bottle weight sensor indicates the bottle is full

• Clock trigger to periodically read the pH of the vat

• Clock trigger to periodically read the volume of liquid in the vat

• Clock trigger to periodically update the operators screen

The actuators that the control system can affect are as follows:

• Valve from the vat to the bottle (ACT!)

• Valve to control raw material entering the vat (ACT2)

• Valve to introduce pH levelling chemical (ACT3)

• Switch to turn off the whole system (ACT4)

The real-time subsystems, triggers and actuators can be seen in the
subsystem decomposition diagram shown in figure 4.9. For each of the
above triggers, there will be a corresponding task. These six tasks are
described later.

4.3.4 Definition of System Data Entities

The implementation of the bottling system will use the following data
entities:

• Bottling Plant Status (BPS). This will record the status of the
plant (either 'off' or 'on'); the volume of the liquid in the vat, the
pH of the liquid and the rate of flow of leveling liquid into the vat;
the rate of flow of liquid from the vat and the number of bottles
filled; and the rate of flow of raw liquid into the vat. This infor
mation is used to keep a record of the functioning of the system
and supply the operator with up-ta-date status information.

69

,-

CHAPTER 4. DATA ENTITY VIEWPOINT ANALYSIS

Figure 4.9: Subsystem decomposition diagram for the bottling plant

• Desired pH of liquid (DP).

• Desired volume of liquid in vat (DV).

• Current pH of liquid (CP).

• Current volume of liquid in vat (CV).

• Critical pH of liquid (CrP).

For simplicity and in order to maintain a uniform interface, the hard
ware actuators can be accessed as though they were database entities.
The implementation of the system will differentiate between the two
sorts of access. This is similar to the Unix philosophy of treating hard
ware devices as special files.

4.3.5 Description of task database usgage

This section describes each task in terms of actions on the data entities
defined in the previous section.

70

· ~ .

4.3. A SIMPLE EXAMPLE

Task 1 : Operator presses the Off button

When the operator presses the Off button on the console, the whole
bottling system should be shut down. The following actions on the
system actuators and data entities must take place.

1. Close the vat to bottle valve (ACT!).

2. Close the raw material to vat valve (ACT2).

3. Close the pH to vat valve (ACT3).

4. Update the BPS to indicate that there is no material flow.

5. Shut down the system power to the bottling line (ACT4).

Task 2 : New (empty) bottle ready to be filled

An empty bottle has dropped onto the bottle filling platform and trig
gered the sensor. The filling of this bottle should now commence.

1. Open the vat to bottle valve (ACT!).

2. Update the BPS to show the new rate of flow of liquid from the
vat.

Task 3 : Bottle full

The bottle has reached the desired weight. The filling should now stop
and the bottle should be moved off to the next part of the system.

1. Close the vat to bottle valve (ACT!).

2. Update the current volume of the vat to show that a bottle has
been filled from it.

3. Update the BPS to indicate that no liquid flows from the vat and
that another bottle is now full.

Task 4 : pH in tank goes critical

The critical pH sensor has triggered. The system should be shut down
so that the operator's can manually restore the bottle filling line to a
safe status.

71

c

CHAPTER 4. DATA ENTITY VIEWPOINT ANALYSIS

1. Close the vat to bottle valve (ACTI).

2. Close the raw material to vat valve (ACT2).

3. Close the pH material to vat valve (ACT3).

4. Update the BPS to show the inactive state of the system.

5. Shut down the power to the bottling line (ACT4).

Task 5 : Monitor pH

The pH is monitored periodically. The function of this task is to adjust
the amount of pH levelling liquid that enters the vat. The following
actions are required.

1. Read the Desired ph (DP), the current volume of liquid (CV) and
the current pH (CP). Work out the rate of flow of liquid through
the tank and calculate a new value for the pH levelling liquid rate
of flow. Change the pH to vat valve to alter the quantity of pH
levelling liquid in the vat (ACT3).

Task 6 : Monitor level of liquid

The level of liquid in the vat is monitored periodically. The function of
this task is to ensure that there is always at least a. certain quantity in
the vat. The following actions are required.

1. Read the current volume of the vat (CV). Read the desired volume
of the vat (DV). Calculate the amount on liquid required in the
vat and change the raw material to vat valve to reflect the required
volume (ACT2). Update the new current volume (CV).

Task 7 : Update the Users Screen

The operator's screen should be refreshed periodically with information
such as the number of bottles filled; the volume of liquid in the vat;
the current pH of the vat. All this information is stored in the Bottling
Plant Status (BPS) data. entity. The function of this task is to take the
information in the BPS and write it to the screen.

1. Read the BPS and update the operator's screen.

72

4.3. A SIMPLE EXAMPLE

4.3.6 Data Dependency Diagrams

Figures 4.10 and 4.11 show the data dependency rings for the system
data entities and actuators.

DP

~
CP

~
CV II

1 1

•

Figure 4.10: Data Dependency Rings for the Bottling Plant

73

CHAPTER 4. DATA ENTITY VIEWPOINT ANALYSIS

~ ~
~~ AOTZ

@ @

w ~
ACTa ACT.

~ ~
Figure 4.11: Data Dependency Rings for the Bottling Plant (cont.)

4.4 Uses of the Ring

The ring notation allows the designer to consider and express the im
plicit control flow between concurrent tasks and transactions neces
sary to maintain the consistency of shared data entities. 'Dense' rings
i.e. those with many tasks and transactions listed around the edge
represent a potential resource bottleneck of the associated data entity.
These rings show that data entities, if possible, should be split into sub
entities. The ring notation also expresses, if perhaps a little clumsily,
any enforced control flow that the designer imposes on the execution of
some of the transactions i.e. the application requirements constraints.
These are shown as the 'waits-for' markings and selection lines at the
edge of the ring.

Besides these uses, the information contained in the ring notation can
be applied to the automatic generation of the transaction precedence
graphs for each task. The rings can also be used to determine the
concurrency level for each data entity i.e. the number of useful copies
of each entity in addition to guiding the allocation of data/tasks to
processors in an implementation. These uses will now be described.

74

. ~

. 4.4. USES OF THE RING

4.4.1 As a specification of the Database Usage

The ring notation does have some uses in expressing the role of each
database entity in the real-time system. The ring notation shows us
the following information :

• The tasks that use each data entity

• The transactions that use each data entity

• The entities that are going to be heavily used and that represent
potential resource bottlenecks in the system

• The relationships between the different entities. If, for example,
a transaction reads one entity and writes to another entity, then
there is an implicit relationship between the two entities. This re
lationship is seen by a common transaction in the DDRs for each
of the related entities. The ring notation makes this relation
ship clearer than for example having to follow data flow between
entities in a dataflow diagram.

4.4.2 Generating Transaction Precedence Graphs

When the data dependency rings for each data entity have been drawn,
we can generate the transaction precedence graphs. The secondary data
dependency rings contain the partial orderings information necessary
to meet the requirements of the application. The rings also embody the
selection and iteration information. To generate a complete transaction
precedence graph for each task, we need to consider the remaining con
trol flow necessary. This control flow is necessary to prevent conflicting
transactions from executing concurrently.

The data dependency rings show where any two transactions within
a given task conflict. If two transactions appear in the same data
dependency ring and either of the transactions is a write to the entity,
then the transactions are said to conflict and some control is necessary
between them. This control will manifest itself as an arc (i.e. control
line) between the conflicting transactions in the transaction precedence
graph. If two transactions do not appear in the same ring or nei ther of
the transactions is a write then there is no conflict and the transactions
are allowed to execute concurrently with no control flow between them.

As an example, consider figure 4.12. We can scan each transaction
in each ring in turn and identify where control flow, or precedence

75

CHAPTER 4. DATA ENTITY VIEWPOINT ANALYSIS

Figure 4.12: Example DDRs for a simple task

constraints are necessary to preserve the integrity of the database. A
simple algorithm carries out this scan. The algorithm, shown in figure
4.13, also imposes the transaction orderings written on the outside of
the ring (ARCs).

Applying the algorithm to the example in figure 4.12 we generate the
following precedence constraints. Some of the precedences in figure 4.14
are redundant. For example, there is a precedence constraint imposed
between transaction 3 and transaction 5 and there is a constraint im
posed between transactions 5 and 7. It is not necessary to consider the
constraint between 3 and 7. If transaction 5 waits for transaction 3 and
transaction 7 waits for transaction 5 then since 'waits for' is reflexive,
transaction 7 will implicitly wait for transaction 3. Any algorithm to
generate precedence graphs should detect and remove these redundant
constraints. The table in figure 4.14 represents the transaction prece
dence graph shown in figure 4.15. The order in which the precedences
are applied can have an effect on the execution time for a task. For ex
ample, in figure 4.15, the necessary control flow between transactions
1 and 2 was shown as an arc between the two transactions. This means
that transaction 2 must wait for transaction 1 to complete before it
may start. If, however, we made transaction 1 wait for transaction 2
then we could get the better transaction precedence graph, shown in

76

4.4, USES OF THE RING

For each Data Dependency Ring
For each transaction in the ring and
belonging to the same task

compare with all other transactions
in this ring

if there is a data access conflict
then impose a control flow (precedence

constraint) between the two
transactions

if there is a explicit wait expressed
then impose a control flow (precedence

constraint) between the two
transactions

if the transaction selects between
transactions
then impose a selective control flow

(precedence constraint) between the
two transactions

Figure 4.13: Generating precedence graph from the transactions

Transaction Precedence constraints with
1 2
2 1,3,4,7
3 2,5,7
4 2,6,7
5 3,7
6 4,7
7 2,4,6

"

Figure 4.14: Precedence Constraints for the transactions in figure 4.12

77

CHAPTER 4. DATA ENTITY VIEWPOINT ANALYSIS

Figure 4.15: Transaction Precedence Graph

figure 4.16. This graph is better because there is more concurrency.
Finding the best graph is a computationally intensive problem. For
tasks with many transactions, it may be computationally infeasible to
find the best graph.

There are heuristics to help in finding better transaction precedence
graphs. One such heuristic is to group all those transactions that read
a particular entity. These transactions can execute concurrently. Any
transactions that write to the entity can then be serialised within the
group. For example suppose we have the transactions:

1. read A

2. write A

3. read A

4. write A

In applying the above algorithm to generate the transaction precedence
graphs we need to apply a precedence constraint between transactions 1
and 2. If we then considered transaction 2, we would apply a precedence
constraint between this transaction and number 3. The final outcome
would be a 'chain' of 4 transactions with no concurrency employed. A

78

"

4.4. USES OF THE RING

Figure 4.16: A better TPG

better solution would be to consider all the reads of A in one go and
then serialise this with the writing transactions 2 and 4. This allows
transactions 1 and 3 to execute concurrently.

4.4.3 Allocation Schemes

The information contained within the ring notation can be used to guide
a data entity and transaction allocation scheme. The ring notation first
of all shows the concurrency degree for the data entities. By grouping
those transactions that read a data entity together we increase the
'concurrency level' for the transaction. The ring notation can thus be
used to show the most useful number of copies of each data entity. As
an example, consider the ring representation of a task shown in figure
4.17. It would appear that three copies of data entity 'A', two copies
of data entity 'B' and three copies of data entity 'e' are required in
order to allow the maximum concurrency for these three data entities.
However, we cannot consider each ring in isolation when determining
the concurrency degree. In figure 4.17, although in the ring for' A',
transactions three and four can execute concurrently, these transactions
must be serialised due to a data dependency on the data entity 'B'. The
concurrency degree for entity 'A' therefore goes down to two. The two

79

.-
CHAPTER 4. DATA ENTITY VIEWPOINT ANALYSIS

Figure 4.17: Example rings to demonstrate data entity concurrency
degrees

copies of the entity will be used concurrently when transactions four and
six are executing. The concurrency degree for data entity 'B' remains
at two and the concurrency degree for data entity ec, remains at three.

In an ideal implementation, enough processors are provided to meet
the concurrency degrees of each of the data entities. In the example
of figure 4.17 we have concurrency degrees of two (for entity 'B'),
two (for entity 'A') and three (for entity ec,). If each transaction in
each data dependency ring were independent (Le. it used only the
data entity associated with the ring) then by summing the concurrency
degrees of the entities we need seven processors to achieve the maximum
concurrency for the task. This method of determining the number of
processors required can often lead to wasted resource. The transaction
precedence graph for this example shown in figure 4.18 has a maximum
'width' of four. This is the optimum number of processors that this task
requires, given this transaction precedence graph. The reason for this
is that many of the transactions in the example use more than one data
entity. The width of a transaction precedence graph will always be less
than or equal to the sum of the concurrency degrees of the data entities
used by the task.

80

"
4.4. USES OF THE RING

Figure 4.18: Transaction precedence graph for figure 4.13

After determining the width of a task and the concurrency degrees for
each data entity, we can begin to allocate transactions and entites to
the processors that will be used to implement the task. The allocation
scheme proceeds according to the algorithm shown in figure 4.19.

Applying the allocation scheme to the example of figure 4.17 we get the
allocation shown in figure 4.20. The allocation scheme tends to result
in a allocation where the load on the processors is uneven. This can
be seen in figure 4.20 w~ere processor two has a greater allocation of
transactions and data entities than processor 4. However, the scheme
does ensure that concurrent transactions are placed on separate pro
cessors, and that all data entities that a transaction requires are stored
on the same node as the transaction.

The allocation schemes so far is very naive. We have only considered al
locating one task to a set of processors. We can generalise the scheme
and, using the ring notation, determine the concurrency degrees for
each entity given that more than one task exists. The allocation al
gorithm of figure 4.19 can then be used on each of the tasks in turn.
A runtime mechanism must then be provided to ensure that if a task
begins updating a shared entity and then must back off, the entity will
be restored to a suitable state before a conflicting task has access to it.

The main weakness of this allocation scheme is that no consideration is

81

CHAPTER 4. DATA ENTITY VIEWPOINT ANALYSIS

We will use W processors labelled 1 .. W
where W is the width of a task

For each transaction T(i) in the task

If we can execute T(i) concurrently with
T(i-1) (or i-1) then

If there a processor with all the entities that
T(i) requires, already allocated and such that
this processor does not execute T(i-1)

assign T(i) to this processor

Otherwise

find the processor in 1 •. W with the most of
the required entities such that T(i) can still
execute concurrently with other transactions
on this processor. Allocate the remaining
required entities and T(i) to the processor.

Otherwise

If the site of the previous transaction has all the
required entities

allocate T(i) to the saae processor as the previous
transaction.

Otherwise

If there are copies of the required entities still
to be allocated

allocate the required entities and T(i) to the same
processor as the previous transaction.

Otherwise

allocate T(i) to a processor that has all the
required entities

Figure 4.19: Allocating Entities and transactions to processors

82

" .. ,

4.4. USES OF THE RING

Processor Data Entities Transactions
1 AB 134
2 ABC 256
3 C 1
4 C 8

Figure 4.20: Allocation of figure 4.13 to four processors

given to the temporal properties of the tasks. Providing suitable run
time mechanisms to ensure the correctness of shared data entities after
preemption of tasks is discussed in the next chapter. In addition, eval
uating the allocation scheme for the temporal correctness of the tasks is
also considered. Should the allocation scheme result in a system which
fails to meet the deadlines of all those time critical tasks, iteration of
the design process is required. This may involve redesigning individual
transactions in order to reduce their execution times or redesigning a
complete task, again to reduce the execution time.

An initial first pass allocation would pro cede by applying the algorithm
in 4.19 to each of the tasks in the real-time system. This would gen
erate the best possible allocation for the concurrency expressed in the
TPGs for the tasks (ignoring the side effects of update propagation to
multiple copies of data and increased communications between multiple
processors). For any non-trivial real-time system, this would result in a
allocation that required hundreds of processors to implement. We need
some way of reducing the number of processors while at the same time
ensuring that the temporal properties of the tasks are preserved.

Figure 4.21 describes a heuristic based 'reduction' algorithm. The aim
of this algorithm is to combine the work of separate processors in order
to reduce the number of processors used in an implementation. The
algorithm should primarily be used to group the work of the transac
tions within a task (transaction reduction). The algorithm can then
be used to group the tasks together onto combined processors (task
reduction). The reduction heuristic aims to even the load across a lim
ited set of processors. Since the algorithm is based on a heuristic, it
does not always produce the best allocation of tasks and transactions
to processors. The alternative would be to generate the search space
of every conceivable allocation of transaction to processor and then ex
amine this space to find the best. This approach is not suitable for any
but the most trivial of allocations.

In grouping transactions together, it is possible that the processor can-

83

CHAPTER 4. DATA ENTITY VIEWPOINT ANALYSIS

The load on a processor is defined as the total execution time
of all those transactions 'sited' at that node.

Repeat

combine the transactions and data entities of the tvo
processors vith the smallest loads into a single processor.

until the number of processors used i. le.. than the
maximum number alloved in the implementation.

Figure 4.21: Reducing the number of processors in an implementation

not execute all the transactions before the deadline of a task. The
following chapter describes how to check the feasibility of an alloca
tion. Should an allocation not be feasible then the tasks could be split
up and a different allocation tried.

An alternative grouping method is based on assigning a transaction to
the processor which has the best subset of the entities that the trans
action requires. This method is as follows. For each task there exists
a 'cluster' of 'logical processors' available to execute the task. Within
each task, there are enough logical processors to fullfill the maximum
concurrency available within the task. For example, the cluster for the
task of figure 4.18 has four logical processorsj the transactions of the
task are allocated such that concurrent transactions are on separate
logical processors and transactions that must be serialised are, where
possible, placed on the same logical processor. Given the clusters for
a large set of tasks, we are bound to have more logical processors in
the allocation than available physical processors for an implementation.
We now need to group the actions of logical processors together in or
der to allocate the work to the physical processors. Rules of thumb, or
heuristics, exist to help in this grouping. The first is that we shouldn't
assign the work of logical processors within the same cluster to the same
physical processor where possible. This maintains the degree of con
currency within the task where permitting. The second rule of thumb
is to place a logical processor to a physical processor that already has
allocated to it some (largest) subset of the entities that the logical pro
cessor requires. This ensures that the logical processors are placed on
the physical,processors with the best subset of data entities. An exam
ple of this extended allocation scheme in described in Appendix H, for
the Ship Control System.

84

4.4. USES OF THE RING

4.4.4 Critical regions and generating back off in
formation

The previous chapter described the concept of a critical region and
showed how a task may be considered as a collection of connected
critical regions, or a molecule. In this section we will show how the
information expressed in the DDR notation can be used to generate
the back-off information needed when critical regions are interrupted.

Critical regions on different data entities are connected through shared
transactions. A transaction may read multiple data entities or it may
read a set of data entities and write to one other data entity. In these
cases, the critical regions are connected and we must determine the
effects on a critical region given that the connected critical region is
being backed off. A critical region on an entity is backed off if some
other more 'urgent' task needs to access the entity. The critical region
is known as a primary critical region and the backoff is known as a
primary backoff. We need to determine the primary backoff point for
this region. This backoff point is at the start of the critical region and
may be found through examination of the transaction precedence graph
for the task. The backoff point is the first use of the data entity.

We now need to consider the back off points for any connected critical
regions. A connected critical region is one in which the data entity ei
ther directly depends on the primary data entity or is updated during
the lifetime of the primary critical region. In the first case, a trans
action will read from the primary entity and write to the dependent
entity. This will appear in the ring notation as a transaction common
to the two rings and where one instance of the transaction is a writing
transaction. In the second case where the dependent critical region is
updated during the lifetime of the primary critical region being backed
off but where there is no direct dependency between the two data en
tities. This would occur where ARCs are introduced into the task.

Where a primary critical region is to be backed off, we need to consider
all connected critical regions. The values of data entities for all con
nected critical regions should be restored to their state on entry to the
primary critical region. In this way, several problems will be avoided
and the task will always see a consistent database state even through
interruption by other tasks. The first problem that is avoided is where
an independent data entity is updated more than once. Suppose the
following represents part of a task where an update to data entity 'B'
occurs within the critical region of data entity 'A'. The transactions
appear in the transaction precedence graph in the sequence specified

85

CHAPTER 4. DATA ENTITY VIEWPOINT ANALYSIS

by their number.

1. rB
2. wB
3. rA
4. rA
5. wB
6. rA
7. rA

Suppose the task is interrupted between transactions 6 and 7 by another
task which changes the value of data entity 'A'. To ensure that on
restarting the above task, consistent values of 'A' are read, we need
to back off the task to the start of the critical region. The task on
restarting will begin execution from transaction 3. This means that
transaction 5 is executed a second time and the value of 'B' may become
'corrupt'. To prevent this problem, we need to restore the value of 'B'
to its state on entry to the primary critical region that is being back
off i.e. that region for data entity 'A'.

The second problem occurs when there is a dependent data entity up
. dated within the critical region being backed off. Consider the following
task.

1. rB
2. rA
4. rB
3. rAwB
4. rA
5. rA

Suppose the task is interrupted between transactions 4 and 5 by another
task which updates data entity' A'. To ensure consistency in the reading
of ' A', we have to back off the critical region to its start before restarting
the interrupted task. Suppose this is all we do, then on restarting the
task, the value of 'B' read in transaction 4 will be an updated value
created during the previous, aborted, execution of the task. Data entity
'B' therefore has no integrity. To prevent this, we should restore the
value of 'B' to its state on entry to the critical region for 'A'.

The rule then is: where any data entity is updated during a critical
region its initial state on entry to that critical region should be restored
if that critical region is restarted. The dependent data entities can
be identified through examination of the ring notation and transaction

86

4.5. SUMMARY OF THE METHOD

precedence graphs. A list of dependent data entities can be constructed
for each critical region. The state of these can be saved on entry to the
critical region. This state can be thrown away on completion of the
critical region. If there is too much state to be saved, the alternative is
to save the state of each entity as its critical region is entered. Where
we need to back off to the start of a critical region, then we should
also back off to the start of any connected critical region. This was
described in the previous chapter. The further the task is backed off,
the more work has to be repeated. There is a trade of between how
much state is saved and how much work needs to be repeated.

4.5 Summary of the Method

The real-time design methodology so far comprises the following steps:-

1. Identification of real-time triggers.

2. Decomposition of system into subsystems (grouping of related
triggers).

3. Decomposition of subsystems into tasks.

4. Preliminary design of real-time database.

5. Decomposition of tasks into transactions.

Following these steps, we can now proceed with

• Construction of Data Dependency Rings as a diagrammatic aid.

• Automatic generation of Transaction Precedence Graphs.

• Determine useful concurrency degrees (number of copies) of each
data entity.

• Automatic generation of a transaction/data entity allocation scheme.

• Automatic generation of back off information.

87

CHAPTER 4:' DATA ENTITY VIEWPOINT ANALYSIS

88

Chapter 5

A Run-time Environment

Saturn, the Bringer of Old Age

5.1 Introduction

The previous chapter described a simple methodology to transform an
informal description of a real-time system into a design for an imple
mentation. This design, although meeting the functional requirements
of the application fails to address the, perhaps equally important, non
functional requirements. Such non functional requirements for a real
time system include the ability to meet the real-time deadlines of the
tasks.

This chapter is divided into three sections. In the first two sections we
consider the principles and techniques for meeting hard real-time dead
lines. In the third section we describe a run time environment that is
based on the model described in Chapter 3. This run-time environment
ensures that both the functional requirements of the application and
the real-time deadlines of the tasks are met.

5.2 Real-Time Scheduling - A Survey

This section considers the problem of real-time scheduling: it describes
the problem of deterministic real-time scheduling; introduces a taxon
omy of real-time scheduling methods and then describes examples of
scheduling mechanisms in each part of the taxonomy.

89

CHAPTER 5. A RUN-TIME ENVIRONMENT

5.2.1 Deterministic Scheduling

In a soft real-time system, the tasks are performed by the system as
fast as possible; the tasks are not constrained to finish by specific times
[SCS88]. Metrics for the evaluation of soft real-time systems include
average response times for tasks and system throughput. In the alter
native, hard real-time systems, the tasks have to be performed not only
correctly but according to strict temporal constraints. That is to say
that each task has a deadline; if the task does not complete its work
before this deadline then the system is deemed to have failed. The
design methodology presented in this work is intended for applications
with a high predominance of hard real-time tasks. Consequently, this
chapter is primarily concerned with hard real-time scheduling. We do
however present an overview of scheduling of soft real-time tasks.

5.2.2 Nature of Tasks

Chapter 3 introduced the temporal characteristics of tasks in a real
time system. The important temporal characteristics of the tasks are

1. The arrival time. This is the-time that the.task is triggered.

2. The ready time. This is the earliest time that the task can begin
execution. The ready time is always greater than, or equal to,
the arrival time.

3. The worst case execution time. The execution time of the task
is always less than or equal to the worst case execution time. In
our work, the worst case execution time is evaluated by analysis
of the transaction precedence diagram for a. task. The 'longest
path' through the TPG represents the worst case execution time.

4. The deadline. The latest time by which the task must have com
pleted its execution.

5. The minimum repeat time. This is the earliest time after a task
triggering that it may be re-triggered. For periodic tasks, the
minimum repeat time is the period of the task.

In a static real-time system, all the above timing information is known
before run-time. For a dynamic real-time system, not all this informa
tion is known before run-time. Many real-time scheduling techniques
draw a distinction between periodic and non-periodic tasks. A non
periodic task has arbitrary arrival times and deadlines. A periodic task

90

5.2. REAL-TIME SCHEDULING - A SURVEY

is one that is executed exactly once per period P. A system constructed
from periodic tasks, is ammenable to static analysis. The scheduling
analysis described later in this chapter converts a set of non-periodic
tasks into a periodic set that represents the absolute worst case of task
triggerings. Static analysis can then be performed on this task set.

The Guarantee Ratio and Optimal Algorithms

A schedule is defined to be the order of execution of the tasks and the
start times for execution of each task. The function of a scheduling
algorithm is to determine whether a schedule for executing a set of
tasks exists such that all their constraints are satisfied and to generate
this schedule. A static algorithm determines the schedule off-line using
the timing information of the tasks. A dynamic scheduler determines
the schedule on-line and progressively as more information about the
tasks is known.

A scheduling algorithm is said to' guarantee a new task if a new sched
ule can be found such that the timing and resource constraints of all
existing tasks as well as the new task are satisfied. A static algorithm
aims to guarantee all tasks. A measure of the performance of a dy
namic scheduling algorithm is the number of tasks guaranteed versus
the number of tasks that arrive. This is known as the guarantee ratio.

For static scheduling, an algorithm is optimal if it always produces a
schedule with guarantee ratio of 1 whenever any other algorithm can
do so. A dynamic scheduler is optimal if it produces a schedule with
guarantee ratio of 1 whenever there exists a static algorithm that can do
the same given the timing constraints. [SCS88] states that finding an
optimal dynamic scheduling algorithm is difficult and computationally
intractable. [SCS88] also states that an approximate algorithm with
the highest guarantee ratio is considered to be better than one with
a low ratio. However, unless the guarantee ratio is 1, there exists a
scenario of task triggerings such that the dynamic scheduling algorithm
cannot guarantee all tasks. We propose that to achieve hard real-time
scheduling some static analysis of the task set is necessary. A method
to carry out this analysis is described after a survey of relevant work.

5.2.3 Taxonomy of the scheduling solutions

A real-time scheduling algorithm may be described in terms of various
characteristics. By combining these characteristics, different scheduling
algorithms can be defined. The main characteristics are:

91

"

CHAPTER 5. A RUN-TIME ENVIRONMENT

Scheduling AlgDrhhm

8tadc o,a_lc

A
DIstributed

Cenvallsed DIstributed

Mutually Independent

~
Dependent

~ /\ ~
Preep~ NDn-preemp~ Heuristic Tree based In"ger pro.' ng T,ee based

Figure 5.1: Taxonomy of scheduling solutions

• Static or Dynamic approach

• Centralised or distributed scheduling

• Preemptive or non-preemptive tasks

The taxonomy of solutions is shown in figure 5.1.

Static Approaches

A static scheduling algorithm can use information available at system
build time or before, to determine a complete or partially complete, fea
sible schedule for the total set of tasks. The static scheduling algorithm
is typically a load balancing scheme to assign tasks to processors.

Preemptive Approaches

If preemption is allowed among the tasks to be scheduled, then accord
ing to [SCS88], it is often possible to find polynomial-time optimal al
gorithms for statically scheduling the tasks. Static scheduling methods
typically use a simple scheduling scheme at run-time to decide which
task from a set of triggered tasks, should be executed next. A static
analysis determines the effectiveness of the algorithm.

92

5.2. REAL-TIME SCHEDULING - A SURVEY

For a set of periodic tasks, if a schedule can be found for the time
interval between 0 and the least common multiple of all the task pe
riods, then the same schedule can be correctly used for all repetitions
of this same period. [Mar82] describes an earliest deadline first (EDF)
scheduling policy for a set of periodic tasks on a multiprocessor system.
The complexity of the scheduling analysis for this multiprocessor case is
O(m2n4+nS) where m is the number of processors and n is the number
of tasks. A performance analysis of this scheduling policy is found in
[HHT89]. Other methods for scheduling a set of periodic tasks can be
found in [Leu89]. Further work in preemptive scheduling can be found
in [WKSG89].

[LL73] uses a similar approach to real-time scheduling. A simple schedul
ing policy is chosen and statically analysed for feasibility. This work
defines 'overflow' of tasks to occur at a time t if t is the deadline for a
periodic task that has not yet finished. A feasible scheduling algorithm
is then defined as one which schedules the tasks such that no overflow
can occur. [LL73] describes a simple algorithm for executing the real
time tasks at run-time. Each task is assigned a priority. A given task
may be preempted by a task of higher priority. Each task has a critical
instant. This is when the task is scheduled at the same time as a set
of other tasks and such that all the other tasks have higher priorities.
If the requests for all tasks at their critical instants are fulfilled before
their respective deadlines, then the scheduling algorithm is feasible. As
an example suppose we have two tasks with period Tl =2 and T 2=5
and execution time El=l and E2=1. Assume that task one has the
higher priority. The critical instant for task two is when both task one
and task two are triggered at the same time, to. In this case, task one
can run from to to tIt t2 to t3 and t4 to ts. Task two can be run from
tl to t2' Both tasks meet all their deadlines; task one runs three times
in the period of task two.

[LL73] suggests an inequality that must be satisfied for the schedule
of a set of periodic tasks to be feasible. If T 1 and T 2 are the request
periods of two tasks with execution times El and E2 such that Tl < T2
and L(X) is the lowest integer smaller than or equal to X, if task one
is the higher priority task then following must be satisfied

If task two were of the higher priority then

Intuitively, the first relationship states that task one is executed L(T1/T2)

93

CHAPTER 5. A RUN-TIME ENVIRONMENT

times and provided this many executions of task one and a single execu
tion of task two can all be executed within one period of task two then
the task schedule is feasible. The second relationship states that if task
one and two can both be executed within the smaller period with task
two executed first then the task schedule is feasible. [LL 73] states that
a reasonable rule for assigning priorities is to assign the higher priority
to those tasks with the faster triggering rate. This is known as a rate
monotonic priority assignment and leads to an optimal algorithm.

[Mar82] describes an alternative method of determining whether a fea
sible schedule for a set of tasks exists. Unlike the work of [LL73], this
method can be applied to task sets that are not periodic. The method
needs to know the start (trigger) times and deadlines of each task. In
addition the processing requirements for each task should be known.
With N tasks, a time-line can be divided by the trigger and deadline
times of the tasks to yield 2N + 1 regions. If ti is the itlt smallest value
among the trigger and deadline times then the ith interval is the period
from ti to ti+1' A task is available for processing in the ith interval if its
trigger time is before (or at) the start of the interval and its deadline
is after (or at) the end of the interval. Within the interval, the set of
available tasks does not change. Given the amount of processing to
be done on each task within the interval, scheduling these tasks within
the interval is an instance of the problem where all tasks have the same
trigger and deadline times. [Mar82] states that it is sufficient to find
the amount of processing to be done on each task within each interval
and then use an algorithm such as that in [GS78] to schedule the tasks.

The main problem with the work in [Mar82] is that the tasks are as
sumed to have known trigger times. There is no consideration is made
of tasks that repeatedly trigger, whether periodic or not. Perhaps re
peated triggerings of an individual task could be considered as indepen
dent instances of a task and consequently treated like different tasks.
Other work on preemptive scheduling in multprocessor systems can be
found in [MC70]

Non-preemptive Approaches

Non-preemptive scheduling is more difficult than preemptive schedul
ing; many non-preemptive scheduling problems have been shown to be
NP-hard [SCS88]. However, much work has been done on restricted
problems. For uniprocessor systems, it can be shown that the ear
liest deadline first algorithm is optimal for scheduling a set of non
preemptable tasks with the same trigger time. A similar restricted
problem is discussed in (JBW86]. This work imposes additional severe
restrictions on the task set. It is assumed that each task can be com-

94

5.2. REAL-TIME SCHEDULING - A SURVEY

puted in unit time but that a given task may use an arbitrary number
of processors. The work describes an algorithm to schedule a set of one
processor tasks with a set of k processor tasks where k is less than the
maximum number of processors available. The algorithm states that
the k processor tasks should be scheduled first. The one processor tasks
are executed on the idle processors during the execution of the k pro
cessor tasks and also when the k processor tasks have completed. The
problem of scheduling a set of tasks that require 1,2,3 .. k processors is
then seen as being a simple linear programming problem. To apply this
work to a task set where the tasks have different execution times, the
tasks could be decomposed into a set of subtasks with the same execu
tion time. The hierarchical nature of the task as described in Chapter
3 aids this decomposition. The methods proposed in [JBW86] could
then be used to determine a schedule for these subtasks.

Mutually Dependent Tasks

The techniques of [Mar82], [LL73], [Sah76], [GS78] and [JBW86] are
intended for tasks sets where the tasks are independent with respect to
data use. In reality, tasks are often mutually dependent. As described
in the previous chapter, tasks often share data and this necessitates a
serialisation of critical regions. For the mutually dependent schedul
ing case, a correct schedule satisfies the temporal constraints of the
tasks as well the task ordering requirements. Preliminary work has
shown that scheduling non-preemptable tasks with deadlines and ar
bitrary precedence constraints can be solved with the earliest deadline
first algorithm in 0(n2) time. ,In addition it has been shown that a
preemptive schedule for mutually dependent tasks exists if and only if
a non-preemptive schedule exists [SCS88].

There are two methods of scheduling mutually dependent tasks: heuris
tic approaches and those based on searching a tree based precedence
graph. [KN84] describes a heuristic approach. An optimal schedule to
large scale problems can be found out within a time limit that grows
exponentially with the size of the task set; the method is not suitable
for dynamic scheduling of tasks. The method is only really suitable for
task sets where all tasks are triggered at known times.

The method proceeds by constructing a task precedence graph. This
is similar to the transaction precedence graphs of Chapters 3 and 4.
Each node represents a task and an arc represents a constraint that
is necessary between the tasks. This constraint enforces serialisation
of conflicting data accesses. Each node is augmented with a weight
representing the processing cost of the associated task. The graph has a
single root (entry) node and an exit node. These represent the first and

95

"

CHAPTER 5. A RUN-TIME ENVIRONMENT

last tasks. Each node is assigned a depth based on the maximum value
of the processing weights from the entry node to the node in question.
The tasks are sorted based on this depth to generate a priority queue.
If the depth of two nodes is the same, the method provides a heuristic
that the node with the greatest number of arcs should be sorted first.
This heuristic is based on having the task with the greatest number of
dependents begin execution first. Using a set of K processors, assign
the first N tasks to the K processors such that each of the N tasks is not
waiting for some other task to complete and N <K. When a processor
becomes free, schedule the next task in the priority queue provided it
does not wait for an, as yet, uncompleted task.

[KN84] claims that 67% of the schedules generated by this method are
optimal and in addition 87% of the non-optimal schedules are within
5% of the optimal solution. The method has many disadvantages. The
most significant of these is that it is only valid for task sets where
all tasks are active at the same time. There is no consideration of
arbitrary sets of tasks being triggered. We could apply the technique
to determining schedules for all periodic tasks in a system and then
use some other technique for determining the schedule for non-periodic
tasks. Applying the method to the model of Chapter 3, it would be
inappropriate to apply a constraint between two tasks based on the
conflicting access to one entity. In reality constraints would be Imposed
between the conflicting critical regions of the tasks. The critical regions
would then be the nodes in the graph analysed by the method of [KN84].

The alternative to the heuristic approach is to use a tree based tech
nique. [MC70] describes such an approach. The tasks to be scheduled
are inserted into a tree with the tasks that should be scheduled first at
the leaves of the tree and the last task to be executed is placed at the
root. The algorithm for generating the -schedule proceeds by allocating
a processor to each of the tasks at the leaves. These tasks are now
executed. Each time one of the following situations occurs a processor
is re-assigned to meet as many of the deadlines as possible.

The two situations are as follows:

1. When a task has completed execution

2. On reaching a point such that, that if we continued the present
assignment, some tasks would be computed at a faster rate than
other tasks that are further from the root (i.e. those with a higher
priori ty). This is determined by considering the height of the node
in the same way as determining the depth of a node in the method
of [KN84]

96

5.2. REAL-TIME SCHEDULING - A SURVEY

As with [KN84], the main problem with the method in [MC70] is
that all tasks are assumed to be active at the same time. This is
inappropriate for a system where the tasks are independently triggered
and where it is unknown before run-time what tasks are to be scheduled.

Further work on scheduling tasks in a centralised environment can be
found in [Man67], [Mo068].
Distributed Allocation Approaches

Even without the addition of timing and precedence constraints among
tasks, the generation of schedules for a set of tasks is known to be
difficult. Finding schedules for distributed systems is even more com
plicated. Finding the optimal schedule for a set of tasks and three
processors is known to be NP-hard [Bok81]. The literature contains
two methods for allocating tasks to processors in a distributed sys
tem to generate real-time schedules. The first method is a tree based
method; the second method is an integer programming method.

[Bok81] describes a tree based method for the allocation problem. The
method aims to minimize the sum of the execution times on each pro
cessor in a distributed network as well as minimizing the communication
costs. Using the model of Chapter 3, communication between tasks is
not a functional requirement, it is only required to synchronise updates
to shared data entities. The method described in [Bok81] does not guar
antee the deadline of a particular task. Instead, the algorithm ensures
that each task gets the best possible chance at completing its work be
fore the deadline. The method is to construct two 'cost' matrices. The
first gives the cost of executing each task on each of the processors. The
second gives the cost of communication between each pair of tasks. An
assignment graph (tree) is then constructed. This contains a node for
every combination of processes on processors. Every communication
path between these process allocations is then added to the tree, and
the tree augmented with the communication costs. A shortest tree al
gorithm is then used to find the optimal path through the graph. One
recognised disadvantage of this graph theoretic approach to finding an
optimal allocation is that the time complexity of the algorithm is high
when the number of processors is more than two [ELT82]. Again, the
main disadvantage of this method is that it assumes that all tasks are
active at the same time. The work has been extended to the case where
there is a probability of executing one task directly after another. This
is described in [Tow86]. The work of [Bok81] and [Tow86] can be ex
tended to determine schedule length from the allocation pattern; on
their own these methods do not consider the real-time deadlines of the
tasks.

97

"

CHAPTER 5. A RUN-TIME ENVIRONMENT

The second method to allocate tasks to processors in a distributed sys
tem is based on the 'integer programming' method [ELT82}, [WCESO].
[ELT82) describes a technique for generating an optimal solution to
the allocation problem when faced with a set of tasks that must be
executed within a certain 'port':to-port' time. Like the graph theoretic
approaches of [Bok81), [ELT82} uses information such as the communi
cation cost between any two tasks; the inter-processor distance between
two processors and the cost of executing a given task on a given proces
sor. As in [ELT82), an allocation graph is constructed, but a 'branch
and-bound' technique restricts the number of nodes in the graph. This
branch and bound method uses nine rules to restrict the number of
nodes. These rules select the best node from the current set of nodes.
The main problem with the integer programming techniques is its ex
ponential computational cost. Other scheduling work involving branch
and bound techniques can be fOUlld in [Ma84).

In addition to the task allocation problem, some other useful research
has been carried out to study the effects of various schedules for a set
of distributed real-time tasks. One of the most important tasks that
a real-time system can do is to determine whether a given schedule
meets the deadlines of all the tasks. [Lei80], [LY86} provides a way of
doing this. An algorithm is provided that is used to determine an upper
bound to the execution time for each task. It is easy to determine the
execution time of a task in isolation. To determine the upper bound
on the execution time however, it is necessary to determine how long a
task is blocked by the actions of other tasks. This blocking is because
other tasks hold resources required by the task.

Determining the worst case blockage is a computationally intractable
problem for a large set of tasks. As a result [LY86) adopts a slightly
different strategy. Instead of finding the worst case blockage, the algo
rithm presented starts with every task simultaneously blocking every
component that it could possibly block. From this set of blockages,
the 'impossible' ones are removed and the resultant set of blocks trans
formed into the worst case blockage. As an example of an impossible
block, suppose we have sequential tasks A,B,C and D executing in par
allel with the sequential tasks X, Y and Z. Assume X blocks A,B and C
and Y blocks A. If X were really blocking C then Y could not block A,
since for Y to block A, X must have run which would imply that X is
not blocking C. This type of incompatibility between blocks is removed
from the consideration set and replaced by one combined block that
reflects the maximum effect of the constituent incompatible blocks.

In addition to the incompatible block transformation [LY86) provides

98

,-

5.2. REAL-TIME SCHEDULING - A SURVEY

several other transformations on the set of blockages. Each transfor
mation reduces the set of total blockages that need to be considered.
The work provides a method for determining a reasonable estimate of
the upper bound of the worst case execution time for a task set. This
technique can be used with other scheduling methods to determine the
effectiveness of a schedule before execution time.

Dynamic Approaches

The objective of dynamic scheduling is to find the optimal schedule
given that the trigger times of the real-time tasks are not known in
advance of system execution. All the static scheduling techniques re
quire some knowledge of the trigger times prior to scheduling. This
section briefly describes some of the approaches that have been taken
to solve the dynamic scheduling problem. There are two categories of
dynamic scheduling. In the centralised approaches, one node in the
computer system is responsible for making the scheduling decisions. In
the distributed approaches, scheduling decisions are made concurrently
at more than one site in the distributed network of processors.

Centralised Approaches

. In theory, any static scheduling algorithm th~enerates an optimal
schedule can be used on-line to guarantee tasks dynamically. However,
most of the algorithms, such as those discussed in the previous section,
are optimal for static scheduling but not for dynamic scheduling because
of their complexity. [SCS88] states that for multiprocessor systems,
there can be no optimal algorithm for scheduling preemptable real
time tasks where the arrival times are not known before hand. As a
result, heuristic algorithms become more significant in the problem of
scheduling real-time tasks dynamically. Although, without the start
times, we cannot have an optimal solution, there are ways of testing if
a heuristic generates a correct (but not necessarily optimal) solution.
Distributed Approaches

The main problem that must be addressed by distributed dynamic
scheduling policies besides generating the schedule quickly enough, is
stale data. In a distributed system, tasks may be dynamically triggered
at any node in the system. The status of each node is constantly chang
ing and cannot be predicted with any great certainty beforehand. A
distributed scheduling algorithm that attempts to generate a schedule
that is for the good of all nodes in the system requires state information
from some subset, if not all of the other nodes. This information can
only be acquired at run-time, and because of communication delays,

99

"

CHAPTER 5. A RUN-TIME ENVIRONMENT

no propagated state information is guaranteed to be up-to-date. The
scheduling algorithm often has to make its decisions based on stale in
formation. Often, distributed, dynamic schedulers consist of two parts;
a local scheduler that schedules those tasks that can be executed lo
cally, and a distributed scheduler that schedules those tasks that either
need remote data or are to be executed on a remote node.

Few really successful dynamic real-time schedulers have been ~eported
in the literature. There is however, much work on the related problem
of dynamic load balancing; this goes part of the way to solving the
problem. By far the most significant research into dynamic, real-time
load balancing is reported in [WZS87], [RS84] and [JSC85], preliminary
research papers from the development of the real-time 'Spring Kernel'.
The Spring Kernel is a real-time operating system that advocates a
new paradigm based on the notion of predictability and guaranteed
deadlines [SR89].

[RS84] and [JSC85] present a scheduling algorithm that works dynam
ically on loosely coupled distributed systems for tasks with hard real
time constraints. The research presents a model of a hard real-time
system consisting of a set of nodes. Each node has a set of periodic
tasks. At system initialisation time, it is verified that the given alloca
tion of periodic tasks allows each task to satisfy its deadline constraints.
Any of the previously described techniques for static scheduling of peri
odic tasks in a distributed system can be employed. In addition to the
periodic tasks, non-periodic tasks may be triggered at any node at any
time. These sporadic tasks must be scheduled dynamically given that
their CPU requirements and deadlines are known in advance. The aim
of the scheduler is to guarantee all periodic tasks and as many of the
non-periodic tasks as possible using the resources of the entire network.

Each node in the system consists of two parts; a local scheduler and a
distributed scheduler. The local scheduler is responsible for ensuring
that all local periodic tasks are guaranteed. This is done by maintaining
a list of all periodic tasks and executing them according to the earliest
deadline first heuristic. Should a non-periodic task be triggered at a
node then, if the node has enough surplus processing power between
when the task arrives and its deadline, the non-periodic task can be
guaranteed at that node. If this is the case then the task is added to
the guaranteeable task list. The surplus processing power available at a
node is worked out by considering the deadlines and last possible start
times for all the guaranteed tasks. The local scheduler itself is a cause
for concern. If the local scheduler can preempt any currently execut
ing task to determine what to do with a newly triggered non-periodic

100

5.2. REAL-TIME SCHEDULING - A SURVEY

task, then there is a danger that the preempted task will not meet its
deadline. If however, the scheduler waits until the completion of the
current task, then the newly triggered task may miss its deadline. To
get around this problem [RS84], [JSC85] suggest that a local scheduler
should be a periodic task. The period of the local scheduler determines
the number of non-periodic tasks that are guaranteed.

What happens if the newly triggered non-periodic task cannot be sched
uled on the current processor i.e. there is not enough surplus to guar
antee the task. There are two approaches that the local scheduler can
take to guarantee the task on another node. These approaches have
been named 'bidding' and 'focussed addressing' [JSC85]. In focussed
addressing, the node at which the new task has been triggered con
siders the surplus of all other nodes. If a particular node has surplus
significantly greater than the computation time of the new task then
this seems like a good candidate for executing the new task. The task
is then sent to this node where it is treated like a newly triggered task.
If the surplus at this node has changed since the original determined
that this node was suitable, then the task may be forwarded a sec
ond time. In bidding, the original node checks the surplus of all other
nodes. The task is then sent to the node with the greatest surplus. The
difference between bidding and focussed addressing is that in bidding a
node sends a request message to each node to find the surplus at that
particular time. In focussed addressing the surplus is piggybacked onto
other communications and is stored in a table at each node. Focussed
addressing can use out of date surplus information whereas bidding
requires a greater communications overhead.

[JSC85] presents some performance figures for the dynamic schedul
ing scheme used by the Spring Kernel. By tuning the periods of the
scheduling functions and adjusting other system parameters, a guaran
tee ratio of 98% has been reached. However, the remaining 2% of tasks
that fail to meet their deadlines is cause for concern. By definition of
a hard real-time system, if any task is not guaranteed then the whole
system is deemed to have failed. With the dynamic scheduling method
used in the Spring Kernel, there is always a possibility that a task might
fail.

101

CHAPTER 5. A RUN-TIME ENVIRONMENT

5.3 A Combined Static/Dynamic Approach

5.3.1 Introduction

The function of a scheduling algorithm is to determine, for a given set
of tasks, whether a schedule for executing the tasks exists, such that the
timing, precedence, and resource constraints of the tasks are satisfied.
If such a schedule exists, then the task set is 'sound'. In addition, the
scheduling algorithm should generate the schedule for a given scenario,
if one exists [SCS88]. In a hard real-time system we must guarantee
that all tasks meet their deadlines and resource/precedence constraints.
If any task does not meet its deadline then the system fails.

Generating optimal schedules before run-time is not only a difficult
problem but it also relies on knowing the trigger times for the tasks.
For real-time systems that consist of periodic tasks only, the analysis
can be carried out. For systems that have a combination of periodic and
non-periodic tasks, conventional static analysis to generate a schedule
is harder. For these systems, dynamic scheduling techniques such as
those described in [JSC85] rely on a run-time scheduling heuristic to
decide where to execute a newly triggered non-periodic task. Often the
load on the system at a particular instant cannot be determined and
so there is a real danger that a particular hard real-time task will fail
to meet its deadline.

This section describes a static approach to the analysis of a dynamic
run-time heuristic used to schedule a set of tasks. The static analysis
doesn't generate a schedule as in other static scheduling techniques; the
analysis simply determines the effectiveness of the dynamic heuristic.
If the analysis shows that the heuristic is successful, at run-time the
heuristic will correctly decide what to do with newly triggered tasks
such that all deadlines are met. This approach is similar to that used
by [LL73].

Some information about the task set is required before the static anal
ysis can be carried out. For each task, we need to known the worst
case execution time, the deadline (relative to triggering time) and the
minimum re-trigger time (MRT), again relative to the previous trigger
ing time. The worst case execution time can be found by analysis of
the transaction precedence graph for a task. The individual execution
times, of all transactions on the longest path through the graph, give an
indication of the worst case execution time. The minimum re-triggering
time may be at the deadline, or after the deadline, of the current invo
cation of the task. The MRT may alternatively be before the deadline

102

5.3. A COMBINED STATIC/DYNAMIC APPROACH

of the current task invocation. The second case represents overlapped
triggerings of the tasks.

The static analysis is carried out by imposing a periodic model of task
triggerings on the otherwise aperiodic, asynchronous, task set. A static
analysis can be carried out on this periodic model. For a given set of
aperiodic tasks, we assume that each task is triggered at a time To
and is continually re-triggered at its MRT. This is considered to be the
absolute worst case that the scheduling mechanism will have to deal
with. The static analysis proceeds by considering the effectiveness of
the scheduling heuristic when faced with this worst case scenario. By
considering this case, if the scheduling policy is successful, then it is
also considered to be successful in all other cases i.e. when tasks are
not necessarily re-triggered at their MRTs.

5.3.2 Chosing a Scheduling Heuristic

The run-time scheduling heuristic chosen for analysis is the Earliest
Deadline First (EDF) selection policy. This scheduling policy is used
several times in the literature [Mar82]. In the EDF policy, if there
is a choice to be made between two 'conflicting' tasks then the task
with the soonest deadline is chosen to be executed next. Tasks are
said to conflict if they require conflicting access to any shared resource
(processor or data entity). There are various extensions that need to
be considered with this policy. For example, if a processor is busy on
a task when a new task triggers with a sooner deadline than that in
execution, the scheduling mechanism has two choices: the first is to
continue to the end of the current task and then start the new task;
the second choice is to preempt (interrupt) the current task and start
the new task. .

The Earliest Deadline First scheduling policy was chosen because of its
already widespread use in real-time systems. The policy is also simple
to implement; this implies that the overhead imposed on the system
because of scheduling decisions is minimised. Other simple scheduling
heuristics could have been considered. Among these are:

• Least Slack First. The slack is the time between completing a
task and the deadline of the task.

• Greatest Utilisation first. The utilisation of a task is the ratio of
the trigger time subtracted from the deadline and the worst case
execution time.

103

,-

CHAPTER 5. A RUN-TIME ENVIRONMENT

Each of these scheduling policies is simple to execute. The policies can
also be localised. Each node in a system has a set of tasks that it can
execute. Each node has a local scheduler based on simple scheduling
policies. No inter-node communication is required to make a scheduling
decision. For this work, EDF was chosen.

5.3.3 Worst Case Scenario Analysis

In analysing a scheduling policy we must determine the worst case sce
nario that the policy has to deal with. If the policy works in this worst
case then it is assumed to work in all other cases that it is presented
with. Given a scheduling policy such as EDF there are many tests that
can be carried out on a task set to determine its effectiveness. This
section describes such a set of tests.

SubTasks

In determining the effectiveness of a given scheduling policy, we cannot
treat the task as an indivisible scheduling unit. Instead, the task is
broken up into subtasks that are allocated to separate process~rs. The
task is also considered as a set of critical regions each associated with
a given entity. In the scheduling analysis that is to follow where we
refer to a task, we are referring to that subtask of the real-time task
that is allocated to a particular processor. In considering the timing
characteristics of this subtask, we cannot use the characteristics of the
parent real-time task. Instead we must construct the timing character
istics of the subtask. For example, suppose we have a task that consists
of three sequential transactions TI (exectime of 5 TUs), T2 (exectime
of 10 TUs) and T3 (exectime of 5 TUs). Transactions TI and T3 are
placed on processor PI and transaction T2 is on processor P2. Suppose
the task has a deadline of 50 TUs and MRT of 60 TUs.

In considering the subtask on P2, when this is triggered, we have al
ready completed Tl, the deadline for this subtask is thus 5 TU (the
exectime of Tl) closer than the deadline for the whole task. In addition,
in executing T2, we must be aware that on completion, there is still
T3 (with 5 TUs of work) left to complete. This brings the deadline of
the subtask containing T2 even closer. The deadline of this subtask is
then 40 TUs. To summarise, in calculating the timing properties of the
subtasks we must take into account the work that has completed before
the subtask is triggered and the work that is to be done on completion
of the subtask.

104

': -

5.3. A COMBINED STATIC/DYNAMIC APPROACH

When considering the task as a set of critical regions, the deadlines and
execution times of the individual critical regions should be calculated
when assessing the schedulability of the tasks.

The Tests

This section describes the tests that should be carried out on the task
set. The tests should be carried out in the order suggested. If any test
fails then there is no point in going onto the following tests since they
must also fail. There are three sets of tests that should be carried out
with the EDF scheduling policy. The first tests check to see that there
is enough processing power available to execute the tasks regardless
of any need to execute the tasks as indivisible units (as is required
for the critical regions). The second and third tests build on the first
and check that the critical regions can indeed be treated as indivisible
entities such that the deadlines of the tasks are met. In all these tests,
the ammended deadlines, as described in the previous section, should
be used and not the overall real-time task deadlines.

Test 1 : Raw Processing Power
In the first set of tests we check that there is enough 'raw' processing
power to execute all the tasks on a processor before their deadlines.
This test ignores the fact that the work of the tasks on a ·processor may
have to be executed as an indivisible unit. In this test the work of a
task on a processor can be interrupted and restarted without having to
worry about the consistency of shared data on restarting.

The test proceeds by first determining the worst case of task triggerings
that can occur on a processor. The worst case is considered to be when
all tasks trigger at the sCl:me time To, and then each task re-triggers at
its minimum ret rigger time (MRT). As an example consider three tasks
with the following characteristics. This is Simple Task Set 1.

1. Execution time of three time units (TUs); deadline of ten TUs
from the trigger time; minimum ret rigger time of ten TU s from
the previous trigger.

2. Execution time of one TU; deadline of four TUs from the trig
ger time; minimum retrigger time of four TUs from the previous
trigger.

3. Execution time of one TU; deadline of two TUs from the trigger;
minimum retrigger time of two TUs from the previous trigger.

105

<'

CHAPTER 5. A RUN-TIME ENVIRONMENT

Task 1 : : : : : :

Task 2 I:: I : : I : : I : : I : : i

Task 3 I II ClIIIIIIII
IO •• dlln. for tUk

Figure 5.2: Worst Case Triggerings for Simple Task Set 1

We can represent the worst case triggerings of these tasks on a diagram
for each task. This is shown in figure 5.2. The shaded part of the
diagram represents the execution of the task.

We must now determine if the EDF scheduling policy is appropriate
over some period of time. Over what period of time should we consider
the task triggerings such that we can be confident that the scheduling
policy works for an infinite length of time? It has been suggested we
should consider the time period up to the longest deadline of any task.
There is no shared data used and hence each task is preemptable. Con
sequently if there is enough processing power up to the longest deadline
to satisfy all those tasks that have deadlines up to that time, then the
EDF policy is sound. Using the above example, this means that we
should consider all those tasks up to the longest deadline i.e. up to
time T 10. U pto this time we have one triggering of Task 1, using three
Processing Units (PUs), two triggerings of Task 2, using two PUs and
five triggerings of Task 3 using five PUs. This adds up to ten PUs
required up to time T 10 and hence the EDF policy would appear to be
sound.

The EDF scheduling policy on the triggered tasks up to this deadline
will result in the execution trace shown in the Gantt diagram shown in
figure 5.3.

106

r

5.3. A COMBINED STATIC/DYNAMIC APPROACH

Figure 5.3: Execution trace for Simple Task Set 1

Figure 5.3 suggests that the EDF policy works on the task set. However,
if we consider the worst case scenario further than the longest deadline
we can show that some tasks fail to meet their deadlines. Figure 5.4
shows the execution trace beyond this longest deadline of T 10. The
figure shows that the second triggering of task 1 only received two
processor units up to its deadline instead of the required three. This
task therefore fails to meet its deadline and the EDF policy is unsound
on this task set.

This result is intuitively obvious. Upto time T 20 we require 21 processor
units to execute all tasks such that their deadlines are met. Instead of
chosing the longest deadline as the time frame, we should consider a
longer time frame. In the above example, T 20 was the least common
multiple of the deadlines of the task set. We propose then that if there
is enough processing power up to the earliest common re-trigger time
then the EDF scheduling policy will work on a task set with no shared
data. The earliest common re-trigger time is the next time that all the
task triggerings occur at the same time.

As an example, consider the following Simple Task Set 2 that consists
of three tasks.

1. Execution time of two TUs; deadline of ten TUs from the trigger

107

Q

"
CHAPTER 5. A RUN-TIME ENVIRONMENT

~ ~

R~UM~lt/~griWJ~1ft~~~~~~~Z~
Task 1.2 only geU 2 proceulng units before Its de.dllne

since It needs 3 processing units II misses Its deadline

Figure 5.4: Execution trace for Simple Task Set 1 beyond TlO

time and minimum retrigger time of ten TU s fro~ the previous
trigger.

2. Execution time of one TU; deadline of four TUs from the trig
ger time; minimum retrigger time of four TUs from the previous
trigger.

3. Execution time of one TU; deadline of two TUs from the trigger;
minimum retrigger time of two TUs from the previous trigger.

The earliest common re-trigger time of these tasks is at T 20. Upto
this point we have two triggerings of task 1 requiring four PUs; five
triggerings of task 2 requirings five PUs and ten triggerings of task 3
requiring ten PUs. This adds up to to a total requirement of 19 PUs
which will fit into the 20 that we have up to the common deadline.
We conclude that the EDF scheduling policy will work on the task set
where there is no shared data and preemption is allowed.

o
The above analysis assumes that the minimum retrigger time for a
task is greater than or equal to the deadline for the previous task.
The minimum re-trigger time for a task may however occur before the
deadline of the previous invocation of the same task. If this is the case,
then analysis period of the earliest common re-trigger time must be

108

"

5.3. A COMBINED STATIC/DYNAMIC APPROACH

_~III
Task 2

] Deadline for task

Figure 5.5: Triggerings for Simple Task Set 3

extended slightly. To illustrate this consider the two tasks in Simple
Task set 3 that consists of two tasks:

1. Execution time one TU; deadline four TU s from trigger; minimum
ret rigger time two TU s from previous trigger.

2. Execution time three TUs; deadline four TUs from trigger; mini
mum retrigger time four TUs from previous trigger.

Assuming that both task 1 and 2 trigger at To and both retrigger at
their deadline, we would get the triggerings shown in 5.5.

The first task has a minimum ret rigger time less than the deadline of
the previous trigger. If we consider the time period up to the earliest
common re-trigger time of these tasks i.e. T 4, it suggests that the task
set is schedulable with the EDF policy. However, if we consider further
than the least common deadline, we see that some tasks can miss their
deadlines with the EDF policy. We need a new definition of the consid
eration period such that it deals with task triggerings that overlap. A
suitable consideration period is the second earliest common re-trigger
time. With the above example, the earliest common re-trigger time
considered one triggering of task one and two, the fact that task one
invocations overlap was ignored. In checking upto the second earliest
re-trigger time, we take into account any overlapped triggerings of the

109

CHAPTER 5. A RUN-TIME ENVIRONMENT

tasks. In the example of figure 5.5, the second ealiest re-trigger time
after To is at Ta. Upto this time, we have three triggerings of task one
and two of task two. This requires 9 units of processing time and hence
cannot be executed upto the deadline of Ts. This task set is therefore
unsound.

There is still a problem with using the earliest common re-trigger time
of the tasks as a consideration period. This problem occurs with tasks
whose re-trigger times are after the deadline of the previous task. Con
sider two tasks that share a common processor and whose temporal
characteristics are as follows:

1. Execution time 5 TUs, deadline 6 TUs, minimum re-trigger time
30 TUs.

2. Execution time 5 TUs, deadline 6 TUs, minimum re-trigger time
30 TUs.

Using the earliest common re-trigger time of 30 TUs as the considera
tion period, shows that the task set is sound. Clearly though, if both
tasks trigger at the same time, one will miss its deadline. We need to
consider this type of problem in the test for serialisability through a
shared processor. With each task whose ret rigger time is greater than
the previous deadline, for the sake of the static analysis, we assume
that the ret rigger time is at the deadline of the previous invocation of
the task. In the above example, we change the re-trigger times for both
tasks to be at 6 TUs. The analysis then shows that there is not enough
resource time to meet both the deadlines.

This constraint imposes a worst case on these tasks that is stricter than
the actual worst case. It is possible that a task set appears unsound
with the constraint applied even though a valid schedule is possible.
Applying the constraint will however, always identify those task sets
that are really unsound.

This sort of test can also be carried out on any other shared resource in
the system. We can carry out the test on all those tasks that use shared
data entities or shared peripherals, as well as the physical processor.
If the task set fails at this stage then some action must be taken to
redesign the task set or allocation scheme. If the task sets pass the
tests then the next set of tests can be carried out.

Test 2 : Non-preemptive Scheduling
If the tasks have passed the first test then we known that there is enough
time to execute all tasks using their shared resources. The test assumes
that the tasks use of the resources may be interrupted by other tasks

110

5.3. A COMBINED STATIC/DYNAMIC APPROACH

with sooner deadlines and the interrupted task restarts from where it
left off. In reality this is simplistic. A task's use of a. shared resource,
whether it is a shared database entity or a physical device, often has
to be treated as an indivisible unit of processing.

In the second test we consider the critical regions that use a. shared
data entity. We achieve indivisibility of these critical regions through
making a critical region non-preemtable. Should a critical region need
to start but the associated entity is already in use then the region is
blocked until the other region already using it finishes.

With EDF scheduling, the worst case for a task Ti is when it is first
of all prevented from starting a critical region by another task T/ong

such that this second task has the longest use of the shared data entity.
In addition, while the task is waiting for the shared resource, a set of
other tasks trigger such that each has a sooner deadline than the first
and each needs access to the same shared resource. These later tasks
are given priority over Ti by the scheduling policy.

As an example consider the following task set that consists of three
tasks each having a single critical region on a shared data entity.

1. Execution time of 4 TUs, deadline of 15 TUs, MRT of 15 TUs.

2. Execution time of 6 TUs, deadline of 15 TUs, MRT of 20 TUs.

3. Execution time of 1 TU, deadline of 5 TUs, MRT of 5 TUs.

The worst case scenario that task 1 will face is if it is triggered just
after task 2 is started. This implies a delay in execution of 6 TUs. In
addition, the worst case also consists of a triggering of task 3 at the
same time as task 1. When task 2 finishes, task 3 will process and then
task 1 will get access to the shared data entity. The worst case delay
for task one is therefore 7 TUs.

The worst case for task 2 is when it is triggered just as task 1 starts
executing and at the same time as task 3 triggers. In the worst case
task 2 suffers a delay of 5 TV s.

The worst case for task 3 is when it is triggered just after task 2 is
started. This worst case represents a delay of 6 TUs. This worst case
is unacceptable since the deadline for task 3 is at 5 TUs; in the worst
case, task 3 misses its deadline. We can then conclude that the EDF
policy does not guarantee the deadlines for these tasks if preemption is
not permitted.

In general for a task triggering Ti there is another task triggering T/ong

that makes the longest use of the shared resource. In addition, there is

111

"

CHAPTER 5. A RUN-TIME ENVIRONMENT

a set of other task triggerings, TS, such that each has a sooner deadline
than Ti and each is triggered before Ti can start to execute. The worst
case delay a task T i can suffer is

Worst Non-preemptive DelaYi = T,ong.E + TS.E
w~ere Tlong.E and TS.E are the execution times of Tlong and each

. member of TS respectively.

For each use that a task makes of a shared resource, the worst case
delay that the critical region on the shared resource makes should be
less than the slack of the task (Le. the spare time between the end
of execution and the deadline). If the worst case delay cannot fit into
the slack then the task cannot be scheduled using non-preemptive EDF
scheduling.

Test 3 : Preemptive Scheduling
In the third test we again consider the critical regions that use a shared
data entity. We achieve indivisibility of these critical regions through
making a critical region preemtable and providing a back-off and restart
scheme for a preempted task. Should a task require a critical region
to start, and that task has a sooner deadline that the task currently
executing, then the current task is backed off and the pre-empting task
is allowed to execute. .

The worst case scenario for a task occurs when a task is preempted
and backed off just the 'moment' before it has finished with the shared
data entity. In the worst case, we have to contend with repeating the
complete execution of the task. A further point arises. How many
times do we allow a task to be preempted? If there were not a limit on
the number of times a task could be preempted, there is a real danger
that the task can be continually interrupted and never complete its
work. We can work out the worst case of task triggers to determine the
maximum number of times a task will be preempted in the worst case.

Consider the task set described above in test 2. We make the assump
tion that a task may be preempted and restarted exactly once only.
A restarted task becomes non-preempt able and runs through to com
pletion. In this case, the analysis must include the analysis for test
2 i.e. when a preemptable task becomes non-preempt able. The worst
case for task 1 is when it is interrupted just as it is about to complete
by task 2. Task 1 therefore suffers a further delay of 6 TUs before it
can be restarted. The slack for a task must be enough to completely
re-execute the task in addition to executing the longest other task.

In general, assuming a task triggering Ti can only be preempted once
the worst case delay it will suffer is

112

.'
5.3. A COMBINED STATIC/DYNAMIC APPROACH

If this delay is greater than the slack of the task then the task cannot
be scheduled using pre-emptive EDF scheduling.

Use of Stale Data and Read Only Access

The analysis described in the three tests does not take into account the
fact that a task may be allowed to use stale data. This complicates the
analysis slightly since a task using stale data is not affected by another
updating the most up to date copy of the same data. The analysis must
take into account that these tasks need not be serialiscd.

For some tasks, there may not be a write as part of the critical region
on a data entity. The static analysis can be extended to allow many
such tasks to execute concurrently. An example of a complete static
analysis of a simple task set is presented in Appendix C.

Summary of the Tests

To test the schedulability of a set of tasks, test 1 above should be carried
out using the tasks on each processor. The test should then be carried
out considering the other shared resources i.e. shared data entities and
other hardware devices. Should the first set of tests suceed then tests
2 and 3 can be carried out for each critical region in each task.

5.3.4 Unsound Task Sets

In some systems an analysis of the task set shows that it is impossible
for the scheduling policy to ensure that each task always meets its dead
lines. A task set that cannot be scheduled with the chosen scheduling
policy is called an unsound task set. The simple answer to dealing with
an unsound task set is to provide more processing power. However I
there are are several other courses of action that can be taken to finish
with a system that meets all its deadlines. These actions are as follows:

1. Identify those tasks that fail to meet their deadlines. Redesign
individual transactions to reduce the overall amount of processing
required on the task.

2. Identify those tasks that fail to meet their deadlines. Redesign
the transaction orderings to find a. task precedence graph that is
closer to the optimum.

113

"

CHAPTER 5. A RUN-TIME ENVIRONMENT

3, Try a different allocation of tasks and transactions to processors.

4. Try the analysis on a different scheduling heuristic.

5. Change the requirements specification and go through the stages
of the design methodology in the hope that we can produce tasks
with shorter execution times.

6. Use a higher specification processor to reduce the execution times.

The first action implies a systematic 'tweaking' of the individual trans
actions in the task. The execution time for the task at fault should be
reduced and reanalysis of the task set then hopefully shows that the
task is now processed before all its deadlines. This action is the least
drastic of the options; where possible it should be used in preference to
the others.

The second action involves adjusting the task at fault, again in an at
tempt to reduce the execution time of the task. It may be that in
constructing the transaction precedence graph, we have already con
structed the optimum graph for the task. If this is the case then the
situation can be made worse by changing the orderings of transactions.
If however, the execution time of the task can be reduced by reorder
ing some transactions to improve the concurrency with the task, then
the scheduling algorithm may work. After generating a new TPG, the
analysis should be repeated.

The third action is to try a different allocation of tasks and transactions
to processors. The allocation generated by 4.21 could result in a pro
cessor that cannot physically process the required transactions before
the deadline. If this is the case, then some other allocation is required.

The fourth action is to try a different scheduling algorithm. It may
be that where the earliest deadline first policy fails, some other policy
may succeed. The whole task system should be tested with the new
scheduling policy. The analysis can still use the definition for worst
cases described previously in this section although determining whether
the worst case is schedulable will be different for non EDF policies.

The fifth action is to change, or relax, the requirements specification.
It may be that the definition of those tasks that fail to meet their dead
lines can be altered to bring the task to within more suitable execution
times. This action can only be carried out with much discussion be
tween the system designers and the party wanting the system. It may
be that the requirements can be relaxed without changing the func
tional characteristics of the task.

114

5.4. A RUN TIME ENVIRONMENT

The sixth option open to the design should only be used when the
other options have been tried. This final course of action is to use
higher specification hardware in the design. Given a 'flexible' budget
faster processors could be used to reduce the execution times of all
the tasks. It may be that the allocation scheme results in particular
processors that are heavily loaded. ,Faster processors could be used in
these cases.

5.4 A Run Time Environment

The previous chapters have described how, given a task set we can
serialise the critical regions within the tasks to execute correctly the
tasks. Each task is presented with a consistent database state regard
less of whether it is preempted by some other task. The first two
sections of this chapter considered the analysis of a task set to check
for its schedulability using a fixed EDF scheduling policy. This section
describes a three layered, distributed scheduling mechanism that em
bodies the need for serialisability of critical sections and that uses the
EDF scheduling policy on a sound task set to meet the deadlines of the
triggered tasks.

The scheduling mechanism is organised as a hierarchy to simplify its
construction. At the lowest level of this scheduling hierarchy is the
mechanism used to correctly execute the transactions within a task.
This is the transaction scheduler. The middle level of the hierarchy
correctly sequentialises the critical regions within a task. This is the
critical region scheduler. The highest level is responsible for recognising
the task triggeringsj this is the mechanism to start a task executing once
it has triggered and is known as the task scheduler.

5.4.1 The Schedulers

The Task Scheduler

The task scheduler is at the highest level in the scheduling hierarchy.
It is distributed across the processors in a distributed implementation
of the system. Each task scheduler is responsible for controlling those
tasks that are triggered at that processor. The task scheduler is invoked
by one of two actions. The first is receiving an event from the controlled
environment. The task scheduler should then start the task by sending
a control token to the transaction scheduler associated with the task.

115

CHAPTER 5. A RUN-TIME ENVIRONMENT

The task scheduler is also invoked when the task has completed.

The task scheduler maintains a table of the tasks that are currently
active in the system. It is its responsibility to ensure that if a task is
invoked before the previous invocation has been executed then the sec
ond invocation does not 'overtake' the first. Each separate invocation
of a task is allocated a coloured token; scheduling mechanisms lower
down in the scheduling hierarchy will then use these tokens. The task
scheduler can also be responsible for gathering statistical information
about the relative frequencies of triggerings of the tasks. This infor
mation is, together with the next colour token for a task, stored in the
task schedulers table.

The Critical Region Scheduler

Each data entity in the distributed implementation has a critical region
scheduler. This scheduler is invoked in one of two ways. The critical
region scheduler is invoked when the task is about to start a critical
region on a data entity and when the task has finished with a critical
region.

The critical region scheduler makes the run-time scheduling decisions.
To prevent conflicting critical regions from executing concurrently, the
critical region scheduler maintains a data entity lock table. When a
task needs to enter a critical region, the critical region scheduler checks
the lock table. If the lock table shows that the entity is free then the
lock for the entity is set as in conventional locking [PBG87], [BG81],
[Men79], [Wo187], and the transaction scheduler for that task is in
voked. If the lock is set showing that the entity is currently in use, by
some conflicting task, then the critical region scheduler decides what
course of action is to be taken based on the scheduling policy chosen
and the relative deadlines of the respective tasks. It may be that the
currently executing task that has control of the data entity needs to be
backed off. The mechanism for doing this is described in a later section.
If the decision of the scheduler is that the task currently holding the
entity should retain it, then the new task is suspended until the entity
is again free. If the data entity is currently free then the critical region
scheduler passes a token to the transaction scheduler to show that it
may begin its use of the data entity. Should a more 'urgent' task need
the entity, then the critical region scheduler sends a stop message to
the appropriate transaction scheduler to suspend the current task. The
critical region scheduler maintains a list of those tasks that are waiting
for the associated data entities. When the entity is freed this list is

116

5.4. A RUN TIME ENVIRONMENT

consulted and a control message sent to one of the member tasks to
start it executing.

When a task has finished a critical region, the critical region scheduler
receives a control message from the associated transaction scheduler.
The lock on the data entity is then removed. At this point, the critical
region scheduler handles the propagation of any updates made to the
entity, to the other copies of the entity used in the same task.

The Transaction Scheduler

The transaction scheduler is invoked when it receives a control token
from the task scheduler. The control token tells the transaction sched
uler that it must start executing the given task. (So that the transaction
scheduler knows the order of execution of the transactions, it has some
representation of the transaction precedence graph for the tasks. Also
the transaction scheduler maintains a list of all the transactions in the
task.) When it receives a control token from the critical region sched
uler, the transaction scheduler starts the first (root) transaction in the
task.

Each transaction has an identified set of successor transactions and an
identified set of predecessor transactions. When a transaction finishes,
the predecessor entry in each of its successor transactions is changed to
show that the predecesso~ has finished. When the list entry for a trans
action shows that all its predecessors have completed, the transaction
scheduler will execute the transaction. This transacti on execut io

n mechanism is effectively an implementation of an executing petri-net.

The transaction scheduler may at some time receive a stop message
from the critical region scheduler. When it does, the transaction sched
uler must restore its transaction list entries for the current task to a
suitable point and then wait to be re-started by the critical region sched
uler. When the transaction scheduler finishes a critical region, it sends
a control token back to the critical region scheduler. When the trans
action scheduler finishes executing the task, it sends a control message
to the critical region schedulers. This message consists of the updates
to data entities and also to the task scheduler an aknowledgement that
the task has finished.

117

"

CHAPTER 5. A RUN-TIME ENVIRONMENT

5.4.2 Managing distributed/replicated data

We have already established that each task needs to be presented with
. a. consistent database state and that on completion, each task must also
leave the database in a consistent state. This requirement was refined
by. the introduction of a critical region. A task consists of interlocked
critical regions each of which is presented with a consistent state of the
associated data entity and each of which leaves this entity in a consis
tent state. The execution environment for the real-time tasks needs a
mechanism for ensuring that critical regions are treated as atomic units
of processing as far as a task is concerned. This requirement is met by
the task, critical region and transaction schedulers.

Each task has its own local copies of the data entities that it requires.
If a task has multiple concurrent reads of an entity, then in an ideal
implementation of the system, there is one copy for each read. Any
updates that a task makes to an entity are only applied to the task's
local copies of the entity. The critical region and transaction schedulers
ensure that critical regions are executed as atomic execution units and
that updates are correctly propagated to the local copies of data entities
used in other tasks.

When a task wishes to 'enter' a critical region on a new data entity, the
transaction scheduler sends a request to the controlling critical region
scheduler. If the request fails, i.e. the data entity associated with
the critical region is in use by some other, more urgent, task then the
critical region scheduler replies with a wait message. The transaction
scheduler then suspends this task until the entity becomes free. If the
request is successful, i.e. the data entity is not in conflicting use, the
critical region scheduler responds with a confirmation. The transaction
scheduler then starts executing the new critical region.

On successfully starting a critical region, its transactions are executed.
If a transaction updates the associated data entity, the changes are
immediately applied to the local copy of the entity 'owned' by the task
and used by that transaction. On completion of the transaction, the
transaction scheduler propagates the updates to the other copies of the
entity also owned by the task. On completion of a critical region, the
transaction scheduler sends any updates made to the associated data
entity to the critical region scheduler. The critical region scheduler
propagates these updates to all copies of the data entity that are owned
by different tasks. The critical region scheduler then makes the data
entity available to other tasks.

A critical region of a task, A, may be suspended if a more 'urgent' task

118

':

5.4. A RUN TIME ENVIRONMENT

,B, requires the use of the data entity. Two cases must be considered;
these are firstly when the interrupting task, B, simply reads the data
entity and secondly, when task B updates the data entity. Let us assume
that task B does not update the data entity. Since any updates from
task A will not have reached the copies of the entity used by task B,
task B has a consistent copy of the data entity and may go about its
work. On completion, task A can be restarted; since the entity has not
been updated, task A can restart from exactly the place it left off. The
overall effect of this is that task B uses slightly out of date data.

Let us now consider the case when task B, the interrupting task, up
dates the shared data entity. On starting the critical region in B, the
task has a consistent copy of the data entity since the partial updates
from A do not reach it until the critical region on A has finished. Task
B can go about and update the data entity. On completion of the crit
ical region, task B sends the updates to the data entity to the critical
region scheduler. This then sends these updates to the copies of the
data entity used by other tasks. As a result, the partial updates to
the shared data entity that task A had applied are now overwritten by
those of task B. If task A was now restarted from exactly the place it
left off, the work it carried out after the interrupt would be inconsistent
with that before. Consequently, if a critical region is interrupted and
the associated data entity is updated then on restarting the task, we
must ensure it begins its work from the beginnG;g of the region.

Restarting a critical region may involve backing off other critical regions
as was shown in Chapter 3. In an implementation, either state saving
of dependent data entities or multiple back offs could be employed to
ensure completely consistent execution of an interrupted task.

The provision of each task with its own local copy of every entity does
imply a large (but determined) overhead in terms of propagation of
updates. Each task having its own local copies of the shared data
entity does bring other benefits though. One of these is that a task
can use stale data. Suppose we have two tasks. The first will update
a shared data entity and the second reads the entity. We can allow
these two tasks to execute concurrently providing the updates from the
first task are not applied to the data entity in the second task until
this task completes. The updates that should be applied to a task's
copy can be queued until the task has finished using the copy. This
technique increases the possible concurrency and allows a reading task
to use relatively 'stale' data.

In propagating the updates of a critical region, the critical region sched
uler may have to employ some recoverable commit protocol to ensure

119

,-

CHAPTER 5. A RUN-TIME ENVIRONMENT

that all remote sites receive the updates correctly. In a real-time syste,
we may however be able to relax this requirement somewhat. For data
that has low integrity we may be able to send updates without some
commit protocol. Example low integrity data sources are those that
change very quickly. If a ermote site does'not receive the correct up
date, then it is not long before it receives another image of the data.
The chances of this being incorrect 'also are small. For high integrity
data the critical region scheduler must employ some commit protocol.
to keep overheads to a minimum high integrity data should have low
volume in the system and low integrity data can have high volume.

5.4.3 Recovery and Failure

The transaction model guarantees that a transaction either succeeds
and its results are made permanent on the database, or that a trans
action fails and it has no effect on the database. In a fault tolerent
environment, the loss of transactions through processor failure can be
prevented by placing redundant copies of transactions on separate pro
cessors. Should the transaction scheduler detect that a processor is
failing (or has failed) in some way then it ignores the primary copy of
the transaction and switches to use the redundany, -baclc-up, copy. The
transaction lists maintained by the transaction scheduler for a task in
dicate the location of the copies of each transaction. The transaction
scheduler can then use those copies on processors it knows are func
tioning correctly.1 Further problems can result dependending on when
the particular processor that executes the primary copy of a transac
tion fails. If a processor fails after the transaction scheduler has sent a
control message to start a transaction on it, the transaction may never
complete. The transaction scheduler must have some way of knowing
that the processor has failed. Of course, processor failure affects the
determinism of the real-time system; the probability of failure should
be incorporated into the worst case analysis.

5.4.4 Replication of the Scheduling Components

The three scheduling components may be replicated and distributed to
remove bottlenecks and potentially improve resilience. We now describe
three schemes with different configurations of task, critical region and
transaction schedulers.

1 Further issues of fault tolerence are discussed in Chapter 6.

120

5.4. A RUN TIME ENVIRONMENT

Scheme 1 : Multiple Transaction Schedulers

In the first scheme, each task in the system has a set of processors, or
a 'cluster', dedicated to it. Each processor is a 'node'; each node has a
set of transactions and copies of the appropriate data entities used by
those transactions. The transactions within a task are allocated to the
processors used by that task, to "maximise concurrency. Associated with
each cluster is a transaction scheduler. This is responsible for schedul
ing the transactions for that task only. When a transaction updates a
shared, replicated data entity, the transaction scheduler propagates the
updates to the other copies used by that task (i.e. within that cluster).

A single critical region scheduler is used. When a transaction scheduler
recognises that the task is to enter a new critical region, it sends a
request to the central critical region scheduler. This coordinates the
actions of the distributed transaction schedulers. When the end of the
task is reached, the task scheduler propagates any updates to the copies
of shared data entities used by other tasks (i.e. in other clusters).

The block diagram of figure 5.6 shows this configuration. In this exam
ple, the system consists of three tasks. The first task consists of three
transactions and two copies of the shared data entity A. The second
task consists of two transactions and two copies of data entity A. The
third task consists of one transaction and one copy of the data entity A.
There is one critical region scheduler resposible for controlling access
to data entity A.

Multiple Transaction and Critical Region Schedulers

The single critical region scheduler in the first scheme may become a
system bottleneck. In addition to replicating the transaction sched
ulers, we can also provide more than one critical region scheduler in
the distributed system. Each critical region scheduler is responsible
for coordinating the access to a static set of database entities. The
transaction scheduler will send the requests to enter and leave a critical
region to the appropriate critical region scheduler. The block diagram
of figure 5.1 shows this arrangement.

The main concern with this distribution scheme is how to partition the
database into a set of entities, each set controlled by one critical re
gion scheduler. It is a sensible requirement that these partitions result
in an even loading of the individual critical region schedulers. Analy
sis of the database requirements helps in deciding what the database
responsibilities of each critical region scheduler are.

121

CHAPTER 5. A RUN-TIME ENVIRONMENT

Cluster 1 Clu"er2 Clu.ter S
Proc.ssor 1 Proc.ssor2 Proc.sso, 1 Proc.ss 2 Proc.ss ,

IDrl 10 1'°1 lorl lorl 1°1"1
n.l Tl.Z Tz.1 TZ.Z TJ.1
n ••

Lr Transac1lon }J LfT,onsadon }J T,_sac1loD
Sch.dule, Sch.dul., Scb.du .. ,

I Critical Region I
I Scheduler I

t

I T .. 1c

J Scheduler

Figure 5.6: Distributing The Transaction Scheduler

Cluste .. 1 Clu 2 Clu"er 3 Clu .. er.
Proc.sso" Proc.ssorZ Processor 1 Processe,' Proc.ssorl

10 1"1 ID~I 10 :-1 l°:-ID:-I 16:-1
T1.1 T1.Z Tz.1 Ta.l T4.1
Tl.1

4Transacuon }J Tr ... H.CtIon Tr actIon Tran.&C1ion
Schedule, Schedule, 8chedule, 8cheduler

l I I l l Critical Region J Critical Region •
Sch.duler Schedul.r

I
T .. 1c

Schedule ..

Figure 5.7: Distributing the Transaction and Critical Region Schedulers

122

5.4. A RUN TIME ENVIRONMENT

Multiple critical region schedulers need to communication with each
other. Suppose a task is currently executing a critical region on shared
data entity A, that is completely contained within some other critical
region on data entity B. Suppose the access to the entities is controlled
by two separate schedulers and that the critical regions within the task
are 'd epen dent' on each other. If the task is preempted and must
back off its critical region A, then we must also back off critical region
B. This implies that the critical region scheduler for A must inform the
critical region scheduler for entity B that the task has backed off its
critical region on B.

The placement of the transaction and critical region schedulers is an
important decision. For each task, there is one transaction scheduler
responsible for executing the transactions of that task in the right order
and for each entity there is one critical region scheduler responsible for
serialising the concurrent, conflicting accesses to the entity. In order to
reduce the amount on inter processor communication in an implemen
tation, the transaction scheduler for a task should be placed on that
processor which is resposible for executing the most transactions of the
task. Similarly, the critical region scheduler for an entity should be
placed on that processor which has largest proportion of transactions
wishing to access the entity. These placement rules can be seen in the
Ship Control System of Appendix B.

To demonstrate how the hierarchy of schedulers works in an imple
mentation, the reader is referred to the example execution traces in
Appendix D.

5.4.5 Scheduler Overhead

For any dynamic scheduling decisions in a real-time system to be effec
tive, the scheduling mechanism must take into account its own activ
ity. In some dynamic real-time scheduling such as in the Spring Kernel
[SR89], the scheduler is considered as a periodic task and is always
invoked even if it has no actions to perform. This is fine but it does
introduce an unnecessary overhead when no tasks have triggered.

In our real-time scheduling mechanism, the scheduler is very simple.
The critical region scheduling mechanism makes its decisions based on
the deadlines of two tasks in conflict. The overhead imposed by the
scheduler is minimal. We must, however, determine the nature of this
overhead.

In some dynamic real-time scheduling mechanisms, the scheduler is

123

CHAPTER 5. A RUN-TIME ENVIRONMENT

distributed, and in order to make its decisions, it must communicate
state information with other, remote, parts of the scheduling mecha
nism. This communication imposes a further overhead in addition to
the actions of the local scheduler.

In our scheduling mechanism, the critical region schedulers are respon
sible for controlling access to a subset of the data entities. A critical
region scheduler is invoked each time a task wishes to start access to
a new critical region and each time the task leaves the critical region.
On entry to the critical region, the critical region scheduler may have
to make a scheduling decision if some other task already has access
to the required data entity. When a task leaves a critical region, the
critical region scheduler must propagate any updates to copies of the
data entity used within the task.

Each task has an overhead for scheduling decisions and propagation of
updates. This overhead must be added to the worst case execution time
for the task and, as such, must be considered in the static scheduling
analysis. The overhead is described by:

CRo = maximum overhead in critical region scheduler
CM = overhead in sending a communication message between schedul
ing components
PO, = time to propagate an update to a local (in same task) copy of a
data entity
POr = time to propagate an update to a remote (in other task) copy
of a data entity .

The first term represents the entry of the task into a new critical region.
There are two control messages for each critical region entry. The first
is from the transaction scheduler to the critical region scheduler and
represents the request to enter a critical region. The second is the reply
from the critical region scheduler. The rest of the first term represents
the maximum overhead (CRe,) of the critical region scheduler executing
the EDF algorithm to determine what to execute next.

The second term represents the finish of a critical region. The CM
represents the control message from the transaction scheduler to the
critical region scheduler to indicate that the task has finished with a
critical region. The second part of the term represents the overhead in

124

5.5. OTHER OVERHEADS

propagating any updates to each of the local copies of the data entity
associated with the critical region.

The final term represents the overhead in propagating any updates to
each copy of the changed data entity used outside of the task. This is
the overhead incurred when a task completes.

5.5 Other Overheads

In addition to the overheads described in the previous section, there
are several other overheads that must be considered in calculating the
execution time of the transaction. In a disk based system, there is the
latency involved in accessing the database entities from the disk. This
latency can be reduced and made more deterministic by using main
memory database technologies [Eic89]. The latency of propagating up
date messages to remote copies of replicated data entities must also be
considered. Estimating the latency of a network is a harder problem
than for the disk. This latency can be reduced by using fewer copies of
data entities.

5.6 Conclusions

In this chapter we discussed the problems of scheduling real-time tasks.
Both static and dynamic approaches were considered. It was stated
that 100% confidence cannot be placed in a dynamic scheduling mech
anism unless some static analysis of the task set is carried out prior to
execution of the system. This chapter presented a means to consider
statically a task set without known task trigger times. The aperiodic
tasks in the set are converted into period tasks by considering a worst
case scenario when every task continually re-triggers at the earliest pos
sible times. This worst case scenario may then be considered statically.
The effectiveness of dynamic scheduling policies such as EDF can be
determined.

In addition, this chapter described a replicated, hierarchical run-time
environment that ensures each transaction within the real-time tasks
is presented, and leaves, consistent database states. Examples of the
operation of this run-time environment are described in Appendix D.

125

CHAPTER 5. A RUN-TIME ENVIRONMENT

126

", .

Chapter 6

Evaluation of the Work

Uranus, the Magician

6.1 Introduction

In this chapter, we present an evaluation of the method described in
the previous chapters arid compare aspects of it with its equivalent
in other, established, real-time design methodologies. This chapter
highlights some of the advantages and disadvantages of the new method
compared with others. The chapter begins with an overview of the new
method. Each step of the method is considered in turn. Following this,
the real-time execution platform described in Chapter 5 is discussed.
We then consider how the method and execution platform treat the
problems introduced by ~he need for reliability against failure.

6.2 Evaluation of the Methodology

To judge the success of a design methodology, it is important to con
sider all aspects of the methodology and compare these aspects with the
equivalent in existing, proven, methodologies. Appendix B shows that
the transaction based design method described in previous chapters can
be used to guide the design of a real-time system. It is important to
understand how the method can be integrated with existing method
ologies so that they may complement each other. In this section, we
present an overview of the design methodology and discuss the relative
merits of each stage.

127

::~

'.

"

CHAPTER 6. EVALUATION OF THE WORK

6.2.1 Overview of the Method

The real-time design method has the following stages:

1. Identification of real-time triggers.

2. Decomposition of systems into subsystems.

3. Decomposition of subsystems into tasks.

4. Initial real-time database design.

5. Decomposition of tasks into transactions.

6. Representation of database requirements using DDR (data de
pendency ring) notation.

7. Representation of tasks using TPG (transaction precedence graph)
notation.

8. Allocation of transactions and data entities to processors.

9. Conversion of aperiodic tasks to periodic and static analysis of
schedulability.

According to [Ben88], and [Gom86] there are two distinct phases to
the design of real-time systems. The first section is the planning or
requirements analysis and specification phase. The second is the design
or development phase.1 The real-time design methodology described in
this work assumes that the first phase of the design is complete. The
method does not address the problem of generating unambiguous and
correct system specifications.

6.2.2 Real-Time triggers

The transaction based design methodology relies on the identification
of the external events in the controlled environment that require some
response from the real-time computer system. This is the case for all
real-time design methodologies. Methods such as in [YC78], [MP84]
and MASCOT [Bat87], (Jac84] identify those events in the real-time
world that require some action from the computer control system. In
our method, these events, or real-time triggers, are represented on a

1 Indeed, these phases should be present in the construction of any computing
system

128

"

6.2. EVALUATION OF THE METHODOLOGY

modified context diagram. This diagram shows the boundary between
the controlled environment and the controlling computer system. The
modified context diagram shows the external events more clearly than,
for example, the preliminary design diagrams of MASCOTj the diagram
shows only the triggers and not the particular parts of the control sys
tem that respo~d to them. The addition of the periodic trigger symbol
allows the designer to distinguish between different types of triggering
event. The context diagram also defines the output control actuators
through which the computer system controls the environment.

6.2.3 Subsystem/Task Decomposition

It is well recognised that decomposition pervades the entire engineer
ing process and has great influence on the design of real-time systems
[BW89]. There are many recognised methods of decomposing, or recog
nising related activities of, an application. Among these methods are
the functional decomposition enforced by modular programming con
structsj information hiding [Par72]j maximising cohesion and minimiz
ing coupling [Som89] and partitioning to minimize interfaces between
modules.

In our method, an initial functional division of the application into
sub-systems is carried out. Like the module subdiVIsion of MASCOT,
this is largely dependent on the experience and skill of the designer
[Ben88]. The subsystems of our method serve only to decompose the
application into more manageable units. After further breaking them
into real-time tasks, the sub-systems are not considered further.

After decomposing the application into subsystems, our method further
decomposes each subsystem into a number of independent, real-time
tasks. The definition of a task is that it is that processing required
in response to a independent trigger from the outside world. Since
each trigger is separate and independent, each corresponding task is
asynchronous with respect to all other tasks. This method of further
decomposing a real-time system has been used sucessfully in the DARTs
design approach [Gom84]. Having a separate task defined as all those
activities to be executed in response to an independent trigger results
in a high degree of functional cohesion within the task. The communi
cation between tasks should then be kept to a minimum. Should a task
need to communicate with another then this implies that the two tasks
are functionally related. This in turn suggests that the two should be
combined into one task.

A consequence of this very high degree of functional cohesion within a

129

,-

CHAPTER 6. EVALUATION OF THE WORK

task and very low coupling between tasks, is that there is little need
for tasks to explicity communicate with each other or synchronise their
actions. As a result, our design methodology has no explicit inter
task communications primitives. Implicit inter-task communication is
carried out, however, through the uSe of shared data entities. This is
similar to the State Vector Inspection (SVI) of JSD [Jac83], [Sut88] and
[Cam86]. In SVI any process may read a shared data item but only
one, the owner, may update the entity. In our method any process may
update the shared data; there is no concept of an 'owner' of the data.
There is no equivalent of the explicit datastream between two tasks in
our method.

In many concurrent systems, there is a need to synchronise actions.
Our model of the real-time task assumes that there is always a partic
ular invocation of a task that is 'enabled' (i.e. ready to trigger) and
waiting for the event to occur in the environment. This is regardless of
whether or not the task is already executing for a previous triggering
of the event. This implies that there could be multiple invocations of
a task active at anyone time. It may however, be desirable for there
to only be one invocation of the task active at anyone time and for
multiple, successive, triggers of the same event to be queued up and
dealt with when the current invocation of the task is complete. This
corresponds to MASCOT channels between the environment and the
task. Alternatively, it may be required that if a event triggers during
the execution of a previous invocation of the task, then the successive
triggerings are ignored until the current invocation has completed. As
it stands, our method does not include queues of triggers or throwing
away of triggers if a task is not immediately ready to process them.
However, extending the method to deal with the cases just described is
not difficult and could he considered an implementation issue.

The task decomposition criteria proposed by our design methodology
uses a functional decomposition similar to that of DARTS [Gom84],
Higher Order Software [HZ] and Structured Analysis/Design [YC78]
[DeM78] [MP84]. This functional decomposition addresses both the
problems of splitting the application into modules and determining the
place of concurrency in the design. The decomposition yields modules
with a high degree of temporal cohesion; that is the task contains all
those activities that are executed at approximately the same time based
on an event taking place in the environment. Temporal cohesion is
not considered a good decomposition criterion by methods such as in
Structured Design [Gom84]. However, coupled with the high degree of
functional cohesion that results, aiming for a high degree of temporal
cohesion results in well defined, self contained tasks. Indeed, temporal

130

6.2. EVALUATION OF THE METHODOLOGY

cohesion is used in methods such as DARTs [Gom84].

6.2.4 Database Design

The methodology states that the real-time data entities to be included
in the real-time database must be decided. Although glossed over by
the method, this stage does have a very important effect on the overall
design of the real-time system. The method implies that the designer
must have a 'rough idea' of the structure of the database: the designer
must name each of the entities that are of concern. The transactions
that form the real-time tasks are then defined in terms of actions on
these entities. The order of execution of transactions is partly deter
mined by conflicting accesses to the shared data entities. Consequently,
if the designer does not specify the real-time data entities to a small
enough grain size, then the transactions are unnecessarily serialised. If
the grain size is too small, very large degrees of parallelism may result
since conflicting transactions become rarer. It may not be practical to
provide enough physical processors to implement this parallelism and
the overhead in implementing it sequentially on a single processor may
be worse than having a larger grain size and sequential transactions to
start with. Some skill and experience on the part of the designer is
therefore necessary to describe the entities at the appropriate granular
ity.

The granularity also has an effect on the size of the transaction. If an
entity is a large and complex data structure then a transaction that is
required to update it might also be large and complex. Alternatively,
if the real-time entity represents a single record in a table, then the
transaction might be a very small and simple process. The designer
is faced with a trade off between the amount of work a transaction
performs and the overhead necessary to implement parallel transactions
on a sequential machine.

The design methodology does suffer a limitation that has a direct bear
ing on the real-time database. Since the method relies on a static
analysis of the database requirements of the real-time tasks in order to
generate control flow and determine the schedulability of a set of tasks,
there is no run-time creation of shared data entities. A task may create
entities at execution time but these are local to the creating task only;
no other task can directly access the new entity. If tasks are able to cre
ate new shared entities at run-time then the data dependencies between
tasks will change and the determinism of the system be affected.

131

CHAPTER 6. EVALUATION OF THE WORK

6.2.5 Transaction Decomposition

The transaction decomposition used within the methodology is straight
forward and intuitive. The designer identifies the transformations that
are required of each of the database entities. Each transformation then
becomes a transaction. This is very much a functional approach to the
design of the task. The designer identifies the results that are required
and not the order in which the results should be evaluated. Each trans
action has a set of input parameters (the data entities that it reads)
and generates one output parameter (the data entity that it updates).
The transaction is itself very much like a traditional function within a
programming language.

The decomposition into transactions should fall neatly into place through
the identification of the updates that are required on the data entities.
This decomposition does not however consider other issues such as the
amount of control that is required between the resulting transactions
to ensure the consistency of the database. Although this control is gen
erated automatically in later stages of the methodology, there are good
and bad transaction decompositions; the bad decompositions result in
excessive serialisation of the transactions. The methodology should pay
more attention to the decomposition of the task into transactions such
that the serialisation of transactions is kept to a minimum.

6.2.6 DDR Notation

The method includes a diagrammatic notation for expressing the data
dependencies between tasks. Since the notation is intended to capture
all the information necessary to generate automatically the transaction
precedence graphs, the notation also includes constructs to indicate
any enforced control flow that the designer requires in addition to that
imposed to serialise conflicting transactions. This is probably one of
the main disadvantages of the diagrammatic notation. Not only does
it express the data dependencies between tasks but it also tries to cap
ture the enforced control within a task. The data dependency rings
can consequently become messy and cluttered. Perhaps expressing the
enforced control flow should be abstracted away from the DDRs and
described by partial precedence diagrams. These can then be used
together with the DDRs to complete the picture and generate a full
transaction precedence graph.

Depending on the granularity of the real-time data entities, the size of
the data dependency rings (where size is expressed as the number of

132

,-

6.2. EVALUATION OF THE METHODOLOGY

tasks and transactions on the circumference) can become very large.
The ring notation can therefore become cumbersome for complex sys
tems. In its defence, however, where it is possible to decompose a
data entity, we can draw a hierarchy of primary, secondary and tertiary
data dependency rings. At each level of the hierarchy, the number of
transactions using the entity decreases. As an example consider a track
table. At the top of the hierarchy, we might have two tasks that use
the table. If the table is to be constructed from two subtables, one
for radar tracks and another for sonar tracks, we could draw two data
dependency rings each containing one task (one using radar data, the
other using sonar data). Another way to introduce hierarchy into the
diagrammatic notation is to use the hierarchy found in the subsystems
and tasks. At a top level data dependency rings can be drawn with the
subsystems on the circumference. Further down the hierarchy we might
place the individual tasks around the circumference. At the lowest level
we can express the individual transactions that use the entity.

The data dependency ring notation does not differentiate between dif
ferent types of data. Often, in real-time systems, there is both time
discrete data (i.e. data that has a constant value for a non-infinitisimal
period of time) and time continuous data that is ever changing. In
an implementation of a real-time system time continous data is repre
sented by time discrete data entities through the sampling of the data
source at regular intervals. 'Logging systems t that track and record
the 'history' of some environment are examples of such systems. The
diagrammatic notation does not distinguish this property of the data
entity. As an extension to the notation, updating a time continous data
entity could be represented by double arrowed writes on the DDR for
the entity. An example is shown in figure 6.1. The transaction in task
number one has a double headed arrow showing that this is a logging
task for the data entity. The double headed arrow construct is also
found in time continuous data transformations in [WM86].

6.2.7 TPG Notation

The transaction precedence graphs created as part of the design method
ology show the complete control flow through a task from the triggering
event through to an optional response back to the environment. The
control flow is necessary to prevent conflicting transactions from ex
ecuting concurrently and to ensure that the application requirement
constraints are met. The main problem with the notation used to ex
press the transaction precedence graph is that, as described, it is not
hierarchical. This comes about from the definition of the transaction

133

CHAPTER 6. EVALUATION OF THE WORK

Figure 6.1: Representing Time Continous Data Entities

as an indivisible unit of processing. Consequently, for some real-time
tasks that consist of many transactions, the corresponding transaction
precedence graph may be very large and cumbersome. We can, how
ever, consider the graph as being composed of collections of subtasks.
A graph of these subtasks is less complex than the equivalent graph of
transactions and may be a useful tool in considering the control flow
through a task in the design stages.

It is desirable to have some criteria for judging the quality of a given
transaction precedence graph. In an ideal world, each transaction prece
dence diagram would have some maximum 'width'. Chapter 4 stated
that the closer a graph's width is to this maximum the better. How
ever, as will be explained, finding this width for a given task set is a
difficult problem. Another way in which the transaction precedence
graphs may be considered is as a collection of D-structures [8J66],
[BS72j, [Har80j extended for concurrency [NS90j. In our transaction
precedence graph the D-structures are either simple transactions or
constructed from other D-structures each of which may be either a
sequence of D-structures, a selection D-structure or an interation D
structure. Each D-structure has only one entry and one exit point
for control. In ensuring that the transaction precedence graphs satisfy
these rules, the transaction precedence diagrams avoid the equivalent

134

6.2. EVALUATION OF THE METHODOLOGY

of 'spaghetti-programming'.

The transaction precedence graphs are generated automatically from
partial ordering information in the

fo

rm of application requirements constraints and from the data depen
dencies among the component transactions. As stated in Chapter 4,
finding the best graph as well as the maximum width for a task set, is
a difficult problem. Several heuristics were described to help generate
graphs close to the best case although the solution to the problem is
still computationally intensive.

A final problem with the definition of the real-time task is that it is
triggered by a single, independent trigger from the environment. This
definition excludes those tasks that are triggered by the occurrence of
multiple events. This sort of task can always be implemented using the
single trigger definition of a task. A special synchronisation task for
each of the multiple triggers, updates some shared data entity to show
that the associated event has triggered. When one of these synchroni
sation tasks recognises that all of the required events have triggered by
checking the state of the shared data entity, it sends a single trigger to
the main task that waited for all the individual triggers. To represent
this situation on the transaction precedence graph, we could use mul
tiple triggering boxes as in figure 6.2. The task is executed when each
of the three events have triggered.

Even this extension to the notation does not encompass all the possible
triggering combinations. For example, what about the task that should
be executed if two out of three different events both trigger? Of course
we can implement this with the single trigger synchronisation tasks
but the notation doesn't help the representation of the problem. At
implementation time we could have three separate tasks for each of the
triggers. The task will set a shared flag and then test the flag of the
other tasks. If these flags have been set then the main task (to be
executed when all events have triggered) is executed. This, however,
implies that the main task has to be replicated three times which is
not desirable for complex systems. An alterative is for the main task
to poll the event flags. This is again undesirable. A suitable solution
would be to make the real-time database 'active' rather than passive.
Associated with each entity could be a list of tasks to be executed if
the entity is updated. As soon as the entity is changed, the tasks in
the list are executed. This is a better solution than the tasks polling
the entities and has been employed in other real-time databases such
as the Diomedes database machine.

135

CHAPTER 6. EVALUATION OF THE WORK

~ Multlpl. ev.nt. mu .. all
~ ~ "" trlgg.r for th k to

b.execulecL

~ Co .. blnator ach
... It .tlil h_ a 1.
trlgg.r

"-Optional .tlmulu. back
10 ... environment

Figure 6.2: A Task with Multiple. Triggers

6.2.8 Allocation Schemes

The allocation scheme used by the methodology is simple but reason
ably effective. The initial allocation of logical processors to the cluster
for each task is determined by the 'width' of the task. Wide tasks
exhibit more concurrency and therefore require more processors. After
allocating logical processors to the cluster, the methodology describes a
way in which to assign the work of the logical processors to the physical
processors in a network. A simple way to do this allocation is to give
each logical processor in each cluster a number and assign its work and
data entities to the physical processor with the same number. If there
are more logical processors than physical processors available then we
obviously have to 'double-up' on the assignment of logical to physical
processors. This scheme results in the work of the first logical pro
cessor of each task being assigned to the first physical processor; the
work of the second logical processors of each task being assigned to the
second physical processor etc. On first consideration, this scheme is
reasonable. It is assumed that in general, the tasks do not trigger all
at the same time; the physical processor set can then be dedicated to
achieving the best use of concurrency for each task as it triggers.

This allocation scheme may, however, result in poor distribution of
data. Allocating the work of the system based purely on the concur-

136

6.2. EVALUATION OF THE METHODOLOGY

rency that may be achieved within the task can result in a copy of
each data entity being on every physical processor. A fully replicated
database is inefficient in terms of having to propagate updates to the
replicated copies of the entities. A better allocation scheme takes into
account the locations of data entities that have already been assigned
to a processor. The allocation scheme described within the method and
considered in Chapter 4 attempts to allocate the work of logical proces
sors to physical processors that already have the required data entities
allocated. A further constraint ensures that the work and entities of a
logical processor are placed on a different physical if the first physical
processor considered has the correct data entities but which also has
some transactions within the same task that are to be executed concur
rently. This ensures that concurrency within a task is still recognised
but the logical processors are placed on the physical processor with the
best allocation of data entities. A result of this allocation scheme is
that the load (in terms of numbers of transactions and data entities)
that is placed on each physical processor is not even. Some proces
sors will have many, often used, data entities allocated to them with
all those transactions that access the entities. Other processors might
have little used entities and few transactions. However, all design is
about 'trade-offs'.

One of the drawbacks of a static allocation scheme is that no benefits
can be gained from spare processing capacity in one processor when
another is experiencing a 'transient' overload [BW89]. This problem
has been addressed in some systems [SR89] by dynamic placement of
sporadic tasks. The disadvantage of these systems is that there is still
a possibility of missing deadlines as a processor is located to execute
the newly triggered task. A static placement in conjunction with a
worst case static analysis of the load on each processor can be used to
gaurantee all deadlines.

6.2.9 Static Analysis

The static analysis to test for the schedulability of a given task set relies
on the existence of either known start times for the tasks (as in the
periodic case) or the minimum interval between sucessive triggerings
of the same tasks (for the aperiodic case). This minimum interval
was described as the minimum repeat time (MRT) of the task. These
periods and MRTs are used to determine a worst case scenario of task
triggers. The suitability of a given scheduling policy is determined in
this worst case. If the policy works in the worst case, it is guaranteed
to work in all other cases that occur at run-time.

131

"
CHAPTER 6. EVALUATION OF THE WORK

One of the major problems with the analysis method proposed is in
determining the worst case. In most cases, the MRTs for the aperiodic
tasks are evaluated by considering the physical properties of the mech
anism that causes the trigger for the task. For example, a radar device
has a definite time before the next set of data is available. For some
tasks it may not be possible to determine the MRT. If this is the case
then some estimate must be made. This estimate can of course have a
great bearing on the construction of the worst case of task triggerings
and the static analysis of the worst case that follows this. Should the
estimated MRTs be too small then the analysis may incorrectly show
that the task set fails with a given scheduling policy. Similarly, should
the estimated MRTs be too large then the analysis may incorrectly
show that the task set works with a given scheduling policy. It is more
'dangerous' to make the second mistake; a system design may result
whose static analysis showed its correctness but that does not actually
meet the deadlines of all tasks in the absolute worst case.

The static analysis was split into three parts. The second part de
termined the worst case delays that a task would suffer if tasks with
sooner deadlines triggered at the same time and these tasks were run
first. The third part determined worst case number of times that a
given task could be preempted and thus have to start from the be
ginning of its work. These last two parts of the static analysis are
reasonably straightforward. In the first part of the static analysis, we
determine whether there is enough 'raw' processor time to execute a
given set of tasks before their deadlines. In addition, we can repeat the
test to determine whether there is enough time to execute each task
'through' its data entities. (This test is, however, superseded by test
ing the 'raw' processor power). A problem exists with this first part
of the static analysis. The test relies on being able to find the soonest
common retrigger time of all the tasks given that they have all simul
taneously triggered at To. For a large task set, with large MRTs, this
earliest common re-trigger time can be a very large number indeed2

A further problem of the static analysis is that it does not take into
account the fact that there is a probability of failure of a transaction.
The absolute worst case scenario for a transaction includes the delays
introduced by preempting transactions but ignores delays introduced

2In the naive method to calculate the common re-trigger time used by the CASE
tool described in Appendix A, the largest MRT is found; a count is incremented
from 0 in steps of this largest MRT. At each step, all the MRTs are tested to see if
they divide exactly into the count. If they all divide, then the count is the earliest
common re-trigger time. For a large task set, this algorithm can take a very long
time.

138

"

6.3. EVALUATION OF THE EXECUTION PLATFORM

through the failure, both of the preempting and preempted transaction.
Some estimation of the probability of transaction failure should be given
and this worked into the worst case execution times for the transaction.

Although the static analysis has problems, it does provide a starting
point for the systemmatic schedulability evaluation of the design. The
analysis is the part of the methodology, that recognises that in hard
real-time systems tasks must complete before their deadlines. Other
methodologies do not treat the temporal characteristics of the tasks
in such depth. Even when the first stage of the analysis is computa
tionally intensive, in determining the worst case of task triggcrings, we
effectively reduce the tasks to a set of periodic tasks. Other real-time
scheduling techniques specifically for periodic tasks may then be appli
cable, for example [Mar82]. (The complexity of the scheduling analysis
proposed by [Mar82] for m processors and n tasks is O(m2n4+n5

).}

6.3 Evaluation of the Execution Platform

Chapter 5 described an execution platform for the real-time tasks gen
erated by the real-time design methodology. This consists of a hierarchy
of scheduling mechanisms corresponding to the hierarchy of 'execution
components' III the real-time system, namely: the task, the critical
region and the transaction. The action of each of these scheduling
components is well defined; each component can communicate with the
schedulers at the next (or previous) level using simple messages.

One great advantage of the scheduling hierarchy is its own modular
construction. It is easy to build an execution environment for different
distributed systems using different combinations of the task, critical
region and transaction schedulers. This should not only benefit the
performance of the system, through concurrency within the execution
platform, but also resilience to failure can be improved by replicating
the scheduling components as necessary. The functions of each sched
uler in the system are relatively simple but, when considered together,
they provide a powerful tool that ensures that the database consistency
is preserved at all times and that real-time deadlines are also met.

Some important aspects of the execution platform have not been con
sidered. Among these is the internal structure and access mechanisms
of the real-time database. This is considered as an implementation is
sue and is not important at the design stage. There are, however, some
important constraints placed on how the data may be actually accessed.
The latency for access to the local data must be well defined so that

139

"
CHAPTER 6. EVALUATION OF THE WORK

it may be included within the excecution time for the transaction dur
ing the static analysis stage of the method. Main memory database
architectures [Eic89] can help to ensure time constrained accesses.

The execution platform is very optimistic in that jt assumes that no
failures occur within the system. Transactions can, and do, fail in a
computer system. The execution platform can handl~ the failure of a
transaction by adjusting the transaction schedulers lists of transaction
states so that the transaction is restarted. In addition, the database
must be restored to the state just before the start of the failed trans
action. This can be achieved by copying the partially changed data
entities from a consistent copy either within the same cluster or from
a cluster belonging to some different task.

6.4 Reliability and the Method

Computer systems are increasingly being used in control environments
where the cost of system failure is very much greater than the cost
of the system itself. [Som89] states that there are more and more
safety critical systems coming into use where the human costs of a
catastrophic systems failure are unacceptable. The goals of a real
time design methodology should include provision for a high degree
of tolerence to failure: failure either in the hardware or software of
the system. Few methodologies for real-time systems, including that
described in the previous chapters, consider reliability from their early
stages. The resilience of the system to failure is often considered an
implementation issue and treated as a 'characteristic' of the system
that can be 'bolted' on top of a design at a later stage. This belief is
one that lies at the heart of many system failures and is fundamentally
unsound.3•

This section of the evaluation presents a very brief overview of the
concepts of hardware and software resilience against failure. We then
discuss how the new real-time design methodology and supporting ex
ecution platform can provide resilience.

6.4.1 Overview of Reliability Issues

In this section we present a very brief overview of the subject of system
reliability. For a more indepth survey see [AL81] and [BRT78]. [BRT78]
defines the reliability of a system as

3Personal Communication with Ken Jackson

140

"
6.4. RELIABILITY AND THE METHOD

a measure of the success with which the system conforms
to some authoritative specification of its behaviour

Deviation from this behaviour is caused by faults in both hardware and
software. There are four generally recognised kinds of fault that can
occur in a computer system [BWS9]. These are:

1. Inadequate specification. [Lev86] states that the majority of
faults in complex systems stem from inadequate specifications.

2. Faults introduced in translating the specification into a design.

3. Faults caused by interference in the communications subsystem.

4. Faults caused by the failure of processors at runtime.

Our methodology does not concern itself with the first source of faults;
we assume that the designer is presented with a correct and proven
system specification. The work of [MuI79], [Mai86], [LB], [Alf77] and
[HenSO] amongst many others, consider the problems of generating
complete and unambiguous requirements specification documents from
which the system design can be made.

One of the aims of structured design methodologies is to present a set
of steps for transforming the specification of a system into an equiv
alent design. If the specification is proved to be correct, then the set
of steps guarantees that the system design does not violate certain in
variant properties of the specification. This ensures that the number
of faults arising during the translation of specification to design is kept
to a minimum. Ideally, the set of steps should be mechanised. Our
methodology presents a set of well defined steps that start with a cor
rect specification of the requirements and generates an implementation
of the system in a distributed environment. There is however, a prob
lem with the methodology. It does not assume that the requirements
specification is written in any particular form. The methodology as
sumes that the environmental triggers, the data transformations and
the ARCs can be abstracted from this specification.

In some safety critical real-time systems, faults introduced during the
translation from the specification to the design are minimised through
the techniques known as N-version programming rCA 7S]. In this, the
real-time processes are designed in several ways. At run-time the re
sults from each different implementation of a process are compared to

141

CHAPTER 6. EVALUATION OF THE WORK

generate a majority concensus result. This approach is very expensive
in terms of development costs."

The third source of errors; those caused by problems with the commu
nications network in the distributed implementation of the system are
typically dealt with by provision of a layered communications proto
col [Tan81], [HaI88], [GMK88]. It is typically the responsibility of the
data link layer in the ISO OSI Reference Model to provide an error free
communications medium. However, in the static analysis of the timing
properties of the real-time

tasks, we should be aware that there is a definite probability of fail
ure of communications messages. This failure probability should be
incorporated

into the overhead costs of propagating updates to remo te copies of
replicated data.

The fourth source of errors in a real-time system are those caused by
processor failure. There are generally two methods to circumvent the
problems caused by processor failure. These are dynamic and static
redundancy. In dynamic redundancy, on detection of a failure, a copy
of the appropriate real-time processes and data entities are moved to
another processor. This solution does not fit with the static framework
presented within the real-time design methodology. We would have no
way of knowing the schedulability of the new set of tasks on the system
after the reconfiguration.

Static redundancy is more preferable when considering the determinis
tic aspects of the system after failure; the solution also fits well with our
real-time design methodology. With our model of a real-time system,
static redundancy means that we replicate the real-time transactions
and the data entities. The replicas are placed on separate processors.
The static analysis of the timing aspects of the design then includes the
overhead of these redundant transactions in the worst case scenarios for
the processors.

One set of transactions in the system is known as the primary set.
The other, identical set is known as the redundant set. On trigger
ing of a task, the transaction scheduler sends the control tokens to the
transactions in the primary transaction set. On detecting a failure,
the transaction scheduler simply changes its transaction lists to show

<tN-version programming also introduces significant overheads at run-time as
the results from the different implementations of a process need to be compared
before a final result is generated. The technique could be applied to our real-time
design methodology provided this overhead is considered in the static analysis of
the deterministic properties of the system

142

6.5. CONCLUSIONS

that some of the redundant transactions should now be used in place of
those primary transactions on the failed proccssor. Any currently ac
tive transactions on the failed processor are aborted by the transaction
scheduler. The redundant, replicated data entities are considered just
like those copies of the data entity used by a completely separate taSk.
When the primary task has completed a critical region, the redundant
copies are updated at the same time as other copies of the data entity:
In this way the redundant task is kept upto date with its primary task.

An important question arises and that is how the transaction scheduler
knows a processor has failed. A standard way of achieving this is to
have a 'heartbeat' message propagated throughout the network. Each
node in the network can have a periodic task dedicated to propagating
the heartbeat to the other nodes. The overhead of this task must be
considered in the static timing analysis,

In addition to replicating the transactions and data entities, the execu
tion environment should provide some method to replicate the schedul
ing mechanisms, to prevent against failure of their allocatcd processors.

6.5 Conclusions

[Gom84] proposes a set of requirements for a real-time systems design
method. Our design method is considered against these requirements.

Dataflow Oriented

.'

[Gom84] states that a dataflow oriented approach is appropriate for
real-time systems design because the data in these systems may be con
sidered to flow from input, through a set of software transformations,
to the output. Methods such as Structured Analysis/Design, DARTS
and MASCOT all exhibit dataflow characteristics. Our method is less
a dataflow and more a functional approach. The designer specifies the
transformations that the data must go through in response to some trig
ger; the methodology guides the construction of the control flow that
should be imposed on the transformations. There is no concept in the
methodology of a complete and explicit ordering of transformations on
data until the transaction precedence diagrams are constructed. The
ARCs are used to express partial orderings where necessary. These
TPGs do not express the flow of data through a task. However, dataflow
diagrams are used in other methodologies to aid the decomposition of
the application into tasks; we have a different set of criteria for this
decomposition.

143

CHAPTER 6. EVALUATION OF THE WORK

Task Communication and Synchronisation
It is essential for processes in a real-time system to communicate and
synchronise their actions. In our model of the real-time system, and the
methodology that goes with it, there is no explicit communication at
the task level. Implicit communication takes place through shared data
entities but the 'sending' and 'receiving' tasks in this communication
have no knowledge of the state of the task they are communicating
with. Synchronisation is required to ensure the consistency of the real
time database but this is handled by the appropriate critical region
schedulers and not explicitly within the task.

At the transaction level explicit synchronisation is imposed between
transactions where necessary. This synchronisation is enforced through
the control flow of the transaction precedence graph. Communication
between transactions is again through shared data entities. In this
communication though, each party to the communciation knows the
state of the other.

Information Hiding
Together with decomposition, encapsulation, or information hiding, is
an extremely important 'tool' in the design of real-time systems. The
advantages of information hiding, are that the 'modules' in the system
are self contained. This makes the system more modifiable and as a
consequence more maintainable. Our methodology uses information
hiding in a similar way to MASCOT. In MASCOT, all accesses to a
data entity are by means of an access procedure. In our methodology, a
task can only access an entity after 'consulting' the controller (critical
region scheduler) associated with the entity. In all the transactions
considered so far we talk of the transaction reading or writing the entity.
In an implementation this reading and writing would be implemented
as access procedures. These procedures are however simpler than those
of MASCOT since conflicting data access is not a concern.

6.5.1 Research Objectives

The first chapter described the research objectives as primarily the
study of the non-functional requirement of meeting hard real-time dead
lines. It was proposed that this requirement should be considered with
respect to existing real-time design methodologies to test their validity
for the design of hard real-time systems. The research concluded that
the existing design methodologies typically leave the achievement of
task deadlines to a later stage in the design methodology. Often the
objective is not attained without significant fine tuning of the design

144

6.5. CONCLUSIONS

and its implementation.

The work proposes that in order to consider the deadlines, a suitable
model of execution is required. This model is the transaction. The re
search identified the concurrency control necessary between conflicting
transactions on the same data entities as the major source of non
determinism within the model. In considering this concurrency control
from an early stage in the design we can reduce its effect at run-time
and so make it easier to meet real-time deadlines. The main research
objectives have been met. We have considered the role of the shared
data entity in the addition to the flow of control and flow of data within
the system. Each presents a complementary view of the real-time sys
tem.

To support the data entity viewpoint, the research has proposed a no
tation and designed a simple CASE tool. This tool allows the designer
to do the following:

• Create context diagrams. These illustrate the real-time computer
system in the context of the environment. The sensors that trigger
the computer system and those devices that the computer system
can control are illustrated.

• Describe the data entities.

• Describe the characteristics of the tasks. The deadlines and min
imum re-triggers times for the tasks can be specified.

• Describe the transactions for each task in terms of the actions on
shared data entities.

• Generate the data ·entity viewpoint notation. The Data Depen
dency Rings can be drawn for each data entity.

• Generate the transaction precedence graphs. The graphs are au
tomatically generated from the data entity viewpoint.

• Automatic generation of an allocation scheme. A naive allocation
approach as described in Chapter 4 is implemented.

• Scheduling tests. Tests 1 and 2 as described in Chapter 6 have
been implemented.

One important objective of the research is to consider how the new
viewpoint and associated design methodology can be integrated with
other methods. In some respects, the research has failed to do this. A

145

"

CHAPTER 6. EVALUATION OF THE WORK

complete methodology has been described which can be used in isola
tion for a class of systems. Given additional time we should consider the
place of the methodology in the wider field of more general methods.

6.5.2 Contribution To The State of the Art

The research described in this thesis considers an important area that
is not considered other design methodologies. That area being the role
of the shared data entity in the meeting of hard real-time deadlines.
In considering this role, the implicit control flow imposed on otherwise
independent real-time tasks can be taken into account from the early
stages of the design. This enables static analysis to be carried out on
the design to test for the schedulabilty of the tasks.

In addition, the research has described a hierarchical design for the
construction of run-time support for real-time systems. This run-time
support, in the form of the three scheduling mechanisms, is very flexible
and provides advantages for building fault tolerant computer systems.

The final major contribution to the state of the art that was made
during the research is the specifcation and design of the ship control
system. This example is larger than typical examples described in the
literature and was used to illustrate the shared entity viewpoint in
designing a real-time system. The experience in using this viewpoint is
described in the second appendix.

6.5.3 Final Comments

This chapter presented an evaluation of the real-time design method
ology described in the preceding chapters. The method was compared
with other methodologies such as MASCOT, JSD and Structured Anal
ysis/Design. The design methodology has many advantages as well as
some disadvantages over established techniques for designing systems.
In an attempt to consider the run-time effects of implementation issues
such as the concurrency control we have developed a design methodol
ogy that considers the system from a different viewpoint to traditional
design methods. This 'data dependency viewpoint' should be com
plementary to the traditional control and data flow viewpoints. Con
sequently parts of the new methodology should be able to be used in
conjunction with existing methodologies. The extent of this integration
remains to be seen however.

Appendix B describes a complete example of the use of the method

146

6.5. CONCLUSIONS

from the analysis of the requirements of the Ship Control System to its
implementation in a distributed database environment. The use of the
method on the example has highlighted its strengths and weaknesses.
The major weakness of the method is that the supporting notation, the
data dependency ring, is clumsy both to construct and use. In addition,
and perhaps more important, the notation attempts to capture both the
data dependencies between the concurrent tasks and the control flow
within a task that has been extracted from the specification. Although
successfully expressing the data dependencies, the DDR notation is not
really suited to expressing the control flow. Labelling the perimeter of
the rings with the ARCs and selection information is clumsy, difficult
to follow and results in redundant information (for example the ARCs
are expressed in each DDR that has the transaction with the ARC).
However, to support the notation, it is hoped that by following a func
tional approach to the design of the task the designer does not need to
specify the complete control flow within the task, but instead just the
transformations that are required of the data.

The conversion of a set of non-periodic tasks into a set of periodic
tasks by considering worst case situations where each task re-triggers
at the earliest possible time, appears to be a justified and powerful tool.
Although the analysis to test the schedulability of the set is lengthy
and involved, analysis is possible and can be automated. The test for
schedulability of a task set in a hard real-time environment has not
been considered in other methodologies. In our methodology, the test
is central in driving the allocation of transactions and replicated data
entities, to the physical processors in a distributed real-time database
environment.

Finally, to conclude, the methodology considers the real-time applica
tion from a functional, data transformation driven, viewpoint where
the concept of data dependencies between independent tasks is central.
The methodology, although not without problems, considers aspects of
hard real- time systems design glossed over by other methodologies. To
carry out a full evaluation of the method, it should be tested on a real
live application significantly more complex than the ship control sys
tem of Appendix B. The following chapter considers how the method
may be strengthened in several directions and details desirable further
work.

147

CHAPTER 6. EVALUATION OF THE WORK

148

Chapter 7

Conclusions

Neptune, the Mystic

7.1 Overview

In many real-time computer systems the ability to deal with exter
nal events as fast as possible is not sufficient to guarantee the correct
functioning of the system. For the class of hard real-time systems exter
nal events must be responded to within strict deadlines. Should these
deadlines be missed, then the system has failed. Many real-time system
design methodologies fail to recognise these strict temporal constraints
on the execution of the system. Real-time system designs are often
'tweaked' by knowledgeable 'gurus' in order to achieve the required
performance. This thesis attempts to provide guidance for the design
of hard real-time systems by describing a step by step methodology.
This methodology is applicable to applications with a large, and well
defined use of a real-time database.

The introductory chapter describes the general problems of real-time
systems. The second chapter describes the general characteristics of
real-time database systems. These characteristics include the need
for time constrained accesses; short lifetimes for the data; high up
date to read ratios and high availability. The failings of conventional
database management systems when faced with these characteristics,
are discussed. The chapter goes on to provide the motivation for us
ing a transaction based design approach for hard real-time systems.
The transaction model provides atomicity, permanence of results and
recoverability: all very desirable characteristics. Finally, the cha.pter
considers the non-deterministic aspects of the tra.nsaction model. The

149

"

CHAPTER 7. CONCLUSIONS

concurrency control protocols necessary to protect shared data are iden
tified as the major source of non-determinism in the model.

The next chapter described a model for an executing real-time database
system. The model treats the real-time system as being constructed
from a set of tasks. Each task has a single trigger and a single response.
Some tasks are described as real-time tasks. These tasks have a trigger
from some external event in the controlled, or monitored, environment.
Each task is made up of a set of transactions. Each transaction reads
a number of database entities and, optionally, updates one entity. The
orderings between the transactions are partially specified by the de
signer in the form of application requirements constraints (ARCs). A
complete ordering is found through working out the data dependencies
between the transactions. The chapter also discusses the concept of a
critical region on a data entity. In decomposing a task into a number
of transactions, a 'functional' data transform oriented approach as op
posed to an explicit control flow approach, is proposed. The control
flow necessary between the transactions is worked out using the data
dependencies and the ARCs.

In the fourth chapter several new notations are presented. The first,
the Data Dependency Ring (DDR), presents the real-time system from
the viewpoint of the data dependencies between the tasks and transac
tions. This notation has a ring for each data entity. The transactions
that use the entity are listed around the outside of the ring, grouped in
their respective tasks. The notation also captures some of the enforced
orderings between transactions, the ARCs. This information expressed
in this notation is used to generate the complete control flow graphs
for each task. These graphs ensure that the ARCs are satisfied in ad
dition to serialising all conflicting transactions within the task. The
second notation, the transaction precedence gra.ph (TPG), is used to
present this complete control flow through the transactions of the task.
The DDRs and the TPGs for the real-time system can then be used
to guide an allocation of data entities and transactions to processors in
a distributed, replicated real-time database environment. This chapter
describes a step by step process that takes the system requirements
specification and generates the DDR and TPG representations in ad
dition to the allocation schemes.

The next chapter discussed the problem of hard real-time scheduling.
Several solutions from the literature are presented. It is stated that in
order to achieve a 100% success rate at meeting task deadlines an anal
ysis of the tasks and a static placement of transactions to processors
are required. Using the information genera.ted in the TPG represen-

150

7.2. FURTHER DIRECTIONS

tations of the tasks, a static analysis of the Earliest Deadline First
(EDF) scheduling policy is given. Worst cases of task triggerings are
identified and the success of the scheduling policy is evaluated. This
chapter also described a hierarchical scheduling environment in which
the real-time tasks can execute. This hierarchy consisted of a task
scheduler that recognises the triggerings of the tasks; a critical region
scheduler that implements the EDF scheduling policy and controlled
access to the shared data entities and the transaction scheduler that
uses an implementation of an executing petri-net to control the ordering
of transaction execution within a triggered task.

The sixth chapter considers the advantages and disadvantages of the
methodology, static analysis and execution platform. This chapter also
discusses the problems of real-time system reliability and shows how
the new methodology can deal with some of these problems. A large
example, the Ship Control System, is presented in an appendix. The
methodology is demonstrated on this example.

7.2 Further Directions

The research work described in this thesis is not a complete solution to
the problem of designing hard real-time systems. The work needs to
be enhanced by further research. Some of the major directions for this
research are outlined in the sections below.

7.2.1 Integration with other methods

Other design methodologies approach the system from different view
points. For example, MASCOT and DARTs consider the system from
data flow approach whereas the methodology presented in this thesis
approaches the system from the data dependencies between fundamen
tal transformations (transactions) of the data. Each viewpoint has its
merits. The dataflow approaches model the data flowing from the en
vironment through a set of operations and back to the environment.
The data dependency viewpoint can be transformed into a control flow
viewpoint and is 'closer' to the implementation of the system.

It is important to understand where the different design methodologies
overlap. Parts of each methodology may be used in different aspects
of the systems design. The methodology presented in this paper is
strong in terms of transforming a diagrammatic representation of the
system into a design and eventual implementation. Other methodolo-

151

"

CHAPTER 7. CONCLUSIONS

gies are stonger in capturing aspects of the behaviour of the application.
Combining the methodologies could result in a design method that ef
fectively captures the behaviour of the application in an intuitive form
as well as providing a s.tep by step method for automatically generating
a design.

7.2.2 Moving from specification to design

The transition from a requirements specification document through to
the design and implementation should be smooth and methdological.
However, as pointed out in [NS90] and [KR89] the specification may
require substantial reorganisation. This is due to the different concerns
of the specification and design stages. [NS90] states that the specifi
cation is meant to be a complete and unambiguous description of the
systems operational behaviour, whereas the system design is concerned
with fitting those requirements onto a rigid and restricted host envi
ronment. Our methodology does not conform to this definition of the
design stage. Instead, starting with the requirements, the methodol
ogy leads to a host environment that is suited to the requirements.
Further research is required to understand exactly what is required of
the specification in order to follow our methodology. Existing formal
and non-formal specification techniques should be investigated to de
termine their suitability for use with the transaction based real-time
design method.

7.2.3 Improvements to the CASE tool

The CASE tool described in Appendix A is, at present, limited in
function. The current version is intended only as a demonstration of
some of the aspects of the DDR notation and accompanying analysis.
In addition to making changes to the human computer interface to
improve the use of the tool, there are many functional additions that
can be made. The main area that would benefit from improvement is
in the allocation of transactions and data entities to processors and the
accompanying static analysis to check for schedulability. At present,
the allocation scheme does not recognise the constraint of a limited
number of processors; the static analysis currently assumes complete
tasks are assigned to a single processor.

152

7.3. CONCLUDING REMARKS

7.2.4 Evaluation of design quality

There is much scope within the design methodology presented for de
signing different systems to solve the same real-time problem. Chapter
4 states that the decomposition of the application into sub-systems is
very much dependent on the skill of the designer. In addition, the de
sign of the real-time database and decomposing the task into a set of
transactions operating on this database also depends on the skill and
experience of the designer. The transaction precedence graphs gener
ated mayor may not be good representations of the task. Transaction
precedence graphs are representations of programs and consequently
familiar techniques for testing the structuredness of programs can he
used as a measure of goodness [BJ66], [BS72].

Other parts of the design should also be tested for some measure of
'goodness'. The complexity of the data dependency rings for a par
ticular design indicates the degree of data dependencies between the
otherwise independent tasks. Some qualitative measure should be as
signed to this complexity to judge the design. This will be a measure
of how well the real-time database has been designed and how well the
tasks have been decomposed into transactions.

Finally, there should also be some measure of the goodness of the al
location scheme of transactions and data entities to processors. The
static analysis determines whether the particular allocation is effective
or not, but an allocation may result in some processors being more
heavily loaded than others. The measure of goodness of the alloca
tion scheme should take into account the load placed on each of the
processors.

7.3 Concluding Remarks

For complex real-time systems, it is important to consider the non
functional,hard timing constraints early on in the design of the system.
Current real-time system design methodologies result in a system with
correct functional requirements but achieving the desired performance
is often considered later on, not always with success. Increasing use
is being made of database management systems to provide a general
purpose platform for the implementation of the real-time system. The
work presented in this thesis considered the role of such databases in the
construction of hard real-time systems. The methodology recognises
the important non-functional requirement of task deadlines early on in
an attempt to provide the system with the required performance from

153

"
CHAPTER 7. CONCLUSIONS

the start. Although not without problems, it is hoped that the work
presented in this thesis is a step toward achieving deterministic hard
real-time database systems.

154

Bibliography

[AJ89]

[AL8I]

[Alf77]

[A1l81]

[A1l83]

[Ast84]

[AT88]

[Bat87]

[Ben8S]

[BGS1]

R. Agrawal and H.V. Jagadish. Recovery Algorithms for
Database Machines with Non-volatile Main Memory. In
6th International Workshop on Database A1achines (Eds.
Boral and Faudemay), AT&T Bell, Labs, New Jersey, 1989.
Springer-Verlag.

T. Anderson and P.A. Lee. Fault Tolerence Principles and
Practice. Prentice-Hall, 1981.

M.W. Alford. A Requirements Engineering Methodology
for Real-Time Processing Requirements. IEEE Transac
tions on Software Engineering, SE-3(1):60-69, Jan. 1977.

S.T. Allworth. Introduction to Real-Time Software Design.
McMillan, 1981.

J. Allen. Maintaining Knowledge about Temporal Events.
Communications of ACM, 26(11):832-843, Nov. 1983.

K.J. Astrom. Computer Controlled Systems. Prentice-Hall,
1984.

E.A. Abbadi and S. Toueg. The Group Paradigm for Con
currency Control Protocols. In ACA1 SIGA10D Conference
Proceedings, Jun. 1988.

G. Bate. The Official Handbook of MASCOT. Defence
Reseach Information Centre, Glasgow, 1987.

S. Bennet. Real- Time Computer Control: A n Introduction.
Prentice Hall, 1988.

P.A. Bernstein and N. Goodman. Concurrency Control in
Distributed Database Systems. A eM Computing Surveys,
13(2), June 1981.

155

BIBLIOGRAPHY

[BJ66] C. Boehm and G. Jacopini. Flow Diagrams, Turing Ma
chines and Languages with Only Two Formation Rules.
Communications of ACM, 9(5):366-371, May 1966.

[Bok81] S. Bokhari. A Shortest Tree Algorithm for Optimal Assign
ments Across Space and Time in a Distributed Processor
System. IEEE Transactions on Software Engineering, SE-
7(6), Nov. 1981.

[BRT78] P.A. Lee B. Randell and P.C. Treleaven. Reliability Issues
in Computing System Design. ACM Computing Surveys,
10(2):123-65, Feb. 1978.

[BS72] J. Bruno and K. Steiglitz. The Expression of Algorithms
by Charts. Journal of the ACM, 19(3):517-525, Jul. 1972.

[BS79] P.A. Bernstein and D.W. Shipman. Formal Aspects of Seri
alizability in Database Concurrency Control. IEEE 7hzns
actions on Software Engineering, SE-5(3):203-216, May
1979.

[BW89] A. Burns and A. Wellings. Real-Time Systems and their
Programming Languages. Addison Wesley, 1989.

[CA78] L. Chen and A. Avizienis. N-Version Programming: A
Fault Tolerence Approach to Reliability of Software Oper
ation. In Digest of Papers, The Eigth Annual International
Conference on Fault Tolerent Computing, 1978.

[Cam86] J.R. Cameron. An Overview of JSD. IEEE Transactions
on Software Engineering, SE-12(2):222-240, Feb. 1986.

[Cla89] J. Clarke. Serna group pIc, new malden, surrey. personal
communication, 1989.

[DeM78] T. DeMarco. Structured Analysis and System Specification.
Yourdan Press, 1978.

[Dix87] K. Dixon. Benchmark Times for the Relational Processor
: Report No. DVME785/TN6. Ferranti, Nov. 1987.

[Dix88a] K. Dixon. Design Specification of the Relational Processor
: Report No. DVME785/DS. Ferranti, May 1988.

[Dix88b] K. Dixon. The Ferranti DVME 785 Relational Processor:
Report No. 6902, Issue 5. Ferranti, Sept.1988.

156

BIBLIOGRAPHY

[Eic89]

[ELT82]

[Fab74]

[GMK88]

[Gom84]

[Gom86]

[Gra78]

[GS78]

[HaI88]

[Har80]

[Har87]

[Hen80]

[HHT89]

M.H. Eich. Main Memory Database Research Directions.
In 6th International Workshop on Database Machines (Eds.
Boral and Faudemay). Springer-Verlag, 1989.

R. Ma E.Y.S. Lee and M. Tsuchiya. A Task Allocation·
Model For Distributd Computing Systems. IEEE Transac
tions on Computers, C-31(1), Jan. 1982.

R.S. Fabry. Capability-based Addressing. Communications
of the ACAf, 17(7):403-411, JuI. 1974.

H. Garcia-Molina and B. Kogan. Achieving High Avail
ability in Distributed Databases. IEEE Transactions on
Software Engineering, SE-14(7):886-896, JuI. 1988.

H. Gomaa. A Software Design Method for Real-Time Sys
tems. Communications of ACM, 27(9):938-949, Sep. 1984.

H. Gomaa. Software Development of Real-Time Systems.
Communications of A CAl, 29(7):657-668, JuI. 1986.

J.N. Gray. Notes on Database Operating Systems. In Oper
ating Systems - An Advanced Course (Eds. Bayer, Graham
and Seegmuller), pages 393-481. Springer-Verlag, 1978.

T. Gonzalez and S. SahnL Algorithms for Scheduling Inde
pendent Tasks. Journal of the ACAf, 25(1), Jan. 1978.

F. Halsall. Data Communication, Computer Networks and
OSI: 2nd Edition. Addison-Wesley, 1988.

D. Harel. On Folk Theorems. Communications of the ACM,
23(7):379-389, Jul. 1980.

D. Harel. Algorithmics: The Spirit of Computing.
Addison-Wesley, 1987.

K.L Heninger. Specifying Software Requirements for Com
plex Systems: New Techniques and their Application.
IEEE Transactions on Software Engineering, SE-6(1):2-13,
Jan. 1980.

X. Tan H. Hong and D. Towsley. A Performance Analysis
of Minimum Laxity and Earliest Deadline Scheduling in
a Real-Time System. IEEE Transaction on Computers,
38(12}:1736-1744, Dec. 1989.

157

.'

[Hoa85]

[HP88]

BIBLIOGRAPHY

C.A.R. Hoare. Communicating Sequential Processes.
Prentice-Hall, 1985.

D.J Hatley and I.A. Pirbhai. Strategies for Real-Time Sys
tem Specification. Dorset House Publishing, 1988.

[HZ] M. Hamilton and S. Zeldin. Higher Order Software - A
Methodology for Defining Software. IEEE Transactions on
Software Engineering, SE-2(3).

[Jac83] M. Jackson. System Development. Prentice Hall, 1983.

[Jac84] K. Jackson. Introduction to basic MASCOT principles.
lEE Colloquium Digest, 113, Dec. 1984.

[JBW86] M. Drabrowski J. Blazewicz and J. Weglarz. Scheduling
Multiprocessor Tasks to Minimize Schedule Length. IEEE
Transactions on Computers, C-35(5), May 1986.

[JSC85] K. Ramamritham J.A. Stankovic and S.C. Cheng. Eval
uation of a Flexible Task Scheduling Algorithm for Dis
tributed Hard Real-Time Systems. IEEE Transactions on.
Computers, C-34(12), Dec. 1985.

[KET76] R.A. Lorie K.P. Eswaran, J.N. Gray and 1.L. Traiger. The
Notions of Consistency and Predicate Locks in a Database
System. Communications of ACM, 19(11):624-633, Nov.
1976.

[KN84] H. Kasahara and S. Narita. Practical Multiprocessor
Scheduling Algorithms for Efficient Parallel Processing.
IEEE Transactions on Computers, C-33(1l), Nov. 1984.

[KRS1] H.T. Kung and J.T Robinson. On Optimistic Methods
for Concurrency Control. A CM Transactions on Database
Systems, 6(2):213-226, 1981.

[KR89] D. Kalinsky and J. Ready. Distinctions Between Require
ments Specification and Design of Real-Time Systems. In
Proceedings of the Second International Conference on Soft
ware Engineering for Real-Time Systems. lEE, Sep. 1989.

[LA90] S-T. Levi and A. Agrawala. Real Time System Design.
McGraw Hill, 1990.

158

BIBLIOGRAPHY

[Lam78]

[Lam81]

[Law88]

[LB]

[LC85]

[Lei80]

[Leu89]

[Lev86]

[Lis85]

[LL73]

[LM88]

[LY86]

[Ma84]

L. Lamport. Time, Clocks and the Ordering of Events in a
Distributed System. Communications of ACAf, 21(7):558-
656, Jul. 1978.

B. Lampson. Atomic Transactions. In Distributed Systems
- Architecture and Implementation (Eds. Goos and Hart
manis), pages 246-265. Springer-Verlag, 1981.

J. Lawton. An Assessment of the DIOAfEDES Distributed
Database Product. SEMA Group, 1988.

B.H. Liskov and V. Berzins. An Appraisal of Program Spec
ifications. In Software Specification Techniques (Ed. Gehani
and McGettrick), Massachusetts Institute of Technology.
Addison Wesley.

B.H. Liebowitz and J.H. Carson. Multiprocessor Systems
for Real-Time Applications. Prentice-Hall, 1985.

D.W. Leinbaugh. Guaranteed Response Times in a Hard
Real-Time Environment. IEEE Transactions on Software
Engineering, SE-6(1}, Jan. 1980.

J. V-To Leung. A New Algorithm for Scheduling Periodic
Real-Time Tasks. Algorithmica, (4}:209-217, 1989.

N.G. Leveson. Software Safety: why, what and how. ACM
Computing Surveys, 18(2):125-63, Feb. 1986.

B. Liskov. The Argus Language and System. In Distributed
Systems Methods and Tools for Specifications, An Advanced
Course (Eds: Paul and Siegert). Spinger-Verlag, 1985.

C.L. Liu and J.W. Layland. Scheduling Algorithms for Mul
tiprogramming in a Hard Real-Time Environment. Journal
of the ACM, 20(1), Jan. 1973.

P.D. Lawrence and K. Mauch. Real- Time Aficrocomputer
System Design: An Introduction. McGraw-Hill, 1988.

D.W. Leinbaugh and M.R. Yamini. Guaranteed Response
Times in a Hard Real-Time Environment. IEEE Transac
tions on Software Engineering, SE-12(12), Dec. 1986.

R.P-Y. Ma. A Model to Solve Timing Critical Application
Problems in Distributed Computer Systems. IEEE Com
puter, 1984.

159

BIBLIOGRAPHY

[Mai86] T.S.E. Maibaum. A Logic for Formal Requirements Speci
fication of Real-Time Embedded Systems, 1986.

[Man67] G.K. Manacher. Production and Stabilization of Real-Time
Task Schedules. Journal oj ACM, 14(3):439-465, Jul. 1967.

[Mar82] C. Martel. Preemptive Scheduling of real-time task on mul
tiprocessor systems. Journal oJ the ACM, 29(3), Mar. 1982.

[MC70] R.R. Muntz and E.G. Coffman. Preemptive Scheduling of
Real-Time Tasks on Multiprocessor Systems. Journal oj
the ACM, 17(2), Apr. 1970.

[Men79] D.A. Menasce. Locking and Deadlock Detection in Dis
tributed Databases. IEEE Transactions on Software Engi
neering, SE-5(3), May 1979.

[Moo68] J.M. Moore. An n Job, One Machine Sequencing Algorithm
for Minimizing the Number of Late Jobs. Management Sci
ence, 15(1):102-109, Mar. 1968.

[MP84] S.M. McMenamin and J.F. Palmer. Essential Systems
Analysis. Yourdan Press, 1984.

[MSS82] P. M. Melliar-Smith and R.L. Schwartz. Formal Specifica
tion and Mechanical Verification of SIFT: A Fault Tolerant
Flight Control System. IEEE Transactions on Computers,
C-31(7):616-630, Jul. 1982.

[MuI79] G.P. Mullery. CORE - A Method for Controlled Require
ments Specification. In Proc. ~th International ConJerence
on Software Engineering. IEEE Computer Society Press,
1979.

[Mu189] S. Mullender. Distributed Systems. Addison Wesley/ACM
Press, 1989.

[Mur] T. Murata. Modeling and Analysis of Concurrent Systems.
In Handbook oj Software Engineering. Van Nostrand Rein
hold Company.

[NS90] M. Nejad-Sattery. An Extended Data Flow Diagram Nota
tion for Specification of Real-Time Systems, PhD Thesis,
1990.

160

BIBLIOGRAPHY

[Pap79]

[Par72]

[PBG87]

[Pet77]

[PS89]

[RS84]

[Sah76]

[SaI74]

[SCS88]

[Sha90]

[Sho83]

[Sle91]

[Som89]

[Spe89]

C.H. Papadimitriou. The Serializability of Concurrent
Database Updates. Journal of ACM, 26(4):631-653, Oct.
1979.

D.L. Parnas. On the Criteria To Be Used in Decom
posing Systems into Modules. Communications of ACM,
12(12):1053-1058, Dec. 1972.

V. Hadzilacos P.A. Bernstein and N. Goodman. Concur
rency Control and Recovery in Database Systems. Addison
Wesley, 1987.

J.L. Peterson. Petri Nets. Computing Surveys, 9(3):223-
252, Sep. 1977. .

J .L. Peterson and A. Silberschatz. Operating System Con
cepts. Addison Wesley, 1989.

K. Ramamritharn and J.A. Stankovic. Dynamic Task Al
location in Hard Real-Time Distributed Systems. IEEE
Software, Jul. 1984.

S.J. Sahni. Algorithms for Scheduling Independent Tasks.
Journal of the ACM, 23(1):116-127, Jan. 1976.

J.H;-Saltzer. Protection and the Control of Information
Sharing in Multics. Communications of the AC.M, 17(7),
1974.

K. Ramamritharn S.C. Cheng and J.A. Stankovic. Schedul
ing Algorithms for Hard Real-Time Systems - A Brief Sur
vey. IEEE Computer, 21, 1988.

A. Shackleton. Serna group pIc, new malden, surrey. per
sonal communication, 1990.

M.L Shooman. Software Engineering: Design, Reliability
and Management. McGraw-Hill, 1983.

P.M. Sleat. Real Time Databases. SEMA Group Technical
Journal, Feb. 1991.

1. Sommerville. Software Engineering. Addison Wesley,
1989.

A.Z. Spector. Distributed Transaction Processing Facili
ties. In Distributed Systems (Ed. S. Afullender). Addison
Wesley / ACM Press, 1989.

161

"

BIBLIOGRAPHY

[SR89] J.A. Stankovic and K. Ramamritham. The Spring Kernal :
A New Paradigm for Real-Time Operating Systems. ACM
Operating Systems Review, 23(3), Jul. 1989.

[StaB8] J .A. Stankovic. Misconceptions About Real-Time Com
puting: A Serious Problem for Next-Generation Systems.
IEEE Computer, 21(10):10-19, Oct. 1988.

[Sut88] A. Sutcliffe. Jackson System Development. Prentice Hall,
1988.

[Tan81] A.S. Tanenbaum. Computer Networks. Prentice-Hall, 1981.

[Tay89] D.S. Taylor. The SUCCESSOR Infrastructure for SMCS,
SEMA GroupReport No. SMCS/INF /000044/3A, Feb.
1989.

[TIM87] T. Kameda T. Ibaraki and T. Minoura. Serialisability
with Constraints. ACM Transactions on Database Systems,
12(3):429-452, Sep. 1987.

[Tow86] D. Towsley. Allocating Programs Containing Branches and
Loops within a Multiple Processor System. IEEE Transac
tions on Software Engineering, SE-12(1O), Oct. 1986.

[WCE80] M.T. Lan W.W. Chu, L.J. Holloway and K. Efe. Task Al
location in Distributed Data Processing. IEEE Computer,
13(11), Nov. 1980.

[WKSG89] J-Y. Chung W-K. Shih, J.W.S. Lui and D.W. Gillies.
Scheduling Tasks with Ready Times and Deadlines to Min
imize Average Error. ACM Operating System Review,
23(3):14-28, Jul. 1989.

[WM86] P.T Ward and S.J. Mellor. Structured Development for
Real-Time Systems, volume 1,£ and 9. Yourdan Press, New
Jersey, 1986.

[Wo187] O. Wolfson. The Overhead of Locking (and commit) Pro
tocols in Distributed Databases. ACM 7ransactions on
Database Systems, 12(3), Sept. 1987.

[WZS87] K. Ramamritham W. Zhao and J.A. Stankovic. Schedul
ing Tasks with Resource Requirements in Hard Real-Time
Systems. IEEE Transactions on Software Engineering, SE-
13(5):564-577, May 1987.

162

' ..
.-

BIBLIOGRAPHY

[YC78]

[Zav82]

E. Yourdan and L. Constantine. Structured Design. Your
dan Press, 1978.

P. Zave. An Operational Approach to Requirements Spec
ification for Embedded Systems. IEEE Transactions on
Software Engineering, SE-8(3):250-269, Mar. 1982.

163

"
BIBLIOGRAPHY

164

"

Appendix A

An Interactive CASE Tool

This appendix describes an interactive CASE tool that has been written
to aid the design and implementation of real-time systems, The tool
described is the GEM (Digital Research) version. A version for X
Windows is being developed, and apart from minor differences in the
'front end', will be much the same.

A.1 Introduction To Methodology

It is assumed that the reader is familiar with the real-time design
methodology on which this CASE tool is based, A brief overview is
be given here.

A real-time system consists of a set of independent tasks. Each task
has a separate and distringuishable triggering event in the environ
ment being monitored or controlled. A task is the set of actions, or
'transactions' necessary to respond to this event. The transactions
manipulate a set of data entities. Theoretically, more than one trans
action may access a data entity at the same time. If these concurrent
transactions have conflicting requirements on the data entity, they are
sequentialised. This prevents conflicting concurrent access. Most non
real-time database systems perform this sequentialisation at run-time.
This however leads to transactions whose start times are delayed by
other conflicting transactions. This delay is not known and so analysis
of the timing aspects of the tasks is difficult.

The designer of the real-time system should not have to worry about
the need to sequentialise conflicting concurrent transactions. He should
be able to concentrate on the transformations to the data entities that
are necessary to respond to an environment event. This CASE tool

165

APPENDIX A. AN INTERACTNE CASE TOOL

is designed to work out the complete flow of control necessary within
the transactions of a task. This flow of control is worked out as the
transactions are designed. When the design is finished, a complete
flow of control is calculated for the transactions within a task. The
sequentialisation of transactions necessary to preserve the state of the
database is generated by the tool prior to run-time.

Since the effect of other transactions on a given transaction within the
same task has been determined, the worst case execution times for the
task can be determined. This enables static analysis to be performed to
determine whether a given task will meet its hard real-time deadlines.
This analysis is carried out by the tool. In addition, the tool can
suggest an allocation of transactions and data entities such that good
use of concurrency is made.

A.2 The WIMP Environment

The CASE tool has been written with a 'user friendly' front end based
on Windows, Icons, Mice and Pointers (WIMP). The CASE tool envi
ronment consists of

• Drop Down Menus for selecting actions

• Forms for entering data

• Windows in which information and results are displayed

These are now described.

A.2.1 Drop Down Menus

Drop down menus are the means by which the user selects actions in
the CASE tool. The main menu for the CASE tool is displayed on the
very top row of the screen. The mouse is used to move the pointer
onto one of the submenus. A drop down submenu now appears as in
figure A.I. The mouse can again be used to select the suboption by
moving the pointer up and down. If, at any time, the mouse moves
out of the drop down menu, the menu disappears. As the pointer is
moved down the submenu, the options are highlighted. In figure A.I,
the 'save' option is highlighted. Pressing the left hand mouse button
selects the highlighted option.

166

A.2. THE WIMP ENVIRONMENT

Figure A.l: Selecting Options from a Submenu

A.2.2 Forms

The form is the means by which the user presents information to the
CASE tool. An example form is shown in figure A.2. On initial display
of a form, the cursor is found in the first field. Any text or numbers
that are typed are entered into this field. The cursor can be moved in
a number of ways. These are :-

1. The TAB key. Pressing the TAB key moves the cursor onto the
next field. If the cursor was initially on the last field then pressing
TAB causes it to 'wrap-around' to the begining.

2. The ARROW keys. The left and right arrow, or cursor con
trol, keys move the cursor within the current field. The up and
down arrow keys move the cursor to the previous or next fi eld
respectively.

3. The MOUSE. The mouse can be used to move the screen pointer
to any field. If the left hand mouse button is pressed while point
ing at a ,field, the cursor will move to that field.

When data has been enetered into all the fields, the user may then either
select the DONE or CANCEL options by pointing to the appropriate

167

APPENDIX A. AN INTERACTNE CASE TOOL

Please enter the follDNlng Infornltlon :

Transaction HUMber : 2 I Parent Task : B-1
Read Set: abc I Write Set: L ___ I
Waits: B __ _I I Choice: ---I
TiMing "'s) : 12-1

Figure A.2: An Example Data Entry Form

button and pressing the left hand mouse button. Pressing DONE makes
the CASE tool act on the new data that has been entered into the form.
Pressing CANCEL make the CASE tool ignore the information that has
been entered.

The fields of a given form are initially set to blanks on starting the
CASE tool. From then on, any information entered into the form is
'remembered' between succesive displays of the form.

A.2.3 Windows

The window is the means by which the CASE tool displays information
to the user. There are three types of window used in the CASE tool.

1. Message windows

2. Permanent display windows

3. Temporary display windows

The message windows display simple information and typically make
the CASE tool wait for a simple response from the user to indicate that
the message has been read. For example, the initial title screen for the

168

A.2. THE WIMP ENVIRONMENT

(el Phil~p Sl •• ~ 1991

Figure A.3: Initial Title Screen in a Message Window

CASE tool shown in figure A.3 is an example of a message window. The
user must press any key before the window is removed and the CASE
tool continues. A further type of message window is the 'Alert box'.
This represents an internal error or an error in the users input data.
The alert box is removed by pointing to the OJ(button and pressing
the left hand mouse button.

The permanent display windows show information all the time they are
'active'. The information that is displayed is typically only one screens
worth. An example of such a window is the DDR window shown in
figure AA. This is made active by chosing the Select then DDR options
from the menu. All the time a permanent window is displayed, the
drop down menus and data entry forms can still be used. The window
is removed by selecting the File then Clear Screen options from the
menu.

Temporary display windows display are for the display of more than one
screen's worth of information. The only temporary display window used
by the CASE tool is for the display of the transaction precedence graph
of a task. An example of such a display window is shown in figure A.5.
The temporary display window has 'scroll arrows' on the right hand
and bottom sides. Pointing to one of these arrows and pressing the left
hand mouse button causes the temporary display window to scroll in

169

APPENDIX A. AN INTERACTNE CASE TOOL

Figure A.4: DDRs displayed in a Permanent Window

the appropriate direction. The tempor~ry display window also has a.
'close' button in the top left hand corner. Clicking on this removes the
temporary display window. All the time the temporary display window
is active, the main menu and data entry forms are inactive.

A.3 Creating A Real-Time System

On initial starting, there is no real-time system defined in the CASE
tool. To start a new design, a name for the system is needed. This
name is entered by selecting the Create then RTS options from the
main menu and then entering upto eight characters.

A.3.1 Entering the System Devices

Each real-time system will have a number of external devices and ac
tuators through which information about the controlled environment
is gathered and through which control is fed back to the environment.
These external devices can be represented in the real-time system de
sign by selecting the Create and then External Device options from the
main menu. A form is displayed in which to enter the characteristics

170

A.3. CREATING A REAL-TIME SYSTEM

Figure A.5: Transaction Precedence Graph in a Temporary Window

of the device. The following information is required :-

• Name. Enter the name of the external device (upto eight charac
ters).

• Stimulus or Response. If the external device is an input device
i.e. the device sends the computer system information about the
environment then enter'S' for stimulus. If the device is an actu
ator for the computer system to control the environment, enter
an 'R' for response.

• Period. For periodic stimuli enter the period of triggering of the
device. If this field is left blank and the device type is still a stim
ulus then it is assumed that the stimulus triggering is sporadic.
This field should be left blank for 'response' device types.

A.3.2 Displaying the Real-Time System

The context diagram for the real-time system can be displayed by chos
ing the select and then RTS options from the menu bar. The context
diagram is displayed in a permanent information window. The real
time computer system is represented in the centre of the diagram. The

171

APPENDIX A. AN INTERACTNE CASE TOOL

Figure A.6: An Example Context Diagram

external devices linked to the real-time system are represented around
this. Figure A.6 shows an example context diagram. Periodic tasks
are signified with a Ij placed next to their name. Response devices are
signified wi th an actuator symbol (circle with across) placed next to
their name.

Since the context diagram is displayed in a permanent information win
dow, further devices may be added by selecting the Create and External
Device options from the menu bar. After each additional external de
vice is specified, the context diagram is redrawn.

A.4 Creating a Data Entity

A real-time database system consists of a number of data entities and
a set of tasks that transform these entities appropriately. In designing
a real-time system the major data entities that are used must be iden
tified. In selecting the Create and DDR a name can be given to each
of the data entities used. There is one Data Dependency Ring for each
data entity used in the system. In naming the rings, the entities are
named in the real-time database.

172

"
AA. CREATING A DATA ENTITY

Figure A.7: An Example DDR

A.4.1 The Data Entity Viewpoint

The actions of the real-time system may be displayed from the view
point of the role that each data entity plays in the system. By choosing
Select and then DDR from the menu the Data Dependency Ring, for
a named entity is displayed. The name of the entity must be entered.
Should the name not be known a '?' may be entered in the name fi eld.
This will display a list of.all the known data entities. The correct name
can then be entered.

The Data Dependency Ring is displayed in a permanent information
window. An example is shown in figure A.7. The data entity name
is shown in the center of the ring. Around the outside, the t asks and
transactions that use the ring are listed. For transactions that write
to the entity, there is an arrow pointing to the centre of the ring. For
transactions that read the entity, the arrow points to the edge of the
ring. Enforced 'waits' within transactions are listed around the outside
of the ring. In the example, transaction 3 of task 1 must always wait for
transaction 2 of task 1. Since the data dependency rings are displayed
in a permanent information window, new transactions can be added at
any time (see later for how to do this) and the ring is redrawn after
each new transaction is added.

173

,"

APPENDIX A. AN INTERACTNE CASE TOOL

When a Data Dependency Ring has been selected, if the pointer is
moved within one of the transaction circles and the left hand mouse
button is pressed, a description of the selected transaction is displayed
in a temporary information window. On removal of the window, the
selected D D R is again displayed.

A.5 Creating a Task

A new task may be created by creating a transaction (see later for
how to do this) and giving that transaction a new parent task number.
Each task has a separate triggering event in the environment being
controlled. Some characteristics of the task need to be specified. The
Options and Task Information options on the main menu allow this. A
form is displayed and the following information is required :-

• Task Number.

• Deadline. The real-time deadline of the task must be specified in
milliseconds relative to the triggering time of the task.

• The Minimum Re-Trigger Time. This is "the shortest interval
between successive re-triggerings of the same task. For periodic
tasks this corresponds to the period. For non-periodic tasks, the
MRT typically corresponds to some physica.l characteristic of the
environment being controlled and the triggering device.

A.6 Creating a Transaction

A transaction may be created by chosing the Create and the 7rans
action options from the main menu. A form is displayed for entering
descriptive information about the transaction. The following informa
tion is required :-

• Transaction Number (mandatory). Transactions have numbers
starting at O. They are simply used as a means to distinguish
between transactions and do not imply any serialisation between
successive transactions .

• Parent Task Number (mandatory). Each transaction is contained
within a parent task. Enter the task number in this field. For a
new task, enter the next available task number.

174

A.7. TASK VIEW OF TIlE REAL-TIME SYSTEM

• Read Set (optional). A transaction may read from data entities
already defined. Enter the list of entity names read from in this
field, separating each entity name by a space .

• Write Set (optional). A transaction may write to a single data
entity on completion of its processing. Enter the entity name in
this field.

• Waits (optional). Some Application Requirement Constraints
(ARCs) may have been specified among transactions. These rep
resent enforced serialisation among transactions where serialisa
tion due to data access conflicts does not exist. Enter the trans
action numbers of all those transaction that this one must wait
for in this field. Separate multiple numbers with spaces.

• Choice (optional). Where a transaction is one of a choice between
several, one transaction will be the parent from which the choice
is made. Enter the transaction number of the parent in this field.

• Timing (mandatory). Enter the worst case execution time for the
transaction in this field. Timings are in milliseconds.

A.7 Task View of the Real-Time System

A control flow viewpoint of each task may be displayed. Choose the
Select and then Task options from the main menu and then enter the
required task number. The control flow viewpoint of the task is auto
matically generated so that the data dependencies among transactions
and ARCs are met. A transaction precedence graph is displayed in a
temporary information window. Where an arc is drawn from a higher
(nearer the top of the screen) transaction to a lower transacton, there
exists either an ARC between these transactions or else the transac
tions conflict and must be serialised. Where there is no such arc, the
transactions do not conflict and may execute concurrently. An example
transaction precedence graph is shown in figure A.5.

Some transaction precedence graphs are too large to be displayed on
the screen. The information window that displays the TPG has scroll
buttons on the bottom and right hand sides. Pointing to these and
pressing the left hand mouse button causes the window to scroll in the
appropriate direction displaying more of the TPG. The current view
on the TPG is displayed as a coordinate in the title of the information
window. The top left page of the TPG is initially displayed and given

175

"

APPENDIX A. AN INTERACTNE CASE TOOL

the coordinate (0,0). Scrolling to the right increases the first index.
Scrolling down increases the second index.

A.8 Allocation Schemes

A.9 Static Temporal Analysis

Given that the temporal characteristics of the tasks have been defined a
static analysis of these characteristics is possible. Given the execution
times of each of the component transactions, the worst case execution
time for the complete task can be determined. Given this, together
with the deadline and the minimum re-trigger times for a task, the
allocation scheme generated using the allocation scheme option can be
tested for conformance.

To carry out this static analysis, choose Options and then Scheduling
advice from the main menu. A data entry form is then displayed. Enter
the level of analysis (1,2 or 3) required and select the done button to
start the analysis.

A.9.l Analysis Levell

At scheduling analysis level 1, the task set is tested to check that it
can be serialised though shared resources such that there is enough
processing time available to complete all tasks while at the same time
ignoring the effects of conflicting access to shared data. If the task set
fails with this simple analysis then the set cannot be scheduled in an
environment where the conflicting access to shared data is respected.

The analysis is carried out by considering the minimum ret rigger times
for the tasks (these are entered by using the Options then Task infor
mation choices from the menu). A worst case is constructed where each
task using the shared resource is triggered repeatedly at its re-trigger
time. The time period up to the point where all tasks simultanteously
re-trigger is then considered. This point is calculated by incrementing
a counter in steps of the largest of the re-trigger times. At each step,
the count is divided by each of the other re-trigger times. If all divide
exactly into the count then the consideration point (Tc) is found. The
number of triggerings of each task upto this point is then found and
the total execution time of all these task triggerings calculated. If this
total time is greater than the consideration interval T c then there is

176

."
A.10. SAVING, LOADING AND PRINTING

not enough processor time for all the task triggerings and the static
analysis shows that the task set is not sound. If the total time is less
than or equal to the consideration time T c then the analysis should
continue with levels 2 and 3 to check that the tasks can be serialised
through resources and still meet deadlines.

A.9.2 Analysis Level 2

At scheduling level 2, the task set is tested to check that tasks can
execute in a non-preemptive environment. Once the task has started
executing it executes through to completion. A worst case scenario is
generated for each task. This scenario assumes that each task with
sooner deadlines are triggered at the same time as the task in question.
These must all execute before the task in question. The time that
these tasks complete is calculated; this is the earliest time that the
task being considered may start executing. Using this time, whether
the task completes before the deadline is checked.

A.9.3 Analysis Level 3

At scheduling level 3, the task set is tested in a preemptable environ
ment. Each task may be interrupted once by tasks with an earlier
deadline. A worst case scenario is generated for each task. In this
worst case scenario the task in question is prevented from execution by
the current execution of the longest task with an earlier deadline. The
soonest time that the task in question may start is then calculated. In
addition, the task is preempted by triggerings of tasks after the task in
question has started. These tasks have sooner deadlines. The slack of
the task in question must then accommodate the intial delay plus the
partial execution of the task and also the execution of those tasks with
sooner deadlines.

For scheduling the three scheduling levels, the tool performs the check
and reports on the validity of the task set for the level of scheduling
chosen.

A.tO Saving, Loading and Printing

The current real-time system may be saved to disk using the File and
Save options from the main menu. On selecting this option, a file
selector box is displayed. The user may move around the file system

177

,"

APPENDIX A. AN INTERACTNE CASE TOOL

to select the directory in which the real-time system is to be saved.
Enter the name under which the real-time system is to be saved. An
extension of '.RTS' will be appended to the name and the real-time
system saved.

To load an existing real-time system from disk choose the File and Load
options from the main menu. On selecting this opt~on, a file selector
box is again presented. This is used to choose the real-time system to
be loaded. On loading a real-time system, any previous information
entered is overwritten.

A limited printing facility is provided. Chose the Print option from the
main menu. A file selector box is displayed. On chosing an appropriate
name, the current screen will be saved to this named file on the disk.
The screen is saved in Degas PI3 format and may be loaded and printed
by the Degas Art Package. In addition, a tool exists to convert from
Degas PI3 format into PostScript format.

A.lO.l File Formats

The real-time system is saved to disk as a simple ASCII file describ
ing the characteristics of the system. An example real-time system is
described by the following file.

RTS chemical
Device temp 010 S
Device press 005 S
Device tempcrit 000 S
Device prescrit 000 S
Device tempcont 000 S
Device tempcont 000 R
Device 000 N
Device 000 N
Device 000 N
Device 000 N
Device 000 N
Device 000 N
Device 000 N
Device 000 N
Device 000 N
Device 000 N
Device 000 N
Device 000 N
Device 000 N
Device 000 N

178

A.l0. SAVING, LOADING AND PRINTING

ENTITY 00 a
ENTITY 01 b
TASK 00 000 000 010
TRANS 00 RNNNNNNNNNNNNNNNNNNN

000 000 00 00 00 00 00
00 00 00 00 00

TRANS 01 BNNNNNNNNNNNNNNNNNNN
000 000 00 00 00 00 00

00 00 00 00 00
TRANS 02 RRNNNNNNNNNNNNNNNNNN

000 000 00 00 00 00 00
00 00 00 00 00

TRANS 03 RRNNNNNNNNNNNNNNNNNN
000 000 00 00 00 00 00

00 00 00 00 00
TRANS 04 RRNNNNNNNNNNNNNNNNNN

000 000 00 00 00 00 00
00 00 00 00 00

TRANS 05 RRNNNNNNNNNNNNNNNNNN
000 000 00 00 00 00 00

00 00 00 00 00

TRANS 06 RWNNNNNNNNNNNNNNNNNN
000 000 00 00 00 00 00

00 00 00 00 00
TRANS 07 RNNNNNNNNNNNNNNNNNNN

000 000 00 00 00 00 00
00 00 00 00 00

TRANS 08 NBNNNNNNNNNNNNNNNNNN
000 000 00 00 00 00 00

00 00 00 00 00
TRANS 09 NBNNNNNNNNNNNNNNNNNN

000 000 00 00 00 00 00
00 00 00 00 00

TRANS 10 WRNNNNNNNNNNNNNNNNNN
000 000 00 00 00 00 00

00 00 00 00 00
END

· ,
,~ .

. "

The file consists of a set of five record types, each record being con
structed from fixed position fields. The records are as follows :-

1. RTS followed by the name of the real-time system.

2. Device followed by the name of the device, the period and then
the type of the device (Stimulus (S), Response (R) or not used

179

"

APPENDIX A. AN INTERACTNE CASE TOOL

(N».

3. ENTITY followed by the entity number and then the entity
name.

4. TASK followed by the task number, minimum re-trigger time
and deadline and then the number of transactions in the task.

5. TRANS followed by the transaction number and then a flag for
each entity in the system representing the transaction's use of the
entity (Write (W), Read (R), Rea.d and Write (B), no use (N».
On the second line of the transaction record there is the worst
case execution time for the transaction, the transaction which
choses this one and the transactions that this one must wait for
due to ARCs. On the final line of the transaction record are the
transactions that this one optionally choses on completion.

6. END represents the end of the real-time system file.

In the transaction records, where a transaction refers to some other
transaction the transaction index is incremented by one. A '00' in the
field represents an index of -1. For example if the transaction has 01
02 03 00 00 in the waits field this means that the transaction waits for
transactions 0, 1 and 2 to complete. The 00 and 00 at the end of the
wait list represent -1 i.e. a wait for nothing.

A.1I CASE Tool Implementation Details

The CASE tool has been written in 'c' and compiled using the Prospero
C compiler for the Atari ST personal computer. The front end to the
tool makes much use of the Graphical Environment Manager (GEM)
interface.

The source code is divided into nine 'C' files and two 'C' include files.
These files are as follows :-

• MAIN. C This holds the calls to initilise the application, start
the main program loop, and close down the application on com
pletion .

• CASE.C This holds the main program loop and various other
routines such as the loading and saving of real-time systems code.
The drawing of the context diagrams is handled within this file.

180

.'
A.ll. CASE TOOL IMPLEMENTATION DETAILS

• DDRVIEW.C This draws the real-time system from the view
point of the chosen data entity.

• TASKVIEW.C This draws the real-time system from the view
point of the control flow through a task.

• ALLOC.C This generates a suggested allocation scheme assign-
ing transactions and data entities to processors. .

• SCHEDULE.C This analyses the task set to ensure schcdula.
bility.

• GRAPHICS.C This handles all the routines to draw lines, cir
cles, filled pie-slices etc. This file needs to be changed if the tool
is to be ported to another windowing system.

• GEMSTUFF.C This file handles the GEM oriented code such
as displaying and getting the information from, data entry forms
and windows. This file needs to be changed if the tool is to be
ported to another windowing system.

• UTILITY.C This file contains several utilities.

• CASE.H This is the header file that describes the structures of
internal storage. In addition, various constants are defined here
such as the maximum number of data entities or transactions a.
real-time system can have. Cha.nge these figures and recompile
to increase the capacity of the tool.

• CASE9.H This header file defines names and associated GEM
numbers for each of the menu option, data entry forms and the
fields within these forms.

181

APPENDIX A. AN INTERACTNE CASE TOOL

182

Appendix B

A Ship Control System

Whereas simple examples given in the literature such as the boUling
plant application can demonstrate aspects of the data dependency de
sign methodology, a much larger application is needed to demonstrate
the complete methodology. This appendix describes a large and com
plex real-time application. The treatment of the application using the
data dependency design methodology is not intended to be accurate
and complete. This appendix is intended to demonstrate the stages
that are undertaken to generate a final design. In any real design and
implementation, further work would be required to accurately match
the design to the requirements. The would involve a great deal of con
sultation with the 'customer' to ensure that what is provided is what
is wanted. Consequently, the design process would typically follow an

j

iterative path. This iteration is not evident from the relatively simple
process described in this chapter.

To test the effectiveness of the methodology, the example should have
a large shared database content. This appendix shows the stages from
the study of the initial outline specification of the requirements to a
complete design for a distributed real-time database system. The ap
pendix is organised into four main sections. First, an overview of the
application is given. This section corresponds to a vague, and proba
bly incomplete, statement of the requirements of the application. In
the second section the database requirements of the application are de
scribed. In addition, this section identifies the real-time tasks and de
scribes them in terms of actions on the real-time database. In the third
section, a data dependency ring analysis is carried out and the transac
tion precedence graph for each real-time task is constructed. The final
section describes an allocation of transactions and database entities to
processors in a distributed network and tests for the schedulability of

183

"
APPENDIX B. A SHIP CONTROL SYSTEM

this configuration.

B.l The Ship Control System - Require
ments

Modern C3 systems typically have requirements for large and sophisti
cated databases 1. This example considers a fleet of commercial ships
which is to be fitted with an embedded computer control system. This
control system is responsible for automatically monitoring and con
trolling the state of the ships engines; guiding the ship between des
tinations; accepting new courses and commands from the operator;
monitoring and sending communications between the ships of the fleet.
These functions are now briefly elaborated on.

B.l.l Overview of the ships function

The operating conditions of the engines in each ship need to be carefully
controlled. Each ship has two engines. The fuel consumption of each
engine is to be monitored; should the fuel levels in the storage tanks
drop below a certain threshold, then some remedial action is required.
The best form of action should be that the ship is automatically guided
to the nearest fleet refueling tanker. If there is not enough fuel to reach
this, the ship should stop and wait for a refueling tanker to arrive. Each
engine has strict controls on the environment in which it can operate.
The temperature of the engines must be monitored. A coolant can
be introduced into the engines to maintain a constant temperature.
Should the temperature reach a critical state before the coolant can
take effect, then the engines should be shut down. The engines speed
in revolutions per minute must be carefully considered. Should the
speed go beyond a threshold, the engines are working too hard and
must be shut down. In normal operating conditions, the speed of the
engines is determined by the speed of the ship, in knots, required by the
crew together with external influences such as headlong winds etc. The
engines must obviously work harder to maintain the same overall speed
when the ship is steered into high winds. In emergency conditions, to
slow the ships down, the engines can be quickly switched into reverse

1 It has been estimated that the control system for the British Navy's Type-
23 Frigate will spend 90% of all processing time carrying out database functioDs
[Cla89].

184

"

B.l. THE SHIP CONTROL SYSTEM - REQUIREMENTS

2

The control system is responsible for guiding the ship between succes
sive destinations specified in a course plan set out by the crew. At reg
ular intervals, the control system should read the ship's current bearing
from a bearing device. ·This current bearing should be compared with
the required bearing based. on the set course. The position of the ship's
rudders is adjusted to ensure that the ship maintains a true course
to the required location. The control system can also be operated in
manual mode where the commands entered on the operator's console
directly control the ships rudder.

The control system is responsible for accepting commands from the
crew via a sophisticated graphics display console. The control system
also displays various aspects of the behaviour of the ship, such C\.S the
speed and direction of the vessel, on the display console.

Each ship is only one part of a large fleet of ships. It is important that
these ships maintain not only voice communications via radio (which
is outside of the scope of the computer control system) but also data
communications which are handled by the computer control system.
Each ship can send one of a standard set of messages to any other ship
in the fleet: each ship has a unique address and a packet radio system
is used to send the messages. At regular intervals, the control system
will send a current location message to the fleet controller - a central
computer system at the fleet headquarters. Other sorts of messages
that can be sent include orders for fuel (directed to the fueling tankers)
and mayday messages indicating that the ship is in distress.

The control system is responsible for interpreting the data from a set of
radar and sonar devices. The radar is typically used to guide the ship
in adverse weather conditions, so as to avoid collisions, by adjusting the
ship's course if obstacles are detected. The sonar device is used in a
similar way to avoid the problem of 'bottoming-out' in shallow waters.
Should it be detected that an unavoidable collision is about to occur i.e.
the ship does not have time to change course effectively, then the ship
should be stopped under the control of the computer system and a set
of mayday messages automatically sent out to other fleet ships. Should
the control system detect a mayday message then it is fleet policy that
the ship should be guided to the site of the distressed vessel if it is
within a certain distance.

2 Apparently, at normal 'cruising speed' the British Navy's new Type-23 Frigate
can switch the direction of the engine and stop within its own length. At higher
speeds, the engines cannot be switch so easily and the stopping distance is increased
[Sha90]

185

APPENDIX B. A SHIP CONTROL SYSTEM

The control system has a natural decomposition into five subsystems.
These subsystem match the five overviews just given. The subsystems
are

1. Engine Control Subsystem

2. Ship Guidance Subsystem

3. Operator Subsystem

4. Communication Subsystem

5. Collision Detection (Radar/Sonar) Subsystem

B.1.2 The Physical Environment

This section describes the 'environment' that the control system oper
ates in. This environment is defined in terms of the physical devices
that can send data from the external world to the control system and
those devices that can be used to change the outside world. These de
vices are shown in an extended Context Diagram in figure B.l. Those
devices marked with an 'actuator' symbol (circle with a cross) are the
output control devices. Those devices marked with a tilde are devices
that periodically supply the control system with information from the
environment. Those devices marked with a 'c' are input devices that
will return information about the controlled environment when 'Con
sulted' by the control system. The devices with no markings are input
devices that automatically trigger the control system when they have
new information ready to send.

Each device in the external environment generally relates to a spe
cific subsystem. The subsystem decomposition diagram for the control
system is shown in figure B.2. In addition to these devices, there is a
real-time clock that generates an interrupt at regular intervals and that
is used for controlling some of the periodic functions such as the read
ing of the engine temperatures and the redisplaying of the operators
display console as well as recording event times in a ships log.

B.1.3 The Real-Time Triggers and Tasks

After having identified the external devices we must now describe the
actions or tasks that must be under taken associated with each device.
These descriptions are organised according to the subsystem in which

186

"

B,l. THE SHIP CONTROL SYSTEM - REQUIREMENT

Figure B.1: Extended Context Diagram for the Ship Contr 1 yst m

C C

Engine Convol

Oper.,or Collision
DetecUDn

c

Figure B.2: Subsystem Decomposition Diagram for the Ship ontrol
System

187

APPENDIX B. A SHIP CONTROL SYSTEM

Figure B.3: The Crew Display Terminal

the associated task appears. In addition to the actions described in
the follow sections, most of the real-time tasks write an entry to the
ships-log. This records all of the most important actions concerning
the ship such as incoming urgent messages, check point locations on
set courses reached, or critical engines states attained.

Operator Systems

The function of the operator subsystem is to control the crew display
device and interpret and act upon any commands given by the crew.
The crew display is a large graphics display device with a built in key
board and 'pointing device'. The display screen is divided into several
windows each with a specific purpose. To enter data into a window,
the user moves the screen pointer to the window. The windows may be
resized, moved about the display and replaced by an appropriate icon.
The crew display is shown in figure B.3.

The functions of the crew display can be described by defining the
actions of the component windows of the display. All actions to be
taken as a result of commands entered at the crew display should be
executed as soon as possible. The functions of the crew display windows
are now defined.

188

B.l. THE SHIP CONTROL SYSTEM - REQUIREMENTS

• The OBSERVATIONS window. The observations window is shown
in the top left of the display in figure B.a. This is a. circular dis
play that shows the state of the physical environment around the
ship. In the figure, the window is showing the results of the radar
processing. The small square points represent other moving ves
sels in the vacinity. The liI).es coming from these points indicate
the predicted course for the vessel based on previous positions
and velocities. The window can be changed to a similar sonar
image and back again by selecting the sonar button.

• The ENGINE PERFORMANCE window. This is shown in the
bottom left of the display in figure B.a. The window shows the
speed of the ship's two engines (in rpm); the temperature of the
engines in °C and the consumption of each engine in gallons per
second. In addition, the window shows the fuel left in the ships
tanks. This window is an information window only; the informa
tion displayed in it is periodically updated from information read
from the devices in the engine rooms.

• The SHIP DIRECTION/SPEED window. This window is shown
in the bottom right of the display. This window displays the ac
tual bearing (in degrees) and speed (in knots) of the ship. In addi
tion, there are 'sliders' such that the crew may enter the required
speed and bearing. The control system automatically ensures
that the actual velocity matches these requirements. In addition,
there are conventional steering devices in the wheelhouse of the
ship should the control system fail.

• The ENTER COURSE window. This window is shown in the
middle of the displa.y of figure B.a. The window allows the crew
to enter a series of coordinates representing a course that the
ship should follow. When this course has been entered the 'done'
button is pressed. The window contains the two buttons marked
'man' and 'auto'. If 'auto' is selected, the control system attempts
to follow the required course with no intervention from the crew.
If the 'man' option is selected, the crew can take over and steer
the ship using the Direction and Speed window directly.

• The WARNINGS window. This is shown on the top right of the
display of figure B.3. This window displays any important warn
ing message from the computer system. The message is 'flashed'
in the window with an audible bell. The crew can perform no
other action on the display until the 'done' button is pressed.

189

APPENDIX B. A SHIP CONTROL SYSTEM

Such warnings are that the ship is on a collision path with some
ob ject or that the engine speed is too high to be safe .

• The COMMUNCATIONS window. This is shown in the middle
right of the display in figure B.3. The window holds a scrollable
list of incoming messages. A simple view enables the operator to
scroll the list and inspect any message. In addition, the window
has a send mode; a message may be selected from a list of standard
messages using the keypad and sent to a remote ship with which
data communications is possible.

In terms of real-time tasks, the operator subsystem has a separate task
in the windows of the display device for each action that the user can
perform. This does not include actions such as resizing the windows;
these are assumed to be a function of the window management system
and is not considered in this work. The dispay device is 'refreshed' at
regular intervals based on the system clock. The 'input buffer' of the
display device, which records the users actions, is also read at regular
intervals based on the system clock.

Engine Control Subsystem

The engine control and monitoring subsystem is the largest part of the
ship control system. The engines must be run at their most efficient
and within strict safety constraints. This part of the control system
ensures that these constraints are satisfied. The engine control system
is constructed from a number of independent real-time tasks. These
tasks are defined as follows.

• Cri tical Fuel Level. When the ievel of fuel in the tanks drops
below a certain threshold, this task is triggered. A warning must
be displayed on the crew display to show the lack of fuel. In
addition, a message should be send to the nearest re-fueling tanker
requesting supplies. If there is sufficient fuel left, then a course
should be set for this tanker and the control system put into
'manual control' mode; the crew can then enter 'auto' mode, if
required, to steer to the tanker. If there is insufficient fuel to get
there, then the ship should be stopped.

• Critical Engine Temperature. If the engine temperature has reached
a critical value then the amount of coolant entering the engines
should be increased to bring the temperature down and the en
gines should be halted by cutting the flow of fuel to them. A

190

B.l. THE SHIP CONTROL SYSTEM· REQUIREMENTS

warning message should be displayed on the crew display termi·
nal.

• Critical Speed. The speed of the engine has reached a critical
. value. The speed should be reduced by cutting the flow of fuel
to them. A warning message should be displayed on the crew
display terminal.

• Engine 1 consumption. The fuel consumption in gallons per sec
ond is monitored at regular intervals.

• Engine 2 consumption. The fuel consumption in gallons per sec
ond is monitored at regular intervals.

• Engine temperatures. The engine temperatures are sensed at
regular intervals. The amount of coolant that enters the engine is
altered, if necessary, to keep the temperature at a constant value.

• Engine speeds. The crew specify the required speed of the ship
in knots. At regular intervals, the current speed of the engines
in RPM is read together with the current speed of the vessel in
knots. New engine speeds are calculated to match the required
ship speed in knots with the actual speed in knots. This exercise
is carried out at regular intervals.

Ship Guidance Subsystem

The ship guidance system is only used if the crew have selected the
automatic pilot mode from the display console. The main function of
the ship guidance subsys~em is to steer the ship automatically through
a set course of bearings until the ultimate destination is reached.

The ship guidance subsystem is invoked at regular intervals. If autopi
lot is not selected, then the guidance task records the ship's current
location. If auto pilot is selected then the subsystem must compare the
current position of the ship (found by consulting the bearing device)
with the required bearing that is in the course set by the crew. The
appropriate adjustments are made to the ship's rudder to ensure that
the course to the required bearing remains true. If the required bearing
is reached, then the guidance subsystem must steer the ship to the next
point on the set course until the final destination has been reached.

The ship guidance subsystem can be switched off at any time by the
operator selecting 'manual control' on the display console. If the guid.
ance subsystem is just switched off, then the ship continues with the

191

APPENDIX B. A SHIP CONTROL SYSTEM

current rudder and engine speed settings. A new course may only be
entered into the ship guidance subsystem when the ship is in 'manual'
mode.

Communications Subsystem

The function of the communciations subsystem is to handle all elec
tronic message flow between the ship and other ships in the same fleet.
The communications medium used is a packet radio network. A hard
ware radio device can detect a start packet. This device automatically
'screens' out those packets that are not intended for this ship; each
ship has a unique identifier embedded in the start packet, which the
communications device is aware of. When a start packet intended for
this ship is detected, the communications device triggers the commun
ciations subsystem which then logs the message intended for this ship.
The message is then added to the message list in the communications
window of the display device. The messages can have an associated
priority. If the priority of an incoming message is high then a warning
message is also shown on the display device. No further action can then
be taken until this message is read.

All outgoing mail is handled when the display device is regularly read
for new commands. If some outgoing mail has been entered, this is sent
directly to the communications device which forms the message into
packets. The communications device is then responsible for sending,
and if necessary resending, the message. No further action is needed
by the computer control system after the outgoing message has been
forwarded to the communications device.

Collision Detection Subsystem

The collision detection subsystem is probably the most important part
of the control system in terms of safety. The primary role of the sub
system is to ensure that the controlled ship does not collide with any
other seaborne vessel and also that the ship can navigate difficult wa
ters without 'bottoming out'. The collision detection subsystem uses
both a radar and sonar device; the subsystem consists of two real-time
tasks, one to handle the information from each of the devices.

The radar task is triggered when the radar device has a new set of
information to be transferred to the control system. The first function
of the radar task is to look for urgent collisions based on this new data.
The immediate position of the ship is compared with the new set of

192

"
B.2. DATABASE DESIGN

points representing the positions of other vessels (and land masses). If
an unavoidable collision path is detected, the ship must be stopped.
Given that no unavoidable collisions are detected, the radar task must
further analyse the new data. The task maintains a track table that
records the movement of all vessels around the ship. In addition there
is an old track table that records previous locations of other vessels.
The radar" task must save the positions in the current track table in
the old track table. The new set of radar points is then matched to
vessels and the new track table constructed. If any vessel that was
previously in radar site is now no longer, then its entries are deleted
from the old track table. The radar task now examines each entry in
the current and old track tables to predict the future positions of the
vessels. If any vessel is predicted to be on a collision course wi th the
controlled ship, then a warning message is inserted into the message
list for viewing in the communications window. The radar task has
strict timing constraints. Not only is it a safety critical task but also
the task must be executed completely before the next set of input data
has arrived to prevent the build up of extensive data queues.

The role of the sonar task is similar to that of the radar. The track table
consists of both surface and underwater objects that are of interest.
The sonar task must still check for unavoidable collisions, update the
two track tables and check for potential collisions. Although a safety
critical task like the radar task, the sonar task has a longer deadline
due to the nature of the hardware and the time it takes for the sonar
device to prepare each set of data.

B.2 Database Design

It has been decided to implement the ship control system using a real
time database. This database is organised as a set of tables accessi ble by
any task that needs them. The transaction is proposed as an execution
model to provide a fault tole rent execution environment. The structure
and organisation of the individual tables is not of interest at this stage
of the design. The individual tables are treated as 'lockable' entities.
Improved concurrency may be attained through dividing the tables
further, although this is not discussed in this appendix. We also do not
need to know the physical location of a table at this stage, or indeed,
whether a table is replicated or not.

193

"

APPENDIX B. A SHIP CONTROL SYSTEM

B.2.1 The Database

This section of the appendix describes, in overview, each of the main
database tables.

1. CDT (Crew Display Table). This table holds the current view of
the crew display windows. The windows, input fields and state
of the buttons on the crew display are represented within the
database. The CDT is further divided into separate sections, or
sub-tables. These separate sections may be treated as database
entities in their own right; any number may be updated at the
same time. By accessing the CDT, a process can treat all these
separate entities as a whole. The separate entities making up the
CDT are:-

• CDT.OBS the observations window holding the radar/sonar
image.

• CDT.ENG the engine performance window table.

• CDT.DIR the ship direction/speed window table.

• CDT.CRS the ship course window table.

• CDT.WRN the warnings window table.

• CDT.COM the communications window table.

2. CTT (Current Track Table). The current track table holds in
formation about the most recent positions of all objects within
radar and sonar range of the ship. The CTT records such infor
mation as the most recent position, relative size, relative velocity,
predicted future positions etc of the object.

3. OST (Operational State Table). The OST holds information
about the current execution of the ship control system such as the
state of the guidance system (manual or automatic) and whether
the operator requires radar or sonar images etc.

4. OTT (Old Track Table). The old track table holds the previous
locations and times of the objects within radar and sonar range
of the ship. If one of these objects moves out of range, then the
associated entries in the CTT and OTT are deleted. Before the
CTT is updated, the entries in it are added to the OTT; a trace of
the movements of the objects is kept. A maximum of ten entries
for each object are retained in the OTT. This should be enough
to work out the future positions of the objects.

194

,:

B.2. DATABASE DESIGN

5. SLT (Ship Location Table). The SLT holds details of the current
and past locations of the ship. In addition, the current ship speed
and location are recorded. Past locations are added to this table
at regular inten'als and retained for some maximum time.

6. SST (Ship Strategy Table). The SST holds the required course
that the ship should follow if on automatic pilot. One part of the
table holds the next location that should be reached, together
with its bearing from the current location. The rest of the table
holds the future locations. As the next location is reached, it is
replaced by the top of the future positions list from the second
part of the SST.

7. CWT (Collision Warnings Table). The CWT holds details of nil
those objects that are on a potential collision path with the ship.
This table is used to display these objects in a different way in the
observations window of the crew display, thus highlighting those
objects on a. potential collision path.

8. CCT (Collision Critical Table). This table holds details of those
objects that are definitely within the path of the ship. If no
corrective action is taken, then a. collision will occur. The records
in the CCT are used to alert the crew of impending collision.

9. EST (Engine State Table). The engine state table holds the re
quired state of the the ships engines. This state is represented
as the speed of the engines in rpm; the position of the rudder;
the direction of the engines and the required speed of the ship in
knots.

10. EET (Engine Environment Table). The engine environment table
records the state of the engine environment. The table holds such
information as the current fuel flows; fuel levels; position of the
rudder; engine speeds and engine temperatures.

11. CIL (Communications Input Log). As each new message intended
for this ship is detected, it is added to the CIL. When a message
is read by the operator, it is deleted.

12. SRL (Ship Running Log). The ship's log records all significant
events in the lifetime of the ship. Significant events include dan
gerous conditions in the ships engines such as extreme tempera.
tures; high priority messages arriving at the ship; set locations on
the course being passed through and critical collision situations.

195

APPENDIX B. A SHIP CONTROL SYSTEM

In addition, in order to provide a uniform interface for the transactions,
some hardware devices in the system are treated as database entities.
This is similar to the treatment of I/O devices as special files in oper
ating systems. The 'special' database entities, all prefixed with an's'
are :-

1. sRUD (Rudder). Writing to the rudder device changes the posi
tion of the rudder. sRUD is an output device only.

2. sDIB (Display Input Buffer). All data entered by the operator at
the display device is stored in the input buffer of the device. This
may be examined by reading the sDIB. This is an input device
only.

3. sDSB (Display Screen Buffer). The screen image on the display
device is altered by sending a copy of the COT to the sDSB. The
display device takes the information in this buffer and converts it
to the screen image.

4. sCOM (Communications Device). The communications device
is both an input and an output device. If new messages have
arrived, the sCOM-jIiferrupts the control system; a read from the
sCOM then retrieves the packet of information intended for this
ship. Writing a message to sCOM makes the communications
device split the information into packets and transmits it.

5. sESl (Enginel Speed). A read from this device returns the speed
of the first engine. This is an input device only.

6. sES2 (Engine2 Speed). A read from this device returns the speed
of the second engine. This is an input device only.

7. sTMP (Engine Temperature). A read from this device returns
the temperature of the engine room. This is an input device only.

8. sCNl (Enginel Consumption). A read from this input only device
returns the current fuel consumption of the first engine.

9. sCN2 (Engine2 Consumption). A read from this input only device
returns the current fuel consumption of the second engine.

10. sSON (Sonar device). The sonar device causes an interrupt when
it has built up the next sonar image of the environment. A read
from this device then transfers the image to the control system.

196

"
B.2. DATABASE DESIGN

11. sRAD (Radar device), The radar device causes an interrupt when
it has built up the next radar image of the environment, A read
from this device transfers the image to the control system.

12. sBER (Bearing device). A read from this input only device re
turns the current bearing and physical location of the ship.

13. sFVL (Fuel Valve). A write to this output only device changes
the state of the valve introducing fuel to the engines. The engines
can be slowed down or speeded up by changing the state of this
valve.

14. sCVL (Coolant Valve). A write to this output only device changes
the state of the valve introducing coolant to the engines. The
engines can be cooled further by opening the valve.

15. sCLK (System Clock). The current time may be found by reading
the system clock device.

The data entity description of the design process is now complete. To
summarise, the real-time database contains twelve table entities and
fifteen special entities.

B.2.2 Tasks and Database Actions

Now that the database entities have been decided upon, we are in a po
sition to define the real-time tasks in terms of actions on the database.
This section defines the tasks as sets of transactions on the database.
Where some partial ordering among transactions is required, this is
specified as an Application Requirements Constraint (ARC). In addi
tion, the temporal requirements for the tasks are defined.

The timing considerations in these tasks are often arbitrary. In some
, cases, such as the operator tasks, the re-trigger times and deadlines

are artificially small. The actual re-trigger times where there is an
operator involved are likely to be of the order of seconds rather than
the millisecond deadlines of other tasks. In the transaction sets for the
tasks a read of a data entity is shown as the entity name prefixed with
a 'r'. Similarly, a write is shown as 'w' and the name of the entity.
Where a choice must be made within a set, those subsets that must
be executed on each outcome of the choice are represented as indented
sets of transactions.

In order to present the method for static analysis of the execution times
for the tasks, we assign fixed times to the elements of a transaction. \Ve

197

"

APPENDIX B. A SHIP CONTROL SYSTEM

assume that reads and writes of a database entity take 2 and 4 units of
time respectively. There is also the assumption that a read to a special
device entity takes 4 units of time and a write takes 6. In a real system,
these figures would be worked out for each specific entity.

The actual execution time of the transaction is not considered in the
analysis. The execution time is considered insignificant compared with
the reading and writing time of the entities. In a real system, these
execution times would not be insignificant and must be considered in
the execution time of each transaction. All timings are expressed in
some arbitrary unit of time, the Time Unit, TU.

Task 1 : Read operator display device

Trigger Period 20 TU
Deadline 20 TU Processing Set

1. rsDIB wCDT - get the input data and make the appropriate
changes to the CDT (E=6)

2. rCDT.DIR wEST - get the required engine parameters and put
in the engine state table (E=6) (ARC 1)

Task 2 : Refresh operator display device

Trigger Period 20 TU
Deadline 20 TU
Processing Set

1. rEET wCDT.ENG - write the engine performance to the screen
(E=6)

2. rOST rCTT rOTT wCDT.OBS - write the radar or sonar image
to the screen (E=10)

3. rCDT wsDSB - write the CDT table to the device buffer (E=8)
(ARC 1,2)

Task 3 : Sonar to Radar Display

Trigger Aperiodic - Minimum re-trigger time 40 TU

198

B.2. DATABASE DESIGN

Deadline 20 TU Processing Set

1. wOST - Change the OST entry to indicate radar (E=4)

Task 4 : Radar to Sonar Display

Trigger Aperiodic - Minimum re-trigger time 40 TU
Deadline 20 TU Processing Set

1. wOST - Change the OST entry to indicate sonar (E=4)

Task 5 : Manual to Autopilot

Trigger Aperiodic - Minimum re-trigger time 40 TU
Deadline 20 TU Processing Set

1. rSST - check the strategy table for a course (E=2)

"

2. If no strategy wCDT.WRN - write a warning message (E=4)

3. rsCLK wSRL - update the log (E=8)

"

4. If strategy exists wOST - Show that autopilot is now operative
(E=4)

5. rsCLK wSRL - update the log (E=8)

Task 6 : Autopilot to Manual

Trigger Aperiodic - Minimum re-trigger time 40 TU
Deadline 20 TU Processing Set

1. wOST - Show that manual control is now operative (E=4)

2. rsCLK wSRL - update the log (E=8)

199

APPENDIX B. A SHIP CONTROL SYSTEM

Task 7 : Change Required Speed

Trigger Aperiodic - Minimum re-trigger time 20 TU
Deadline 20 TU Processing Set

1. rCDT.DIR wEST - update the Engine state table from the DIR
window (E=6)

Task 8 : Change Required Bearing

Trigger Aperiodic - Minimum re-trigger time 20 TU
Deadline 20 TU Processing Set

1. rCDT.DIR wEST - update the Engine state table from the DIR
window (E=6)

Task 9 : Respond to Warning Message

Trigger Aperiodic - Minimum re-trigger time 20 TU
Deadline 20 TU Processing Set

1. wCDT. WRN - clear the message away (E=4)

2. rsCLK wSRL - update the log (E=8)

Task 10 : Accept New Course

Trigger Aperiodic - Minimum re-trigger time 20 TU
No Deadline Processing Set

1. rOST (E=2)

2. If in manual mode rCDT.CRS wSST - get the new course from
the window and put in the strategy table (E=6)

3. rsCLK wSRL - update the log (E=8)

200

B.2. DATABASE DESIGN

Task 11 : Send Message

Trigger Aperiodic - Minimum re-trigger time 20 TU
Deadline 20 TU Processing Set

"

1. rCDT.COM wsCOM - pass the message io the coinms device
(E=8)

2. rsCLK wSRL - update the log (E=8)

Task 12 : Display Incomming Message

Trigger Aperiodic - Minimum re-trigger time 20 TV
Deadline 20 TU Processing Set

1. rCIL wCDT.COM - get the message from the communication
input log and display in the communications window (E=6)

Task 13 : Fuel Level Critical

Trigger Aperiodic - Minimum re-trigger time 2000 TU
Deadline 2000 TU Processing Set

1. rsCLK wSRL - update the log (E=8)

2. waST - move to manual (E=4)

3. rSLT rCTT - determine how far away the nearest fuel tanker is
(E=4) (ARC 2)

4. If the tanker is within range rCTT rSLT wSST - set course for
the nearest refueling tanker (E=8)

5. rSST wsCOM - send a message to the tanker to prepare for
refueling at a given location in the strategy table (E=8) (ARC 4)

6. If too far away wsFVL - stop the engines (E=6)

7. wEST (E=4)

8. wCDT.DIR (E=4)

201

APPENDIX B. A SHIP CONTROL SYSTEM

9. rSLT wsCOM - send a location message to the tanker (E=8)
(ARC 6,7,8)

10. rSLT wsCOM - send a location message to fleet hq (E=8)

"

11. wCDT.WRN - Write out the warning message (E=4) (ARCl,5,9,10),

Task 14 : Critical Engine Speed

Trigger Aperiodic - Minimum re-trigger time 5000 TU
Deadline 2000 TU Processing Set

1. wsFVL - close the fuel valves (E=6)

2. wEST - zero the speed in the engine state table (E=4)

3. wCDT.DIR - zero the speed in the display device window (E=4)

4. rsCLK wSRL - update the log (E=8)

5. wCDT.WRN - give a warning message (E=4) (ARC 1,2,3,4)

Task 15 : Critical Engine Temperature

Trigger Aperiodic - Minimum re-trigger time 1000 TU
Deadline 2000 TU Processing Set

1. wsFVL - close the fuel valves to shut off the engine (E=6)

2. wsCVL - open the coolant valves to maximum (E=6)

3. wEST - zero the speed in the engine state table (E=4)

4. wCDT.DIR - zero the speed in the display device window (E=4)

5. rsCLK wSRL - update the log (E=8)

6. wCDT.WRN - give a warning message (E=4) (ARC 1,2,3,4,5)

202

B.2. DATABASE DESIGN

Task 16 : Read Engine 1 Consumption

Trigger Period 1000 TV
deadline 1000 TV Processing Set

1. rsCNl wEET (E=8) .

Task 17 : Read Engine 2 Consumption

Trigger Period 1000 TV
Deadline 1000 TV Processing Set

1. rsCN2 wEET (E=8)

Task 18 : Read Engine Temperature

Trigger Period 1000 TV
Deadline 1000 TV Processing Set

1. rsTMP wEET - read the temperature and save in the environment
table (E=8)

2. rEET rEST wsCVL - read the temp and the desired temperature
range and alter the state of the coolant valve as necessary (E=10)

Task 19 : Check Engine Speed

Trigger Period 1000 TV
Deadline 1000 TV Processing Set

1. rsESl rEST wsFVL - change the fuel setting for the first engine
(E=12)

2. rsES2 rEST wsFVL - change the fuel setting for the second engine
(E=12)

203

APPENDIX B. A SHIP CONTROL SYSTEM

Task 20 : Guidance System - check position

Trigger Period 2000 TU
Deadline 1000 TU Processing Set

1. rsBER wSLT - update the ship location table with the new loca
tion (E=8)

2. rOST - check the OST to make sure we are in autopilot (E=2)
(ARC 1)

3. If in autopilot rSLT rSST - compare actual with required position
(E=4)

4. If position reached rsCLK wSRL - update the ships log (E=8)

5. wSST - get the next position (E=4)

6. rSLT rSST wsRUD - alter the rudder to steer a true course
(E=10)

Task 21 : Incoming message

Trigger Aperiodic - Minimum re-trigger time 1000 TU
Deadline 500 TU Processing Set

1. rsCOM rsCLK wCIL - update the communications input log with
a new message header (E=10)

2. rsCOM wCIL - get the rest of the message (E=8)

3. rCIL (E=2)

4. If a mayday rsCLK wSRL - update the log (E=8)

5. wOST - put in manual mode (E=4)

6. rCIL rCTT rSLT wSST - generate a course to the distressed
vessel (E=lO) (ARC 5)

7. wsCOM - output a comms message to state intention to go to
aid of vessel (E=6)

8. wCDT.WRN - output a warning message (E=4) (ARC 4,6,7)

204

t.,

"

B.2. DATABASE DESIGN

Task 22 : Radar data ready

Trigger Period 1000 TU
Deadline 1000 TU Processing Set

1. reTT wOTT - update the old track table (E=6)

2. rsRAD weTT - generate the new set of points from the radar
image (E=8)

3. rCTT rOTT rSLT rSST wCWT - check for any potential collisions
(E=12)

4. rCTT rOTT rSLT rSST - check for unavoidable collisions (E=8)

5. If there are unavoidable collisions rCTT rOTT rSLT rSST wSRL
- update the log (E=12)

6. rCTT rOTT rSLR rSST wCCT - update the collision critical
table (E=12)

7. wEST - shut off the ships engines (E=4)

8. wsFLV - close off all fuel (E=6)

9. rCTT rOTT rSLT rSST wsCOM - output a mayday (E=14)

10. rCTT rOTT rSLT rSST wCDT.WRN - generate a warning
message (E=12) (ARC 5,6,7,8,9)

Task 23 : Sonar data ready

Trigger Period 2000 TU Deadline 2000 TU Processing Set

1. rCTT wOTT - update the old state table (E=6)

2. rsSON wCTT - generate the new set of points from the radar
image (E=8)

3. rCTT rOTT rSLT rSST wCWT - check for any potential collisions
(E=12)

4. reTT rOTT rSLT rSST - check for unavoidable collisions (E=8)

205

APPENDIX B. A SHIP CONTROL SYSTEM

5. If there are unavoidable collisions rCTT rOTT rSLT rSST wSRL
- update the log (E=12)

6. rCTT rOTT rSLR rSST wCCT - update the collision critical
table (E=12)

7. wEST - shut off the ships· engines (E=4)

8. wsFLV - close off all fuel (E=6)

9. rCTT rOTT rSLT rSST wsCOM - output a mayday (E=14)

10. rCTT rOTT rSLT rSST wCDT.WRN - generate a warning
message (E=12)

The real-time tasks have now been defined in terms of actions on the
real-time database. To summarise, the system consists of twenty three
distinct real-time tasks.

B.3 Data Dependency Analysis

The independent tasks are linked by data dependencies at the trans
action level. The transaction sets a re analysed and data dependency
rings drawn, using the DDR CASE Tool (described in Appendix A),
for each of the entities in the real-time system. For the sake of clar
ity, explicit representation of choice has been ommitted from the data
dependency rings; the nested representation of transaction sets and se
lected subsets provides the information necessary to work out the scope
of choice. These DDRs are shown in the first set of following figures.

Now that we have carried out the data dependency analysis, we can
deduce the transaction precedence graph for each of the tasks. These
graphs are shown in the following figures.

B.4 Transaction/Data Entity allocation

Given the transaction precedence graphs for each task and the data
dependency rings, an allocation of transactions and data. entities to a
set of physical processors may be made. This section of the appendix
describes such an allocation and how it was done. Given this alloca
tion, a static analysis of the system may be carried out. A complete

206

B.4. TRANSACTION/DATA ENTITY ALLOCATION

Figure B.4: Data Dependency Rings for the Ship Control Syst m

207

APPENDIX B. A SHIP CONTROL SYSTEM

· 'f&.

Figure 8.5: Data Dependency Rings for the Ship Control System

208

B.4. TRANSACTION/DATA ENTITY ALLOCATION

Figure B.6: Data Dependency Rings for the Ship Control System

209

APPENDIX B. A SHIP CONTROL SYSTEM

Figure B.7: Data Dependency Rings for the Ship Control System

210

BA. TRANSACTION/DATA ENTITY ALLOCATION

sRUD sDIB

Figure B.8: Data Dependency Rings for the Ship Control System

211

APPENDIX B. A SHIP CONTROL SYSTEM

sDSB

l,Z

sESl sES2

Figure B.9: Data Dependency Rings for the Ship Control System

212

BA. TRANSACTION/DATA ENTITY ALLOCATION

sTHP seN!

sCN2 sSON

Figure B.10: Data Dependency Rings for the Ship Control System

213

APPENDIX B. A SHIP CONTROL SYSTEM

sRAD sBER

Figure B.ll: Data Dependency Rings for the Ship Control System

214

"
B.4. TRANSACTION/DATA ENTITY ALLOCATION

Figure B.12: Data Dependency Rings for the Ship Control System

Task 1 Task 2 Task 3 Task 4

~ cp
E=4 E=4

E=12
E=18

Task 5

<0
c&~

00 0
00

0
0 °

Task 6 Task 7

~ ~
E=8 E=6

Task 8

t
E=G

E= 10

Figure B.13: Transaction Precedence Graphs: Tasks 1 to 8

215

"

Ta.k 9

Task 11

APPENDIX B. A SHIP CONTROL SYSTEM

T~'.

<."~
·0····· .

E-10

T .. k 12

~ E-.

Ta.k 13

Figure B.14: Transaction Precedence Graphs: Tasks 9 to 13

T .. k14 Ta.k 15
T .. k 11 Task 17

~ cp
E=I E-I

E=12

T .. k 18

Figure B.15: Transaction Precedence Graphs: Tasks 14 to 19

216

,-
BA. TRANSACTION/DATA ENTITY ALLOCATION

T~.

:: 0 ·
\ ~. 5 "l · . · . . . \. ····0

· · · · · .
ti"

E=32

, .

Task 21

o. 0

.0'

E-40

Figure B.16: Transaction Precedence Graphs: Tasks 20 to 21

Task 22

.. -. , .

· · ·
" '

E=36

· ·

Task 23

.' , .
.. ,.'

· " ...
" " . ..

E=36

Figure B.17: Transaction Precedence Graphs: Tasks 22 to 23

217

"

APPENDIX B. A SHIP CONTROL SYSTEM

static analysis is beyond this appendix. However, some static analysis
examples are presented here to show the work that needs to be done to
determine the schedulability of the implementation.

B .4.1 An allocation

Clusters and Logical Processors

Given the transaction precedence graphs for the real-time tasks we can
construct a distribution of clusters and logical processors as described
in Chapter 4. For each task, there is one cluster. Each cluster is made
up of as many logical processors as are needed to make the best use
of concurrency within the task. This concurrency is measured by the
width of the transaction precedence graph for a task.

For example, consider the transaction precedence graph for task 9.
Transactions 1 and 2 can execute concurrently so there will be two
logical processors in the cluster for task 9; the first processor executes
transaction 1 and the second executes transaction 2. Further consider
the graph for task 10. In this task there are again two logical processors
in the cluster. The first processor executes transactions 1 and then 2
and the second executes transaction 3 (concurrently with transaction
2). Transactions 1 and 2 can share a processor since they are sequential
(sequence implied by the select construct in the graph).

This execise is now repeated for each of the processors. In the follow
ing cluster descriptions, each logical processor is called pX where X is
an integer. For each logical processor, the transactions that are to
be executed on it and the data entities that must be sited at it are
specified in order that the transactions·do not require any remote data
access. The data entities are listed first; transactions are written as
task number. transaction number.

Cluster 1
pl sDIB CDT EST
1.1 1.2

Cluster 2
pl EET CDY.ENG CDT sDSB
2.1 2.3 p2 OST CTT OTT CDT.OBS
2.2

Cluster 3
plOST
3.1

218

BA. TRANSACTION/DATA ENTITY ALLOCATION

Cluster 4
pl0ST
4.1

Cluster 5
pI SST CDT.WRN OST
5.1 5.25.4
p2 sCLK SRL
5.3 5.5

Cluster 6
pl0ST
6.1
p2 sCLK SRL
6.2

Cluster 7
pI CDT.DIR EST
7.1

Cluster 8
pI CDT.DIR EST
S.l

Cluster 9
pI CDT.WRN
9.1
p2 sCLK SRL
9.2

Cluster 10
pI OST CDT.CRS SST
10.1 10.2
p2 sCLK SRL
10.3

Cluster 11
pI CDT.COM sCOM
11.1
p2 sCLK SRL
11.2

Cluster 12
pI CIL CDT.COM
12.1

Cluster 13
pI sCLK SRL CDT.WRN

219

.;

APPENDIX B. A SHIP CONTROL SYSTEM

13.1 13.11
p2 OST CTT SLT SST sCOM sFVL
13.2 13.3 13.4 13.5 13.6
p3 EST SLT sCOM
13.7 13.9 13.10
p4 CDT.DIR
13.8

Cluster 14
pI sFVL CDT.WRN
14.1 14.5
p2 EST
14.2
p3 CDT.DIR
14.3
p4 sCLK SRL
14.4

Cluster 15
pI sFVL CDT.WRN
15.1 15.6
p2sCVL
15.2
p3 EST
15.3
p4 CDT.DIR
15.4
p5 sCLK SRL
15.5

Cluster 16
pI sCNl EET
16.1

Cluster 17
pI sCN2 EET
17.1

Cluster 18
pI sTMP EET EST sCVL
18.1 18.2

Cluster 19
pI sESl EST sFVL sES2
19.1 19.2

Cluster 20

220

"

BA. TRANSACTION/DATA ENTITY ALLOCATION

pI sBER SLT OST SST sCLK SRL sRUD
20.1 20.2 20.3 20.4 20.6
p2 SST
20.5

Cluster 21
pI sCOM sCLK CIL SRL CDT.WRN
21.1 21.2 21.3 21.4 21.8
p2 SST
20.5

Cluster 22
pI CTT sRAD OTT SLT SST CWT
22.1 22.222.3
p2 CTT OTT SLT SST SRL
22.4 22.5
p3 CTT OTT SLR SST CCT
22.6
p4 EST
22.7
p5sFLV
22.8
p6 CTT OTT SLT SST sCOM
22.9
p7 CTT OTT SLT SST CDT.WRN
22.10

Cluster 23
pI CTT sSON OTT SLT SST CWT
23.1 23.2 23.3
p2 CTT OTT SLT SST SRL
23.4 23.5
p3 CTT OTT SLR SST CCT
23.6
p4 EST
23.7
p5sFLV
23.8
p6 CTT OTT SLT SST sCOM
23.9
p7 CTT OTT SLT SST CDT.WRN
23.10

We have now reached the stage where for each task, we have defined a
cluster of logical processors. For each processor within these clusters,

221

APPENDIX B. A SHIP CONTROL SYSTEM

we have stated the transactions and data entities that must be resident
for the maximum concurrency within the task to be achieved.

Reducing Logical Processors to Physical Processors

If we were to transfer the above distribution of transactions and logical
processors directly to a physical network, we would need one physical
processor for each logical processor. This amounts to 54 processors
which is obviously very wasteful on such a simple application. Suppose
the ship control system is required to use a maximum of 6 processors.
We need to map the logical processors of the above clusters onto these
6 physical processors. This is carried out using the heuristics given in
Chapter 4. These 'rules' (a) assign logical processors to physical pro
cessors such that as far as possible, logical processors from the same
cluster as not assigned to the same physical processor (thus allowing
concurrency within a task where possible) and (b) assign a logical pro
cessor to a physical processor that already has the required entities (or
the greatest subset of them) already assigned.

This assignment of logical to physical processors relies on the judge
ment of the designer to some extent as well as the heuristic placement
rules. As a result there are many different allocations to a physical
processor set. The following is one such allocation. The notation is
straight forward. For each physical processor, those logical processors
allocated to it are listed. For example, physical processor 5 (P5) has
the transactions and data entities from cluster 20 logical processor 2
(c20.p2) allocated to it.

Physical Processor PI cl.pl, c2.pI, c7.pl, cS.pl, cl3.p3, cl4.p2,
cl5.p2, cl5.p3, cI6.pl, cI7.pl, cIS.pI, c19.pl, c22.p4, c23.p4
Physical Processor P2 c2.p2, c3.pI, c4.pI, c6.pl, cl3.p2, c21.p2,
c22.pl, c23.pl, c22.p5, c23.p5
Physical Processor P3 c5.pI, cIO.pl, c14.p3, cI5.p4, c20.pl, c22.p3,
c23.p3, c22.p7, c23.p7
Physical Processor P4 c5.p2, c6.p2, c9.p2, c10.p2, c1l.p2, c12.pI,
c14.p4, c15.p5
Physical Processor P5 c20.p2, c22.p2, c23.p2
Physical Processor P6 c9.pI, c1l.pl, cI2.pI, c13.p4, cl4.pl, cI5.pI,
c21.pI, c2l,p3, c22.p6, c23.p6

This allocation is described in more detail listing in full the transactions
and entities that are required at each of the physical processors in a
distributed network implementation. These are shown in the following
tables.

222

,: .

BA. TRANSACTION/DATA ENTITY ALLOCATION

Processor 1
Transactions Entities Devices
1.1 1.2 CDT sDIB
2.1 2.3 EST sDSB
7.1 EET sCOM
8.1 SLT sCVL
13.7 13.9 13.10 CTT sCNl
14.2 OTT sCN2
15.2 15.3 SST sTMP
16.1 CDT.WRN sESl
17.1 sFVL
18.1 18.2 sES2
19.1 19.2
22.7 22.9 22.10
23.7 22.9 23.10

Processor 2
Transactions Entities Devices
2.2 OST sCOM
3.1 CTT sFVL
4.1 OTT sRAD
6.1 CDT.OBS sSON
13.2 13.3 13.4 13.5 13.6 SLT
21.5 21.6 SST
22.1 22.2 22.3 22.8 CIL
23.1 23.2 23.3 23.8 CWT

SRL

Processor 3
Transactions Entities Devices
5.1 5.25.4 SST sBER
10.1 10.2 CDT.WRN sCLK
14.3 OST sRUD
15.4 CDT.CRS
20.1 20.2 20.3 20.4 20.6 SST
22.6 23.6 CDT.DIR

SLT
SRL
CTT
OTT
CCT

223

APPENDIX B. A SHIP CONTROL SYSTEM

Processor 4
Transactions Entities Devices
5.3 5.5 CDT.WRN sCLK
6.2 SRL
9.2
10.3
11.2
13.1 13.11
14.4
15.5

Processor 5
Transactions Entities Devices
20.5 SST
22.4 22.5 CTT
23.4 23.5 OTT

SLT
SRL

Processor 6
Transactions Entities Devices
9.1 CDT.WRN sCOM
11.1 CDT.COM sFVL
12.1 CIL sCLK
13.8 CDT.DIR
14.114.5 SRL
15.1 15.6 OTT
21.2 21.3 21.4 21.7 21.8

Determining the Location .of Scheduling Components

According to the execution environment in chapter 5, it is desirable
to have one transaction scheduler for each task and one critical region
scheduler for each data entity. The transaction scheduler implements
a 'control token' based execution scheme to ensure the transactions
are executed in the correct order; the critical region schedulers ensure
that conflicting access to shared data entities is avoided. An important
question now arises. Where are the transactions and critical region
schedulers to be placed in the network of 6 processors. In order to
reduce inter-processor communication as much as possible, the trans
action scheduler for a task should be placed on that processor which
has the most transactions for the task. Similarly, the critical region

224

.. -

...
BA. TRANSACTION/DATA ENTITY ALLOCATION

scheduler for a data entity should be placed with that copy of the en
tity such that the controlling processor has the highest proportion of
transactions that use the entity.

U sing these two rules of thumb and using the data dependency rings
to guide the placement of the critical region schedulers, we get the
following allocation of scheduling components to processor in the im
plementation of the ship control system.

Placement of Transaction Schedulers to Processors
Task Processor Task Processor Task Processor
1 1 2 1 3 2
4 2 5 3 6 4
7 1 8 1 9 6
10 3 11 6 12 6
13 2 14 6 15 6
16 1 17 1 18 1
19 1 20 3 21 6
22 2 23 2

Placement of Critical Region Schedulers to Processors
Entity Processor Entity Processor Entity Processor
CDT 1 CDT.OBS 1 CDT.ENG 1
CDT.DIR 1 CDT.CRS 1 CDT.WRN 1
CDT.COM 1 CTT 2 OST 2
OTT 2 SLT 3 SST 3
CWT 2 CCT 3 EST 1
EET 5 CIL 6 SRL 4
sRUD 3 sDIB 1 sDSB I
sCOM 6 sESI I sES2 1
sTMP I sCNI I sCN2 I
sSON 2 sRAD 2 sBER 3
sFVL 2 sCVL I sCLK 4

B.4.2 Analysis

This section describes some of the analysis that is necessary to check the
schedulability of the task set on the physical processors. The complete
static analysis is long and involved and consequently beyond the scope
of this appendix. This section demonstrates examples of the analysis
that are required. Firstly, the 'raw' processing power of processor P5 is
considered. Following this, the schedulability of Task 21 is considered.

225

APPENDIX B. A SHIP CONTROL SYSTEM

Power of Processor P 5

In considering an allocation of transactions to processors, it is impor
tant to check that the processor is powerful enough to execute all of the
transactions before their deadlines, regardless of any problems caused
by shared data between the transactions. For each shared resource,
and this includes both processors and data entities, the 'raw processing
power,3 must be checked.

Consider the processing power of processor P5. This processor has parts
of tasks 20, 22 and 23 allocated to it. We must first express these task
parts as sub-tasks in their own right with their own execution times
and deadlines.

The sub-task of task 20 has a trigger time 14 TU after the start of the
whole task (that is after transactions 20.1, 20.2 and 20.3 have com
pleted). The sub-task of task 20 must complete such that transaction
20.6 (with exectime of 10 TU) can execute before the deadline of the
complete task. The deadline for the sub-task of task 20 is therefore
14+10 TU before the deadline of the complete task. The sub-task of
task 20 therefore has an execution time of 4 TU and a deadline of 976
TU.

The sub-task of task 22 has a trigger time of 14 TU after the start of the
whole task (that is afetr transactions 22.1 and 22.2 have completed).
Since no transactions from task 22 follow those allocated to processor
P5, the deadline for the sub-task of task 22 is therefore 14 TU before
the deadline of the complete task. The sub-task of task 22 therefore
has an execution time of 20 TU and a deadline of 986 TU.

The sub-task of task 23 has a trigger time of 14 TU after the start of the
whole task (that is afetr transactions 23.1 and 23.2 have completed).
Since no transactions from task 23 follow those allocated to processor
P5, the deadline for the sub-task of task 23 is therefore 14 TU before
the deadline of the complete task. The sub-task of task 23 therefore
has an execution time of 20 TU and a deadline of 1986 TU.

Given these characteristics, and assuming that the minimum re-trigger
times for the tasks are at the deadlines calculated, we can calculate
a common re-trigger time of 477799284 TU. This represents 489549
triggering of task 20 (execution time on this processor of 1958196

3It doesn't really make much sense to refer to the raw processing power of a data
entity; the term is meant to convey the idea of the ability of all transactions to use
the resource before their deadlines while ignoring the restriction that transactions
must be executed as an atomic unit. If the resource fails this test then there is no
point in continuing with the static analysis

226

..
BA. TRANSACTION/DATA ENTITY ALLOCATION

TU)j 484584 triggerings of task 22 (execution time on this processor
of 9691680 TU) and 240584 triggerings of task 23 (execution time on
this processor of 4811680). The total execution time of 16461556 is less
than the common re-trigger time calculated and hence these tasks pass
the first test: there is enough raw processing power to complete the
tasks before their deadlines.

This type of reasoning should be repeated for each of the other proces
sors and also for any other shared resource e.g. shared data entities and
hardware devices. Even from this simple example, it is seen that the
numbers generated by this stage of the analysis may be prohibitively
large.

Schedulability of Task 21

On successful completion of the first stage of the analysis, a more de
tailed examination of each of the tasks can be carried out. This ex-

. amination tests to see that the tasks are schedulable using a particular
scheduling policy. The first set of tests should check that the scheduling
policy works for the tasks on each of the processors given that the tasks
should execute as indivisible units. The second set of tests checks that
each task can meet its deadlines given the scheduling policy and recog
nising that each critical region within the task must be executed as an
indivisible unit. This last series of tests check that the critical regions
on each entity can be serialised such that each meet their deadline.
For the EDF scheduling policy, each of these tests are broken into two
partsj the first considers the case when the tasks are non-preempt able,
the second considers the case when the tasks are pre-emptable (once
only for the sake of argument).

The first part of the tests is demonstrated for Task 21. Task 21 is
located on processors P2 and P6. For each of these processors, we
must describe the transactions that are placed on them in terms of
ammended deadlines and re-trigger times. As in the tests to validate
the raw processing power, the deadline of a sub-task on a processor is
brought closer based on the amount of work the task has completed
when it started the transactions on this processor and how much work
after these transactions there is left to complete. For the tasks on
processor P2 we have the the following ammened task characteristics:

227

APPENDIX B. A SHIP CONTROL SYSTEM

Ammended Task Characteristics for P2
Task Execution Time Deadline M.R.T.
2 10 12 20
3 4 20 40
4 4 20 40
6 4 8 40
13 24 1996 2000
21 9 476 1000
22 26 1000 1000
23 26 2000 2000

With non-preemptive EDF scheduling, the worst case scenario for task
21 occurs when it is triggered just as a task with the longest execution
time starts executing on this processor. This might be either task 22 or
23 since they both cause task 21 to wait for 26 TUs. The worst case for
the task then continues with all those tasks with sooner deadlines con
tinually re-triggering. The soonest time that task 21 can begin execut
ing can be calculated and thus it can be determined in this worst case,
whether the deadline is met or not. For this example, the worst case
consists of the 26 TU delay already mentioned as well as re-triggerings
of tasks 2,3,4 and 6. Even a cursory examination of these tasks will
show that task 21 cannot meet its deadline. Indeed, simultaneous trig
gerings of tasks 2 and 6 cannot even meet both deadlines. The analysis
shows that the tasks on this processor do not meet their deadlines and
corrective action needs to be taken.

We now demonstrate the similar test to show that a set of critical
regions on a data entity can be scheduled correctly. Consider the En
gine Environment Table EET. Constructing the sub-tasks that must be
scheduled through this data entity we get the following:

Sub-tasks to be scheduled through the EET
Task Exectime Deadline M.R.T
2 6 12 20
16 8 1000 1000
17 7 1000 1000
18 18 1000 1000

Let us consider the non-preemptive case. The worst case delay that
task 2 suffers from contention on this data entity is when it has to wait
for task 18 to complete its use of the entity. This delay is 18 TU. Since
the slack of task 2 cannot accommodate this delay, there is a problem
that must be resolved. The worst case delay that task 16 suffers occurs
when it has to first of all wait for task 18 to complete (18 TUs) and

228

"
B.5. CONCLUSIONS

then wait for one occurance of task 2 (with its sooner deadline) to finish
(6 TUs). This delay is 24 TUs; the slack of task 16 can accommodate
this delay.

In the preemptive case, task 2 does not have to suffer any delay; the
task can always begin executing, until it gets to the stage where a given
task has been preempted by t~k 2 too many times and the system
moves over to a non-preemptive scheduler to give the preempted task
processor time. As an example of one of the other tasks consider task
18. The worst case for this is if it is interrupted just as it was about to
complete, by a triggering of task 2. The delay is thus 18 TUs (for the
aborted execution of the task) plus 6 TUs (triggering of task 2) i.e. 24
TUs. This can easily be accommodated within the slack of the task.

B.5 Conclusions

The example described in this appendix shows the complete develop
ment of a relatively large real-time database system from its high level
description through to the allocation of transactions and data entities in
a distributed replicated database environment. Hints, as to the static
analysis that is required to prove the schedulability of the real-time
tasks are given.

The example clearly demonstrates the applicability of the design method
ology. Each stage of the method had a set of deliverables that were used
in the next stage to further the development. The first main stage of
the methodology, setting up the context diagrams and describing the
database entities was fairly straigtforward. The CASE tool described
in the previous appendix was used to generate the context diagram of
figure B.1. The next stage; describing the real-time tasks in terms of
actions on this database proved to be the stage of the method that
was most open to problems. The final design is very much dependent
on the success of this stage; other stages from this being mechnanical
transformations from this stage. For the simple ship control example,
the transaction decomposition was relatively painless however. The
CASE tool was then used to generate the data dependency rings and
transaction precedence graphs shown in the previous figures.

The allocation scheme illustrated in the example was the one described
in chapters 4 and 5. Although a simple process, the scheme suffers from
the problem of uneven static load balancing. This is illustrated in the
large number of transactions allocated to processor 1 and less allocated
to processor 5 for example.

229

"

APPENDIX B. A SHIP CONTROL SYSTEM

The static schedulability analysis illustrated at the end of the design
exercise highlights a further Haw in the method. This is that the static
analysis is a very laborious task. Indeed, in the example, a very small
part of the necessary analysis was carried out. The CASE tool offers
some support for the analysis, but it is, by no means, complete.

230

,)

Appendix C

An analysis Example

In this appendix we present a simple, but complete, static analysis of
an example task set to check whether or not the task set is sound. The
analysis has the following steps.

1. Check serialisation through processors

2. Check serialisation through data entities

3. Check shared data - no preemption

4. Check shared data - preemption and backoff

Step 1 checks that there is enough CPU time to fully execute the tasks
assuming that the task set is fully preemptable and that the processor
is the only shared resource. If the task set is unsound in this, the best
case, there is no point in further analysis. Step 2 checks that there
is enough CPU time to meet the use of each data entity. This step
treats the data entity as if it were a processor and each task using
this is preemptable. If the task set is unsound at this stage, then it is
impossible for the task set to make serial, non-preemtable, use of the
data entity. Steps 3 and 4 check to see that a valid schedule is possible
for tasks using each data entity. This schedule provides each task with
uninterrupted use of the data entity.

For consiseness, the temporal properties of a task may be described by
the tuple

Task no. (execution time, deadline, MRT)

Consider the following task set.

231

APPENDIX C. AN ANALYSIS EXAMPLE

• 1{2,1O,10) has critical regions on A

• 2{3,1O,10) has critical regions on AB

• 3(5,20,20) has critical regions on B

• 4(3,15,15) has critical regions on C

• 5(2,10,10) has critical regions on C

A task/data entity allocation scheme has been proposed. Tasks 1,2 and
3 together with data entities A and B are placed on processor 1. Tasks
4 and 5 and data entity C are placed on processor 2. The static analysis
for the suitability of EDF scheduling on this task set is carried out as
follows:

Check Serialisation Though Processors

Processor 1

Earlist Common Retrigger Time • 20 TU
No of triggers of Task 1 • 20/10 - 2 • 4 TU
II II II II II 2 _ 20/10 • 2 • 6 TU
"" II II II 3 == 20/20 = 1 == 5 TU

15 TU <- 20 TU

Processor 1 okay

Processor 2

Earlist Common Retrigger Time • 30 TU

15

No of triggers of Task 4 • 30/15 • 2 • 6 TU
II II II II II 5. 30/10 • 3 • 6 TU

12 TU <- 30 TU
Processor 2 okay

Check Serialisation Through Shared Data

Data Entity A

232

12

Earlist Common Retrigger Time = 10 TU
No of triggers of Task 1 = 10/10 = 1 = 2 TU
,,\I " ,,\I 2 = 10/10 = 1 = 2 TU

4 TU <= 10 TU
Data Entity A okay

Data Entity B

Earlist Common Retrigger Time = 20 TU

4

No of triggers of Task 2 = 20/10 = 2 = 4 TU
"II " ,,\I 3 = 20/10 = 1 = 5 TU

9 TU <= 20 TU
Data Entity B okay

Data Entity C

Earlist Common Retrigger Time = 30 TU

9

No of triggers of Task 4 = 30/15 = 2 = 6 TU
"II " ,,\I 5 = 30/10 = 1 = 6 TU

12 TU <= 30 TU
Data Entity C okay

12

Check For Shared Data With No Preemption

Task 1

Worst case delay is when T1 is triggered just after T2
starts executing.
delay = 3 TU (exec time of T2) <= 8 TU (slack of T1)
Task 1 okay in the worst case.

Task 2

Worst case delay is when T2 is triggered just after T3
starts executing.
delay = 5 TU (exec time of T3) <= 7 TU (slack of T2)
Task 2 okay in the worst case.

233

APPENDIX C. AN ANALYSIS EXAMPLE

Task 3

Worst case delay is when T3 is triggered just after T2
starts executing.
delay = 3 TU (exec time of T2) <= 15 TU (slack of T3)
Task 3 okay in the worst case.

Task 4

Worst case delay is when T4 is triggered just after T5
starts executing.
delay = 2 TU (exec time of T5) <= 12 TU (slack of T4)
Task 4 okay in the worst case.

Task 5

Worst case delay is when T5 is triggered just after T4
starts executing.
delay = 3 TU (exec time of T5) <= 8 TU (slack of T5)
Task 5 okay in the worst case.

Check for Shared Data With Preemption and Backoff

Assume that a task may be preempted once only.

Task 1

If task 1 is started then it will execute through to the end since
no other task triggered after task 1 starts can have a deadline
before that of task 1.

Task 2

If task 2 is started then it executes through to the end since
no other task triggered after task 2 starts can have a deadline
before that of task 2.

Task 3

Worst case is when T3 is preempted by T2 (which requires access
to B) just before it is due to complete and then also by T1
(which requires access to the shared processor).

234

Vorst Case = 5 (aborted exec of T3) + 3 (exec of T2) +
2 (exec of T1)

= 10 TU
Deadline of T3 - Vorst Case Delay = 20-10 = 10 TU >= exec time
of T3

Task T3 okay

Task 4

Vorst case is when T4 is preempted by T5 (which requires access
to C) just before it is due to complete.

Vorst Case = 3 (aborted exec of T4) + 2 (exec of T5)
= 5 TU

Deadline of T4 - Vorst Case Delay = 15-5 = 10 TU >= exec time
of T4

Task T4 okay

Task 5

If task 5 is started then it executes through to the end since
no other task triggered after task 5 starts can have a deadline
before that of task 5.

The analysis shows that the simple task set and allocation is sound
using the EDF scheduling policy. Both non-preemption and a single
preemption and backoff will work such that all deadlines of the five
tasks are met in the wor~t case.

235

APPENDIX C. AN ANALYSIS EXAMPLE

236

Appendix D

Example Execution Traces
For The Scheduler Hierarchy

To demonstrate how the hierarchy of scheduling mechanisms of chapter
5 works in this appendix we present an example. Suppose the real-time
system has two tasks, TI and T2. The transaction precedence graphs
for the tasks are shown in figure D .1.

In the implementation, it is decided to allocate two processors PI and
P2 to task TI and processor P3 to task T2. Each of these proces
sors has a copy of the shared data entity A. Processors PI and P2 are
dedicated to executing task TI and processor P3 is dedicated to T2.
Processor PI executes transactions T1.1 and T1.2j processor P2 exe
cutes transactions T1.3 and T1.4j processor P3 executes transactions
T2.1 and T2.2. Each task cluster has a separate transaction scheduler;
there is also a task and critical region scheduler in the system. Static
analysis of the temporal :requirements of the tasks shows that the EDF
scheduling policy is sound. The allocation scheme is shown in figure
D.2. The locations of the scheduler mechanisms are not considered in
this example.

The following scenario depicts the course of events if task TI is trig
gered, and during its execution lifetime, task T2 remains idle. The
scenario describes the information flow through the scheduling mecha
nism. This information flow is characterised as being either

• Event Flow E shows the triggering of the tasks.

• Control Flow C shows the scheduler signals that start and stop
tasks.

• Update propagation U shows the updates being applied to non-

237

.. ,

"

APPENDIX D. EXAMPLE EXECUTION TRACES FOR THE SCHEDULER HIERARCH1-

Task T1 Task T2

Figure D.I: Transaction Precedence Graphs for tasks TI and T2

Task
Scheduler

Tran •• ctlon
Scheduler

Critical Region
Scheduler

Transaction
Scheduler

IT1.1 1tj
A P1 I T1.21

IT1.3 1tj A P2
I T1.41

I n.1ltj
A P3 I n.21

Figure D.2: The Allocaton of Tasks, Schedulers and Data Entities to
Processors

238

, ,

"

local copies of shared data entities.

• Data flow D Shows data flowing from one point in the system to
another.

In describing the scenario, the type of the information flow at each
stage is shown. Execution proceeds as follows: .

1. (E). Task T1 is triggered by some event in the environment. The
task scheduler intercepts this trigger.

2. (C). The task scheduler determines the correct token 'colour' for
this invocation of task Tl and sends this to the appropriate trans
action scheduler.

3. (C). The transaction scheduler starts to execute task T1. A list
of the four Tl transactions is created, 'coloured' with the control
token to identify this execution list from any other current invo
cation of the task. Each member of the list has the predecessors
listed. The transaction scheduler scans the list and recognises
that T1.1 waits for no other transaction. The transaction sched
uler sends a request message to the critical region scheduler to
gain write access to entity A.

4. (C). The critical region scheduler checks the lock table for A and
sends a control signal back to the transaction scheduler to show
that T1 may enter the critical region on A.

5. (C). The transaction scheduler sends a control message to T1.1
to start executing.

6. (D). Transaction T1.1 updates its own local copy of entity A.

7. (CD). Transaction T1.1 sends a completed control signal to the
transaction scheduler. This signal includes the updates T1.1 has
made to entity A.

8. (U). The transaction scheduler applies the updates to the other
copies of entity A used within this cluster (task) and then updates
the transaction list to show that T1.1 has completed.

9. (C). The transaction scheduler sends control signals to transac
tions T1.2 and T1.3 to start them executing.

10. (D). Data flows from entity A into transaction T1.2.

11. (D). Data flows from entity A into transaction T1.3.

239

.,

APPENDIX D. EXAMPLE EXECUTION TRACES FOR THE SCHEDULER HIERARCH)

12. (C). Transaction T1.2 sends a control signal to the transaction
scheduler to show that it has finished.

13. (C). Transaction T1.3 sends a control signal to the transaction
scheduler to show that it has finished.

14. (C). The transaction scheduler updates the transaction list for
Tl and then sends a control signal to T1.4 to start it executing.

15. (D). Transaction T1.4 updates its own local copy of entity A.

16. (CD). Transaction T1.4 sends a completed control signal to the
transaction scheduler. This signal includes the updates T1.4 has
made to entity A.

17. (U). The transaction scheduler applies the updates to the other
copies of entity A used within this cluster (task) and then updates
the transaction list to show that T1.4 has completed.

18. (CD). The transaction scheduler checks the transaction list and
finds that task Tl has completed. It sends the updates made to
the shared entity A to the critical scheduler.

19. (U). The critical region scheduler propagates the updates to the
other copies of entity A used by other tasks. The critical region
scheduler releases the lock on entity A.

20. (C). The transaction scheduler sends a control signal to the task
scheduler to show that task Tl has finished executing.

This execution of task Tl is illustrated in figure D.3.

We now consider the scenario where task Tl is interrupted by task T2.
Suppose task T2 has a sooner deadline than Tl; T2 therefore takes
priority. The following information flow takes place in the system.

1. (E). Task Tl is triggered by some event in the environment. The
task scheduler intercepts this trigger.

2. (C). The task scheduler determines the correct token 'colour' for
this invocation of task Tl and sends this to the transaction sched
uler.

3. (C). The transaction scheduler starts to execute task Tl. A list
of the four Tl transactions is created 'coloured' with the control
token to identify this execution list from any other current invo
cation of the task. Each member of the list has the predecessors

240

__ Event

----- O.t.
- - - Update
•••••. Control

_ .. _).-.
6! I

•••••.••••••••••...•• T1 1
~ r:":":-:":~":":":":'¢":Y":":":":":' • A P 1

5: I: •.•.••• >......... I T 1 2 I
20 • I. • • ••••••• <_ •••• ' 11!=f=' :::;'~!=---1 •••.•.••••.. c......... 12 .~ •

• • .••..•••••••••••••• Transaction __ 1.!._~-:.=...IJ
• : : .:::::: Scheduler -,...)---.,..-

• '. _-=!I ... IIIII!IIII;=II a r- -m I

Task
Scheduler

-:'2 ~3 :
• ~4 1'lis : II : : ~9 ... > .. I T1.3 1[j : . I: . ~;"c""13 1 A P2

('). , •• -:> •••••• ~ Critical Region ___________ . Tl.4
Scheduler ··18'·········· .-

. '5' L __ --:I

19 L ___ ~ __________ ,

Transaction I T2.1 I G
A P3

Scheduler I T2.21

L!:::==-==-...J

Figure D.3: Execution of task Tl

listed. The transaction scheduler scans the list and recognises
that T1.1 waits for no other transaction. The transaction sched
uler sends a request message to the critical region scheduler to
gain write access to entity A.

4. (C). The critical region scheduler checks the lock table for A and
sends a control signal back to the transaction scheduler to show
that Tl may enter the critical region on A.

5. (C). The transaction scheduler sends a control message to T1.1
to start executing.

6. (D). Transaction T1.1 updates its own local copy of entity A.

7. (CD). Transaction T1.1 sends a completed control signal to the
transaction scheduler. This signal includes the updates T1.1 has
made to entity A.

8. (U). The transaction scheduler applies the updates to the other
copies of entity A used within this cluster (task) and then updates
the transaction list to show that T1.1 has completed.

9. (C). The transaction scheduler sends control signals to tran sac
tions T1.2 and T1.3 to start them executing.

241

"

APPENDIX D. EXAMPLE EXECUTION TRACES FOR THE SCHEDULER HIERARCH't

10. (D). Data flows from entity A into transaction T1.2.

11. (D). Data flows from entity A into transaction T1.3.

12. (E). Task T2 triggers. The task scheduler intercepts this trigger .

. 13. (C)! The task scheduler determines the correct token 'colour' for
this invocation of task T2 and sends this to the transaction sched
uler for task 2.

14. (C). The transaction scheduler starts to execute task T2. A list
of the two T2 transactions is created 'coloured' with the control
token to identify this execution list from any other current invo
cation of the task. Each member of the list has the predecessors
listed. The transaction scheduler scans the list and recognises
that T2.1 waits for no other transaction. The transaction sched
uler sends a request message to the critical region scheduler to
gain write access to entity A.

15. (C). The critical region scheduler checks the lock table for A and
sees that task T1 is already using it. The EDF scheduling policy
is then used and it is decided that task T2 should go ahead. The
critical region scheduler sends a control message to the transac
tion scheduler of T1 to stop execution of T1. This transaction
scheduler will then clear the transaction list for Tl.

16. (C). The critical region scheduler sends a control message to the
transaction scheduler of T2 to start it executing.

17. (C). The transaction scheduler starts T2.1 executing.

18. (D). Transaction T2.1 updates ifs own local copy of entity A.

19. (CD. Transaction T2.1 sends a completed control signal to the
transaction scheduler. This signal includes the updates T2.1 has
made to entity A.

20. (C). The transaction scheduler updates the transaction list for
task T2 and then sends a control signal to T2.2 to start it exe
cuting.

21. (D). Data flows from entity A into transaction T2.2

22. (C). Transaction T2.2 sends a completed control signal to the
transaction scheduler. The transaction scheduler checks the trans
action list and recognises that this is the end of task T2.

242

23. (CD). The transaction scheduler for T2 sends a control signal to
the critical region scheduler to show that task T2 has finished.
The updates that T2 made to A are also passed onto the critical
region scheduler.

24. (U). The critical region scheduler removes the lock from the lock
table and sends the updates to other copies of entity A used by
other tasks.

25. (C). The critical region scheduler sends a control message to the
transaction scheduler of task 1 to restart task 1. The execution
of Tl then procedes uninterrupted as in the previous scenario.

The example execution traces presented show how for a simple task set,
the hierarchy of scheduling mechanisms ensure the serial execution of
conflicting transactions on shared data. The examples show that the
scheduling hierarchy makes it simple to add further tasks to the system
by providing an appropriate transaction scheduler.

243

