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Abstract: Storage and transportation of goods within global supply chains is a major cause of 
environmental damage in modern value added processes. Thus, in the past, theory and 
practice developed several approaches in order to decrease these negative environmental 
impacts that frequently counteract the traditional efficiency-oriented ambitions. However, in 
many cases the economic and environmental performance can be improved at the same time. 
As many activities in logistics and inventory management are related to the treatment of 
potential uncertainties in the system by establishing redundancies, the reduction of 
uncertainty has equally a positive impact on both performance measures. To investigate the 
interrelation between uncertainty and the economic and environmental performance of supply 
chains, a serial inventory system consisting of a manufacturer who works with overseas 
suppliers and a carrier is considered, whereas the carrier is able to reduce lead time 
uncertainty. The relationships between uncertainties and the economic and environmental 
performance of the considered inventory system are highlighted by a simulation study based 
on empirical data from an international container shipping supply chain. 
 
Keywords: Inventory, Transportation, Lead-time variability, Carbon emission, Simulation 
 
Introduction 
In recent years we have seen the necessity of including environmental considerations in 
business operations, in particular for emission intensive activities such as global 
transportation of goods. Although we should be willing to undertake some cost for reducing 
the environmental impact, identifying opportunities which have positive environmental effect 
without deteriorating economic performance has become very important. Such efforts would 
lead to sustainability on both dimensions. As mentioned by Wu and Dunn (1995) and 
McKinnon (2010) preserving the environment while maintaining economic growth is a 
priority for many countries and therefore developing and implementing practical and cost-
effective carbon mitigation strategies for the logistics sector is a major challenge. Several 
activities through the supply chain contribute to these challenges. 
 
Goods storage and transportation is a major cause of CO2 emissions and is cited as the single 
largest source of environmental hazard in the logistics chain (Wu and Dunn, 1995). It is 
estimated that 2,800 mega-tonnes of the overall greenhouse gas emissions, which is 
equivalent to 5,5% of the total emissions are caused by the logistics and transport sector 
(WEF, 2009). In 2004 transport activities were responsible for 23% of the energy-related 
greenhouse gas emissions and freight transport was responsible for around 8% (IPCC, 2007). 
Lengthening of supply lines and the increase in freight transport intensity coupled with high 
usage of carbon-intensive transport modes are the main drivers of transport related carbon 
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emissions in global supply chains (McKinnon, 2010). In addition, carbon emissions related to 
warehousing is a significant factor because of the considerable energy requirements for 
heating, cooling, materials handling equipment, etc. (Dhooma and Baker, 2012), which is a 
result of  the increasing warehouse capacities due to rising buffers caused by longer lead 
times in global supply chains as well as due to growing product portfolios. 
 
In order to decrease the negative environmental impact of goods storage and transportation, 
different entities of the logistics chain can take on actions with immediate implications on the 
transportation system. Manufacturers and retailers can use more environmentally friendly 
transportation modes, or reduce the need for transportation by buying from on-shore suppliers 
as well as centralizing warehouses. On the other hand, logistics providers can work on 
reducing the carbon intensity of the energy they use and increase the energy efficiency of 
their operations by freight consolidation or by improving the technical features and the 
maintenance of their vehicles (McKinnon, 2010). Additionally, there are actions which can 
help improve the system through the interaction of the overall operations. One example is 
coordinating production schedules among suppliers to allow joint shipments which results in 
better vehicle utilization and hence fewer emissions (Bonney and Jaber, 2011).  
 
Similarly, in this paper we analyse the economic and environmental implications of a serial 
inventory system through such an interaction effect: the indirect effect of transport lead time 
variability through the replenishment policy on economic and environmental performance of 
supply chains. In order to develop sustainable operations we need to understand the effect of 
system parameters on environmental performance. In this study we are interested in the 
impact of a system parameter, transport lead-time variability, on carbon emissions. 
 
As Fransoo and Lee (2012) put it, although ‘containerised ocean transport has become the 
lifeline of almost any global supply chain’, there appears to be little or no attention to end-to-
end supply chain focus. Similarly, in a recent review, Tang and Zhou (2012) conclude that 
there is a need to develop and analyze end-to-end supply chain models that incorporate the 
issue of sustainable operations.  Although we do not consider a complete end-to-end supply 
chain, we still consider the interactions of different parts of the supply chain.  
 
When we consider global supply chains with overseas transportation, air freight and 
containerized ocean transportation are the two relevant modes of transportation. Decreasing 
lead-time variability is an operational improvement which can indirectly affect the carbon 
emissions on the whole supply chain by triggering actions and policies from shippers that 
lead to lower carbon emissions. It is commonly acknowledged that unanticipated variability 
in demand and/or lead-time is the major reason for stock-outs or excess inventories in supply 
chains. As the ocean carrier is able to reduce the lead-time variability under certain 
conditions, the need for both emergency shipments by air freight as well as safety stocks will 
decrease, which will also have significant impacts on the environmental performance of the 
supply chain.  
 
Economic implications of lead-time variability have extensively been studied. Song (1994), 
He et al. (2005), and Song et al. (2010) analyse the effect of lead-time variability on optimal 
inventory control policies and the resulting total costs under standard inventory control 
policies. With a simulation study of a multi echelon supply chain Chaharsooghi and Heydari 
(2010) show the significant impact of lead-time variability on performance measures such as 
inventory levels, product availability and bullwhip effect.  
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The time factor is a critical component in ocean transportation. Shipping lines have 
developed a strong focus on designing liner services with high frequencies, short transit 
times, combined with a high degree of schedule reliability. Variability in transportation time 
and the resulting delays not only decrease the reliability of the liner services, but can also 
incur additional costs (Notteboom, 2006). 
 
Delays have negative impact not only on economic performance but also on environmental 
implications. McKinnon (2007) presents a framework where seven sustainability ratios link 
supply chain activities with the carbon emissions of freight transport operations. Sanchez-
Rodrigues et al. (2010) study the negative impact of operational uncertainty on the seven key 
ratios. They present the perceived economic and environmental risks of transport uncertainty 
based on focus groups and surveys from different industries including manufacturers, 
retailers, and logistics providers. Delays are identified as the main source of transport 
uncertainty which has the highest economic and environmental risk. 
 
Recently, several models and policies have been developed which consider an environmental 
objective or constraint in addition to the economic objectives. Generally, environmental 
considerations are included in the models as they are imposed by regulations: either as limits 
on carbon emissions or as costs derived from carbon taxes or carbon trading.  
 
Benjaafar et al. (2010) study how classical operational models can be modified to include 
carbon emission concerns in order to address the role of operational decisions on carbon 
reduction. In a following study, Chen et al. (2011) analyse the classical EOQ model with a 
carbon constraint and extend the results to the newsvendor model and facility location 
problems. They provide conditions under which carbon reductions can be achieved without 
significantly increasing cost using only operational adjustments. Similarly, Hua et al. (2011) 
and Song and Leng (2012) analyse the EOQ and newsvendor models respectively under 
carbon cap-and-trade mechanism and show that under some conditions it is possible to reduce 
carbon emissions and decrease cost or increase profit at the same time. Jaber et al. (2012) 
model a two echelon supply chain considering emissions trading. Using an EOQ type 
formulation they consider different legislative systems such as carbon tax, emissions penalty, 
and a combination of a carbon tax and penalty. 
 
In addition to identifying optimal policies for companies, these studies provide insight about 
the effectiveness of different regulations on emission reductions. However, this implies that 
most of the research on operations including carbon emissions ignores market forces 
including competitors and consumers (Tang and Zhou, 2012). An exception is El Saadany et 
al. (2011) who study a two-level supply chain under cost optimization objective where 
demand is assumed to be a function of several product features including its environmental 
performance. Bouchery et al. (2012) state that the regulation based models poses a restriction 
with respect to their relevance and applicability. They study a multi-objective model in order 
to avoid this problem and apply their model for the EOQ problem. They identify the efficient 
frontier between total cost and total amount of carbon emissions resulting from the inventory 
system, and further use this to analyze the effectiveness of different regulations.  
 
Hugo and Pistikopoulos (2005) and Frota Neto et al. (2008) address the supply chain network 
design problem using multi-objective models with environmental and economic criteria. 
They identify settings where significant improvements in one criterion can be achieved with 
marginal compromise in the other one. Similarly, Chaabane et al. (2012) show how to achieve 
environmental objectives in a cost efficient way while designing supply chains under carbon 
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regulations. On the other hand, Harris et al. (2011) present a network design problem with a 
classical economic objective of cost minimization in order to study the impact of this 
approach on environmental performance. They analyse the relation between total logistics 
cost and their environmental impact in terms of carbon emissions from transportation and 
warehousing. They highlight that the cost-optimal solution is not necessarily the same as the 
solution which minimizes environmental impact.     
 
The remainder of the paper is organised as follows: Section 2 presents our model and the 
modelling assumptions. We present the findings from our model based on a simulation study 
in Section 3, and Section 4 finally concludes the article. 
 
Problem Description 
This paper studies a serial inventory system consisting of a shipper, i.e. a manufacturer or a 
retailer who works with overseas suppliers and has to decide on replenishments in the 
presence of uncertain customer demands as well as uncertain lead times associated to ocean 
freights (see Figure 1). The retailer uses a common continuous review inventory control 
system to determine the size and timing of orders and issues a regular order whenever the 
inventory position reaches the reorder point. Lead time for regular sea freight deliveries is 
assumed to be uncertain and is consists of the average lead time and a lead time delay which 
is common with regard to containerized shipping (c.f. Drewry, 2010). Besides, the retailer 
also employs an emergency supply mode via air freight to hedge against shortages and to 
ensure a 100% customer service level. This setting is observable in many practical scenarios, 
for example in highly competitive industries in which supply bottlenecks lead to the 
migration of customers or high contract penalties if the guaranteed service level targets were 
infringed. Air shipments usually have a short and rather predictable lead time compared to 
regular deliveries at the expense of higher transport cost and CO2 emissions per item and are 
assumed to arrive within the same day (see Moinzadeh and Nahmias 1988, Johansen and 
Thorstenson 1998, Axsäter 2007 or Huang et al. 2011 for a similar setting). In order to 
quantify the effect of lead time variability reduction on carbon emissions and supply chain 
performance, we present and analyse a simulation model based on a standard multi-period 
inventory control policy in such a dual transportation mode setting. 
 

----------------------------------------------- 
Figure 1  

----------------------------------------------- 
 
As there is still a lack of global, integrative performance metrics that combine environmental 
and operational measures and targets, in practice many organisations treat these concerns 
separately (El Saadany et al., 2011). Therefore, two different scenarios with respect to the 
measurement of the global performance of the supply chain and the inducible decision 
objectives are studied in the remainder of the paper.  
 
Under the first scenario, it is assumed that the replenishment policy is based on cost 
minimization without consideration of the environmental performance during the decision 
making process. This scenario can be considered as the one closer to practice as most of the 
commonly used inventory policies are based on cost minimization. Since with the availability 
of emergency option all demand is satisfied, a customer service level criterion is not relevant 
in this setting. Our aim is to identify the impact of consequent transportation performance on 
CO2 emissions under such a classical cost based approach.  
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The second scenario takes the complete opposite approach where the inventory levels are set 
according to a pure emission minimization objective. Our aim with this scenario is to identify 
the cost of minimizing environmental impact by comparing the results of the two scenarios. 
We do not combine the two objectives in a multi-objective model nor we include the 
environmental performance as a constraint or try to convert the emissions into monetary units 
and use it in the cost minimization. This way we avoid using a regulation based model as 
mentioned in the previous section. Rather than developing a prescriptive model we illustrate 
the interactions among the two distinct objectives and the relation between system parameters 
under different settings. 
 
Simulation model 
The purpose of the following simulation mode that considers the inventory system described 
above is to find the optimal model parameter based on the given setting and to evaluate the 
system in different parameter settings for a given policy. 
 

----------------------------------------------- 
Figure 2  

----------------------------------------------- 
 
Figure 2 illustrates the decision process. The retailer faces a random daily demand which is 
satisfied from on-hand stock as long as possible. Whenever the inventory position declines to 
or below the reorder level, a regular order is issued that is delivered by the carrier via 
containerized sea freight and whose lead time is affected by uncertain delays in shipping 
times. Demands that cannot be fulfilled by on-hand stock will be served by emergency orders 
by air freight within one day at the expense of higher unit transport cost. As there is no fixed 
ordering cost for emergency replenishments assumed, the manufacturer will satisfy the daily 
shortages by emergency supplies.  
 
The supply chain model discussed above is simulated using AnyLogic 6.8.1 software and is 
based on a discrete event simulation model to describe the sequence of operations within the 
system. 
 
Inventory Control Policy 
In the setting described above, the manufacturer decides on the stock levels as well as the 
reorder behaviour and deploys the carrier for the deliveries from overseas suppliers. Besides 
these regular replenishment processes, he can also use emergency supplies via air freight, i.e. 
a second means to deliver with negligible lead times but at the expense of higher transport 
costs and emissions. 
 
As mentioned in Axsäter (2007) and Huang et al (2011) accomplishing emergency orders 
usually imposes a direct unit cost which is in or case related to the increase in shipment cost 
per unit by using air freight instead of container shipping and avoids ordering cost for normal 
replenishments. Furthermore, as the demand fulfilled by emergency deliveries disappears 
from the regular replenishment process, the changes of the system state are essentially 
equivalent to a lost-sales approach. 
 
Since it is difficult to obtain the optimal policy for an inventory system with emergency 
orders, heuristics and approximations are commonly used. Minner (2003) provides an 
extensive review on inventory policies with multiple supply modes. There exist several 
models based on the extensions of (Q,r) policy. For example, Johansen and Thorstenson 
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(1998), and Axsäter (2007) provide heuristics based on (Q,r) policy for triggering emergency 
orders. Jain et al. (2010) study a make-to-order system with two transport modes where they 
assume a (Q,r) policy and derive the optimal policy parameters. Huang et al. (2011) provide a 
heuristic decision rule for an inventory system with emergency orders and partial 
backordering where the normal orders are set according to a (Q,r) policy. These models 
assume a positive lead time for emergency orders while we assume zero lead time for the 
emergency orders. Furthermore we assume that all demand which cannot be immediately 
satisfied has to be satisfied through an emergency order. These two assumptions make our 
model simpler and we do not really need a decision rule for when to put an emergency order 
and the size of the emergency order. Our decision variables are the size of the regular 
shipments. 
 
The regular ordering using ocean transportation can be seen as a lost sales system. Sheopuri 
et al. (2010) presents the connection between the lost sales inventory control problem and the 
dual sourcing problem. Based on their findings, we can observe that the dual mode system 
that we consider is identical to a lost sales system where the regular mode is the only supply 
source and the amount of orders placed from the emergency mode is exactly the amount of 
lost sales in the regular mode every period.  
 
For lost sales systems, the (Q,r) policy has been studied extensively, but it remains difficult to 
analyze the model exactly and determine the optimal values for Q and r. Bijvank and Vis 
(2011) provide a recent review on lost sales inventory models. 
 
In practice, it is common to derive the order quantity Q from a deterministic model using 
mean demand and lead-time, and stochasticity is considered while determining the reorder 
point r. This procedure is generally an adequate approximation to the optimal policy (Axsäter 
2006). In this study, we determine Q from the economic order quantity (EOQ) model, and 
find the optimal reorder point by simulation. We have used the default optimization engine in 
AnyLogic which is based on OptQuest Optimization Engine. 

 
Calculating logistical parameters 
To create a rather realistic description of the considered problem setting, the simulation 
model is based on data from different sources such as reports from public authorities and 
industry groups as well as internal operating data collected from a UK retailing company. An 
overview of the considered model parameters is given in Table 1, whereas their derivation is 
explained in detail in the following paragraph. 
 

----------------------------------------------- 
Table 1  

----------------------------------------------- 
 
Demand characteristics are based on the average daily product demand of the considered 
retailer. To achieve comparability between different product classes, demand is assumed to 
follow a normal distribution where the daily mean demand is normalized and different levels 
of the standard deviation are considered within the simulation. We consider products with 
stationary demand, where seasonality and trend are not significant. Hence, variability of 
demand refers to the forecast error, which in this setting stems from uncertainty in the 
demand process.  
 
As the considered products are purchased from overseas suppliers on a make to stock basis, 
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lead time for regular replenishments is predominantly influenced by transportation lead times 
(see Tersine and Hummingbird, 1995) and thus, the performance of the oversea carrier which 
is mainly determined by two key factors, transit time and schedule variability (Notteboom, 
2006). Regular shipping time is chosen on the basis of typical transit time between the two 
considered ports. In addition, variability of these shipping times is included by considering 
delays appearing within these regular schedules. This schedule variability can be described by 
difference between the planned arrival date and the actual arrival date and is influenced by 
different factors such as terminal operations, port access, maritime passages and chance 
(Notteboom, 2006). Therefore, additionally to the regular fraction of the shipping time, a 
gamma distributed delay with mean of one day and a standard deviation of 2.05 days is 
considered, which reflects the average schedule reliability statistics for all types of carriers on 
this specific route (see Drewry, 2010). The variability appears to be comparatively small, but 
always depends on the considered route and the individual ocean carrier deployed. 
 
Inventory holding cost include the physical holding cost as well as the cost of capital and are 
also derived by the internal data provided by the retailer. The fixed element of the ordering 
cost consists of the fixed cost for ocean freight such as booking and documentation fees as 
well as the internal documentation and administration expenses and amounts to 195 USD. For 
the derivation of the variable sea transport cost per item all the cost associated with a FFT 
container such as hinterland transport cost in Asia and Europe, the ocean freight rates as well 
as customs and port handling fees are considered on the product level by assuming a full 
container load and an average product size. It is implied that remaining container space may 
be used for other products as well. A similar approach is used to derive the air transport cost 
per item. After considering all air freight cost per kg, such as transport cost, direct air freight 
cost, security and handling fees, the air transport cost rate is determined by assuming an 
average product weight. Table 2 summarizes all the relevant cost factors and the derivation of 
the variable transport cost per item for the employed transportation alternatives. 
 

--------------------------------- 
Table 2  

--------------------------------- 
 
Calculating CO2 emissions 
The presented approach considers the overall carbon emissions of the inventory system on an 
end-to-end supply chain focus as the sum of transport related and warehouse related 
emissions which can be identified as the main drivers of environmental pollution in global 
supply chains (see WEF, 2009). 
 
As the presented study is based on a retailer that works with different carriers and doesn’t 
have in-house transport operations that provide direct access to energy data, the transport 
related CO2 emissions are estimated on the level of transport activity. Thus, to calculate the 
emissions from transportation, the average product weight, the distances for ocean and air 
freight and the respective ocean and air freight emission factors are considered as follows: 
 

kgCO2 /item= average item weight * distance *CO2/tonne-km  
 
where an average emission factor of 8 gCO2/tonne-km is assumed for container vessels and 
602 gCO2/tonne-km for airfreight (cf. McKinnon and Piecyk, 2010). 
 
For the calculation of CO2 emissions from the distribution warehouse, we estimated the 
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average daily emissions per product based on the energy consumption (kWh) of fuels and 
electricity spent on lighting and air conditioning. Note that in the considered inventory 
system, the products don’t require a specialized storage environment, i.e. extensive cooling or 
heating. Consequently, the warehouse emissions per item within a year are calculated by 
using energy consumption benchmarks for retail warehouses and respective conversion 
factors as well as the provided warehouse capacity and average stock size: 
 
kgCO2/item = (warehouse capacity/average stock size)*energy benchmark*conversion factor 
 
where an energy benchmark for electricity of 67 kWh/m2 and for fossil fuels of 169 kWh/m2 
is used (CIBSE, 2004). The respective conversion factors for electricity of 0.54 kgCO2/kWh 
and for fossil fuels of 0.27 kgCO2/kWh are used to derive the appropriate emissions 
(DEFRA, 2012), which leads to overall warehouse emissions of 81,81 kgCO2/m2. 
Considering the average stock size of 250,000 products and the area of the warehouse of 
5,500m2, this leads to a daily emission of 0,005 kg CO2/item. In this case, it is implicitly 
assumed that a reduction of the amount of products stored leads to reduced emissions as the 
warehouse space may also be used for other products. 
 
Results 
Effect of lead time variability on cost and emissions 
With the given parameters we can observe that cost optimal re-order points rc*  is always 
smaller than the emission optimal re-order point re* . This is a result of the relation between 
two ratios: the sea-air freight cost ratio and the sea-air freight emission ratio. Because of the 
large air freight emissions, optimisation on emissions results in higher safety stocks and 
hence lower emergency shipments.  
 
The direct effect of lead time variability on total cost and total emissions is illustrated in 
Figures 3 and 4. 
 

----------------------------------------------- 
Figure 3 + 4  

----------------------------------------------- 
 
Figure 3 shows the increase of mean total cost and their 95% confidence intervals in δL. As 
expected, total cost increase in δL, which is perfectly in line with the literature and validate 
our model. Figure 4 shows the corresponding effect of δL on mean total emissions and their 
95% confidence intervals. Intuitively total emissions are also increasing in δL, since both 
safety stocks and the amount of air shipments increase.  
 

Table 3: Optimality gap between cost and emission optimization, sea:air cost ratio 1:10.5, 
emission ratio 1:32 

σL ΔTC % ΔTE % 

1.00 0.08% 0.03% 

2.00 0.16% 0.52% 

3.00 0.13% 1.17% 

4.00 0.25% 1.42% 
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Table 4: Optimality gap for an alternative product with sea:air cost ratio 1:6 and emission 
ratio 1:50 

σL ΔTC % ΔTE % 

1.00 0.39% 0.88% 

2.00 0.65% 4.82% 

3.00 0.60% 10.92% 

4.00 0.57% 15.71% 
 
 
Tables 3 and 4, and Figures 5 and 6 show how a change in the objective from minimizing 
total cost to minimizing total emissions affects the shipper. Let ΔTC = (TC(re* ) – TC(rc*)) / 
TC(rc*)  be the relative cost difference: The increase in cost if the shipper decides based on 
emission minimisation instead of cost minimisation. Similarly, ΔTE = (TE(rc* ) – TE(re*)) / 
TE(rc*)  is the decrease in total emissions when the shipper minimizes total emissions instead 
of total cost. 
 
As can be observed this optimality gap depends mainly on the relation between the cost and 
emission ratios. The more different these two ratios become the larger the optimality gap is.  
 
In the base case in Figure 5, we observe a cost ratio of 1/10.5 (3.84/40.90) together with an 
emission ratio of 1/32 (1.76/56.80). Under this relation, the optimality gap both on cost and 
emissions are very small. This implies that the pricing is able to regulate the system such that 
cost optimal policy and the emission optimal policy are very close to each other. 
 
For products with different characteristics which can lead to a more divergent cost and 
emission ratios would cause the optimality gap to grow. In Figure 6 with a cost ratio of 1/6 
and emission ratio of 1/50, especially for high levels of δL, a change in the policy has a strong 
effect on the environmental performance (here around 15% savings in emissions for the 
highest lead time variability), which comes with a small increase in total cost (below 1% for 
all values of lead time variability).  
 
While we can observe that the optimality gap on total emissions can be quite considerable, 
especially for large δL, the gap on total cost is typically rather low independent of the cost and 
emission ratios. This can be explained with the fact that cost functions are typically steep left 
of the cost optimal re-order point where high cost of air freight are relevant. Right of the cost 
optimal re-order point the cost function is rather flat as holding cost are typically much lower 
than air-freight cost. Since rc* < re* changing the objective from cost to emission 
minimisation does not harm the economic performance but improves the environmental 
performance considerably. 
 

----------------------------------------------- 
Figures 5 + 6  

----------------------------------------------- 
 
Impact of ratio air:sea freight emissions 
Figure 7 shows how a change in the emission rate of air freight from a basis value of 23 
impacts total cost, when the objective is to minimize emissions. For low levels of demand 
variability (cvD = 0.2 and cvD = 0.4), total cost are almost unchanged in a change of air 
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emissions. This again confirms the finding that emission optimisation has little impact on the 
total cost. Only for high levels of demand variability (cvD = 0.6), increasing air freight 
emission rates impact the order policy strong enough that a significant decrease in total cost 
can be seen, which is caused by increased safety stocks and hence decreased air shipments.  
 
Figure 8 shows the impact of increasing air freight emissions from a basis value on total 
emissions, again with the objective to minimise emissions. Higher levels of demand 
uncertainty (cvD = 0.6) have a stronger impact on the change in total emissions. 
 

----------------------------------------------- 
Figure 7 + 8   

----------------------------------------------- 
 
Impact of ratio air:sea freight cost 
In order to analyze the effects for a cost minimizing shipper, Figure 9 shows the impact of air 
freight cost on total cost. This is again perfectly in line with the literature. Figure 9 shows the 
effect of air freight cost on total emissions of the shipper. Clearly an increase in air freight 
cost reduces the percentage of air freight necessary and hence also emissions. Note that as rc* 
< re*, the decrease in rc* has a significant impact on emissions.  
 

----------------------------------------------- 
Figure 9 + 10   

----------------------------------------------- 
 
Detailed cost and emission analysis 
In Figures 11 to 14 we illustrate the distribution of costs and emissions between warehousing 
and air freight. The reason for choosing these two is that both warehousing and air freight are 
measures to deal with uncertainties in the system. Uncertainties can be either covered by 
safety stocks or by emergency shipments. Since by far the largest part of quantity shipped 
through ocean shipping is independent of variabilities, cost and emission related to ocean 
shipment are almost fixed for all levels of lead time and demand variability.  
 
Figure 11 shows the emissions from warehousing and airfreight for different levels of σL 
under emission minimization. On the other hand Figure 12 shows the same under cost 
minimization. It can be observed that under emission minimization it is mainly additional 
safety stocks that cover the increase in uncertainty of lead time as typically warehousing 
related emissions are considerably smaller than emissions of air shipment. Under the cost 
minimization criterion mainly air freight covers additional lead time variability.  
 

----------------------------------------------- 
Figures 11 + 12  

----------------------------------------------- 
 
In Figure 13 and 14 we show warehousing and air shipment cost under emission and cost 
minimization, respectively. Under emission minimization we can again observe that 
additional lead time variability is covered by safety stocks, air shipments remain almost 
constant. Under cost minimization, both additional safety stocks and air shipments are used to 
cover uncertainty. The main cost implication is on air shipments. 
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----------------------------------------------- 
Figures 13 + 14   

----------------------------------------------- 
 
As discussed previously cost is rather insensitive to the level of re-order points within these 
ranges, while emissions can change considerably. As a result, the (emission) values in Figures 
11 and 12 become very different for high lead time variability, while the (cost) values in 
Figures 13 and 14 are relatively similar.  
 
Conclusion 
In this study we quantified the effects of variability in deep sea container shipping on 
emissions and total cost for a retailer or manufacturer with high service level requirements. 
An important finding is that a change in the optimal policy from cost to emission 
minimization has a low impact on cost, but can have a considerably high impact on 
emissions. We showed this based on the optimality gap between cost and emission 
optimization. 
 
As this study is based on data from the case of a typical UK retailer and real-world cost and 
emission data, an additional value of this work is to provide estimates on the absolute cost 
and emission implications of typical ocean freight lead time variabilities. This is particularly 
relevant as recently ocean carriers have begun to offer ‘perfect reliability’ (i.e. aiming zero 
lead time variability) in containerized ocean shipping on major routes from Far East to 
Europe. In this sense our paper provides an illustrative case how such a change in shipping 
lead time variability affects a typical retailer’s cost and emission performance through 
inventory policies. 
 
An immediate extension of this work is to consider more levels of the supply chain and 
including the potential variability on different echelons. Production lead time on the supplier 
site and the transportation time on road/rail from the supplier to the port and from the central 
warehouse to further stocking points and customers are potential causes of variability and 
inefficiency in the supply chain. Moreover, the consideration of different transportation 
modes as well as the combination in intermodal logistics networks may lead to further 
interesting results. 
 
There exists a large body of literature on supply chain network design considering the 
environmental impact. Combining the strategic and tactical levels of supply chain planning 
with an eye on the environmental performance would be another challenging research topic. 
A plethora of works exist on the simultaneous analysis of the strategic network design and the 
interaction with tactical and operational level problems such as inventory control and 
transportation decisions. However, the environmental performance of such an integrated 
model has not been covered yet. It is worthwhile to look at the interaction of the two levels of 
problems from the environmental sustainability aspect.  
 
In this study we did not consider holding cost for pipeline inventory, which is a result of cost 
of capital and depreciation, and is very common and significant for products with a short life 
cycle. For example, in the electrical machinery industry depreciation rate per day accounts 
for around 1% of the product’s value (see Hummels 2000). In such a setting we would expect 
to see an even higher proportion of air shipment if the objective is cost minimization. This 
would increase the gap between emission and cost optima even further.  
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Moreover, in our simulation approach we employed the direct carbon emissions caused by 
transportation and storage of goods as an indicator for the environmental performance of the 
inventory system. More sophisticated environmental performance metrics that include a 
variety of qualitative and quantitative measures (c.f. El Saadany et al., 2011) could be used to 
illustrate the different environmental impacts of such a system and the ensuing customer 
behaviour. 
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Tables and Figures 
 

Table 1: Default 
model parameter 
used for simulation 
study, if not 
mentioned 
otherwise  
 
 
 
 
 
 

   

d = 100.00 Mean demand per day 

cvD = 20%  Coefficient of demand variation  

L = 30.00 Mean lead time 

σL = 2.05 Standard deviation of lead time 

ch = 0.01 Holding cost rate per item 

cs = 3.84 Sea transport cost rate per item 

ca = 40.80 Air transport cost rate per item 

co = 195.00 Fixed cost per regular order and delivery 

eh = 0.005 CO2-emission storage per item and day 

es = 1.76 CO2-emission sea transport per item 

ea = 56.80 CO2-emission air transport per item 
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Table 2: Calculation of transport related cost factors 

Cost factors sea transport per FFTC Cost factors air transport per kg 

Hinterland transportation to Yangshan terminal 357 USD Transportation from vendor to Pudong airport 0.30 USD 

Yangshan port terminal handling 120 USD Air Freight 0.97 USD 

Customs brokerage 50 USD Security fee 0.18 USD 

Ocean freight rate and security fee (including cost of fuel) 3510 USD Handling cost 0.14 USD 

Import customs clearance to UK 90 USD Fuel surcharge 1.82 USD 

Felixtstowe port terminal handling 270 USD War risk charge 0.13 USD 

Delivery from Felixtsowe terminal to customer 750 USD Heathrow airport handling 0.24 USD 

  Delivery from Heatrow airport to customer 0.30 USD 

Total sea transport cost per FFT container 5147 USD Total air tranposrt cost per kg 4.08 USD 

Sea transport cost per item* 3.84 USD Air transport cost per item** 
40.80 
USD 

    

* with 1340 products of average size per FFT container    

** with an average product weight of 10 kg    
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Figure 1: Schematic diagram of the two stage supply chaing with air freight, ocean shipping and 
warehousing emissions 
 
 

 
 
 
Figure 2: Decision flow chart of the inventory control and re-ordering subsystem of  the simulation 
model 
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Figure 3: Total emissions over σL for different levels of demand uncertainty: cvD = {0.40, 0.20, 
0.01} for top, middle and bottom plot, with 95% confidence intervals. 
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Figure 4: Total cost over σL for different levels of demand variability: cvD = {0.40, 0.20, 0.01} for 
top, middle and bottom plot, with 95% confidence intervals. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Optimality gap in % of emissions (solid line) and cost (dashed line) for a product with 
sea:air cost ratio 1:10.5 and sea:air emission ratio 1:32, cvD = 0.20. 
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Figure 6: Optimality gap in % of emissions (solid line) and cost (dashed line) for an alternative  
product with more diverge sea:air ratios: a cost ratio of 1:6 and an emission ratio of 1:50, cvD = 
0.20. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 7: Sensitivity analysis of total cost with respect to emissions of air freight with an emission 
minimization objective, cvD = {0.60 (top), 0.40 (mid),0.20 (bottom)}, and 95% confidence 
intervals. 
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Figure 8: Sensitivity analysis of total emissions with respect to emissions of air freight with an 
emission minimization objective, cvD = {0.60 (top), 0.40 (mid),0.20 (bottom)}, and 95% confidence 
intervals. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9: Sensitivity analysis of total cost with respect to cost of air freight with a cost 
minimization objective, cvD = {0.60 (top), 0.40 (mid),0.20 (bottom)}, and 95% confidence 
intervals. 
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Figure 10: Sensitivity analysis of total emissions with respect to cost of air freight with a cost 
minimization objective, cvD = {0.60 (top), 0.40 (mid),0.20 (bottom)}, and 95% confidence 
intervals. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Detailed emissions of warehousing and air freight using re (emission optimal re-order 
point), cvD = 0.20. 
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Figure 12: Detailed emissions of warehousing and air freight using rc (cost optimal re-order point), 
cvD = 0.20. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13:  Detailed cost of warehousing and air freight using re (emission optimal re-order point), 
cvD = 0.20. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14:  Detailed cost of warehousing and air freight using rc (cost optimal re-order point), cvD = 
0.20. 
 


