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Abstract—Many cities and countries are now striving to create 

intelligent transportation systems that utilize the current 

abundance of multisource and multiform data related to the 

functionality and use of transportation infrastructure to better 

support human mobility, interests, and lifestyles. Such intelligent 

transportation systems aim to provide novel services that can 

enable transportation consumers and managers to be better 

informed and make safer and more efficient use of the 

infrastructure. However, the transportation domain is 

characterized by both complex data and complex problems, 

which calls for visual analytics approaches. The science of visual 

analytics is continuing to develop principles, methods, and tools 

to enable synergistic work between humans and computers 

through interactive visual interfaces. Such interfaces support the 

unique capabilities of humans (such as the flexible application of 

prior knowledge and experiences, creative thinking, and insight) 

and couple these abilities with machines’ computational 

strengths, enabling the generation of new knowledge from large 

and complex data. In this paper, we describe recent 

developments in visual analytics that are related to the study of 

movement and transportation systems and discuss how visual 

analytics can enable and improve the intelligent transportation 

systems of the future. We provide a survey of literature from the 

visual analytics domain and organize the survey with respect to 

different types of transportation data, movement and its 

relationship to infrastructure and behavior, and modeling and 

planning. We conclude with lessons learned and future directions 

including social transportation, recommender systems, and policy 

implications. 

 
Index Terms—Data visualization, graphical user interfaces, 

interactive systems 
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I. INTRODUCTION 

ISUAL ANALYTICS is “the science of analytical reasoning 
facilitated by interactive visual interfaces” [67] (p.4), 

which focuses on developing human-computer methods and 

procedures for data analysis, knowledge building, and problem 

solving [40]. It is an applied research discipline that aims at 

creating methods of practical utility for different application 

domains, one of which is transportation. Obviously, the best 

results can be achieved when visual analytics researchers, who 

typically lack domain expertise, work in close contact with 

domain specialists. Unfortunately, such work has been limited 

in the transportation domain [26][27], even though visual 

analytics researchers have intensively worked with 

transportation-relevant data and developed a variety of 

methods and tools that could be useful for transportation 

domain researchers and practitioners. The consequences of the 

insufficient communication are two-fold. On the one hand, 

visual analytics researchers have only limited understanding of 

the problems, needs, and constraints of the transportation 

domain, which may decrease the potential utility and usability 

of the methods they develop. On the other hand, the 

transportation community has quite limited awareness of what 

visual analytics can offer. The ambition of this paper is to start 

building a bridge between the communities. We want to 

introduce visual analytics to transportation researchers and to 

present the spectrum of visual analytics works that we 

consider as potentially interesting to this audience. Hence, this 

is a survey of selected works in the visual analytics research 

field that deal with transportation-related data and tasks. 

Before starting with the survey, it is important to explain 

the essence of visual analytics approaches and the conditions 

when they may be necessary. Visual analytics methods and 

procedures are designed for synergistic work between humans 

and computers where each side effectively employs its 

intrinsic capabilities. Specifically, humans employ their 

unique capabilities for creative thinking, making associations, 

and generating insights while computers process, aggregate, 

and mine data that would be too large for a human to 

effectively tackle alone. Interactive visual interfaces play a 

key role in these human-computer approaches, and visual 

representations are often the most effective way of conveying 

information to the human mind. By coupling these visual 

representations with interactions, users are enabled to explore 
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information from different perspectives and levels of 

abstraction, thus associating distinct information pieces, and 

developing insights as information is perceived and 

interpreted. 

A need for visual analytics approaches arises in situations 

that can be categorized as (1) new problems or (2) new 

opportunities. “New problems” can be subdivided into two 
sub-categories. The first sub-category includes problems for 

which no algorithmic solutions exist (yet). Here, the term 

“algorithmic” denotes not only computer-oriented algorithms 

but also established workflows with well-defined steps. The 

second sub-category includes problems for which some 

algorithmic solutions exist but have become ineffective or 

unsatisfactory because the problems have changed. A human-

computer approach to a problem is necessary when the 

problem is insufficiently understood and/or ill-defined, and 

when it is not immediately clear how to tackle it. This calls for 

humans to engage in creative thinking, insight generation, and 

knowledge building. 

“New opportunities” include the emergence of new types 

and sources of data or new technologies that may or may not 

be useful for solving existing problems in better ways. It is 

necessary to explore these new opportunities and find possible 

ways to benefit from them. This exploratory work is, 

obviously, a job for humans, who need appropriate support 

from computers. Transportation research is a well-established 

discipline in which numerous algorithmic solutions of 

transportation problems have been developed. However, the 

ongoing development of mobile devices, low cost sensors, 

driverless cars, as well as others, has led to information 

overload in the transportation sector. This data deluge presents 

transportation research with both new problems and new 

opportunities that call for human-computer approaches and 

makes visual analytics potentially helpful. 

Here, transportation systems are seeing traditional problems 

transform due to substantial changes in the population 

structure (e.g., aging), spatial distribution (e.g., urbanization, 

urban sprawl, migration), people’s habits and lifestyles, and 
others. There is a need for gaining better understanding of the 

new or changed problems, which is leading to new 

opportunities arising due to the availability of large amounts 

of data that did not exist or were scarce in the past [16]. 

Historically, transportation analysis has relied on aggregate 

data measures, such as volume and speed data, available at the 

road segment level. However, the ubiquity of GPS enabled 

devices and data sharing has led to the creation of large 

corpuses of data related to movement. This includes not only 

data describing the movement of people (measurements from 

traffic sensors, tracks of vehicles, records of smart card 

transactions in public transport, etc.) but also data referring to 

population mobility, activities, and lifestyles (such as records 

of mobile phone uses and georeferenced posts in social media) 

[17]. The potential of these data types and sources for solving 

transportation problems needs to be explored. 

Past surveys on visual analytics of movement data have 

focused heavily on the properties of trajectories and their 

underlying challenges [2, 11], other surveys have focused on 

collecting common visualizations used in traffic analysis 

(http://vizguide.camsys.com/), and a recent survey on traffic 

visualization [23] discussed visualizations to support traffic 

management and route planning. This survey aims to cover 

core concepts at the intersection of movement and 

transportation, filling a gap between the aforementioned 

surveys. The aim of this paper is not to cover all of the 

visualization and visual analytics methods being employed for 

transportation analysis; instead, our goal is to highlight recent 

work that is being done to support the next generation of 

datasets that can be used for intelligent transportation systems.  

To this end, we have surveyed literature primarily in the 

visual analytics community in order to capture the current 

trends and research directions. Key venues surveyed include 

the IEEE VIS conference, the EuroVis conference, IEEE 

Transactions on Visualization and Computer Graphics, and 

Information Visualization. Papers dealing with trajectory and 

movement (which will be used interchangeably in this paper) 

were extracted. For completeness, we have also surveyed the 

last five years of papers from IEEE Transactions on Intelligent 

Transportation Systems (ITS) looking for keywords of 

visualization or visual analytics in the abstract. Several 

relevant papers on trajectory analysis from ITS will be 

discussed [31][33][41][46], in particular, those that have 

explored the integration of visualization and analytics 

techniques as part of the transportation analysis process 

[23][52][54]. We have found that relatively few works in the 

visual analytics community address specific transportation 

problems, and much of the transportation-related visual 

analytics research has been developed separately from 

transportation domain specialists. Thus, this survey aims to fill 

this gap in the literature and bring attention to the need for 

these communities to interact. 

We divide the relevant works into four categories and 

present them in the following four sections.  

Section II “Data” presents a typology of movement data that 

inventories data properties and possible issues, and describes 

data transformations relevant to analysis. Data issues were 

elicited from the experiences of the visual analytics 

researchers with numerous examples from the visual analysis 

of movement data, particularly related to transportation.   

Section III “Movement and Transportation Infrastructure” 
discusses visual analytics approaches to analyzing movement 

data, specifically with respect to the movements of vehicles 

and pedestrians along transportation routes and movements of 

passengers within transportation systems (i.e., within 

transportation infrastructure). The data are considered from 

different perspectives and scales for exploring diverse aspects 

and features of movement behavior related to infrastructure in 

space and time.  

Section IV “Movement and Behavior” refers to data 

concerning people who use or can potentially use 

transportation systems. Apart from data characterizing the use 

of transport by people, we also include data that do not refer to 

transportation directly but instead characterizes people’s 

general mobility behaviors, activities, and interests, which 

may be useful to take into account during transportation 



analysis and planning. 

Section V “Modeling and planning” presents visual 
analytics works that go beyond the exploration and analysis of 

existing data to traffic modeling, forecasting, and planning. 

After presenting the state of the art, we discuss, in section 

VI, the further tasks and directions for the visual analytics 

research for intelligent transportation systems. 

The illustrations throughout the paper have been produced 

using the same example dataset consisting of GPS tracks of 

cars in Milan (Italy) collected during one week in April 2007, 

which were kindly provided for educational and research uses 

by company Octo Telematics (www.octotelematics.com). By 

this running example, we want to demonstrate the variety of 

possible ways to analyze the same data for deriving various 

kinds of knowledge. Please note that we cannot include 

illustrations for all techniques discussed in the survey. 

II. DATA 

Transportation research deals with a variety of data ranging 

from speed and volume counts on road segments to resiliency 

and capacity measures on infrastructure. Given that such data 

types and sources are well established in the transportation 

community, the data focus of this paper will be emerging data 

volumes which are primarily due to the ubiquity of GPS 

related devices, cell phones, smart cards, and other 

technologies that make it possible to acquire data reflecting 

movements of individuals. Such data can be used to give 

detailed insights into the movement of persons within their 

built environment and provide insight into their use of 

transportation infrastructure.  

A. Data typology  

There are three fundamental types of spatio-temporal data 

[2]: spatial event data, trajectories of moving objects, and 

spatial time series. Spatial events are entities that emerge at 

certain spatial locations and exist for a limited time, such as a 

traffic jam or an accident. Some events, like traffic jams, may 

extend over large areas, which change over time. Spatial event 

data describe the spatial positions and extents, existence 

times, and thematic attributes of spatial events. Trajectories 

are chronologically ordered sequences of records describing 

the spatial positions of moving objects at different times, such 

as the moving paths of taxis, buses, or fleets. Additionally, the 

records may include values of thematic attributes that change 

as the objects move. Spatially referenced time series, or, 

shortly, spatial time series are chronologically ordered 

sequences of values of time-variant thematic attributes 

associated with fixed spatial locations or stationary spatial 

objects, such as segments of streets or public transport stops. 

For example, the time varying values of transportation volume 

or speed on a street segment generate spatial time series data. 

 Of the three data types, trajectories are among the most 

complex data in movement analysis. Trajectories describe 

positions of moving objects at sampled time moments. When 

the temporal and spatial gaps between these moments are 

small enough, the intermediate positions of the objects can be 

plausibly estimated by means of interpolation and/or map 

matching. Such data can be called quasi-continuous. 

Trajectories where recorded positions are separated by large 

time gaps, such that the intermediate positions cannot be 

reliably reconstructed, are called episodic. Quasi-continuous 

and episodic trajectories require different approaches for 

analysis [2]. An extreme case of episodic trajectories is data 

describing only trip starts and ends but not intermediate 

positions. Such data are usually referred to as origin-

destination (OD) data, and well-known examples include data 

describing migration patterns or worker commutes. 

While trajectories provide information on the movements of 

individual objects, aggregated trajectory data are spatial time 

series describing how many moving objects were present in 

different spatial locations and/or how many objects moved 

from one location to another during different time intervals. 

The time series may also include aggregate characteristics of 

the movement, such as the average speed and travel time. 

Time series describing the presence of objects are associated 

with fixed locations, and time series describing aggregated 

moves, often called fluxes or flows, are associated with pairs 

of fixed locations. 

B. Examples of visual representation of different data types 

The spatial aspect of the different types of spatio-temporal 

data can be represented visually on maps. Spatial events are 

often represented by dot symbols drawn at the event locations 

(Fig. 1A), when the spatial extents and shapes are negligible, 

irrelevant for analysis, or unknown; otherwise, events can be 

represented by polygons. Trajectories are typically represented 

by lines connecting the object positions (Fig. 1B).  

A visualization method called the space-time cube (STC) 

can simultaneously represent the spatial and temporal aspects 

of spatial events and trajectories (Fig. 1C). Two dimensions of 

the STC represent the geographic space, and one dimension 

represents the time. The base of the STC usually contains a 

map providing the spatial reference. In Fig. 1C, time is 

represented by the vertical dimension of the STC. The time 

axis is directed from bottom to top. Spatial events and points 

of trajectories are placed in the STC according to their spatial 

positions and times. The points of trajectories are connected 

by line segments in chronological order. A space-time cube 

display requires interaction, allowing rotation of the scene as 

well as panning and zooming to adjust the viewpoint. These 

interactions are used to improve the perception of spatio-

temporal patterns. Still, the STC display often suffers from 

visual clutter and over-plotting of visual symbols. To be 

effective, the STC is often used in combination with 

interactive filtering and clustering applied to events or 

trajectories as a means of clutter reduction and aggregation.  

For spatial time series, there is no convenient visualization 

method to represent both the spatial and temporal aspects. A 

map can show the spatial distribution of the presence of 

moving objects and/or their flows between locations 

corresponding to one time step (interval). Multiple time 

intervals need to be represented by a sequence of maps. When 

the time series are short, the maps can be put side by side; 

otherwise, map animation is used. 

http://www.octotelematics.com/


For one time step of a time series, the spatial distribution of 

the presence of moving objects can be represented on a map 

by symbols or diagrams positioned at different locations over 

the territory or in different territory compartments (Fig. 1D) 

with the sizes proportional to the counts of the objects or other 

characteristics of the presence, such as the average duration of 

staying. Another possible representation of object presence is 

continuous density map (Fig. 1E). In such a map, the variation 

of colors or shades encodes the variation of presence or 

movements across a territory. A density map effectively 

 

Fig. 1.  The types of spatio-temporal data and their typical visual representations. A: Spatial events (e.g., car stops) represented on a map by dot symbols.  

B: Trajectories of cars represented on a map by lines. One selected example trajectory is marked in black. C: Spatial events and trajectories represented in a 
space-time cube by dot symbols and lines, respectively. The same trajectory as in image B is marked in black. D: Counts of moving objects (cars) in different 

spatial compartments in one time interval are represented by proportional circle sizes. E: A continuous density map represents the distribution of the traffic 

density across a territory. F: A continuous density map represents the distribution of spatial events (slow movement of cars). G: Flows of cars between spatial 
compartments in one time interval are represented by half-arrow symbols with the widths proportional to the flow magnitudes. H: The same flows are 

represented by curved lines; the curvature is higher at the end (destination) of a flow. I: Average speeds of cars are represented by color coding. 
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compartments in one time interval are represented by half-arrow symbols with the widths proportional to the flow magnitudes. H: The same flows are 

represented by curved lines; the curvature is higher at the end (destination) of a flow. I: Average speeds of cars are represented by color coding. 

 



reveals existing traffic channels and their relative importance 

but does not show the movement directions. An animated 

density map can represent the variation of the movement 

density over time. Each image in the animation shows the 

density in one time interval. Continuous density maps can also 

be used to represent the distribution of spatial events over a 

territory in a chosen time interval. For example, Figure 1F 

shows the distribution of slow movement events in time 

interval 07:00-08:00 on April 4, 2007. The hot spots seen in 

the map may correspond to traffic congestions. 

Flows between locations or territory compartments are 

typically represented by linear flow symbols connecting the 

locations or compartments. The flow directionality is signified 

by arrows at the line ends (Fig. 1G) or by variation of the line 

curvature (Fig. 1H). The widths of the lines are proportional to 

the flow magnitudes, that is, the counts of the objects that 

moved, or the volumes of transported goods, or other numeric 

characteristics of the flows. Such maps are commonly called 

flow maps [43][68]. Animated maps of presence and flows are 

often combined with temporal displays, such as a time graph, 

showing the variation of the presence/flow magnitudes for 

different locations or links between locations, respectively. 

Besides flow magnitudes, other aggregate characteristics of 

movements can be represented by varying the appearance of 

flow symbols. For example, average speeds are represented in 

Fig. 1I by color coding using a diverging color scale from red 

to green for speed values from low to high. 

C. Data transformations 

The different types of spatio-temporal data do not exist in 

isolation. There are techniques for transforming one data type 

to another [2]. Data transformations may be needed to prepare 

data for analysis methods and/or to align the spatio-temporal 

phenomenon reflected in the data at varying scales. 

A summary of possible transformations between the spatio-

temporal data types is presented in Fig. 2. The left part of the 

diagram shows the tight relationships between spatial events 

and trajectories. In fact, trajectories consist of spatial events: 

each record in a trajectory of an object represents a spatial 

event of the presence of this object at a specific location at 

some moment in time. Trajectories are obtained by integrating 

spatial event data: for each object, all its position records are 

linked in a chronological sequence. Reciprocally, trajectories 

can be transformed to spatial events either by full 

disintegration back into the constituent events or by extraction 

of particular events of interest ([2], sections 3.5, 5.2), such as 

stops, sharp turns, or encounters of two or more objects. 

Spatial Events: Multiple spatial events that are close in 

space and time can be united into more complex spatial 

events. For example, a spatio-temporal concentration of many 

vehicles reducing their speed during a small time window may 

be treated as a single event of traffic congestion. Such 

composite spatial events can be detected and extracted by 

means of density-based clustering ([2], section 6.1). To 

represent a composite event as a single entity, a spatio-

temporal envelope may be built around the constituent events 

[8]. 

Trajectories: Often, trajectories of moving objects are 

available as unitary sequences of recorded positions extending 

throughout the whole period of observation, including the time 

intervals when the objects did not move. For certain analysis 

tasks, it may be reasonable to separate movements from stops 

and divide full trajectories into smaller trajectories that 

represent the movements (trips) between the stops. There may 

also be other reasons and criteria for dividing trajectories ([2], 

section 3.2). 

Spatial Time Series (Place-Based): Spatial time series can be 

obtained from spatial events or trajectories through spatio-

temporal aggregation. For discrete spatial aggregation, the 

underlying regions in which the events or trajectories take 

place can be divided into compartments, and time is divided 

into intervals. For each compartment and time interval, the 

spatial events or moving objects that appeared in the 

compartment during the associated time interval are binned 

together and counted. Other aggregate statistics can also be 

computed. The result is a place-based time series in which 

temporal sequences of aggregate values are associated with 

the places (i.e., spatial compartments). From such spatial time 

series, in turn, it is possible to extract spatial events ([2], 

section 7.2.5), for example, events of high traffic density or 

events of extremely low average speed. 

 Spatial Time Series (Link-Based): Trajectories can also 

be aggregated into link-based time series: for each pair of 

compartments and time interval, the objects that moved from 

the first to the second compartment during this time interval 

are counted and aggregate characteristics of their movements 

(e.g., the average speed) are calculated. 

Local Time Series and Spatial Situations: Discrete place-

based and link-based spatial time series can be viewed in two 

complementary ways. On the one hand, they consist of 

temporally ordered sequences of values associated with 

individual places or links, i.e., local time series. On the other 

hand, a spatial time series is a temporally ordered sequence of 

the distribution of spatial events, moving objects, or collective 

moves (flows) of moving objects over the whole territory and 

the spatial variation of various aggregate characteristics. These 

distributions are called “spatial situations” [2].  

Spatial situations represented as continuous fields: 

Continuous spatial aggregation (as in Fig. 1E, F) is done using 

a raster, i.e., a regular grid dividing the territory into small 

cells. As in discrete aggregation, counts or other aggregates 

are obtained for the cells. Then, spatial smoothing is applied, 

which combines the value in each cell with the values in the 

 

Fig. 2.  Possible transformations between the types of spatio-temporal data. 
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surrounding cells using a special weighting function (kernel 

function). The function defines the manner in which the 

weights of the surrounding cells decrease as the distance to the 

central cell increases. The result is a smooth density field. 

Continuous spatial aggregation can be combined with discrete 

temporal aggregation based on time division into intervals. A 

density field is generated for each time interval and represents 

the distribution of spatial events or movements during that 

interval. Hence, the result of this aggregation is a time series 

of spatial situations. Unlike the case of discrete spatial 

aggregation, such spatial time series cannot be viewed as a set 

of local time series. 

Other transformations: Apart from these standard 

transformations between or within the different types of 

spatio-temporal data, it is possible to transform data to a 

completely different representation, which may be beneficial 

for particular tasks. For example, Chu et al. [24] transform 

trajectories of taxis into sequences of the names of the 

traversed streets and apply text mining methods for discovery 

of “taxi topics”, i.e., combinations of streets that have a high 

probability of co-occurrence in one taxi trip. The extraction of 

“taxi topics” is done for different time intervals. By 
investigating the temporal evolution of the topics, it is possible 

to understand where people travel in different times of the day 

and days of the week. Al-Dohuki et al. [1] transform taxi 

trajectories into texts consisting of street names and text labels 

denoting taxi speeds (low, medium, and high). This 

representation is used for supporting queries to a trajectory 

database where users can formulate queries by specifying 

street names and/or speed characteristics. The queries are 

performed by means of a text search engine. Furthermore, a 

discrete representation of aggregated movements of flows 

between places can be treated as a graph, to which graph 

analysis methods can be applied [32][49]. 

As such, these various transformations enable the 

comprehensive analysis of movement data from multiple 

complementary perspectives [11]. 

D. Data enrichment and integration 

Spatial event data and position records in trajectories can be 

enriched by computing a number of derived attributes [8]. 

Thus, for quasi-continuous movement data, it is possible to 

derive movement speed, acceleration, direction, and turn from 

the available positions and times, as well as time interval-

based measures, such as the path length and displacement by 

time intervals of a given length. For events and trajectory 

positions, it is possible to compute attributes characterizing 

their neighborhood, such as the number of other events or 

moving objects in the vicinity, specified by given spatial and 

temporal distance thresholds, and the distances to the nearest 

neighbor. 

Movement and event data can also be enriched through 

integration with other spatial, temporal, or spatio-temporal 

data based on commonality or proximity of the spatial and/or 

temporal references in the different datasets. An example is 

attaching weather attributes to positions of vessels [53]. 

E. Exploration of data properties and quality issues 

To assess the suitability of data for analysis, it is necessary 

to investigate the data quality, attributes, and distribution. Data 

quality issues, structure and feature relationships can often be 

revealed by appropriate visualizations ([2], section 9.2). In 

spatiotemporal data this may refer to misaligned temporal 

resolution, temporal regularity or irregularity, presence of 

temporal gaps, varying spatial resolutions and the presence of 

spatial gaps, issues concerning identities of moving objects, 

properties related to the method of data collection, positioning 

errors, and others. A typology of possible quality problems 

that can be encountered in movement data is introduced by 

Andrienko et al. [6], which also demonstrates how 

visualizations can reveal such problems. 

As such, data being studied has underlying uncertainty that 

should be conveyed to the domain experts. Furthermore, much 

of the trajectory data being captured is from taxis and trucks as 

opposed to regular passenger cars, which may bias the data 

and add more uncertainty. Visualizing uncertainty has been 

listed as an ongoing challenge in visualization [39], and a 

recent survey [42] discusses methods of uncertainty 

visualization specifically in the context of spatiotemporal data. 

While outside the scope of this survey, such techniques should 

also be considered when designing for future transportation 

analytics systems. 

F. Dealing with large data volumes 

Currently, data being collected by GPS enabled devices are 

characterized by large volumes and such data volumes pose 

serious challenges to visual analytics methods and software 

tools. To enable interactive querying and analysis, data need to 

be quickly accessed, extracted, transformed, and visualized 

(ideally at interactive rates, ~10ms). This requires an effective 

data management system. Given that much of the GPS data 

being captured is in the form of trajectories, existing systems 

for transportation data analysis do not always provide the 

required infrastructure, which has lead visual analytics 

researchers to develop tailored approaches including 

specialized data indexes [26][52] and hash structures [70]. 

Apart from effective data management, visual and 

interactive techniques and analysis methods need to be 

appropriately designed for dealing with very large amounts of 

data. Data aggregation is a common technique, in particular, 

adaptive aggregation depending on the spatial and/or temporal 

scale of the current view. Initially, large amounts of data are 

visually presented in an aggregated way for an overview. As 

the user zooms in and focuses on particular areas and/or time 

periods, more details are shown [26][52]. A related problem is 

to reduce display clutter when many moving objects need to 

be shown. This can be solved by grouping (clustering) 

spatially close objects and showing aggregated data for the 

clusters [62]. A strategy to extend the capacity of analysis 

methods such as clustering beyond the limitations of computer 

RAM is to perform an initial analysis on a subset of the data 

and use the results to interactively build a model (such as a 

classifier) that can be automatically applied to the remaining 

data [9]. 



Other applications require dynamic processing, analysis, and 

visualization of real time streaming data. This necessitates the 

development of methods for incremental analysis and 

visualization, in which previous analysis results and 

visualizations are continuously updated using new data. An 

example is the real-time detection of complex events, such as 

traffic jams, composed of multiple elementary events [13]. An 

incremental algorithm for clustering spatial events detects 

spatio-temporal concentrations (clusters) of events in real time 

and tracks the evolution of the clusters. A dynamic visual 

display updates to show the current states of the clusters and 

their continuing evolution. 

III. MOVEMENT AND TRANSPORTATION INFRASTRUCTURE 

In this section, we discuss visual analytics research on 

analyzing movements of vehicles and pedestrians within 

transportation infrastructures. The structure of the section is 

schematically represented in Fig. 3. Movement data can be 

represented in the form of trajectories, spatial time series, and 

spatial events, each representation being suitable for studying 

different aspects of movement [2]. Subsections A-D focus on 

the representation of movement by trajectories, which enables 

exploration of individual movements (A), travel routes in 

terms of spatial shapes (B) and dynamic movement attributes 

(C), as well as links between trip origins and destinations (D). 

Subsection E focuses on spatial time series representing 

properties of collective movement over a territory, and 

subsection F deals with events pertaining to movement. While 

subsections A-F refer to various aspects and properties of 

movement per se, subsections G and H refer to relationships 

between movement and other phenomena and entities. 

Subsection G deals with analyzing external factors (context) 

influencing movements, and subsection H considers the works 

on analyzing negative impacts and risks associated with 

vehicle movements. 

A. Details of individual movements 

Here we present the visual and interactive techniques 

designed for a detailed exploration of movements, usually at a 

small spatial scale. The techniques enable the analyst to see 

the movements and characteristics of individual objects and 

select particular objects for a close inspection. 

TripVista [30] represents individual movements of vehicle 

and pedestrians at a road intersection by polylines colored 

according to the types of the moving objects or the movement 

speed. By interacting with the display, the user can select 

trajectories with particular shapes. Pu et al. [56] represent 

movement characteristics of individual vehicles by specially 

designed glyphs. 

Unique interactive techniques of FromDaDy [35] are 

applied to a large number of individual aircraft trajectories for 

flexible selection and extraction of subsets and parts of 

trajectories for separate exploration. An interesting feature of 

the system is the representation of 3D trajectories in 2D 

projection views. This enables the interactive selection of 

trajectories based on altitude or the speed of the 

accent/descent. 

B. Variety of taken routes 

Techniques in this subsection focus on the visual 

representation of travel routes of moving objects in geographic 

space. Interactive techniques and clustering allow the analyst 

to assess the diversity and repeatability of the routes, find 

frequently taken routes, reveal the possible ways for getting 

from an origin to a destination, and explore the differences 

between alternative routes connecting the same locations. 

With TrajectoryLenses [45], routes are explored in a purely 

visual and interactive way. The user can select and see the 

trajectories going from a selected area of origin or coming to a 

selected destination area, or all routes from a selected origin to 

a selected destination. More sophisticated queries specifying 

intermediate waypoints are also possible. Interactive selections 

are also enabled in a system designed by Liu et al. [51], and 

work by Liu et al. also visualizes aggregated information 

about route diversity over the entire territory under analysis. 

The aggregation groups elementary locations into larger areas, 

for which incoming and outgoing diversity scores (i.e., the 

numbers of distinct routes followed by the incoming and 

outgoing the trajectories) are computed and visually 

represented. The user can select an origin-destination pair and 

investigate the respective trajectories using a detailed view. It 

is also possible to select a road segment and explore the 

diversity of the routes going through this segment.  

 

Fig. 3.  Schematic representation of the structure of Section III. 
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Rinzivillo et al. [58] use density-based clustering for 

grouping trajectories according to the closeness of their 

origins and/or destinations or according to the similarity of the 

routes they follow. Particularly, clustering according to route 

similarity finds frequently re-occurring routes, which can be 

visualized using aggregate flow symbols (Fig. 4). Later work 

by Andrienko et al. [9] proposes a scalable variant of the 

method, in which clustering is applied to a subset of 

trajectories loaded in RAM. Based on the clustering results, a 

classifier for identifying the cluster membership of an 

arbitrary trajectory is interactively built. It is then applied to 

the whole set of trajectories stored in a database. 

Zheng et al. [79] propose a set of techniques supporting 

analysis of routes of passengers in a public transportation 

system. This includes specific computations, such as the travel 

efficiency of a route, which accounts for the riding, waiting, 

and transfer times. A tree-like visualization, called isotime 

flow map, shows efficient journeys (by travel time) starting 

from a selected area. A map-based isochrone view shows, for 

a selected origin, the reachability regions corresponding to a 

given time budget. 

As mentioned earlier (section II.C), trajectories can be 

transformed to a text-based representation so that a trip is 

represented as a sequence of street names. Then, the routes 

followed in the trips can be analyzed using techniques for text 

analysis, such as topic modeling [24], and visualized using 

text-oriented visual displays, such as text cloud [1][24]. A 

“topic”, which consists of names of streets that frequently co-

occur in one trip, may evolve over time. Topic evolution is 

reconstructed by means of computational techniques that 

match topics extracted from different time periods. The 

evolution is visually represented on temporal displays. 

C. Movement dynamics along a route 

Here we focus on techniques designed for analyzing 

dynamic attributes of movements (speed etc.) along a 

particular travel route or channel, which is typically 

considered to be a line segment, for example, along a street, 

ship lane, or metro line. The analyst can see and explore the 

variation of the attributes over time and across multiple trips. 

To show the variation of movement characteristics, such as 

speed or tortuosity, within multiple trajectories following 

similar routes or going through the same street, Tominski et al. 

[69] designed a 3D view (Fig. 5) in which the trajectories are 

put on a base map in a stack. Each trajectory is represented by 

a colored ribbon where colors encode attribute values. 

Additionally, the variation of the attribute values over time in 

the entire trajectories or at a selected position is represented on 

a circular display (Fig. 5, bottom right). Case studies focused 

on the detection of traffic congestion on streets and anomalies 

in vessel traffic. A similar 3D representation is used by Itoh et 

al. [36] to show the variation of passenger flows along the 

lines of a metro network. The ribbon widths are proportional 

to the numbers of the passengers, and colors represent the 

level of crowdedness. In addition to the map-based 3D view, 

there is a tabular temporal display with the rows 

corresponding to the metro lines and columns to time 

intervals. The variation of passenger flow characteristics is 

represented by color coding. Similar encoding is applied in 

Trips Explorer and Stops Explorer [55] for visualization of the 

public transport performance along a selected route. In the 

displays with two dimensions representing the time and the 

sequence of stations, color variation is used to show various 

characteristics such as trip frequency, waiting times, speed of 

the movement, deviations from the schedule, delays, etc. To 

reduce visual clutter, the displays are smoothed by means of 

kernel density estimation techniques. 

Wang et al. [70] provide a map-based interface for selecting 

subsets of trips going through a street segment. Movement 

characteristics in the selected trips are shown in separate 

displays, such as scatter plots and histograms. Wörner and Ertl 

[77] show the dynamics of speed or other attributes on a graph 

where the horizontal axis represents the route or street length 

and the vertical dimension represents the attribute values. 

Apart from lines corresponding to different trips, a line 

connecting the mean values and a standard deviation envelope 

are shown.  

Qiang et al. [57] propose an original technique for 

simultaneously representing movement characteristics in full 

detail and at different levels of aggregation. In a 2D display, 

the horizontal dimension represents time or the street extent, 

and the vertical dimension corresponds to different levels of 

aggregation, from maximal detail at the bottom to maximal 

aggregation (i.e., a single value) at the top. The display 

appears as a continuously colored triangle where colors 

encode attribute values at different levels of aggregation. 

Sun et al. [66] show the weekly variation of traffic amounts 

on street segments directly on a map by drawing time series 

graphs along the segments. Traffic flow magnitudes in two 

opposite directions are shown on two sides of the time axis 

and in two distinct colors. For journeys by public transport, 

Zeng et al. [79] show the travel times by segments of 

alternative routes connecting a selected pair of origin and 

destination locations. The routes are shown in a tree-like 

display where the horizontal dimension represents the 

cumulative travel time and the tree branches represent 

different routes. The variation of the travel times over a day is 

shown on circular diagrams. 

 

Fig. 5.  Trajectories following the same route are put in a stack on top of a 
background map. The variation of speeds is represented by color coding. [69] 

 

 

Fig. 4.  Major routes taken by cars in a city have been revealed through 

density-based clustering of trajectories according to similarity of the routes. 
The clusters are represented in a summarized form using flow symbols.[58] 

 



D. Linking origins to destinations 

This subsection focuses on methods for supporting the 

analysis of origin-destination (OD) travel data, i.e., data 

specifying the locations and times of trip starts and ends. The 

full trajectories are either not available or not relevant to the 

analysis. OD data are often aggregated into matrices or flows, 

such that each matrix cell or each flow represents all trips 

from some origin to some destination. Both detailed and 

aggregated OD data pose a great challenge to visualization. 

Matrix views may be insufficient for analysis as they do not 

convey spatial patterns. On a map, it is very hard to represent 

multiple intersecting moves across a territory in a legible and 

easily understandable way. This problem pertains also to 

episodic trajectories that have some intermediate points 

between origins and destinations. As these points are separated 

by large temporal and spatial gaps, each segment of such a 

trajectory needs to be treated in the same way as an OD move. 

Researchers apply clustering techniques to simplify OD flow 

maps [68] or invent alternative techniques for representing 

connections between origins and destinations [75]. 

Spatial simplification can be achieved by grouping the 

origin and destination locations into larger regions and 

aggregating the trips into flows between the regions. Regions 

can be defined by means of spatial clustering of neighboring 

locations [29], possibly, taking into account the strengths of 

the flows between them [49]. Flow data can also be simplified 

by grouping and aggregating spatially close OD flows using 

hierarchical clustering [81]. Another approach is visual 

simplification by edge bundling (e.g., [25]), i.e., merging of 

spatially close flows and representing them by branching lines. 

On a geographic map, this works well only for showing flows 

from one or two locations or in special cases, e.g., when radial 

flows from/to one location prevail over all others, as the 

flights between Paris and other cities in France [25]. 

To represent time series of flow variations while reducing 

map clutter, Boyandin et al. [20] propose a visualization 

consisting of two maps and a table display with the rows 

showing time series of flow magnitudes. The rows are 

connected by lines with the flow origins in one map and 

destinations in the other map. This technique is suitable for 

tracing individual links and viewing their local time series, but 

it does not show the spatial patterns of the flows. 

To avoid showing flows by intersecting lines, OD maps 

have been proposed [75]. They are based on space 

transformation in which the locations are arranged in a matrix 

so as to minimize the distortions of their relative spatial 

positions with respect to each other. Each location is 

represented by a matrix cell, which is filled with a small 

matrix of the same structure as the overall matrix. The inner 

matrix represents the flows from/to this location to/from all 

other locations. Such display is free from occlusion, but the 

space distortion complicates the perception, and the overall 

spatial pattern of flows is broken into multiple location-

specific patterns. Recently, it has been proposed to aggregate 

OD data in a way that not only reduces the data dimensionality 

for efficient interactive analysis but also enables visual 

representation by means of diagrams rather than intersecting 

flow lines [7]. The diagrams are positioned at the places of trip 

origins (Fig. 6, left) or destinations (Fig.6, right) and show the 

counts of trips to/from different directions and distance ranges. 

The temporal variation of the trip distribution is studied using 

temporal clustering of spatial situations. 

Rather than trying to present OD trips over the whole 

territory in a synoptic way, Ferreira et al. [26] focus on 

supporting interactive queries to a database of OD data (taxi 

trips). The user can specify a time interval, origin and/or 

destination regions, or trip direction. The system selects the 

trips satisfying the query and shows statistics of their 

characteristics on graphical displays. The origins and 

destinations of the trips are represented on a map by dots of 

two distinct colors. Jiang et al. [38] represent the spatial 

distributions of the trip origins and destinations by density 

maps. For a user-selected region, characteristics of the 

incoming and/or outgoing trips are visually represented on 

multiple graphical displays. 

E. Collective movement over a territory 

This subsection presents approaches to support an overall 

view of the movement distribution and properties over a large 

territory based on aggregation of individual movements. 

Different methods of spatial aggregation produce continuous 

fields of movement density or discrete representations of the 

presence of moving objects by space compartments and 

collective movements (flows) between the compartments. The 

aggregation is also applied to subsets of data, which can be 

selected by interactively setting spatial, temporal, and/or 

attribute constraints. 

To support an overall view of movement over a territory, 

information from multiple trajectories needs to be aggregated 

over space. As mentioned in section II.C, there are two 

approaches to spatial aggregation, continuous and discrete. In 

continuous aggregation, a smooth density surface is generated 

using kernel density estimation techniques. For aggregation of 

trajectories, speed variation is integrated in the kernel 

convolution along the path [73], and the kernel width is 

automatically adapted according to zooming and panning 

operations [47]. On top of a density map, animated particles 

can represent the movement directions [59]. The user can 

 

Fig. 6.  Aggregated outgoing (left) and incoming (right) car trips to/from 

different directions and distance ranges are represented by diagrams with 

segment widths proportional to the flow magnitudes.[7] 

 



interactively select particular flows for viewing and comparing 

their variations over time, which are represented on linear and 

circular histograms [59]. Comparison of two density maps, 

e.g., corresponding to different time intervals or different 

types of moving objects, can be supported by subtracting one 

map from another and encoding positive and negative 

differences by shades of two color hues [48]. 

The concept of density maps can be extended to 

representing not only densities but also other attributes, such 

as traffic velocities [63] or the number of taxi customers [52]. 

Several density images built with different parameter settings 

or representing different attributes can be combined in a single 

composite density map using special operators [63]. Examples 

show that such a map can effectively differentiate moving and 

anchoring vessels or highlight anomalous movements. 

Discrete aggregation, as explained in section II.C, produces 

place-based and link-based spatial time series, which can be 

viewed and analyzed in two complementary ways: as a set of 

spatially distributed local time series and as a chronological 

sequence of spatial situations. In order to provide a 

comprehensive understanding of the movement behavior over 

space and time, both views may need to be considered. 

Andrienko et al. [2][5] propose an approach involving two-

way clustering, where a partition-based clustering algorithm is 

applied to the local time series and the spatial situations. The 

application to the local time series results in clusters of places 

or links characterized by similar value variations (Fig. 7). The 

application to the spatial situations results in clusters of time 

intervals characterized by similar spatial situations (Fig. 8). In 

this way, spatial and temporal simplification and abstraction 

are achieved, which facilitates comprehending the overall 

behavior over space and time. 

Local place-based time series can be visually represented by 

diagrams drawn on top of a background map, for example, by 

circular diagrams representing the variation of movement 

characteristics over a time cycle. Diagrams may consist of 

concentric rings corresponding to different days while each 

ring represents the daily time cycle [52][56]. 

Wang et al. [72] spatially aggregate trajectories by traffic 

monitoring cells, which are distributed over the street network 

but do not cover the whole network. Each cell corresponds to 

a single movement direction. The result of the aggregation is 

treated as a graph with the nodes corresponding to the cells 

and the edges to the links between the cells. The cells are 

represented on a map by glyphs showing the movement 

directions, flow volumes, and speeds. The links are 

represented by lines with the widths proportional to the flow 

volumes. The temporal variation of traffic characteristics for 

selected cells or links can be explored using additional 

displays. Huang et al. [32] exploit a graph-based 

representation to an even greater extent. In Huang et al.’s 
work, street segments are represented by graph nodes where 

the links and their weights are defined based on the existing 

taxi trajectories. Calculation of graph centrality metrics, in 

particular, pagerank and betweenness, is applied to the street 

segments. The results, which are visualized on maps, 

characterize the time-varying importance of the street 

segments. 

F. Events 

Movement includes many events, some of which may 

require special attention and analysis, in particular, negative 

events such as incidents, failures, dangerous movements, and 

congestions. Events requiring analysis may not be explicitly 

 

Fig. 7.  Flows between spatial compartments have been clustered according to 
the similarity of the local time series of the flow magnitudes and speeds. Left: 

the flows on a map are colored according to the cluster membership. Right: 
the temporal variations of the flow magnitudes (top) and mean speeds 

(bottom) by the clusters are represented on time graphs.[2] 

 

Fig. 8.  Hourly time intervals over a week have been clustered by the 
similarity of the spatial situations in terms of the flow magnitudes and average 

speeds. In a time matrix at the top, the rows correspond to the days from 

Sunday to Saturday and columns to the day hours. The time intervals are 
represented by rectangles colored according to the cluster membership; the 

sizes show the closeness to the cluster centers. Below, representative spatial 

situations for the clusters are shown by flow maps. In the upper set of 8 maps, 
the widths of the flow symbols are proportional to the mean flow magnitudes. 

The lower set of 8 maps represents how the mean speeds in the clusters differ 

from the median mean speed attained on the links. Positive and negative 
differences are encoded by proportional widths of flow symbols colored in 

brown and blue, respectively. [2] 



specified in data. There are interactive techniques for the 

extraction of events that need to be studied from movement 

data and methods for analyzing the temporal patterns and 

trends in the event occurrences over space. 

Fredrikson et al. [27] described a system for the visual 

exploration of traffic incidents using spatial, temporal, and 

categorical (by incident type or other attributes) aggregation of 

data reflecting individual incidents. A web-based system with 

similar functionality was developed more recently [74]. In 

these works, the events were explicitly specified in the data. 

There may be a need to detect abnormal events by analyzing 

other kinds of data, such as trajectories of moving objects. T-

Watcher [56] supports the visual detection of various 

anomalies in traffic using aggregated and detailed views, and 

work by Hamad and Quiroga [31] demonstrates the use of 

geographic information systems to explore transportation 

management performance measures in San Antonio Texas. 

Their focus was on performance evaluation of incident 

detection algorithms using spatial visualizations. 

Furthermore, it may be necessary not only to detect specific 

events but also to extract them (i.e., separate from the 

remaining data) for further analysis. This can be done using 

interactive filtering techniques. A general procedure [2][8] 

consists of four steps: (1) compute relevant dynamic 

attributes; (2) define thresholds separating abnormal values 

from normal; (3) use these thresholds in constructing a filter, 

which may also be based on several attributes; (4) extract the 

points or segments of the trajectories that satisfy the filter. An 

example is the extraction of points with low speed values from 

vehicle trajectories for the detection and analysis of traffic 

jams [8][71]. 

Points or segments extracted from trajectories are 

elementary events representing particular states of individual 

moving objects, such as stop, slowing down, or approaching 

other objects. These elementary events may not be of interest 

per se, but they may be parts or indications of important 

complex events. For example, a spatio-temporal concentration 

(cluster) of vehicles decreasing in speed may signify a traffic 

jam. To identify the locations and spatio-temporal boundaries 

of such complex events, spatio-temporal density-based 

clustering can be utilized [2][8]. A special incremental event 

clustering algorithm capable of working in streaming settings 

for detecting event clusters in real time and tracing their 

further evolution has been proposed [13]. One of the use cases 

is the online detection and tracking of traffic jams. To 

represent a complex event as a single object, a spatio-temporal 

envelope (such as a convex hull) is built around the 

elementary events included in the complex event. 

Wang et al. (2013) have developed specific techniques for 

analyzing traffic congestions. Taking into account the spatial 

connections between street segments and the times of traffic 

slowing down and assuming backward propagation of traffic 

jams (i.e., in the direction opposite to the movement 

direction), they build a jam propagation graph. The graph 

shows how an emergence of a traffic jam on a street segment 

affects other street segments over time. 

G. Contextualizing movement 

Here we touch upon the visual analytics approaches for 

analyzing how movements are affected by external factors 

(context), such as weather or emergency events. The 

approaches involve joint analysis of movement data and data 

concerning the spatial and/or temporal context of the 

movement. Links to relevant contextual data are established 

based on the spatial and temporal references present in 

movement data. 

Lundblad et al. [53] attach weather data to positions in 

vessel trajectories. The user may select some ships and see the 

weather attributes along their routes in a time graph. The user 

may also select a time moment and see the weather attributes 

for all ships in a parallel coordinates plot. Buchmüller et al. 

[21] have developed a system that allows users to explore the 

relationships between the directions of aircraft landings at an 

airport and the weather parameters to evaluate the noise 

impact of airplane landings on the surrounding areas. Users 

can choose time intervals of interest and see the aircraft 

trajectories and weather information. Furthermore, the system 

includes a model that predicts the expected distribution of the 

arrival directions for user-specified weather conditions. 

Weather conditions, in particular, the direction and speed of 

the wind, not only determine the directions of aircraft takeoffs 

and landings but also affect the ground speeds of airplanes as 

they fly. The wind impact is clearly seen in a visualization of 

the aircraft ground speeds against the headings; moreover, 

wind parameters can be extracted from dynamic attributes of 

several airplanes flying over the same region in different 

directions [34].  

For detecting and exploring the impacts of extraordinary 

events, such as disasters, accidents, and public gatherings, on 

the use of public transport (metro), Itoh et al. [36] visualize 

deviations from the average passenger flows on different 

metro lines by time intervals. Upon detecting an anomaly, the 

user can obtain related information from social media 

(Twitter). For user-specified time intervals and metro stations 

or lines, the system finds related tweets and shows the 

frequent keywords, which may explain the reasons for the 

anomaly.  

H. Impacts and risks 

Unfortunately, transport systems bring not only various 

benefits but also numerous negative impacts on the 

environment, society, and economy. In addition to the issues 

pertinent to normal transportation activities, illegal activities 

and unruly behaviors pose further dangers. 

The work of Buchmüller et al. [21] focuses on the problem 

of noise from aircraft landings at Zurich airport, which affects 

people living in Germany close to the Swiss border and causes 

an ongoing conflict between the German and Swiss sides. 

Buchmüller et al. developed a system for the visual 

exploration of aircraft landing data and, in particular, checking 

whether the pilots adhere to the existing rules, detecting rule 

violations, and examining the context (time and weather 

conditions) in which they occurred.  

Scheepens et al. [60] focus on the problems of safety and 



security in maritime transport. They developed an interactive 

visual interface to an automated inference engine that detects 

dangerous or suspicious behaviors of vessels and raises 

alarms. The purpose is to present the rationale for the alarms 

in an easily perceivable and understandable way. An 

explanation graph shows the reasoning structure and the 

probabilities of different hypotheses according to the available 

evidence (observations). The observations are represented in a 

matrix showing also the confidence levels and agreement or 

disagreements between the observations. The matrix rows are 

connected to graph nodes showing which observations 

contribute to which hypotheses. Scheepens et al. also presents 

several use cases involving the detection of possible 

environmental hazards, reckless behavior of a vessel, and 

suspected smuggling. 

IV. MOVEMENT AND PEOPLE’S BEHAVIOR 

While the previous section focused mostly on transportation 

means, this section focuses on people as actual or potential 

users of transportation means and services. 

A. Use of transport 

This subsection considers visual analytics approaches to 

analyzing the use of transportation means by people. The 

existing techniques analyze the spatial and temporal patterns 

and trends, reveal behavioral differences between user groups, 

and relate the use of transport to the spatial and temporal 

context and people’s activities. 
Human mobility behaviors over public transit systems are 

commonly explored to identify commute patterns and reveal 

behavioral differences. For example, Wood et al. [76] 

visualize the dynamic patterns of a bicycle hire scheme in 

London. Flow maps with symbols provide overviews of 

bicycle traffic flow structures, and an origin-destination map is 

used to show details on demand. The status of docking stations 

over space and time is further visualized in a grid view, and 

patterns of the bicycle hire program revealed insight into how 

different populations use the bicycle hires. The spatio-

temporal patterns of bicycle trips over a long time period were 

also investigated using aggregation of OD data by trip 

directions and distance ranges and clustering of spatial 

situations from different time intervals [7].  

Recent work by Beecham and Wood [18] further explores 

the bicycle hire scheme to analyze gendered cycle behaviors 

with regard to spatial, temporal, and customer-related 

variables. They found that female customers' usage 

characteristics seem to be related to weekend usage and parks, 

where men appear to utilize bike hires for commuting. Other 

work in OD pairs has focused on Bluetooth data. Laharotte et 

al. [46] used Bluetooth detectors in Brisbane to create B-OD 

matrices to describe the dynamics of a subpopulation of 

vehicles to characterize urban networks. 

Further exploration of customer behavior includes van der 

Hurk et al. [33] which presents a methodology for extracting 

passenger routes based on smart card data from the 

Netherlands Rail System. This work demonstrates how 

passenger service, based on passenger route choice, can be 

analyzed based on the route detection mechanism. In a similar 

direction, work by Kieu et al. [41] explored the use of smart 

card data for passenger segmentation. Here, the goal is to 

group passengers of similar travel patterns to identify market 

segments for transit authorities to help understand utility (or 

disutility) for improved services.  

To further support the analysis of the use of transportation 

means, Kruger et al. [45] develop an interaction technique, 

TrajectoryLenses. Complex filter expressions are supported by 

the metaphor of an exploration lens, which can be placed on 

an interactive map to analyze geospatial regions for the 

number of trajectories, covered time, or vehicle performance. 

Case studies explored usage behavior of people that employ 

electric scooters for daily travelling. Another work by Krueger 

et al. [44] enriches the trajectories of the scooter users with 

semantic information concerning the visited places to infer 

users’ activities and travel purposes. Semantic insights of 

points of interest are discovered from social media services. 

The uncertainties in time and space, which result from noisy, 

unprecise, and missing data, are visually analyzed by the 

geographic map view and a temporal view of OD patterns. In 

this way, people’s activities can be related to nearby locations 
and semantically tied to the point of interest data. 

Other work has focused on transforming the geographic 

coordinates of taxi trajectories into street names. In this way, 

the movement of each taxi becomes a document consisting of 

the traversed street names [24]. The patterns and trends of taxi 

use in a city are then identified and visually studied as taxi 

topics (clusters), thus relating street names and group 

behavior.  

B. Mass mobility 

The works described in this subsection deal with analyzing 

people’s collective mobility behavior, i.e., mass movements. 

This includes routine daily and weekly patterns as well as 

anomalies due to extraordinary events. 

Von Landesberger et al. [49] present an approach to explore 

daily and weekly temporal patterns of collective mobility, 

where the source data are episodic trajectories of people 

reconstructed from georeferenced tweets or mobile phone use 

records. The trajectories are aggregated into flows between 

territory compartments by hourly intervals within the weekly 

time cycle. To reduce the complexity of the resulting set of 

flows, strongly connected neighboring compartments are 

aggregated into larger regions by means of density-based 

clustering. Then, similarly to Fig. 6, partition-based clustering 

of the time intervals according to the similarity of the spatial 

situations is used for revealing the periodic patterns of mass 

mobility. The situations corresponding to the time clusters are 

represented as graphs, i.e., node-link diagrams. Comparisons 

between clusters are supported by explicit visual encoding of 

the differences. 

Beecham and Wood [19] present a technique for 

automatically identifying commuting behavior based on a 

spatial analysis of cyclists’ journeys. They use visual analytics 

to compare the output of various workplace identification 

methods to explore data transformations and present insights 



to analysts in order to develop origin-destination theories of 

commute patterns. Ma et al. [54] also develop methods for 

studying urban flow. This work uses cell phone location 

records to approximate trajectories across a city, and flow 

volumes, links, and communities of users are visualized to 

help analysts identify typical patterns of movement within the 

city. Similarly, work by Yang et al. [78] focuses on identifying 

human mobility hotspots based on mobile phone location data 

from Shenzhen, China. Yang et al. applies kernel density 

estimation and clusters identified hotspots based on the 

temporal signatures to identify spatial locations with high 

travel demand.   

Work by Chae et al. [22] develops a visual analytics 

framework for exploring public behavior before, during, and 

after disaster events. This work utilizes geographically 

referenced Tweets to create movement trajectories during 

disasters to identify evacuation flows. Interactions allow users 

to drill down into the data to also look at the underlying 

discourse occurring around the movements. Infrastructure 

data, disaster data (such as hurricane tracks), and Twitter data 

are all provided as map overlays in order to enable decision 

support and analysis. 

C. People’s activities and interests 

In order to understand the current use of transportation 

systems and plan for expansion and development, it is helpful 

to understand the reasons that people travel, i.e., the activities 

and interests related to traveling. This subsection reviews 

visual analytics works on transport-relevant knowledge 

discovery centered on people’s use of space and reasons for 
traveling from population surveys and data obtained from 

social media. 

Zhao et al. [80] visualize survey data concerning people’s 
activities in space and time. Circular temporal histograms 

show the dependency of the activities on temporal cycles. A 

visualization technique called the ringmap is a variant of a 

circular histogram where aggregate values are shown by 

coloring and shading of ring segments. This allows aggregated 

data for different activities to be shown using multiple 

concentric rings. 

Conducting population surveys is a costly and error-prone 

endeavor. Currently, due to the popularity of social media, 

researchers seek to obtain information about people’s 
interests, activities, and purposes for traveling using social 

media mining. Photo sharing services, such as Flickr, have 

large numbers of georeferenced photos posted by people 

during their travels. Some of the photo posts have descriptive 

titles or tags indicating what attracted the photographers’ 
attention. Other social media sites, such as Twitter, may have 

geo-coordinates embedded in the data, and recent works [4] 

[37] demonstrate the possibility of using these data for 

extracting information about people’s interests in terms of 

places and events they like to visit. 

To obtain semantic information related to people’s mobility, 
researchers also explore other social media. For example, 

Krüger et al. [44] use data from Foursquare to attach semantic 

information to trips made with electric scooters. Specifically, 

they refer the trip origins and destinations to the categories of 

the places of interest located nearby, which may be indicative 

of the trip purposes. Andrienko et al. [4] explored the potential 

of georeferenced Tweets as a source of semantic information 

concerning people’s activities and movements. They classified 

tweets according to the topics of the messages, such as ‘food’, 
‘coffee’, ‘education’, ‘sports’, ‘transportation’, etc., and found 
that the topics corresponding to some activities tend to occur 

at the typical times of these activities. Thus, ‘coffee’ occurs 
mostly in mornings, ‘food’ at the lunch and dinner times, and 
‘sports’ in the evenings and on the weekend. The authors also 

characterized different places regarding the topics that occur 

in the tweets posted in these places. 

More recent work by Andrienko et al. [12] presents a 

procedure for obtaining data similar to personal daily mobility 

diaries. Such a diary reports what places were visited by a 

person during a day, at what times, and for what purposes. 

Mobility diaries from a large sample of population are a 

valuable source of information for transportation planning and 

simulation of various development scenarios. The presented 

procedure aims at extracting similar information from long-

term sequences of spatio-temporal positions of people, which 

may come from georeferenced tweets or from mobile phone 

use records. From these sequences, the proposed procedure 

extracts repeatedly visited personal and public places along 

with the times these places were visited within the daily and 

weekly cycles. An interactive interface involving techniques 

for multi-criteria evaluation and ranking supports assignment 

of probable meanings (‘home’, ‘work’, ‘eating’, ‘shopping’, 
etc.) to subsets of places based on visit times and information 

about the land use or point of interest categories at these 

places. The analysis is done in a privacy-respectful manner 

without accessing individual data. 

V. MODELING AND PLANNING 

This section reviews research in visual analytics concerned 

with traffic modeling and transportation planning. This 

includes the derivation of models from data, applications of 

traffic forecasting and simulation models, transportation 

scheduling, and the exploration of decision options. We note 

that planning is also often done using retrospective data, and 

for such retrospective analysis, a variety of GIS tools and 

systems are well-established. Here, we focus on the use of 

forecasting models for large data as there are new, emerging 

challenges for visualization, interaction, and simulation at the 

intersection of intelligent transportation systems. 

Scheepens et al. [61] describe two types of models that can 

be used for the prediction of individual movements of vessels. 

The first one is based on finding similar trajectories in a large 

historical database. The second model simulates the expected 

movement of a vessel based on its kinematic properties. Both 

models produce a prediction of the vessel positions over time 

as a temporal probability density field. The prediction is 

represented visually by contours showing the zones where the 

vessel is expected to be located at different times. 

Sewall et al. [64][65] developed algorithms for simulation 

of movements of multiple vehicles in a street network. The 



outputs are visualized as photorealistic 3D animations of the 

simulated traffic on selected junctions. One of the algorithms 

[65] involves a hybrid approach in which a detailed agent-

based simulation of individual vehicle movements is done for 

user-selected areas of interest while a faster macroscopic 

model is used in the remainder of the network. There is an 

interactive interface for selecting regions to view in detail. In 

these works, the traffic forecasting is not based on previous 

analysis of historical data. 

There is a series of works showing how predictive models 

of vehicle traffic can be derived from historical data consisting 

of a large number of vehicle trajectories [10][14][15]. The 

approach is based on spatial abstraction and aggregation of the 

trajectory data into collective movements (flows) of the 

vehicles between territory compartments, as shown in Fig. 1 

(G, H). The authors discovered that the dependencies between 

the traffic intensities and mean velocities in an abstracted 

transportation network at different levels of abstraction (Fig. 

9) have the same shapes as in the fundamental diagram of the 

traffic flow described in traffic theory [28]. While the 

fundamental diagram refers to links of a physical street 

network, it turns out that similar relationships also exist in 

abstracted networks. These dependencies can be represented 

by formal models (Fig. 10), which can be exploited to obtain 

fast predictions and simulations in cases when fine details are 

not necessary (Fig. 11). 

Historical traffic data can be used not only for predicting 

 

Fig. 9.  Dependencies between the traffic flow intensities (hourly volumes) 

and mean velocities on the links of an abstracted transportation network at 

different levels of abstraction. A: Abstracted networks with the cell radii of 
about 1250 m (left) and 4000 m (right). The links are clustered and colored 

according to the similarity of the volume-speed dependencies. B: The 

dependencies of the mean velocity (vertical dimension) on the traffic flows 
(horizontal dimension): the velocities decrease as the flows increase. C: The 

dependencies of the flows (vertical dimensions) on the velocities (horizontal 

dimension): maximal flows can be achieved for certain velocities and 
decrease for both lower and higher velocities.[14] 

 

Fig. 10.  For one of the clusters of links of an abstracted transportation 

network (see Fig. 8), the dependencies flow  velocity (top) and velocity  

flow (bottom) are being represented by polynomial regression models.[10] 

 

 

Fig. 11.  Traffic flow – velocity dependency models extracted from historical 

traffic data (Figs. 8, 9) have been used for simulation of a scenario with 5,000 

cars leaving the neighborhood of a stadium after a sport event. Top: The 
simulated trajectories of the individual cars are shown in a space-time cube. 

Bottom: the expected loads on the links of the abstracted traffic network are 

represented on the map by proportional widths of curved flow lines.[15] 

 



future movements under various conditions but also for spatial 

planning applications. For example, the system SmartAdP [50] 

finds suitable locations for billboard placement using taxi 

trajectories. SmartAdP allows the user to select subsets of 

trajectories and areas of interest depending on the target 

audience and applies special algorithms for selecting optimal 

locations based on the traffic volumes and velocities. The 

system provides interactive visual tools for viewing, assessing, 

and comparing proposed candidate solutions. 

The task of transportation scheduling is addressed by 

Andrienko et al. [3]. The general problem is to create a 

schedule for transporting a given set of items from their 

current locations to suitable destination places within a given 

time budget using an available fleet of transportation means. 

The items to transport may be of different categories requiring 

different kinds of transportation means. An example 

application is planning of evacuation of different groups of 

people, such as general population, schoolchildren, and 

hospital patients, from a disaster-affected area. The proposed 

system consists of a scheduling algorithm and a set of visual 

displays and interactive tools for exploring scheduling 

outcomes. The displays allow the user to detect problems, 

such as delays, understand their reasons, and find appropriate 

corrective measures. 

VI. TASKS AND DIRECTIONS FOR FURTHER RESEARCH 

So far, most of the transportation-oriented research in visual 

analytics has been mostly focusing on exploring the 

opportunities created by the availability of huge amounts of 

mobility-related data, such as trajectories of vehicles, 

electronic records of the use of public transport, and digital 

traces of people using mobile devices. The visual analytics 

community has developed a solid knowledge base of the 

properties of these kinds of transportation-oriented data based 

on years of experience. Given that a large number of visual 

analytics methods, tools, and procedures have been developed, 

the exploratory mission of visual analytics for transportation-

oriented data can thus be judged as quite successful. 

As we noted in the introduction, visual analytics also has 

another mission: to find solutions to new problems or better 

solutions to old problems by using new opportunities. This 

mission of visual analytics is far from being fulfilled in the 

transportation domain. Only a few visual analytics works 

addressed specific transportation problems. Much of the 

transportation-related visual analytics research has been 

developed separately from transportation domain specialists 

and, hence, without proper knowledge of the domain 

problems. There is a clear need in closer cooperation between 

the communities and conducting interdisciplinary researches. 

Future research should be mindful of emerging trends and 

continue seeking new opportunities. One possible direction is 

social transportation, which is a new concept that incorporates 

information from social space and cyber space into data 

acquired in physical space. Social media and mobile devices 

have recently experienced a rapid growth with the fast 

development of sensing, computing, and networking 

techniques. These social signals, from drivers’ GPS 

coordinates, mobile phones’ billing records to messages post 
on social media, record spatial, temporal and emotional 

information and establish the data foundation for social 

transportation research. 

Furthermore, integrating analytics, interaction and novel 

visualizations with navigation systems can also be explored. 

As data on places of interest and personal preferences become 

available, navigation systems can incorporate such aspects to 

better inform drivers. For example, rerouting based on 

upcoming traffic situations can utilize metrics such as a 

driver’s familiarity with a region. Data analyses should also 
work on incorporating more information about a city. While 

many works have looked at point of interest data and land 

parcel use, models and simulations of urban microclimate 

could also be incorporated to develop personal comfort routes 

during walking.   

Along with developing visual analytics methods to support 

individuals in their travels, visual analytics should also focus 

on enabling modelers to interact with their simulations. As 

simulations get larger and more complex, new tools for 

exploring such high-dimensional data spaces are needed. This 

can be useful for simulating the future of mixed modality 

traffic (manned and driverless cars sharing the road), or for 

exploring how existing infrastructure can be efficiently 

updated. Such work will require combining heterogeneous 

data in a meaningful way, processing data ‘in-vivo’ and 
developing uncertainty-aware visualization techniques for 

spatiotemporal data, all of which are open challenges. 

Finally, many of the tasks in transportation analysis require 

policy level decision making. As such, developing visual 

analytics tools that enable collaborative stakeholder 

engagement is critical. In this way, users can explore models 

and simulations, discuss the underlying assumptions, and 

inject real-world policy decisions into the models to explore 

potential future scenarios. Such collaborative visual analysis 

requires new tools, interactions, and data management 

systems. 

VII. CONCLUSION 

Both the visual analytics community and transportation 

community has produced a large body of exploratory research 

work in analyzing transportation-related data. However, the 

knowledge acquired and methods developed often lack 

collaboration between the two communities. This overview 

and the special issue as a whole aim at raising the awareness 

of both visual analytics and transportation researchers and 

practitioners about the recent work in visual analytics, the 

essence of visual analytics approaches, and the high potential 

for solving complex problems that emerges from combining 

the power of computers with the unique capabilities of humans 

supported by interactive visual interfaces. We wish to build 

bridges between the visual analytics and transportation 

communities and promote their joint work for addressing 

various transportation problems. 
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