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Abstract: In many business-to-business transactions, the buyer is not required to pay 

immediately after the receipt of an order, but is instead allowed to postpone the payment to its 

suppliers for a certain period. In such a situation, the buyer can either settle the account at the 

end of the credit period or authorize the payment later, usually at the expense of interest that is 

charged by the supplier on the outstanding balance. Some payment terms, which are often 

referred to as trade credit contracts, contain progressive interest charges. In such cases, the 

supplier offers a sequence of credit periods, where the interest rate that is charged on the 

outstanding balance usually increases from period to period. If a buyer faces a progressive trade 

credit scheme, various options for settling the unpaid balance exist, where the financial impact 

of each option depends on the current credit interest structure and the alternative investment 

conditions. This paper studies the influence of different financial conditions in terms of 

alternative investment opportunities and credit interest structure on the optimal ordering and 

payment policies of a buyer on the condition that the supplier provides a progressive interest 

scheme. For this purpose, mathematical models are developed and analyzed. 

 

Keywords: Trade credit; progressive interest rates; inventory management; economic order 

quantity; retail industry 

 

Introduction 

The focus of supply chain management has for many years been on the coordination of business 

functions such as purchasing, production and distribution within and across companies. 

Although it was stated early by many researchers that the management of supply chains should 

also include the integration of information and financial flows (cf. Mentzer et al., 2001), the 

management of financial issues in supply chains has only recently made its way onto research 

agendas (see, e.g., Pfohl and Gomm, 2009). One financial instrument that has received 

considerable attention in recent years are trade credits (see Seifert et al., 2013, for a recent 

review of the literature). Trade credits are short-term debt financing instruments that enable 

buyers of intermediate goods or services to delay the payment to their suppliers for a predefined 

credit period, either free of cost or in exchange for a contracted interest rate. 

 

The major advantage of delayed payments is that suppliers provide capital access and thus 

enable their customers to increase order sizes without approaching a liquidity bottleneck. In 

addition, they help to improve the competitive position of the suppliers, who can use payment 

delays instead of price discounts to promote sales and develop their product market position 

(cf. Summers and Wilson, 2002). Other enablers facilitating the supply of trade credits are 

differences in the price elasticity between suppliers and buyers, collateral values of goods sold, 

credit intermediation between buyers and banks as well as the protection of non-salvageable 
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investments in buyers (cf. Seifert et al., 2013). Consequently, in many industries, trade credits 

have become one of the most important sources of short-term funding. A recent survey of the 

European Central Bank (2013) showed that access to finance is one of the most pressing 

problems especially of small- and medium-sized companies in Europe. Trade credits are thus 

a promising option to get access to short-term finance for companies suffering under a credit 

crunch. Besides diminishing credit rationing, trade credits may also lead to a reduction of cost 

by pooling transactions, and they allow more financial flexibility than bank loans in the case 

of financial distress (Garcia-Teruel and Martinez-Solano, 2010). 

 

Trade credit terms may vary significantly from industry to industry. The simplest way to offer 

a trade credit is to define a fixed time period in which the buyer is allowed to delay the payment 

to its supplier. If the buyer fails to settle the account (completely) during this time span, then 

interest is charged on the outstanding balance. This type of trade credit was first analyzed in 

the context of an economic order quantity (EOQ) model by Goyal (1985), who showed that the 

order quantity increases if predefined payment delays are permitted, as compared to the 

classical EOQ model. Subsequently, Dave (1985) introduced a model that considered different 

purchasing and selling prices, and Chung (1998) presented a simplified solution procedure for 

this model. Teng (2002) further extended the model of Goyal (1985) and demonstrated that in 

certain cases, it is beneficial for the buyer to reduce its order quantity if trade credits are offered, 

and to benefit from the permissible delay in payments by ordering more frequently. Huang 

(2007) considered the case of a supplier that specifies a threshold order quantity, where the full 

trade credit is only granted if the buyer’s order quantity exceeds this threshold. If the order 

quantity is below the predetermined quantity, then only a partial trade credit is offered. Similar 

works are the ones of Chung et al. (2005) and Yang et al. (2013), which assumed that if the 

order quantity is smaller than a predetermined quantity, the supplier does not offer a trade credit 

at all. Taleizadeh et al. (2013) considered a scenario where a fraction of the purchasing cost 

has to be paid immediately after the order has been received into inventory, and where only the 

remaining fraction of the purchasing cost is subject to trade credits. A related scenario is the 

one where the supplier offers the trade credit on a one-time-only basis. Papers that fall into this 

stream of research assumed that the trade credit is available only for a single order at a pre-

specified point in time, which is in contrast to the works discussed above that assumed that the 

trade credit is available in each order cycle. In case a one-time-only trade credit is offered, the 

buyer has an incentive to place a special order quantity once to benefit from the trade credit, 

and to revert to its original order policy after the trade credit option has expired. Works that 

belong to this stream of research are the ones of Goyal and Chang (2008) and Chung and Lin 

(2011), among others. 

 

Other authors considered the case where the supplier offers more than a single credit period to 

the buyer. The general idea of a so-called progressive payment scheme is that no interest is 

charged in the first credit period, and that the interest rate then increases from credit period to 

credit period. Goyal et al. (2007) were among the first to consider a progressive payment 

scheme. The authors studied the case of three different credit periods and analyzed their impact 

on an EOQ model. This paper was revisited by Chung (2009), who improved the optimization 

procedure suggested by Goyal et al. (2007). The work of Goyal et al. (2007) has frequently 

been extended in the past. Some authors, for example, assumed that demand is stock-

dependent, which leads to higher customer demand early in the cycle and to lower customer 

demand at the end of the replenishment cycle (see, e.g., Soni and Shah, 2008; 2009). If such an 

inventory system is appropriately managed, then higher earnings at the beginning of a cycle 

enable the buyer to repay the supplier earlier, which leads to a higher profit for the buyer. If 

demand is stock-dependent, then the profit of the buyer can be increased if inventory is not 
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fully depleted at the end of a cycle, which stimulates additional customer demand (see Teng et 

al., 2011). Other popular extensions of the work of Goyal et al. (2007) include product 

deterioration (e.g., Soni et al., 2006b, Teng et al., 2011, Shah et al., 2011), the production of 

defective items (e.g., Sarker, 2012), the time value of money (e.g., Soni et al., 2006a; 2006b), 

or limited storage space (e.g., Shah et al., 2011, Teng et al., 2011). 

 

A closer look at the literature reveals that research has frequently relaxed limiting assumptions 

of earlier works on trade credits to develop more realistic planning models that cover a wide 

range of practical scenarios. The seminal work of Goyal (1985), for example, assumed that the 

product is sold to the end customer at the unit purchase price. This assumption was relaxed by 

Dave (1985), Huang (2002) and Teng et al. (2006), for example, who assumed that the selling 

price is necessarily higher than the purchase price paid by the buyer. When analyzing the 

literature, we found that prior research consistently made the assumption that the interest rate 

charged by the supplier exceeds the credit interest rate of the buyer in all credit periods. The 

only exception is the work of Cheng et al. (2012), which, however, did not consider a 

progressive payment scheme and assumed that the buyer settles its open account at the end of 

the replenishment cycle at the latest, as the supplier is not willing to make a new delivery before 

receiving the entire purchase price of the previous shipment. 

 

It is clear that in practice, the interest rate charged by the supplier does not always exceed the 

credit interest rate of the buyer. On the contrary, the credit interest rate of the buyer, which 

could represent the interest rate the buyer could realize by depositing money in an interest 

bearing account or by investing it elsewhere, or the interest rate the buyer is charged from its 

bank (Summers and Wilson, 2002), could exceed the interest charged by the supplier. Several 

empirical studies revealed that this is especially the case in duopoly industries with a small 

number of powerful customers (see, e.g., Ng et al., 1999; Klapper et al., 2012). In such a case, 

it would not be rational from the buyer’s point of view to settle the unpaid balance as soon as 

interest is charged on the outstanding balance, as was assumed in the literature so far. Instead, 

it would be better to keep the sales revenue invested and to settle the unpaid balance not before 

the interest charged by the supplier exceeds the incomes from the investment, or just before the 

next order is issued. Considering such arbitrage gains within the payment policy induces 

substantial savings and is suited to explain the differences in the working capital structure as 

can be observed, for example, in the retail sector (cf. Section 2). Another shortcoming we 

identified is that prior research on inventory models with progressive interest schemes usually 

assumed that the buyer has the option to settle the outstanding balance only at the end of the 

credit periods. It is, however, clear that the buyer may benefit from continuously settling the 

outstanding balance within the credit periods if the interest charged by the supplier exceeds the 

credit interest rate of the buyer. Finally, we found that compound interest the retailer may 

realize during the credit periods was neglected in prior trade credit inventory models. Clearly, 

especially in situations where the credit periods are long and interest rates are high, interest on 

interest earnings may represent an additional source of profit that should not be neglected.  

 

In light of the research gaps identified above, the purpose of this paper is to generalize the trade 

credit inventory model with progressive interest scheme by considering a) the case where the 

credit interest rate of the buyer may (but not necessarily has to) exceed the interest rate charged 

by the supplier, b) where the buyer has the option to settle the outstanding balance continuously 

within the credit periods, c) where compound interest accrues at the retailer, and d) bank loans 

are available as a substitute for the trade credit. In addition, some inaccuracies in earlier 

formulations of the effective interest cost are corrected. The remainder of the paper is structured 

as follows: The next section illustrates the role of trade credits and working capital management 
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in the retail sector. Section 3 then outlines assumptions and notations used throughout the paper 

and develops formal models for determining the optimal order quantity and payment scheme 

for different interest and payment conditions. Sections 4 and 5 present theoretical findings on 

the models developed and illustrate their behavior with the help of a benchmark case and an 

extensive simulation study. Section 6 finally concludes the article. 

 

Trade credits in the retail industry 

Although several studies indicate that trade credits are one of the most important means of 

short term financing for companies (Summers and Wilson (2002), for example, state that more 

than 80% of business-to-business transactions in the UK include trade credit agreements), the 

amount of trade credit financing varies significantly from industry to industry (see Ng et al., 

1999 or Seifert et al., 2013). The retail sector, which covers all types of companies selling 

goods or commodities bought from a manufacturer or a wholesaler to the end-user via different 

distribution channels, is an intensely cash-generating industry that relied extensively on trade 

credits in the past (see Klapper et al., 2012). Table 1 gives an overview of the operating 

characteristics of the world’s ten largest public-owned non-specialized retailers in terms of total 

revenues in 2014. In the considered sample, accounts payable reached on average one fifth of 

the firms’ total assets and one third of the firms’ total liabilities. At the individual company 

level, the world’s leading retailer, Wal-Mart Stores Inc., already had accounts payable of 

$38.410 billion in its balance sheet on January 31, 2015. This is about 85% of its total 

inventories ($45.141 billion). Even higher payables to inventory ratios can be found in the other 

companies that range from 88% (The Kroger Co. or Target Corporation) to 215% (Carrefour 

S.A.). Even though the demand for trade credit depends on several factors such as transaction 

pooling, credit rationing or financial flexibility in vendor-buyer relations (cf. Section 1 and 

Summers and Wilson, 2002, among others), reduced transaction cost as well as increased 

demand for liquidity after the economic downturn in the year 2008 seem to be the decisive 

causes of the high demand for trade credit in the retail sector. 

 

Table 1: Top-10 global retailers according to total revenues in 2014 
 

Name of 

company 

Country 

of origin 

Total 

revenues 

2014 [m USD] 

Operating 

income 2014 

[m USD] 

Total assets 

2014 [m 

USD] 

Total 

liabilities 

2014 [m USD] 

Accounts 

payable 2014 

[m USD] 

Closing 

date 2014 

Wal-Mart US 485,651 27,147 203,490 122,096 38,410 31/01/2015 

Costco US 112,640 3,220 33,024 20,721 8,491 31/08/2014 

The Kroger US 108,465 3,137 30,497 25,085 5,052 31/01/2015 

Tesco GB 96,532 -6,346 68,218 57,308 7,832 28/02/2015 

Carrefour FR 92,659 2,715 55,592 43,175 16,250 31/12/2014 

Metro DE 80,855 1,461 35,237 28,947 12,495 30/09/2014 

Target US 72,618 4,535 41,404 27,407 7,759 31/01/2015 

Aeon JP 59,354 819 65,905 50,560 7,938 28/02/2015 

Group 

Casino 
FR 58,875 2,109 54,974 36,025 10,107 31/12/2014 

Seven & I JP 50,637 2,772 43,893 23,510 3,459 28/02/2015 

* other currencies have been converted to USD by the exchange rate at closing date   

 

Due to its practical relevance, trade credits have extensively been studied in the context of 

economic ordering and payment decisions (cf. Section 1). However, prior research consistently 

made the assumption that the interest rate charged by the supplier exceeds the interest rate of 
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the buyer. In contrast, empirical studies indicate that even though the average effective interest 

rate of trade credits is high, the effective interest rates vary from a low of 2% to a high of 100% 

(Klapper et al., 2012). Consequently, in practice, the credit interest rate of the buyer, which 

could represent the interest rate the buyer could realize by depositing money in an interest 

bearing account or by investing it elsewhere, could also exceed the interest rate charged by the 

supplier. In such a case, it would not be rational from the buyer’s point of view to settle the 

unpaid balance immediately, as was assumed in the literature so far, but instead to keep the 

sales revenue invested and to settle the unpaid balance not before the interest charged by the 

supplier exceeds the incomes from the investment, or just before the next order is issued. 

Consequently, as long as the interest charged by the supplier on the open account is below the 

internal rate of return or the interest rates on short term deposits, the buyer may realize arbitrage 

profits from postponing the payment and investing the money in other projects or a bank 

account. Thus, the buyer has a financial incentive to extend the trade credit period, which also 

affects the average number of days payables outstanding and finally the effective cash 

conversion cycles. 

 

Table 2: Days payables outstanding and cash conversion cycles of the retailers 

 

  Year    
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 AV 

  Company 

DPO Wal-Mart 39 40 40 35 37 40 41 40 39 39 39 

 Costco 33 32 33 30 32 32 31 31 32 32 32 

 The Kroger 28 28 26 24 24 24 22 21 23 22 24 

 Tesco 29 31 34 35 37 39 38 38 36 32 35 

 Carrefour 102 99 96 93 91 96 92 78 78 82 91 

 Metro 93 101 104 98 103 102 103 96 100 75 97 

 Target 66 59 57 52 54 48 48 47 54 55 54 

 Aeon 65 64 65 66 74 73 72 65 69 80 69 

 Group Casino 84 74 79 70 72 73 70 70 64 66 72 

 Seven & I 28 22 21 19 34 32 39 39 40 40 32 

              

CCC Wal-Mart 14 10 10 10 6 8 9 11 13 12 10 

 Costco 1 3 2 2 3 1 3 2 3 2 2 

 The Kroger 12 10 11 11 11 8 8 7 8 7 9 

 Tesco -6 -4 -3 -3 -5 -4 0 0 -2 -2 -3 

 Carrefour -57 -58 -54 -52 -51 -51 -45 -38 -38 -39 -48 

 Metro -38 -44 -47 -46 -48 -46 -45 -44 -36 -27 -42 

 Target 35 35 47 48 44 46 43 39 37 35 41 

 Aeon -9 -3 -4 -9 -16 -12 -8 5 23 19 -1 

 Group Casino -17 -13 -11 -8 -9 -7 -6 -5 -10 2 -8 

  Seven & I 5 4 3 5 -7 -6 0 1 2 1 1 
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Table 2 provides an overview of working capital measures of the retailers listed in Table 1, 

which gives some insights into the payment behaviors in the retail industry (note that Table 2 

displays annual values based on each company`s fiscal year). A common measure for working 

capital management is the Cash Conversion Cycle (CCC) (cf. Richards and Laughlin, 1980) 

that measures the length of time (in days) a company’s cash is tied up in working capital. CCC 

is commonly calculated as the days of inventory outstanding (DIO) + the days accounts 

receivable outstanding (DRO) – the days accounts payable outstanding (DPO). To analyze the 

working capital management of the retailers, the CCC and its components were calculated for 

the years 2005 to 2014. The results show that there is a substantial difference between the ten 

retailers. Whereas some companies such as Wal-Mart Stores Inc. or The Kroger Co. exhibit a 

positive CCC in the past ten years, it is notably negative for others such as Carrefour S.A. or 

Metro AG. Regarding CCC’s components, the DIOs vary between a low of 19 days and a high 

of 59 days, while the DROs and DPOs vary between 3 and 36 days as well as 24 and 97 days, 

respectively. To gain further insights into this aspect, a cluster analysis of the retailers with 

regard to their DIO, DRO and DPO characteristics was performed with the help of the 𝑘-means 

approach. In the 𝑘-means analysis, an input data set is partitioned into k clusters by computing 

the squared distances between the inputs and the centroids and by assigning these inputs to the 

nearest centroid to minimize the consequent mean-squared error (cf. Rizman Zalik, 2008). The 

results show that companies with a positive CCC show a weighted average DIO of 30 days, a 

weighted average DRO of 5 days and a weighted average DPO of 31 days. In contrast, 

companies with a negative CCC have extended inventory cycles (DIO 43 days), but also 

significantly higher payment cycles for inbound and outbound transactions (DRO of 19 days 

and DPO of 74 days). Obviously, in the second cluster, companies have DPOs of more than 

two months. As large companies such as the retailers in our sample are supposed to have easy 

access to other sources of finance, they would not use trade credits extensively if it was as 

expensive as commonly hypothesized in the literature (cf. Ng et al., 1999, Klapper et al., 2012). 

Accordingly, beside other causes for the distinct payment behavior discussed in the literature, 

it is reasonable that due to the large varieties in contract conditions, trade credits appear 

comparatively cheap for some of the retailers in comparison with the return on alternative 

investment opportunities (we note that also power relationships cloud play an important role in 

this context which is, however, not reflected in our sample). This also seems to be supported 

by the fact that especially larger and investment-grade buyers receive longer net days from 

their suppliers (cf. Klapper et al., 2012). Hence, with an increasing interest rate, the retailers 

might realize arbitrage profits from postponing the payment to their suppliers, and therefore 

they tend to settle their payables outstanding later. To investigate this issue, which has been 

neglected in the literature so far, in more detail, the influence of financial conditions on the 

replenishment and payment behavior will be analyzed formally in the following. The results 

derived from this formal analysis may facilitate further empirical research. 

 

Model development 

The problem described in the introduction will subsequently be analyzed under the following 

conditions: 

1. The inventory system involves a single item and has an infinite planning horizon. 

2. Shortages are not allowed and the demand rate is constant and deterministic. 

3. Lead time is zero and replenishments are made instantaneously. 

4. The supplier provides a trade credit with progressive interest rates to the buyer. If the buyer 

pays before time M, the supplier does not charge any interest, whereas in case the buyer 

pays between times M and N with M < N, the supplier charges interest at the rate of Ic1. In 



7 
 

case the buyer pays after time N, the supplier charges interest at the rate of Ic2, with Ic2 > 

Ic1. 

5. Apart from trade credits, the buyer is also assumed to have access to bank loans at the rate 

of Ib that are frequently referred to as substitutes to trade credits and vice versa. 

6. The buyer has the option to deposit money in an interest bearing account with a fixed interest 

rate of Ie. Thus, s/he may use sales revenues to earn interest until the account is completely 

settled. Other investment decisions that are not related to the lot sizing problem are not 

considered. 

 

In addition, the following terminology is used throughout the paper: 

 

Parameters: 

A cost of placing an order 

C unit purchasing cost with C < P 

D demand rate per unit of time 

h physical unit holding cost per unit and unit of time 

Ic1 interest rate per unit of time charged by the supplier between times M and N 

Ic2 interest rate per unit of time charged by the supplier after time N 

Ib interest rate on borrowings at the retailer per unit of time 

Ie interest rate on deposits at the retailer per unit of time 

M permissible delay in payments without any interest charge  

N permissible delay in payments which induces an increase in the interest rate with N > 

M 

P selling price per unit 
 

Decision variables 

Q order quantity of the buyer (can implicitly be derived from 𝑇) 

T replenishment interval 
 

The buyer faces a constant customer demand rate D that leads to a continuous decrease in the 

inventory level I(t). Accordingly, the development of the inventory level with respect to time t 

can be described by the following differential equation: 

 
𝑑𝐼(𝑡)

𝑑𝑡
= −𝐷,     0 ≤ 𝑡 ≤ 𝑇 (1) 

 

with the boundary conditions 𝐼(0) = 𝑄 and 𝐼(𝑇) = 0. The solution of this differential equation 

is: 

 

𝐼(𝑡) = 𝐷(𝑇 − 𝑡),     0 ≤ 𝑡 ≤ 𝑇 (2) 

 

which leads to the corresponding order quantity 𝑄 = 𝐷𝑇. 

 

The total relevant costs are given as the sum of ordering, inventory carrying and interest costs, 

reduced by interest earnings. The cost per unit of time for placing an order at the supplier 

amounts to: 

 

𝑂𝐶 = 𝐴 𝑇⁄  (3) 

 

Inventory holding cost is given by: 
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𝐼𝐻𝐶 =
ℎ

𝑇
∫ 𝐼(𝑡)𝑑𝑡 =

𝑇

0
ℎ𝐷𝑇 2⁄  (4) 

 

Depending on the length of the replenishment cycle, 𝑇, the ratio of the interest rates (i.e. the 

ratio of 𝐼𝑒 to 𝐼𝑐1 and 𝐼𝑐2) and the lengths of the credit periods, M and N, the buyer may incur 

interest costs and/or realizes interest earnings. 

 

 
 

Figure 1: Balance of accounts for deposits and liabilities 

 

Figure 1 exemplarily illustrates the available amount of cash from sales revenues as well as the 

outstanding debt over time and thus facilitates determining interest cost and/or interest earnings 

(note that in Cases 1.2, 1.3 and 2.3, the spotted triangles representing continuous settlement of 

the outstanding debt depend on the ability of the retailer to settle the open account entirely at 

times M or N). Unless the interest rate on deposits (Ie) exceeds the interest charged by the 

supplier on the outstanding payments (Ic1) between times M and N, the buyer settles as much 

of the account as possible at time M to avoid unnecessary interest cost (cf. left part of Figure 

1). Depending on the length of the replenishment interval and the ability to settle the open 

account, three different cases with respective subcases may arise, namely 𝑇 ≤ 𝑀, 𝑀 < 𝑇 ≤ 𝑁 

and 𝑇 > 𝑁 (see also Goyal et al., 2007). However, in case the interest rate on deposits (Ie) 

exceeds the debit interest rate (Ic1) between times M and N or even the debit interest (Ic2) after 

time N, the buyer realizes an advantage from postponing the settlement of the open account 

until times N or T (cf. the middle and right parts of Figure 1 and note that it was assume that 

the retailer settles its account at the latest at time max{N,T}, as the supplier would not release 

further deliveries in the event of delayed or default payment). Again, for both interest 

conditions depending on the length of the replenishment interval and the ability to settle the 

open account, three different cases with respective subcases may arise. Each of the arising cases 

will be discussed in the following with regard to the accruing interest charges and/or earnings 

and the resulting total cost in order to derive the optimal ordering and payment policy for the 

retailer. 
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Case 1: 𝐼𝑒 ≤ 𝐼𝑐1 < 𝐼𝑐2 

 

Case 1.1: 𝑇 ≤ 𝑀 

In this case, the buyer sells off the entire batch of 𝑄 = 𝐷𝑇 units at time T, and is able to settle 

the account completely before the supplier starts charging interest at time M. Between times 0 

and T, sales revenues accumulate until the total revenue, PDT, is available at time T. During 

the period [0,M], the buyer additionally generates interest earnings at the rate Ie by depositing 

sales revenues in an interest bearing account. The total interest earned per unit of time can be 

written as: 

 

𝐼𝐸1.1 =
𝐼𝑒𝑃

𝑇
[∫ 𝐷𝑡 𝑑𝑡

𝑇

0
+ 𝑄(𝑀 − 𝑇)] = 𝐼𝑒𝑃𝐷 (𝑀 −

𝑇

2
) (5) 

 

To avoid interest payments to the supplier, the buyer settles the balance entirely at time M (i.e. 

IC1.1 = 0). Consequently, the total relevant costs amount to: 

 

𝑇𝐶1.1 =
𝐴

𝑇
+

ℎ𝐷𝑇

2
− 𝐼𝑒𝑃𝐷 (𝑀 −

𝑇

2
) (6) 

 

Since the second-order condition of Eq. (6) is strictly positive (cf. Section 4), the solution can 

be derived using the first-order condition, which leads to the optimal value of T for Case 1.1: 

 

𝑇1.1
∗ = √

2𝐴

𝐷(ℎ+𝐼𝑒 𝑃)
  (7) 

 

Case 1.2: 𝑀 < 𝑇 ≤ 𝑁 

In the case where Ie < Ic1 and M < T  N, the buyer tries to settle as much of the unpaid balance 

as possible at time M to minimize interest payments. In the period [0,M], the buyer sells DM 

products and generates direct revenues in the amount of PDM dollars. Sales revenues that 

accumulate over time are deposited in an interest bearing account that earns interest at the rate 

of Ie per unit of time, which leads to additional earnings of 𝐼𝑒𝑃𝐷𝑀2 2⁄  (cf. Eq. (8)). 

Accordingly, at time M, the buyer uses the sum of revenues and interest earnings to settle the 

open account. The total purchase cost for a lot of size DT amounts to CDT dollars. Depending 

on the ratio of the total purchase cost to the sum of earnings from sales and interest received at 

time M, two different subcases may arise that will be discussed in the following: 

 

Case 1.2-1: 𝐶𝐷𝑇 ≤ 𝑃𝐷𝑀(1 + 𝐼𝑒𝑀 2⁄ ) 
In the first subcase, the sum of sales revenues and interest earned at time M is sufficient to 

settle the unpaid balance completely, i.e. 𝐶𝐷𝑇 ≤ 𝑃𝐷𝑀(1 + 𝐼𝑒𝑀 2⁄ ). The interest earnings per 

unit of time are given as: 

 

𝐼𝐸1.2−1 =
𝐼𝑒𝑃

𝑇
∫ 𝐷𝑡 𝑑𝑡

𝑀

0
=

𝐼𝑒𝑃𝐷𝑀2

2𝑇
 (8) 

 

As the buyer again does not have to pay interest to the supplier in this subcase (i.e. IC2,1 = 0), 

the total relevant costs amount to: 

 

𝑇𝐶1.2−1 =
𝐴

𝑇
+

ℎ𝐷𝑇

2
−

𝐼𝑒𝑃𝐷𝑀2

2𝑇
 (9) 
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Since the second-order condition of Eq. (9) is strictly positive (cf. Section 4), the solution can 

be derived using of the first-order condition, which leads to the optimal value of T for Case 

1.2-1: 

 

𝑇1.2−1
∗ = √

2𝐴−𝐼𝑒𝑃𝐷𝑀2

𝐷ℎ
  (10) 

 

Case 1.2-2: 𝐶𝐷𝑇 > 𝑃𝐷𝑀(1 + 𝐼𝑒𝑀 2⁄ ) 

In contrast to the previous subcase, we now consider the case where the sum of sales revenues 

and interest earned at time M is not sufficient to settle the balance completely, i.e. 𝐶𝐷𝑇 >
𝑃𝐷𝑀(1 + 𝐼𝑒𝑀 2⁄ ). Thus, the supplier starts charging interest on the unpaid balance at the rate 

Ic1 at time M. Interest earned in the period [0,M] is again given as 𝐼𝑒𝑃𝐷𝑀2 2⁄  (cf. Eq. (8)), 

which leads to an open account at time M in the amount of 𝐶𝐷𝑇 − 𝑃𝐷𝑀(1 + 𝐼𝑒𝑀 2⁄ ). To 

minimize interest payments, the buyer transfers each dollar earned after time M directly to the 

supplier (see Goyal et al., 2007 and Taleizadeh, 2014a; 2014b for a similar assumption in the 

case of trade credits or prepayments). For the case where the unpaid balance cannot be settled 

at time M, but before time N, the interest cost can be formulated as follows: 
 

𝐼𝐶1.2−2 =
𝐼𝑐1

𝑇
∫ ((𝐶𝐷𝑇 − 𝑃𝐷𝑀(1 + 𝐼𝑒𝑀 2⁄ )) − 𝑃𝐷(𝑡 − 𝑀)) 𝑑𝑡

𝑀+𝑧1

𝑀
=

𝐼𝑐1

2𝑃𝐷𝑇
(𝐶𝐷𝑇 −

𝑃𝐷𝑀(1 + 𝐼𝑒𝑀 2⁄ ))
2
 (11) 

 

where 𝑀 + 𝑧1 denotes the point in time when the unpaid balance has been completely settled, 

with 𝑧1 = (𝐶𝐷𝑇 − 𝑃𝐷𝑀(1 + 𝐼𝑒𝑀 2⁄ ))/𝑃𝐷 . In case of 𝐼𝑏 < 𝐼𝑐1 < 𝐼𝑐2 , the retailer may 

benefit from bridgeover finance by bank loans that reduce the effective interest rate (note that 

in this case in Eq. (11), 𝐼𝑐1  needs to be replaced by Ib; everything else would remain 

unchanged). Thus, the total costs for this case amount to: 

 

𝑇𝐶1.2−2 =
𝐴

𝑇
+

ℎ𝐷𝑇

2
+

𝐼𝑐1

2𝑃𝐷𝑇
(𝐶𝐷𝑇 − 𝑃𝐷𝑀(1 + 𝐼𝑒𝑀 2⁄ ))

2
−

𝐼𝑒𝑃𝐷𝑀2

2𝑇
 (12) 

 

Since the second-order condition of Eq. (12) is strictly positive (cf. Section 4), the solution can 

be derived using the first-order condition, which leads to the optimal value of T for Case 1.2-

1: 

 

𝑇1.2−2
∗ = √

2𝐴+𝑃𝐷𝑀2(𝐼𝑐1(1+𝐼𝑒𝑀 2⁄ )2−𝐼𝑒)

𝐷(ℎ+𝐼𝑐1𝐶2 𝑃⁄ )
  (13) 

 

Case 1.3: 𝑁 < 𝑇 
The case where Ie < Ic1 and T > N is similar to Case 1.2. Again, the buyer uses the revenues 

and interest earned to pay the supplier. To minimize interest payments, he/she settles as much 

of the outstanding balance as possible at time M and afterwards reduces the outstanding amount 

continuously by transferring each dollar of the sales revenues to the supplier’s account. This 

helps to avoid unnecessary interest costs as compared to prior works in this area assuming that 

partial payments are made at times M and N only. In addition, interest charges that accrue 

between times M and N will be considered, which leads to an unsettled balance at time N in the 

amount of 𝐶𝐷𝑇 − 𝑃𝐷𝑀(1 + 𝐼𝑒𝑀 2⁄ ) − 𝑃𝐷(𝑁 − 𝑀) + 𝐼𝑐1 ∫ ((𝐶𝐷𝑇 − 𝑃𝐷𝑀(1 +
𝑁

𝑀

𝐼𝑒𝑀 2⁄ )) − 𝑃𝐷(𝑡 − 𝑀)) 𝑑𝑡. Integrating this term over the limits and rearranging the resulting 



11 
 

expression leads to (𝐶𝐷𝑇 − 𝑃𝐷𝑀(1 + 𝐼𝑒𝑀 2⁄ ))(1 + 𝐼𝑐1(𝑁 − 𝑀)) − 𝑃𝐷(𝑁 − 𝑀)(1 +

𝐼𝑐1(𝑁 − 𝑀) 2⁄ ). The first part of this expression describes the outstanding balance at time M, 

which includes interest incurred at the rate Ic1. The second part of the expression, in contrast, 

represents the amount of repayment during times M and N, which also considers the interest 

effect due to the continuous refund. 

In contrast to prior works on trade credits with progressive credit periods, these modifications 

allow us to consider the interest charges that accumulate between times M and N as well as the 

payments the buyer makes between times M and N to reduce the accruing interest. According 

to the ratio of the total purchasing cost to the sum of sales and interest earnings, three possible 

subcases may arise that can be distinguished based on the balance of the buyer’s account at 

times M and N, respectively. 

 

Case 1.3-1: 𝐶𝐷𝑇 ≤ 𝑃𝐷𝑀(1 + 𝐼𝑒𝑀 2⁄ ) 

The case where Ie < Ic1 and T > N is identical to Subcase 1.2-1. Thus, the buyer settles the 

account completely at time M without paying any interest charges to the supplier. 

 

Case 1.3-2: 𝐶𝐷𝑇 > 𝑃𝐷𝑀(1 + 𝐼𝑒𝑀 2⁄ )  and (𝐶𝐷𝑇 − 𝑃𝐷𝑀(1 + 𝐼𝑒𝑀 2⁄ ))(1 + 𝐼𝑐1(𝑁 −

𝑀)) ≤ 𝑃𝐷(𝑁 − 𝑀)(1 + 𝐼𝑐1(𝑁 − 𝑀) 2⁄ ) 

The case where Ie < Ic1 and T > N is identical to Subcase 1.2-2. Thus, the buyer is not able to 

pay off the entire purchase cost at time M, but settles as much of the account as possible at time 

M. Afterwards, he/she continuously reduces the open account by transferring sales revenues to 

the supplier. The account is settled at time 𝑀 + 𝑧1 with 𝑀 + 𝑧1 < 𝑁, and the supplier charges 

an interest on the unpaid balance between times M and 𝑀 + 𝑧1. 
 

Case 1.3-3: 𝐶𝐷𝑇 > 𝑃𝐷𝑀(1 + 𝐼𝑒𝑀 2⁄ )  and (𝐶𝐷𝑇 − 𝑃𝐷𝑀(1 + 𝐼𝑒𝑀 2⁄ ))(1 + 𝐼𝑐1(𝑁 −

𝑀)) > 𝑃𝐷(𝑁 − 𝑀)(1 + 𝐼𝑐1(𝑁 − 𝑀) 2⁄ ) 
In the case where Ie < Ic1 and T > N, the buyer is not able to pay off the total purchase cost at 

times M or N. Thus, he/she settles as much of the unpaid balance as possible at time M. 

Afterwards, the open account is continuously reduced by transferring each dollar earned from 

sales to the supplier. As the buyer has no incentive to authorize any payments before time M, 

he/she realizes interest earnings in the period [0,M] (cf. Eq. (8)). The supplier, in turn, charges 

interest on the gradually decreasing unpaid balance at the rate Ic1 between times M and N and 

at the rate Ic2 after time N. 

Hence, the overall interest cost per unit of time for this case, IC1.3-3, amounts to: 
 

𝐼𝐶1.3−3 =
𝐼𝑐1

𝑇
∫ ((𝐶𝐷𝑇 − 𝑃𝐷𝑀 (1 +

𝐼𝑒𝑀

2
)) − 𝑃𝐷(𝑡 − 𝑀)) 𝑑𝑡

𝑁

𝑀
+

𝐼𝑐2

𝑇
∫ ((𝐶𝐷𝑇 −

𝑁+𝑧2

𝑁

𝑃𝐷𝑀 (1 +
𝐼𝑒𝑀

2
)) (1 + 𝐼𝑐1(𝑁 − 𝑀)) − 𝑃𝐷(𝑁 − 𝑀) (1 +

𝐼𝑐1(𝑁−𝑀)

2
) − 𝑃𝐷(𝑡 − 𝑁))  𝑑𝑡 =

𝐼𝑐1(𝑁−𝑀)

𝑇
(𝐶𝐷𝑇 − 𝑃𝐷𝑀 (1 +

𝐼𝑒𝑀

2
) −

𝑃𝐷(𝑁−𝑀)

2
) +

𝐼𝑐2

2𝑃𝐷𝑇
((𝐶𝐷𝑇 − 𝑃𝐷𝑀 (1 +

𝐼𝑒𝑀

2
)) (1 +

𝐼𝑐1(𝑁 − 𝑀)) − 𝑃𝐷(𝑁 − 𝑀) (1 +
𝐼𝑐1(𝑁−𝑀)

2
))

2

 (14) 

 

where 𝑁 + 𝑧2 denotes the point in time when the unpaid balance has been completely settled, 

with 𝑧2 = ((𝐶𝐷𝑇 − 𝑃𝐷𝑀(1 + 𝐼𝑒𝑀 2⁄ ) − 𝑃𝐷(𝑁 − 𝑀))(1 + 𝐼𝑐1(𝑁 − 𝑀)) +
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𝐼𝑐1𝑃𝐷(𝑁 − 𝑀)2 2⁄ ) /𝑃𝐷 . In case of 𝐼𝑏 < 𝐼𝑐1 < 𝐼𝑐2  or 𝐼𝑐1 < 𝐼𝑏 < 𝐼𝑐2 , the retailer may 

benefit from bridgeover finance by bank loans that reduce the effective interest rate (note that 

in this case in Eq.(14) 𝐼𝑐1 and /or 𝐼𝑐2 need to be replaced by Ib; everything else would remain 

unchanged). The total cost for this case amounts to: 

 

𝑇𝐶1.3−3 =
𝐴

𝑇
+

ℎ𝐷𝑇

2
+

𝐼𝑐1(𝑁−𝑀)

𝑇
(𝐶𝐷𝑇 − 𝑃𝐷𝑀 (1 +

𝐼𝑒𝑀

2
) −

𝑃𝐷(𝑁−𝑀)

2
) +

𝐼𝑐2

2𝑃𝐷𝑇
((𝐶𝐷𝑇 −

𝑃𝐷𝑀 (1 +
𝐼𝑒𝑀

2
)) (1 + 𝐼𝑐1(𝑁 − 𝑀)) − 𝑃𝐷(𝑁 − 𝑀) (1 +

𝐼𝑐1(𝑁−𝑀)

2
))

2

−
𝐼𝑒𝑃𝐷𝑀2

2𝑇
 (15) 

 

Since the second-order condition of Eq. (15) is strictly positive (cf. Section 4), the solution can 

be derived using the first-order condition, which leads to the optimal value of T for Case 1.3-

3: 

 

𝑇1.3−3
∗ =

√
2𝐴+𝐼𝑐2𝑃𝐷(𝑀(1+𝐼𝑐1(𝑁−𝑀))(1+

𝐼𝑐1(𝑁−𝑀)

2
)+(𝑁−𝑀)(1+

𝐼𝑒𝑀

2
))

2

−2𝐼𝑐1(𝑁−𝑀)(𝑃𝐷𝑀(1+
𝐼𝑒𝑀

2
)+

𝑃𝐷(𝑁−𝑀)

2
)−𝐼𝑒𝑃𝐷𝑀2

𝐷(ℎ+𝐼𝑐2
𝐶2

𝑃
(1+𝐼𝑐1(𝑁−𝑀))

2
)

 

 (16) 

 

After some algebraic manipulations, the buyer’s total cost function for the interest structure 

𝐼𝑒 < 𝐼𝑐1 < 𝐼𝑐2 (Case 1) may be summarized as follows: 

 

𝑇𝐶1 =
𝐴

𝑇
+

ℎ𝐷𝑇

2
+

𝐼𝑐1

2𝑃𝐷𝑇
[(𝑚𝑎𝑥 {𝐶𝐷𝑇 − 𝑃𝐷𝑀 (1 +

𝐼𝑒𝑀

2
) , 0})

2

− (𝑚𝑎𝑥 {𝐶𝐷𝑇 − 𝑃𝐷𝑀 (1 +

𝐼𝑒𝑀

2
) − 𝑃𝐷(𝑁 − 𝑀), 0})

2

] +
𝐼𝑐2

2𝑃𝐷𝑇
[(𝑚𝑎𝑥 {(𝐶𝐷𝑇 − 𝑃𝐷𝑀 (1 +

𝐼𝑒𝑀

2
)) (1 + 𝐼𝑐1(𝑁 − 𝑀)) −

𝑃𝐷(𝑁 − 𝑀) (1 +
𝐼𝑐1(𝑁−𝑀)

2
) , 0})

2

] −
𝐼𝑒𝑃𝐷

2𝑇
[𝑀2 − (𝑚𝑎𝑥{𝑀 − 𝑇, 0})2] (17) 

 

Case 2: 𝐼𝑐1 < 𝐼𝑒 ≤ 𝐼𝑐2 

 

Case 2.1: 𝑇 ≤ 𝑀 

For Ie > Ic1 and T  M, the buyer may benefit from keeping the sales revenue in an interest 

bearing account until time N and from settling the account after this point in time. Between 

times M and N, he/she has to pay interest to the supplier. However, since Ie > Ic1, the interest 

earned exceeds the interest paid during this period. Similar to Subcase 1.1 (cf. Eq. (5)), the 

interest earned per unit of time can be calculated as: 

 

𝐼𝐸2.1 =
𝐼𝑒𝑃

𝑇
[∫ 𝐷𝑡 𝑑𝑡

𝑇

0
+ 𝑄(𝑁 − 𝑇)] = 𝐼𝑒𝑃𝐷 (𝑁 −

𝑇

2
) (18) 

 

The overall interest cost between times M and N amounts to: 

 

𝐼𝐶2.1 =
𝐼𝑐1

𝑇
𝐶𝑄(𝑁 − 𝑀) (19) 

 

The total costs are thus calculated as: 
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𝑇𝐶2.1 =
𝐴

𝑇
+

ℎ𝐷𝑇

2
+

𝐼𝑐1

𝑇
𝐶𝑄(𝑁 − 𝑀) − 𝐼𝑒𝑃𝐷 (𝑁 −

𝑇

2
) (20) 

 

Since the second-order condition of Eq. (21) is strictly positive (cf. Section 4), the solution can 

be derived using the first-order condition, which leads to the optimal value of T for Case 2.1: 

 

𝑇2.1
∗ = √

2𝐴

𝐷(ℎ+𝐼𝑒𝑃)
  (21) 

 

Case 2.2: 𝑀 < 𝑇 ≤ 𝑁 

The case where M < T < N and Ic1 < Ie is identical to Case 2.1. In this case, the buyer accepts 

interest charges between times M and N caused by the postponement of the payment and 

realizes interest earnings by depositing sales revenues in an interest bearing account. The 

account is completely settled at time N. 

 

Case 2.3: 𝑁 < 𝑇 

In the case where Ic1 < Ie and N < T, as much of the unpaid balance is settled at time N as 

possible to minimize interest payments. In the period [0,N], the buyer sells a total quantity of 

DN units and generates direct sales revenues in the amount of PDN dollars. Sales revenues that 

accumulate over time are deposited in an interest bearing account that earns interest at the rate 

of Ie per unit of time, which leads to additional earnings of 𝐼𝑒𝑃𝐷𝑁2 2⁄  (cf. Eq. (23)). Thus, at 

time N, the buyer uses the sum of sales revenues and interest earnings to settle the open account. 

The total purchase cost for a lot of size DT again amounts to CDT dollars. According to the 

ratio of the total purchase cost and the accruing interest to the total sales revenues and interest 

earnings at time N, two possible subcases may arise that will be discussed in the following: 

 

Case 2.3-1: 𝐶𝐷𝑇(1 + 𝐼𝑐1(𝑁 − 𝑀)) ≤ 𝑃𝐷𝑁(1 + 𝐼𝑒𝑁 2⁄ ) 

If the interest rate of the buyer, Ie, exceeds the interest charges of the supplier for the first credit 

period, Ic1, he/she will again not settle the account before time N. Instead, the buyer keeps the 

sales revenues earned in period [M,N] in an interest bearing account. As the account is 

completely settled at time N, the interest earned per unit of time is given as: 

 

𝐼𝐸2.3−1 =
𝐼𝑒𝑃

𝑇
∫ 𝐷𝑡 𝑑𝑡

𝑁

0
=

𝐼𝑒𝑃𝐷𝑁2

2𝑇
 (22) 

 

The interest charges in this case are the same as those derived for Case 2.1 (cf. Eq. (20)). Thus, 

the total costs can be formulated as: 

 

𝑇𝐶2.3−1 =
𝐴

𝑇
+

ℎ𝐷𝑇

2
+

𝐼𝑐1

𝑇
𝐶𝑄(𝑁 − 𝑀) −

𝐼𝑒𝑃𝐷𝑁2

2𝑇
 (23) 

 

Since the second-order condition of Eq. (24) is strictly positive (cf. Section 4), the solution can 

be derived using the first-order condition, which leads to the optimal value of T for Case 2.3-

1: 

 

𝑇2.3−1
∗ = √

2𝐴−𝐼𝑒𝑃𝐷𝑁2

ℎ𝐷
  (24) 

 

Case 2.3-2: 𝐶𝐷𝑇(1 + 𝐼𝑐1(𝑁 − 𝑀)) > 𝑃𝐷𝑁(1 + 𝐼𝑒𝑁 2⁄ ) 
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For the case where Ie > Ic1 and where the buyer is unable to pay off the total purchase cost at 

time N, the account is partially settled at time N. Afterwards, the unpaid balance is continuously 

reduced by transferring each dollar earned to the supplier’s account until the balance has been 

completely settled. The interest earned in the period [0,N] is given as 𝐼𝑒𝑃𝐷𝑁2 2⁄  (cf. Eq. (23)), 

which again considers the interest advantage that results from accruing interest earnings due to 

the delayed payment. The supplier, however, charges interest on the gradually decreasing 

unpaid balance at the rate Ic2 after time N which is given as: 
 

𝐼𝐶2.3−2 =
𝐼𝑐1

𝑇
𝐶𝑄(𝑁 − 𝑀) +

𝐼𝑐2

𝑇
∫ ((𝐶𝐷𝑇(1 + 𝐼𝑐1(𝑁 − 𝑀)) − 𝑃𝐷𝑁(1 + 𝐼𝑒𝑁 2⁄ )) −

𝑁+𝑧3

𝑁

𝑃𝐷(𝑡 − 𝑁))  𝑑𝑡 =
𝐼𝑐1

𝑇
𝐶𝑄(𝑁 − 𝑀) +

𝐼𝑐2

2𝑇𝑃𝐷
[𝐶𝑄(1 + 𝐼𝑐1(𝑁 − 𝑀)) − 𝑃𝐷𝑁(1 + 𝐼𝑒𝑁 2⁄ )]

2
 

 (25) 

 

where N+z3 denotes the point in time when the unpaid balance has been completely settled, 

with 𝑧3 = (𝐶𝐷𝑇(1 + 𝐼𝑐1(𝑁 − 𝑀)) − 𝑃𝐷𝑁(1 + 𝐼𝑒𝑁 2⁄ )) /𝑃𝐷. In case of 𝐼𝑐1 < 𝐼𝑏 < 𝐼𝑐2, the 

retailer may benefit from bridgeover finance by bank loans that reduce the effective interest 

rate (note that in this case in Eq.(25) 𝐼𝑐2 needs to be replaced by Ib; everything else would 

remain unchanged). The total costs for this case amount to: 

 

𝑇𝐶2.3−2 =
𝐴

𝑇
+

ℎ𝐷𝑇

2
+

𝐼𝑐1

𝑇
𝐶𝑄(𝑁 − 𝑀) +

𝐼𝑐2

2𝑃𝐷𝑇
(𝐶𝐷𝑇(1 + 𝐼𝑐1(𝑁 − 𝑀)) − 𝑃𝐷𝑁(1 +

𝐼𝑒𝑁 2⁄ ))
2

−

𝐼𝑒𝑃𝐷𝑁2

2𝑇

 

(26) 

 

Since the second-order condition of Eq. (27) is strictly positive (cf. Section 4), the solution can 

be derived using the first-order condition, which leads to the optimal value of T for Case 2.3-

1: 

 

𝑇2.3−2
∗ = √

2𝐴+𝑃𝐷𝑁2(𝐼𝑐2(1+𝐼𝑒𝑁 2⁄ )2−𝐼𝑒)

𝐷
𝑃⁄ (ℎ𝑃+𝐼𝑐2𝐶2(1+𝐼𝑐1(𝑁−𝑀))

2
)
  (27) 

 

After some algebraic manipulations, the buyer’s total cost function for the interest structure 

𝐼𝑐1 < 𝐼𝑒 < 𝐼𝑐2 (Case 2) can be summarized as follows: 

 

𝑇𝐶2 =
𝐴

𝑇
+

ℎ𝐷𝑇

2
+

𝐼𝑐1

𝑇
𝐶𝑄(𝑁 − 𝑀) +

𝐼𝑐2

2𝑃𝐷𝑇
[(𝑚𝑎𝑥 {(𝐶𝐷𝑇(1 + 𝐼𝑐1(𝑁 − 𝑀)) − (𝑃𝐷𝑁 +

𝐼𝑒𝑃𝐷𝑁2 2⁄ )) , 0})
2

] −
𝐼𝑒𝑃𝐷

2𝑇
[𝑁2 − (𝑚𝑎𝑥{𝑁 − 𝑇, 0})2] (28) 

 

Case 3: 𝐼𝑐1 < 𝐼𝑐2 < 𝐼𝑒 

 

Case 3.1: 𝑇 ≤ 𝑀 

Since Ie > Ic2, the retailer again has an incentive to postpone the payment or even to never pay 

back the trade credit to the supplier. However, as the supplier will not provide infinite advance 

financing and would not be willing to release further deliveries in the event of a delayed or 
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default credit, it is reasonable to assume that the buyer has to settle the open account at the end 

of the last credit period. Thus, for Ie > Ic2 and T  M, the buyer may again benefit from keeping 

the sales revenue in an interest bearing account until time N. Between times M and N, he/she 

has to pay interest to the supplier that will, however, be offset by the interest earnings in this 

period. As for Subcase 2.1 (cf. Eq. (20)), the total costs are given as: 

 

𝑇𝐶3.1 =
𝐴

𝑇
+

ℎ𝐷𝑇

2
+

𝐼𝑐1

𝑇
𝐶𝑄(𝑁 − 𝑀) − 𝐼𝑒𝑃𝐷 (𝑁 −

𝑇

2
) (29) 

 

Since the second-order condition of Eq. (29) is strictly positive (cf. Section 4), the solution can 

be derived using the first-order condition, which leads to the optimal value of T for Case 3.1: 

 

𝑇3.1
∗ = √

2𝐴

𝐷(ℎ+𝐼𝑒𝑃)
  (30) 

 

Case 3.2: 𝑀 < 𝑇 ≤ 𝑁 

The case where M < T < N and Ic2 < Ie is identical to Case 3.1. Again, the buyer accepts interest 

charges between times M and N that result from postponing the payment to the supplier, and 

he/she thus realizes interest earnings by depositing sales revenues in an interest bearing 

account. The account is completely settled at time N. 

 

Case 3.3: 𝑁 < 𝑇 

In the case where Ic2 < Ie and N < T, the buyer may benefit from postponing the payment as 

long as possible and could also benefit from never settling the open account. We may, however, 

assume that the supplier would not be willing to offer a credit with infinite duration. As the 

trade credit serves the purpose to influence the buyer’s ordering behavior on a per-order bases, 

we may assume that the buyer has to settle the open account at time T, right before the next 

order is issued (and right before the next trade credit is granted). In the period [0,T], the buyer 

sells off the entire lot of DT units and generates direct sales revenues in the amount of PDT 

dollars. In addition, sales revenues that accumulate over time are deposited in an interest 

bearing account that earns interest at the rate of Ie per unit of time, which leads to additional 

earnings of: 

 

𝐼𝐸3.3 =
𝐼𝑒𝑃

𝑇
∫ 𝐷𝑡 𝑑𝑡

𝑇

0
=

𝐼𝑒𝑃𝐷𝑇

2
 (31) 

 

At time T, the buyer uses sales revenues and interest earnings to settle the total purchase cost 

of CDT dollars as well as the accruing interest charges between times M and T. The interest 

cost amounts to: 

 

𝐼𝐶3.3 =
𝐼𝑐1

𝑇
𝐶𝑄(𝑁 − 𝑀) +

𝐼𝑐2

𝑇
𝐶𝑄(𝑇 − 𝑁)(1 + 𝐼𝑐1(𝑁 − 𝑀)) (32) 

 

Consequently, the total costs can be formulated as: 

 

𝑇𝐶3.3 =
𝐴

𝑇
+

ℎ𝐷𝑇

2
+

𝐼𝑐1

𝑇
𝐶𝑄(𝑁 − 𝑀) +

𝐼𝑐2

𝑇
𝐶𝑄(𝑇 − 𝑁)(1 + 𝐼𝑐1(𝑁 − 𝑀)) −

𝐼𝑒𝑃𝐷𝑇

2
 (33) 

 

Since the second-order condition of Eq. (33) is strictly positive (cf. Section 4), the solution can 

be derived using the first-order condition, which leads to the optimal value of T for Case 3.3: 
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𝑇3.3
∗ = √

2𝐴

𝐷(ℎ+2𝐼𝑐2𝐶(1+𝐼𝑐1(𝑁−𝑀))−𝐼𝑒𝑃)
  (34) 

 

After some algebraic manipulations, the buyer’s total cost function for the interest structure 

𝐼𝑐1 < 𝐼𝑐2 < 𝐼𝑒 (Case 3) can be summarized as follows: 

 

𝑇𝐶3 =
𝐴

𝑇
+

ℎ𝐷𝑇

2
+

𝐼𝑐1

𝑇
𝐶𝐷𝑇(𝑁 − 𝑀) +

𝐼𝑐2

𝑇
𝐶𝐷𝑇(1 + 𝐼𝑐1(𝑁 − 𝑀))𝑚𝑎𝑥 {𝑇 − 𝑁, 0} − 𝐼𝑒𝑃𝐷 (

𝑇

2
+

𝑚𝑎𝑥{𝑁 − 𝑇, 0}) (35) 

 

A summery table with closed form solutions as well as the corresponding optimality conditions 

for all relevant cases can be found in the online supplement. 

 

Solution approach 

For convenience, we assume that all 𝑇𝐶𝑖(𝑇)  with 𝑖  representing the respective case ( 𝑖 =
 {1.1,1.2 − 1, . . . }) are defined on 𝑇 > 0. To find the optimal solution for the problem presented 

above, all 𝑇𝐶𝑖(𝑇) are minimized separately and compared with regard to their range of validity 

to obtain an optimal value of T. 

 

In Case 1.1, the first-order condition for a minimum is: 

 
𝑑TC1.1

𝑑𝑇
= −

𝐴

𝑇2 +
ℎ𝐷

2
+

Ie𝑃𝐷

2
= 0 (36) 

 

Theorem 1. Let 𝑇 = 𝑇1.1
∗  be the solution of (36). 

 

(a) Eq. (36) has a unique solution. 

(b) If 𝑇1.1 ≤ 𝑀, then 𝑇1.1
∗  is the global minimum of 𝑇𝐶1.1. 

 

Proof: See Appendix A.  

 

In Case 1.2-1, the first-order condition for a minimum is: 

 
𝑑TC1.2−1

𝑑𝑇
= −

𝐴

𝑇2 +
ℎ𝐷

2
+

𝐼𝑒𝑃𝐷𝑀2

2𝑇2 = 0 (37) 

 

Theorem 2. Let 𝑇 = 𝑇1.2−1
∗  be the solution of (37). 

 

(a) Eq. (37) has a unique solution. 

(b) If 𝑀 < 𝑇1.2−1 ≤ 𝑁  and 𝐶𝐷𝑇1.2−1 ≤ 𝑃𝐷𝑀(1 + 𝐼𝑒𝑀 2⁄ ) , then 𝑇1.2−1
∗  is the global 

minimum of 𝑇𝐶1.2−1. 

 

Proof: See Appendix B.  

 

In Case 1.2-2, the first-order condition for a minimum is: 

 
𝑑𝑇𝐶1.2−2

𝑑𝑇
= −

𝐴

𝑇2 +
ℎ𝐷

2
+

𝐼𝑐1𝐷𝐶2

2𝑃
−

𝑃𝐷𝑀2

2𝑇2 (𝐼𝑐1(1 + 𝐼𝑒𝑀 2⁄ )2 − 𝐼𝑒) = 0 (38) 

 

Theorem 3. Let 𝑇 = 𝑇1.2−2
∗  be the solution of (38). 
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(a) Eq. (38) has a unique solution. 

(b) If 𝑀 < 𝑇1.2−2 ≤ 𝑁  and 𝐶𝐷𝑇1.2−2 > 𝑃𝐷𝑀(1 + 𝐼𝑒𝑀 2⁄ ) , then 𝑇1.2−2
∗  is the global 

minimum of 𝑇𝐶1.2−2. 

 

Proof: See Appendix C.  

 

The total cost function in Case 1.3-1 is identical to Subcase 1.2-1. Accordingly, the theoretical 

analysis for this case is consequently the same than the one presented for Theorem 2. 

 

Corollary 1. If 𝑁 < 𝑇1.3−1  and 𝐶𝐷𝑇1.3−1 ≤ 𝑃𝐷𝑀(1 + 𝐼𝑒𝑀 2⁄ ) , then 𝑇1.3−1
∗  is the global 

minimum of 𝑇𝐶1.3−1. 

 

Proof: 

If 𝑇 = 𝑇1.3−1
∗  is the solution to 𝑑𝑇𝐶1.3−1 𝑑𝑇⁄ = 0, the second-order derivative of 𝑇𝐶1.3−1 at 

this point is: 

 
𝑑2𝑇𝐶1.3−1(𝑇)

𝑑𝑇2 |
𝑇1.3−1

∗
= √(ℎ𝐷)3 2𝐴 − 𝐼𝑒𝑃𝐷𝑀2⁄ > 0. 

 

Hence, 𝑇1.3−1
∗  is the global minimum of 𝑇𝐶1.3−1. Additionally, by substituting 𝑇1.3−1

∗ into 𝑁 <
𝑇  and 𝐶𝐷𝑇 ≤ 𝑃𝐷𝑀(1 + 𝐼𝑒𝑀 2⁄ ) , we know that if and only if 𝐼𝑒𝑃𝐷𝑀2 + ℎ𝐷𝑁2 < 2𝐴 ≤
𝐷𝑀2(𝐼𝑒𝑃 + ℎ(𝑃 𝐶⁄ )2(1 + 𝐼𝑒𝑀 2⁄ )2) , then 𝑁 < 𝑇1.3−1

∗  and 𝐶𝐷𝑇1.3−1
∗ ≤ 𝑃𝐷𝑀(1 +

𝐼𝑒𝑀 2⁄ ).  
 

The total cost function in Case 1.3-2 is identical to Subcase 1.2-2. Accordingly, the theoretical 

analysis for this case is consequently the same than the one presented for Theorem 3. 

 

Corollary 2. If 𝑁 < 𝑇1.3−2 , 𝐶𝐷𝑇1.3−2 > 𝑃𝐷𝑀(1 + 𝐼𝑒𝑀 2⁄ )  and (𝐶𝐷𝑇1.3−2 − 𝑃𝐷𝑀(1 +

𝐼𝑒𝑀 2⁄ ))(1 + 𝐼𝑐1(𝑁 − 𝑀)) ≤ 𝑃𝐷 2⁄ (2(𝑁 − 𝑀) − 𝐼𝑐1(𝑁 − 𝑀)2) , then 𝑇1.3−2
∗  is the global 

minimum of 𝑇𝐶1.3−2. 

 

Proof: 

If 𝑇 = 𝑇1.3−2
∗  is the solution to 𝑑𝑇𝐶1.3−2 𝑑𝑇⁄ = 0, the second-order derivative of 𝑇𝐶1.3−2 at 

this point is: 

 

𝑑2𝑇𝐶1.3−2(𝑇)

𝑑𝑇2 |
𝑇1.3−2

∗
= √(𝐷(ℎ + 𝐼𝑐1𝐶2 𝑃⁄ ))

3
(2𝐴 + 𝑃𝐷𝑀2(𝐼𝑐1(1 + 𝐼𝑒𝑀 2⁄ )2 − 𝐼𝑒))⁄ > 0. 

 

Hence, 𝑇1.3−2
∗  is the global minimum of TC1.3−2. Additionally, by substituting 𝑇1.3−2

∗  into 𝑁 <

𝑇  and 𝐶𝐷𝑇 ≤ 𝑃𝐷𝑀(1 + 𝐼𝑒𝑀 2⁄ ) , we know that if and only if (ℎ + 𝐼𝑐1𝐶2 𝑃⁄ )𝐷∆2
2 −

𝑃𝐷𝑀2(𝐼𝑐1(1 + 𝐼𝑒𝑀 2⁄ )2 − 𝐼𝑒) < 2𝐴 ≤ (ℎ + 𝐼𝑐1𝐶2 𝑃⁄ )𝐷∆3
2 − 𝑃𝐷𝑀2(𝐼𝑐1(1 + 𝐼𝑒𝑀 2⁄ )2 −

𝐼𝑒) with ∆2= 𝑚𝑎𝑥{𝑁, 𝑀(𝑃 𝐶⁄ )(1 + 𝐼𝑒𝑀 2⁄ )}  and ∆3=

(𝑃(2(𝑁 − 𝑀) − 𝐼𝑐1(𝑁 − 𝑀)2) 2𝐶(1 + 𝐼𝑐1(𝑁 − 𝑀))⁄ + 𝑀𝑃(1 + 𝐼𝑒𝑀 2⁄ ) 𝐶⁄ ) , then 𝑁 <

𝑇1.3−2
∗ , 𝐶𝐷𝑇1.3−2

∗ ≤ 𝑃𝐷𝑀(1 + 𝐼𝑒𝑀 2⁄ )  and (𝐶𝐷𝑇1.3−2
∗ − 𝑃𝐷𝑀(1 + 𝐼𝑒𝑀 2⁄ ))(1 + 𝐼𝑐1(𝑁 −

𝑀)) ≤ 𝑃𝐷 2⁄ (2(𝑁 − 𝑀) − 𝐼𝑐1(𝑁 − 𝑀)2).  

 

In Case 1.3-3, the first-order condition for a minimum is: 
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𝑑𝑇𝐶1.3−3

𝑑𝑇
= −

𝐴

𝑇2 +
ℎ𝐷

2
+

𝐼𝑐1(𝑁−𝑀)

𝑇2 (𝑃𝐷𝑀 (1 +
𝐼𝑒𝑀

2
) +

𝑃𝐷(𝑁−𝑀)

2
) +

𝐼𝑐2𝐷𝐶2

2𝑃
(1 + 𝐼𝑐1(𝑁 − 𝑀))

2
−

𝐼𝑐2𝑃𝐷

2𝑇2 (𝑀(1 + 𝐼𝑐1(𝑁 − 𝑀)) (1 +
𝐼𝑐1(𝑁−𝑀)

2
) + (𝑁 − 𝑀) (1 +

𝐼𝑒𝑀

2
))

2

+
𝐼𝑒𝑃𝐷𝑀2

2𝑇2 = 0 (39) 

 

Theorem 4. Let 𝑇 = 𝑇1.3−3
∗  be the solution of (39). 

 

(a) Eq. (39) has a unique solution. 

(b) If 𝑁 < 𝑇1.3−3 , 𝐶𝐷𝑇1.3−3 > 𝑃𝐷𝑀(1 + 𝐼𝑒𝑀 2⁄ )  and (𝐶𝐷𝑇1.3−3 − 𝑃𝐷𝑀(1 +

𝐼𝑒𝑀 2⁄ ))(1 + 𝐼𝑐1(𝑁 − 𝑀)) > 𝑃𝐷(𝑁 − 𝑀)(1 + 𝐼𝑐1(𝑁 − 𝑀) 2⁄ ) , then 𝑇1.3−3
∗  is the 

global minimum of 𝑇𝐶1.3−3. 

 

Proof: See Appendix D.  

 

In Case 2.1, the first-order condition for a minimum is: 

 
𝑑TC2.1

𝑑𝑇
= −

𝐴

𝑇2 +
ℎ𝐷

2
+

𝐼𝑒𝑃𝐷

2
= 0 (40) 

 

Theorem 5. Let 𝑇 = 𝑇2.1
∗  be the solution of (40). 

 

(a) Eq. (40) has a unique solution. 

(b) If 𝑇2.1 ≤ 𝑀, then 𝑇2.1
∗  is the global minimum of 𝑇𝐶2.1. 

 

Proof: The proof of this theorem is similar to the proof of Theorem 1 since Eq. (36) and Eq. 

(40) are identical.  

 

The total cost function in Case 2.2 is identical to Case 2.1. The theoretical analysis for this case 

is consequently the same as the one presented for Theorem 1. 

 

Corollary 3. If 𝑀 < 𝑇2.2 ≤ 𝑁, then 𝑇2.2
∗  is the global minimum of 𝑇𝐶2.2. 

 

Proof: 

If 𝑇 = 𝑇2.2
∗  is the solution to 𝑑𝑇𝐶2.2 𝑑𝑇⁄ = 0, the second-order derivative of 𝑇𝐶2.2 at this point 

is: 

 
𝑑2𝑇𝐶2.2(𝑇)

𝑑𝑇2
|

𝑇2.2
∗

= √(𝐷(ℎ + 𝑃𝐼𝑒)3 2𝐴⁄ > 0. 

 

Hence, 𝑇2.2
∗  is the global minimum of 𝑇𝐶2.2. Additionally, by substituting 𝑇2.2

∗  into 𝑀 < 𝑇 ≤
𝑁, we know that if and only if (ℎ + 𝐼𝑒𝑃)𝐷𝑀2 < 2𝐴 ≤ (ℎ + 𝐼𝑒𝑃)𝐷𝑁2, then 𝑀 < 𝑇2.2

∗ ≤ 𝑁.  
 

In Case 2.3-1, the first-order condition for a minimum is: 

 
𝑑TC2.3−1

𝑑𝑇
= −

𝐴

𝑇2 +
ℎ𝐷

2
+

𝐼𝑒𝑃𝐷𝑁2

2𝑇2 = 0 (41) 

 

Theorem 6. Let 𝑇 = 𝑇2.3−1
∗  be the solution of (41). 

 

(a) Eq. (41) has a unique solution.  
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(b) If 𝑁 < 𝑇2.3−1 and 𝐶𝐷𝑇2.3−1(1 + 𝐼𝑐1(𝑁 − 𝑀)) ≤ 𝑃𝐷𝑁(1 + 𝐼𝑒𝑁 2⁄ ), then 𝑇2.3−1
∗  is the 

global minimum of 𝑇𝐶2.3−1. 

 

Proof: See Appendix E.  

 

In Case 2.3-2, the first-order condition for a minimum is: 

 
𝑑TC2.3−2

𝑑𝑇
= −

𝐴

𝑇2 −
𝑃𝐷𝑁2

2𝑇2 (𝐼𝑐2(1 + 𝐼𝑒𝑁 2⁄ )2 − 𝐼𝑒) +
𝐷

2
(ℎ +

𝐶2

𝑃
𝐼𝑐2(1 + 𝐼𝑐1(𝑁 − 𝑀))

2
) = 0 (42) 

 

Theorem 7. Let 𝑇 = 𝑇2.3−2
∗  be the solution of (42). 

 

(a) Eq. (42) has a unique solution. 

(b) If 𝑁 < 𝑇2.3−2 and 𝐶𝐷𝑇2.3−2(1 + 𝐼𝑐1(𝑁 − 𝑀)) > 𝑃𝐷𝑁(1 + 𝐼𝑒𝑁 2⁄ ), then 𝑇2.3−2
∗  is the 

global minimum of 𝑇𝐶2.3−2. 

 

Proof: See Appendix F.  

 

In Case 3.1, the first-order condition for a minimum is: 

 
𝑑TC3.1

𝑑𝑇
= −

𝐴

𝑇2 +
ℎ𝐷

2
+

𝐼𝑒𝑃𝐷

2
= 0 (43) 

 

Theorem 8. Let 𝑇 = 𝑇3.1
∗  be the solution of (43). 

 

(a) Eq. (43) has a unique solution. 

(b) If 𝑇3.1 ≤ 𝑀, then 𝑇3.1
∗  is the global minimum of 𝑇𝐶3.1. 

 

Proof: The proof of this theorem is similar to the proof of Theorem 1 since Eq. (36) and Eq. 

(43) are identical.  

 

The total cost function in Case 3.2 is identical to Case 3.1. The theoretical analysis for this case 

is consequently the same as the one presented for Theorem 1. 

 

Corollary 4. If 𝑀 < 𝑇3.2 ≤ 𝑁, then 𝑇3.2
∗  is the global minimum of 𝑇𝐶3.2. 

 

Proof: 

If 𝑇 = 𝑇3.2
∗  is the solution to 𝑑𝑇𝐶3.2 𝑑𝑇⁄ = 0, the second-order derivative of 𝑇𝐶3.2 at this point 

is: 

 
𝑑2𝑇𝐶3.2(𝑇)

𝑑𝑇2 |
𝑇3.2

∗
= √(𝐷(ℎ + 𝑃𝐼𝑒)3 2𝐴⁄ > 0. 

 

Hence, 𝑇3.2
∗  is the global minimum of 𝑇𝐶3.2. Additionally, by substituting 𝑇3.2

∗  into 𝑀 < 𝑇 ≤
𝑁, we know that if and only if (ℎ + 𝐼𝑒𝑃)𝐷𝑀2 < 2𝐴 ≤ (ℎ + 𝐼𝑒𝑃)𝐷𝑁2, then 𝑀 < 𝑇3.2

∗ ≤ 𝑁.  
 

In Case 3.3, the first-order condition for a minimum is: 

 
𝑑TC3.3

𝑑𝑇
= −

𝐴

𝑇2 +
ℎ𝐷

2
+ 𝐼𝑐1𝐼𝑐2𝐶𝐷(𝑁 − 𝑀) −

𝐼𝑒𝑃𝐷

2
= 0 (44) 
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Theorem 9. Let 𝑇 = 𝑇3.3
∗  be the solution of (44). 

 

(a) Eq. (44) has a unique solution.  

(b) If 𝑁 < 𝑇3.3, then 𝑇3.3
∗  is the global minimum of 𝑇𝐶3.3. 

 

Proof: See Appendix G.  

 

Numerical studies 

To illustrate some properties of the models developed in Section 3, we first perform a 

benchmark case study (Section 5.1) and then report the results of an extensive numerical 

experiment (Section 5.2). 

 

5.1 Benchmark case study 

In the following, the proposed approach has been applied to a case study considering the 

ordering and payment behavior of large diversified retailers (cf. Section 2) in order to 

exemplify the applicability and implications of the models developed above. 

 

Although the variation of trade credit terms within a certain industry is often low as compared 

to variation across industries (cf. Ng et al., 1999), the degree of within-variation may differ 

significantly. In some industries, companies even seem to vary credit terms from customer to 

customer (cf. Wilson and Summers, 2002), which often leads to a myriad of purchasing 

contracts with distinct trade credit conditions for the buying company (Seifert and Seifert, 

2011). To take account of this heterogeneity, all trade credit parameters were derived based on 

extensive firm-level data containing information of about 17,000 transactions between 26 large 

retail companies and their suppliers, which allows estimating the range of existing credit 

conditions (note that this information on credit conditions is part of the descriptive analysis 

performed by Klapper et al., 2012, pp. 842-851). Trade credit contracts in this sample generally 

have a very long duration compared to other industries. About 75% of the considered 

transactions have net days longer than 30 days. However, variation in net days differs 

significantly between the different groups. Diversified retailers, for example, tend to be offered 

much longer net payment durations than grocery or soft good retailers. About 20% of the 

contracts also offer early payment discounts, which seems to be more common in hard good 

retailing and grocery. In contrast to net days, discount periods are rather short and contain less 

than 30 days in about 75% of the transactions. Of contracts with discounts, 32% have a discount 

equal to 1% or less, 61% have a discount between 1% and 2%, and the remaining 7% have a 

discount greater than 2%. The effective interest rate of considered credits, defined as the 

implied interest rate if the buyer does not utilize the discount and pays on the due date, 

calculated as (1 (1 − 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑟𝑎𝑡𝑒)⁄ )360/(𝑛𝑒𝑡 𝑑𝑎𝑦𝑠−𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑑𝑎𝑦𝑠) − 1, varies from a low of 

2% to a high of 100% (cf. Klapper et al., 2012; note that due to high interest rates arising from 

a low spread between discount and net days, effective interest rate was truncated at 100%). 

According to these empirical findings, we exemplarily assumed a progressive interest scheme 

with the following conditions: If the retailer settles its balance before time M = 30/365, the 

supplier charges no interest to the retailer, whereas in case when the retailer settles its balance 

after time M, but before time N = 80/365, the supplier charges an interest rate Ic1 = 5% on the 

outstanding balance. In the case when the retailer pays after time N, the supplier charges an 

interest rate Ic2 = 12%.  

 

Revenues the retailer receives from sales may be deposited in an interest bearing account until 

the account is settled entirely. Again, comparing the ten highest-grossing retailers’ average 

RoE within the last ten years, values from a low of 4.34% up to a high of 22.64% were observed 
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(cf. Table 3). Accordingly, interest earned was assumed at the rate of Ie = 6% (note that to 

ensure comparability, Examples 1 and 2 require a different interest structure with 𝐼𝑒 < 𝐼𝑐1; 

therefore it is assumed that Ie = 5% and Ic1 = 6% in this case). 

 

Depending on the specific segment, average gross margins in the retail sector vary from a low 

of 6% to a high of 42% (cf. Gaur et al., 2005). Considering the presented sample of the ten 

largest diversified retailers (cf. Section 2), average gross margins within the last ten years range 

from a low of 6.41% to a high of 38.67% (cf. Table 3). Thus, we assume an average gross 

margin of 25% based on a unit purchase cost of C = 15, which leads to a sales price per unit of 

P = 20. 

 

Table 3: Ten year averages for RoE and gross margins of the retailers 

 

  
Company 10y-AV 

  
Company 10AV 

    

RoE 

Wal-Mart 20.93% 

Gross 

margin 

Wal-Mart 26.71% 

Costco 13.50% Costco 13.45% 

The Kroger 22.64% The Kroger 21.16% 

Tesco 4.34% Tesco 6.41% 

Carrefour 13.05% Carrefour 22.34% 

Metro 7.80% Metro 24.39% 

Target 14.17% Target 29.39% 

Aeon 4.47% Aeon 38.67% 

Group Casino 8.25% Group Casino 19.66% 

Seven & I 6.31% Seven & I 38.15% 

 

Beside sectoral differences, holding costs strongly depend on the warehouse system used. 

Nevertheless, recent studies revealed that the average unitary holding cost rate of an item in a 

manually operated warehouse is around 25% of the inventory value (Azzi et al., 2014). 

Considering the average unit cost of the items of C = 15, the annual holding cost per item 

becomes h = 3.75, whereas ordering cost related to fixed freight fees as well as internal 

documentation and administration expenses for containerized overseas supply amounts to A = 

200 (cf. Arikan et al., 2014). Standardized annual demand was assumed as D = 1000. To 

illustrate some properties of the models developed in Section 3 regarding compound interest, 

continuous settlement and different interest relations, we performed numerical experiments, 

whose results are reported in the following.  

 

Example 1. This example illustrates that considering compound interest that accrues at the 

retailer influences the ordering decision of the retailer and its total cost. Compound interest 

arises when the buyer is not able to settle the open account at times 𝑀 or 𝑁. In this case, the 

interest cost accruing until time 𝑁 increases the principal of the loan and thus induces further 

interest cost in the next credit period. Considering the compound interest as described in 

Section 3, we obtain the following computational results for the cycle time and the total costs: 

 

𝑇∗ =  0.307467 and 𝑇𝐶(𝑇∗) = 1295.71 

 

In contrast, if we assume that no compound interest accrues at the retailer, then we obtain the 

following values for the cycle time and the total costs: 
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𝑇∗ =  0.307025 and 𝑇𝐶(𝑇∗) = 1295.82 

 

As can be inferred from the example, considering compound interest leads to slightly reduced 

replenishment intervals and smaller order sizes. The total costs, however, remain nearly at the 

same level regardless of whether the effective interest cost is considered or not. Thus, the 

approximation proposed in previous approaches achieves good results for the given example. 

However, the effect of compound interest is stronger when the interest rate Ic1 and/or the 

distance between the two settling times increase. 

 

Example 2. This example reveals some shortcomings of previous approaches in developing 

efficient payment structures for the case that the cycle time exceeds both credit periods, i.e. for 

the case where N<T. In case the interest costs for the first credit period exceed interest earnings, 

the open account should be reduced gradually during the period [M,N], instead of making 

partial payments during this period. In previous inventory models with progressive payment 

schemes, it was merely assumed that in case the buyer is not able to settle the account entirely 

at times M or N, s/he partially settles the account in M and N and afterwards gradually reduces 

the remaining balance. This assumption, however, leads to unnecessary interest expenditures. 

Consequently, the strategy of settling the open account continuously after time M leads to 

substantial savings. Likewise, we obtain the following computational results for the cycle time 

and the total costs: 

 

𝑇∗ = 0.299812 and 𝑇𝐶(𝑇∗) = 1258.69 

 

If we assume that between times M and N no payment is made, we again obtain the following 

values for the cycle time and the total costs: 

 

𝑇∗ =  0.307025 and 𝑇𝐶(𝑇∗) = 1295.82 

 

Again, it can be seen that settling the account earlier reduces the length of the replenishment 

intervals. These findings are illustrated in Figure 2, where the left part shows the buyer’s 

account for the traditional payment policy and the right part shows the buyer’s account for the 

payment policy proposed in this paper. It is obvious that in case the interest rate for the first 

credit period exceeds interest earnings (e.g. Ic1 > Ie), the open account should be reduced 

continuously between times M and N instead of making partial payments at times M and N, 

which induces lower effective interest cost. 

 

 
 

Figure 2:  Balance of accounts for the different payment policies 
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In fact, comparing the total cost expressions with (see Eq. (14)) and without (see Eq. (13) in 

Goyal et al. (2007) and note that for comparison reasons, the compound interest has to be added 

in the model) continuous redemption of the debt between times 𝑀 and 𝑁, it can be shown that 

the proposed strategy leads to lower total costs for all parameter settings (cf. Proposition 1). 

 

Proposition 1. If 𝐼𝑒 < 𝐼𝑐1  and 𝐶𝐷𝑇 > 𝑃𝐷𝑀(1 + 𝐼𝑒𝑀 2⁄ ), then continuously reducing the 

open account between times M and N induces lower total cost than partial payments in M and 

N. 

 

Proof: 

Subtracting the total cost that consider continuous redemption of the debt between 𝑀 and 𝑁 

from the total cost with partial payments in 𝑀  and 𝑁  only, we get: ∆𝑇𝐶1.3−3 = (𝐼𝑐1 −

𝐼𝑒) (
𝑃𝐷(𝑁−𝑀)2

2𝑇
+

𝐼𝑐2(𝑁−𝑀)2

2𝑇
((1 + 𝐼𝑐1(𝑁 − 𝑀)) (𝐶𝐷𝑇 − 𝑃𝐷𝑀 (1 +

𝐼𝑒𝑀

2
)) + (𝑁 − 𝑀) (1 +

(𝐼𝑐1−𝐼𝑒)(𝑁−𝑀)

4
))) > 0 ∀ 𝑇 > 0. Hence, earlier payments are always profitable in this case.  

 

Example 3. The final example demonstrates that the interest structure has only a minor 

influence on the replenishment interval and the size of the order. However, it is shown that the 

interest structure strongly influences the optimal time for settling the account, which may lead 

to substantial savings if the appropriate payment policy is applied. Assuming that the interest 

rate on deposits at the buyer exceeds the interest rate charged by the supplier between times M 

and N, the buyer may benefit from postponing the settlement of the account. By comparing the 

results on the appropriate order quantities obtained from the cost functions in Cases 1 and 2 

(cf. Section 3), it can be shown that the interest structure has only a minor influence on the 

order quantity decision. Thus, in both cases described in this paper (𝐼𝑒 ≤ 𝐼𝑐1 < 𝐼𝑐2 and 𝐼𝑐1 <
𝐼𝑒 < 𝐼𝑐2), the order quantity is almost identical. On the other hand, comparing the total relevant 

costs for the different cases, it can be shown that the interest structure has a strong influence 

on the payment decision, which leads to substantial savings of more than 20% in case the 

appropriate payment policy is used and the settlement is postponed to time N (cf. Table 4). 

 

Table 4: Order quantities and total cost for different order cost levels 

 

  Case 1: With early settlement Case 2: With late settlement Comparative statics 

A T1 Q1 TC1 T2 Q2 TC2 (Q1-Q2)/Q1 (TC1-TC2)/TC1 

15 0.07785 77.850 286.73 0.07785 77.850 225.08 0.00000 0.21499 

30 0.11665 116.651 441.26 0.11010 110.096 384.70 0.05619 0.12818 

50 0.15127 151.271 590.56 0.14213 142.134 543.29 0.06040 0.08004 

100 0.21464 214.642 863.85 0.20101 201.008 834.71 0.06352 0.03373 

150 0.26317 263.172 1073.13 0.25422 254.219 1056.06 0.03402 0.01591 

200 0.30210 302.103 1249.61 0.29951 299.511 1235.97 0.00858 0.01092 

250 0.33287 332.871 1407.10 0.33052 330.520 1394.69 0.00706 0.00882 

400 0.41160 411.599 1810.07 0.40970 409.699 1799.97 0.00462 0.00558 

500 0.45660 456.604 2040.43 0.45489 454.892 2031.30 0.00375 0.00447 

600 0.49755 497.554 2250.04 0.49598 495.984 2241.63 0.00316 0.00374 
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5.2 Numerical experiment 

To gain further insights into the optimal ordering and payment behavior, this section analyzes 

10,000 randomly generated problem instances in a numerical experiment (note that these 

instances are nearly equally distributed among the two different interest structures). Parameters 

were taken randomly from the ranges obtained by the real system as described in the previous 

section assuming an equal distribution (cf. Table 5).  

 

An evaluation of the results shows that the presented approach induces an average reduction in 

total cost of 7.6%. In contrast to previous models (cf., for example, Goyal et al. (2007)), the 

inventory replenishment cycle decreases slightly by 3.4% on average, whereas the payment 

interval increases significantly by 26.2% on average. Thus, carefully considering the prevailing 

interest structure that governs the optimal payment policy may lead to significant cost 

reductions with only minor changes in the inventory policy. Additionally, taking into account 

arbitrage gains arising from different interest structures, the cash conversion cycles tend to 

decrease as DIOs decrease, whereas DPOs increase. Subsequently, we analyzed the influence 

of the problem parameters on the optimal ordering and payment behavior as well as the 

effective total cost of the proposed approach. For this purpose, we conducted several 

multivariate regression analyses between the problem parameters and different performance 

measures whose results are given in Tables 6 and 7. 

 

Table 5: Parameter ranges for simulation data sets 

 

D ∈ [500,1500] demand in units per year 

A ∈ [15,600] ordering cost per order 

C ∈ [10,40] unit purchase cost 

P ∈ [max{C,30},50] unit selling price 

h ∈ [2,8] inventory holding cost per unit and year 

Ic1 ∈ [0.005,0.08] interest rate per year for the first credit period 

Ic2 ∈ [0.08,0.16] interest rate per year for the second credit period 

Ie ∈ [0.005,0.08] interest rate on deposits for the retailer 

M ∈ [10;60] first permissible credit period 

N ∈ [max{M,40},90] second permissible credit period 

 

 

Table 6: Results of the regression analysis for the ratio of payment intervals (left part of 

Table 5; R² = 0.388) and the ratio total costs (right part of Table 5; R² = 0.166) 

 

Model 

parameter 

Standardised 

Beta 
t Sig. 

 

Model 

parameter 

Standardised 

Beta 
t Sig. 

D -0.113 -14.466 0.000  D 0.048 4.823 0.000 

A 0.317 40.495 0.000  A -0.101 -10.250 0.000 

C 0.293 36.581 0.000  C -0.025 -2.428 0.015 

P -0.124 -15.486 0.000  P 0.017 1.720 0.086 

h -0.118 -15.095 0.000  h -0.024 -2.413 0.016 
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Ic1 0.214 27.304 0.000  Ic1 -0.050 -5.054 0.000 

Ic2 0.002 0.239 0.811  Ic2 0.001 0.136 0.892 

Ie -0.263 -33.613 0.000  Ie 0.084 8.504 0.000 

M 0.108 13.493 0.000  M -0.031 -3.103 0.002 

N -0.220 -27.650 0.000  N 0.059 5.902 0.000 

 

 

Table 7: Results of the regression analysis for the cash conversion cycle (left part of Table 6; 

R² = 0.740) and the total cost (right part of Table 6; R² = 0.933) 

 

Model 

parameter 

Standardised 

Beta 
t Sig. 

 

Model 

parameter 

Standardised 

Beta 
t Sig. 

D -0.233 -45.560 0.000  D 0.290 112.176 0.000 

A 0.541 105.966 0.000  A 0.831 321.514 0.000 

C -0.560 -107.192 0.000  C 0.083 31.296 0.000 

P 0.195 37.395 0.000  P -0.034 -12.878 0.000 

h -0.241 -47.165 0.000  h 0.361 139.749 0.000 

Ic1 0.077 15.017 0.000  Ic1 0.049 19.020 0.000 

Ic2 -0.006 -1.187 0.235  Ic2 0.010 3.708 0.000 

Ie -0.131 -25.611 0.000  Ie -0.064 -24.861 0.000 

M -0.017 -3.311 0.001  M -0.053 -20.007 0.000 

N -0.099 -19.099 0.000  N -0.038 -14.547 0.000 

 

At first, we compared the payment intervals and the consequent total cost to those obtained by 

previous approaches (see, for example, Goyal et al. (2007)). The results of the regression 

analysis with the problem parameters as independent variables and the ratio of the payment 

intervals as well as the ratio of expected total costs as the dependent variables are shown in 

Table 6. As can be seen, a statistically relevant relationship (with Sig. < 0.05) could be found 

between all problem parameters and the ratio of the payment intervals, with the exception of 

Ic2 (note that this can be explained by the assumption that Ic2 always exceeds Ic1 and Ie). An 

increase in the time span between M and N as well as an increase in Ie or a decrease in Ic1 leads 

to a postponement of the point in time when the balance is settled entirely, which is a reaction 

of the buyer to realize arbitrage gains. The higher the arbitrage gains the buyer can realize, the 

more our model outperforms the previous models, which explains the results mentioned above. 

Accordingly, the ratio of the total costs is influenced by the model parameters Ic1, Ie, M and N 

in the exact opposite way than the ratio of the payment intervals: The longer the time span 

between M and N (i.e., the longer the time span the buyer could realize arbitrage gains in), the 

more beneficial it is to use the model developed in this paper. The same effect can be observed 

for high values of Ie and low values of Ic1. 

 

Finally, to assess the effects on the optimal working capital structure and the consequent total 

cost, we conducted further regression analyses with the problem parameters as independent 

variables and the cash conversion cycles as well as the total cost as the dependent variables. 

The results are presented in Table 7. Regarding the cash conversion cycle, again a statistically 

relevant relationship (with Sig. < 0.05) could be found between for problem parameters with 

the exception of Ic2. It can be seen that the CCC is reduced as Ic1 decreases or as Ie, M and N 

increase. This can again be explained by the potential arbitrage gains of the buyer. When Ic1 or 
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Ie increase, the DIOs adopt lower values whereas the DPOs adopt higher values. Regarding the 

permissible delays in payment, an increase in M or N reduces the DIOs as well as the DPOs. 

However, as the effect is much stronger for the DPOs, the CCC tends to decrease. Obviously, 

lower values for Ic1 and higher values for Ie, M and N lead to higher arbitrage gains the buyer 

can realize by postponing the payment to his/her supplier. Thus, it can also be inferred that the 

differences in the working capital structure of large retailers may also be influenced by their 

distinct cash investment opportunities. Provided that some of the retailers are able to realize 

comparably higher interest rates than others, these retailers aim at earning profits from capital 

investments by postponing the payments to their suppliers, whereas the other retailers tend to 

pay their suppliers earlier to avoid interest cost. In addition, an increase in the interest rates Ic1 

or Ic2 leads to an increase in the expected total cost of our model. This effect may, however, be 

moderated to some degree by the borrowing rate as in case of 𝐼𝑏 < 𝐼𝑐𝑖, the retailer benefits 

from bridgeover finance by bank loans that reduce the effective interest rate. Higher values for 

Ie and longer payment intervals M and N, in turn, reduce the accruing total costs. 

 

Conclusion 

The purpose of this paper was to generalize the trade credit inventory model with progressive 

interest scheme by considering the case where a) the credit interest rate of the buyer may exceed 

the interest rate charged by the supplier, b) the buyer has the option to settle the outstanding 

balance continuously during the credit periods, c) compound interest accrues at the retailer, and 

d) bank loans are available as a substitute for the trade credit. This paper provided the necessary 

and sufficient conditions for the optimal solution and derived explicit closed-form solutions for 

the optimal replenishment interval in the generalized setting. In addition, numerical studies 

illustrated the behavior of the model and showed that the optimal payment policy, which 

depends on the current interest structure, may lead to lower cost and slightly smaller order 

sizes.  

 

From a managerial point of view, considering the prevailing interest structure that governs the 

payment policy is indispensable for minimizing total cost. Neglecting characteristics of 

financial conditions in calculating order sizes may lead to inferior order and payment policies, 

which unnecessarily increases the total costs of the buyer. This is especially the case when the 

interest rate charged by the supplier exceeds the deposit rate of the retailer, which leads to a 

situation where a continuous settlement policy possibly supported by electronic payment 

solutions is beneficial. In scenarios where the deposit rate exceeds the liability rate, deferring 

the settlement, in turn, may lead to additional interest earnings and lower total cost. The results 

of this paper also illustrate the close linkage between operational and financial aspects in supply 

chain management, which should be considered by employing integrated planning approaches. 

In addition, assuming an optimized replenishment and payment policy, the results also indicate 

that the differences in the working capital structure of large retailers are caused by their distinct 

cash investment opportunities. Considering incentives caused by different interest conditions, 

cash conversion cycles tend to decrease as DIOs decrease and DPOs increase, which also is 

observable in the retail sector where many companies aimed at reducing money tied up in 

stocks over the past years. 

 

The proposed approach can be extended in several ways. Future research could study how the 

length of the credit periods influences total cost and treat the lengths of the credit periods as 

decision variables. There is a stream of research that studies the design of credit term conditions 

from the supplier’s point of view (e.g., Sarmah et al., 2007, 2008), and linking this research 

stream to the study conducted in this paper would further our understanding of how trade 

credits may influence the coordination of supply chains. In addition, alternative demand 
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functions could be studied, for example functions that assume that demand is dependent on the 

inventory level on hand. Earlier research has shown that in the presence of stock-dependent 

demand, orders should be placed earlier, such that a positive inventory level occurs at the end 

of each cycle (e.g., Teng et al., 2011), which could be analyzed in the presented scenario as 

well. Finally, further analysis of alternative sources of financing the retailer could utilize (in 

addition to or as a substitute of trade credits) seems promising (see also Moussawi-Haidar and 

Jaber, 2013). 

 

Appendix A: Proof of Theorem 1. 

 

(a) By rearranging (29), we get 𝐹(𝑇) = 𝐴 𝑇⁄  and 𝐺(𝑇) = 𝑇 2⁄ (ℎ𝐷 + 𝐼𝑒𝑃𝐷). If there is a 

unique solution to 𝐹(𝑇) = 𝐺(𝑇) with 𝑇 > 0, then (29) has a unique solution. Since 

𝐹′(𝑇) = − 𝐴 𝑇2⁄ < 0, 𝐹(𝑇) is a strictly decreasing function in 𝑇. In contrast, since 

𝐺′(𝑇) = 1 2⁄ (ℎ𝐷 + 𝐼𝑒𝑃𝐷) > 0 , 𝐺(𝑇)  is a strictly increasing function in 𝑇 . In 

addition, 𝐹(0) > 𝐺(0) , whereas 𝐹(∞) < 𝐺(∞). Consequently, there is a unique T 

such that 𝐹(𝑇) = 𝐺(𝑇), which implies that 𝑑𝑇𝐶1.1 𝑑𝑇⁄ = 0 has a unique solution. 

(b) If 𝑇 = 𝑇1.1
∗  is the solution to 𝑑𝑇𝐶1.1 𝑑𝑇⁄ = 0, the second-order derivative of 𝑇𝐶1.1 at 

this point is: 

 

 
𝑑2𝑇𝐶1.1(𝑇)

𝑑𝑇2 |
𝑇1.1

∗
= √(𝐷(ℎ + 𝑃𝐼𝑒))3 2𝐴⁄ > 0. 

 

Hence, 𝑇1.1
∗  is the global minimum of 𝑇𝐶1.1. Additionally, by substituting 𝑇1.1

∗ into 𝑇 ≤
𝑀, we know that if and only if 2𝐴 ≤ 𝐷𝑀2(ℎ + 𝑃Ie), then 𝑇1.1

∗ ≤ 𝑀.  

 

Appendix B: Proof of Theorem 2. 

 

(a) By rearranging (30), we get 𝐹(𝑇) = (2𝐴 − 𝐼𝑒𝑃𝐷𝑀2) 𝑇⁄  and 𝐺(𝑇) = ℎ𝐷𝑇. If there is 

a unique solution to 𝐹(𝑇) = 𝐺(𝑇) with 𝑇 > 0, then (30) has a unique solution. Since 

𝐹′(𝑇) = −(2𝐴 − 𝐼𝑒𝑃𝐷𝑀2) 𝑇2⁄ < 0 (note that the necessary condition 2𝐴 > 𝐼𝑒𝑃𝐷𝑀2 

already needs to be satisfied for the presence of this subcase), 𝐹(𝑇)  is a strictly 

decreasing function in 𝑇 . In contrast, since 𝐺′(𝑇) = ℎ𝐷 > 0 , 𝐺(𝑇)  is a strictly 

increasing function in 𝑇 . In addition, 𝐹(0) > 𝐺(0) , whereas 𝐹(∞) < 𝐺(∞) . 

Consequently, there is a unique T such that 𝐹(𝑇) = 𝐺(𝑇) , which implies that 

𝑑𝑇𝐶1.2−1 𝑑𝑇⁄ = 0 has a unique solution. 

(b) If 𝑇 = 𝑇1.2−1
∗  is the solution to 𝑑𝑇𝐶1.2−1 𝑑𝑇⁄ = 0 , the second-order derivative of 

𝑇𝐶1.2−1 at this point is: 

 

 
𝑑2𝑇𝐶1.2−1(𝑇)

𝑑𝑇2 |
𝑇1.2−1

∗
= √(ℎ𝐷)3 2𝐴 − 𝐼𝑒𝑃𝐷𝑀2⁄ > 0. 

 

Hence, 𝑇1.2−1
∗  is the global minimum of 𝑇𝐶1.2−1. Additionally, by substituting 𝑇1.2−1

∗ 

into 𝑀 < 𝑇 ≤ 𝑁  and 𝐶𝐷𝑇 ≤ 𝑃𝐷𝑀(1 + 𝐼𝑒𝑀 2⁄ ) , we know that if and only if 

𝐷𝑀2(ℎ + 𝐼𝑒𝑃) < 2𝐴 ≤ 𝐼𝑒𝑃𝐷𝑀2 + ℎ𝐷∆1
2

 with ∆1= 𝑚𝑖𝑛{𝑁, 𝑀(𝑃 𝐶⁄ )(1 +
𝐼𝑒𝑀 2⁄ )}, then 𝑀 < 𝑇1.2−1

∗ ≤ 𝑁 and 𝐶𝐷𝑇1.2−1
∗ ≤ 𝑃𝐷𝑀(1 + 𝐼𝑒𝑀 2⁄ ). 

 

Appendix C: Proof of Theorem 3. 
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(a) By rearranging (31), we get 𝐹(𝑇) = (2𝐴 + 𝑃𝐷𝑀2(𝐼𝑐1(1 + 𝐼𝑒𝑀 2⁄ )2 − 𝐼𝑒)) 𝑇⁄  and 

𝐺(𝑇) = 𝑇𝐷(ℎ𝑃 + 𝐼𝑐1𝐶2) 𝑃⁄ . If there is a unique solution to 𝐹(𝑇) = 𝐺(𝑇) with 𝑇 > 0, 

then (31) has a unique solution. Since 𝐹′(𝑇) =

−(2𝐴 + 𝑃𝐷𝑀2(𝐼𝑐1(1 + 𝐼𝑒𝑀 2⁄ )2 − 𝐼𝑒)) 𝑇2⁄ < 0 (note that the necessary condition 

(𝐼𝑐1(1 + 𝐼𝑒𝑀 2⁄ )2 > 𝐼𝑒) already needs to be satisfied for the presence of this subcase 

with 𝐼𝑐1 > 𝐼𝑒), 𝐹(𝑇) is a strictly decreasing function in 𝑇. In contrast, since 𝐺′(𝑇) =
𝐷(ℎ𝑃 + 𝐼𝑐1𝐶2) 𝑃⁄ > 0, 𝐺(𝑇) is a strictly increasing function in 𝑇. In addition, 𝐹(0) >
𝐺(0) whereas 𝐹(∞) < 𝐺(∞). Consequently, there is a unique T such that 𝐹(𝑇) =
𝐺(𝑇), which implies that 𝑑𝑇𝐶1.2−2 𝑑𝑇⁄ = 0 has a unique solution. 

(b) If 𝑇 = 𝑇1.2−2
∗  is the solution to 𝑑𝑇𝐶1.2−2 𝑑𝑇⁄ = 0 , the second-order derivative of 

𝑇𝐶1.2−2 at this point is: 

 

 
𝑑2𝑇𝐶1.2−2(𝑇)

𝑑𝑇2 |
𝑇1.2−2

∗
= √(𝐷(ℎ + 𝐼𝑐1𝐶2 𝑃⁄ ))

3
(2𝐴 + 𝑃𝐷𝑀2(𝐼𝑐1(1 + 𝐼𝑒𝑀 2⁄ )2 − 𝐼𝑒))⁄ >

0. 

 

Hence, 𝑇1.2−2
∗  is the global minimum of 𝑇𝐶1.2−2. Additionally, by substituting 𝑇1.2−2

∗ 

into 𝑀 < 𝑇 ≤ 𝑁  and 𝐶𝐷𝑇 > 𝑃𝐷𝑀(1 + 𝐼𝑒𝑀 2⁄ ) , we know that if and only if 

𝐷𝑀2(𝐼𝑒𝑃 + ℎ(𝑃 𝐶⁄ )2(1 + 𝐼𝑒𝑀 2⁄ )2) < 2𝐴 ≤ 𝐷𝑁2(ℎ + 𝐼𝑐1𝐶2 𝑃⁄ ) − 𝑃𝐷𝑀2(𝐼𝑐1(1 +
𝐼𝑒𝑀 2⁄ )2 − 𝐼𝑒), then 𝑀 < 𝑇1.2−2

∗ ≤ 𝑁 and 𝐶𝐷𝑇1.2−2
∗ > 𝑃𝐷𝑀(1 + 𝐼𝑒𝑀 2⁄ ). 

 

Appendix D: Proof of Theorem 4. 
 

(a) By rearranging (32), we get 𝐹(𝑇) = (2𝐴 + 𝐼𝑐2𝑃𝐷 (𝑀(1 + 𝐼𝑐1(𝑁 − 𝑀))(1 +

𝐼𝑐1(𝑁 − 𝑀) 2⁄ ) + (𝑁 − 𝑀)(1 + 𝐼𝑒𝑀 2⁄ ))
2

− 𝐼𝑐1(𝑁 − 𝑀)(𝑃𝐷𝑀(1 + 𝐼𝑒𝑀) +

𝑃𝐷(𝑁 − 𝑀)) − 𝐼𝑒𝑃𝐷𝑀2) /𝑇 and 𝐺(𝑇) = 𝑇𝐷 (ℎ𝑃 + 𝐼𝑐2(𝐶 + 𝐶𝐼𝑐1(𝑁 − 𝑀))
2

) 𝑃⁄ . If 

there is a unique solution to 𝐹(𝑇) = 𝐺(𝑇) with 𝑇 > 0, then (32) has a unique solution. 

Since 𝐹′(𝑇) = − (2𝐴 + 𝐼𝑐2𝑃𝐷 (𝑀(1 + 𝐼𝑐1(𝑁 − 𝑀))(1 + 𝐼𝑐1(𝑁 − 𝑀) 2⁄ ) + (𝑁 −

𝑀)(1 + 𝐼𝑒𝑀 2⁄ ))
2

− 𝐼𝑐1(𝑁 − 𝑀)(𝑃𝐷𝑀(1 + 𝐼𝑒𝑀) + 𝑃𝐷(𝑁 − 𝑀)) − 𝐼𝑒𝑃𝐷𝑀2) /𝑇2 

< 0 (note that the necessary condition already needs to be satisfied for the presence of 

this subcase with 𝐼𝑐1 > 𝐼𝑒), 𝐹(𝑇) is a strictly decreasing function in 𝑇. In contrast, 

since 𝐺′(𝑇) = 𝐷 (ℎ𝑃 + 𝐼𝑐2(𝐶 + 𝐶𝐼𝑐1(𝑁 − 𝑀))
2

) 𝑃⁄ > 0 , 𝐺(𝑇)  is a strictly 

increasing function in 𝑇 . In addition, 𝐹(0) > 𝐺(0) , whereas 𝐹(∞) < 𝐺(∞) . 

Consequently, there is a unique T such that 𝐹(𝑇) = 𝐺(𝑇)  which implies that 

𝑑𝑇𝐶1.3−3 𝑑𝑇⁄ = 0 has a unique solution. 

(b) If 𝑇 = 𝑇1.3−3
∗  is the solution to 𝑑𝑇𝐶1.3−3 𝑑𝑇⁄ = 0 , the second-order derivative of 

𝑇𝐶1.3−3 at this point is: 
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𝑑2𝑇𝐶1.3−3(𝑇)

𝑑𝑇2
|

𝑇1.3−3
∗

=

√
(𝐷ℎ+𝐼𝑐2𝐷

𝐶2

𝑃
(1+𝐼𝑐1(𝑁−𝑀))

2
)

3

2𝐴+𝐼𝑐2𝑃𝐷(𝑀(1+𝐼𝑐1(𝑁−𝑀))(1+
𝐼𝑐1(𝑁−𝑀)

2
)+(𝑁−𝑀)(1+

𝐼𝑒𝑀

2
))

2

−2𝐼𝑐1(𝑁−𝑀)(𝑃𝐷𝑀(1+
𝐼𝑒𝑀

2
)+

𝑃𝐷(𝑁−𝑀)

2
)−𝐼𝑒𝑃𝐷𝑀2

>

0. 

  

Hence, 𝑇1.3−3
∗  is the global minimum of 𝑇𝐶1.3−3. Additionally, by substituting 𝑇1.3−3

∗   

into 𝑁 < 𝑇  and (𝐶𝐷𝑇 − 𝑃𝐷𝑀(1 + 𝐼𝑒𝑀 2⁄ ))(1 + 𝐼𝑐1(𝑁 − 𝑀)) > 𝑃𝐷(𝑁 − 𝑀)(1 +

𝐼𝑐1(𝑁 − 𝑀) 2⁄ ), we know that if and only if 𝐼𝑒𝑃𝐷𝑀2 + 𝐷 (ℎ + 𝐼𝑐2
𝐶2

𝑃
(1 + 𝐼𝑐1(𝑁 −

𝑀))
2

) ∆4
2 − 𝐼𝑐2𝑃𝐷 (𝑀(1 + 𝐼𝑐1(𝑁 − 𝑀)) (1 +

𝐼𝑐1(𝑁−𝑀)

2
) + (𝑁 − 𝑀) (1 +

𝐼𝑒𝑀

2
))

2

+

2𝐼𝑐1(𝑁 − 𝑀) (𝑃𝐷𝑀 (1 +
𝐼𝑒𝑀

2
) +

𝑃𝐷(𝑁−𝑀)

2
) < 2𝐴  with ∆4=

max {𝑁;
𝑃(2(𝑁−𝑀)+𝐼𝑐1(𝑁−𝑀)2)

2𝐶(1+𝐼𝑐1(𝑁−𝑀))
+

𝑃𝑀(1+𝐼𝑒𝑀 2⁄ )

𝐶
} , then 𝑁 < 𝑇1.3−3

∗  and (𝐶𝐷𝑇1.3−3
∗ −

𝑃𝐷𝑀(1 + 𝐼𝑒𝑀 2⁄ ))(1 + 𝐼𝑐1(𝑁 − 𝑀)) > 𝑃𝐷(𝑁 − 𝑀)(1 + 𝐼𝑐1(𝑁 − 𝑀) 2⁄ ). 

 

Appendix E: Proof of Theorem 6. 

 

(a) By rearranging (34), we get 𝐹(𝑇) = (2𝐴 − 𝐼𝑒𝑃𝐷𝑁2) 𝑇⁄  and 𝐺(𝑇) = ℎ𝐷𝑇. If there is a 

unique solution to 𝐹(𝑇) = 𝐺(𝑇) with 𝑇 > 0, then (34) has a unique solution. Since 

𝐹′(𝑇) = −(2𝐴 − 𝐼𝑒𝑃𝐷𝑁2) 𝑇2⁄ < 0 (note that the necessary condition 2𝐴 > 𝐼𝑒𝑃𝐷𝑁2 

already needs to be satisfied for the presence of this subcase), 𝐹(𝑇)  is a strictly 

decreasing function in 𝑇 . In contrast, since 𝐺′(𝑇) = ℎ𝐷 > 0 , 𝐺(𝑇)  is a strictly 

increasing function in 𝑇 . In addition, 𝐹(0) > 𝐺(0) , whereas 𝐹(∞) < 𝐺(∞) . 

Consequently, there is a unique T such that 𝐹(𝑇) = 𝐺(𝑇)  which implies that 

𝑑𝑇𝐶2.3−1 𝑑𝑇⁄ = 0 has a unique solution. 

(b) If 𝑇 = 𝑇2.3−1
∗  is the solution to 𝑑𝑇𝐶2.3−1 𝑑𝑇⁄ = 0 , the second-order derivative of 

𝑇𝐶2.3−1 at this point is: 

 

 
𝑑2𝑇𝐶2.3−1(𝑇)

𝑑𝑇2 |
𝑇2.3−1

∗
= √(ℎ𝐷)3 2𝐴 − 𝐼𝑒𝑃𝐷𝑁2⁄ > 0. 

 

Hence, 𝑇2.3−1
∗  is the global minimum of 𝑇𝐶2.3−1. Additionally, by substituting 𝑇2.3−1

∗  

into 𝑁 < 𝑇 and 𝐶𝐷𝑇(1 + 𝐼𝑐1(𝑁 − 𝑀)) ≤ 𝑃𝐷𝑁(1 + 𝐼𝑒𝑁 2⁄ ), we know that if and only 

if 𝐷𝑁2(𝐼𝑒𝑃 + ℎ) < 2𝐴 ≤ 𝐷𝑁2(𝐼𝑒𝑃 + ℎ∆4
2)  with ∆4=

(𝑃(1 + 𝐼𝑒𝑁 2⁄ ) 𝐶(1 + 𝐼𝑐1(𝑁 − 𝑀))⁄ ), then 𝑁 < 𝑇2.3−1
∗   and 𝐶𝐷𝑇2.3−1

∗  (1 + 𝐼𝑐1(𝑁 −

𝑀)) ≤ 𝑃𝐷𝑁(1 + 𝐼𝑒𝑁 2⁄ ). 

 

Appendix F: Proof of Theorem 7.  

 

(a) By rearranging (35), we get 𝐹(𝑇) = (2𝐴 + 𝑃𝐷𝑁2(𝐼𝑐2(1 + 𝐼𝑒𝑁 2⁄ )2 − 𝐼𝑒)) 𝑇⁄  and 

𝐺(𝑇) = 𝑇𝐷 (ℎ + 𝐶2𝐼𝑐2(1 + 𝐼𝑐1(𝑁 − 𝑀))
2

𝑃⁄ ) . If there is a unique solution to 

𝐹(𝑇) = 𝐺(𝑇)  with 𝑇 > 0 , then (35) has a unique solution. Since 𝐹′(𝑇) =

−(2𝐴 + 𝑃𝐷𝑁2(𝐼𝑐2(1 + 𝐼𝑒𝑁 2⁄ )2 − 𝐼𝑒)) 𝑇2⁄ < 0  (note that the necessary condition 

(𝐼𝑐2(1 + 𝐼𝑒𝑁 2⁄ )2 > 𝐼𝑒) already needs to be satisfied for the presence of this subcase 
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with 𝐼𝑐2 > 𝐼𝑒 ), 𝐹(𝑇)  is a strictly decreasing function in 𝑇 . In contrast, since 

𝐺′(𝑇) = 𝐷 (ℎ + 𝐶2𝐼𝑐2(1 + 𝐼𝑐1(𝑁 − 𝑀))
2

𝑃⁄ ), 𝐺(𝑇) is a strictly increasing function 

in 𝑇 . In addition, 𝐹(0) > 𝐺(0) , whereas 𝐹(∞) < 𝐺(∞) . Consequently, there is a 

unique T such that 𝐹(𝑇) = 𝐺(𝑇) which implies that 𝑑𝑇𝐶2.3−2 𝑑𝑇⁄ = 0 has a unique 

solution. 

(b) If 𝑇 = 𝑇2.3−2
∗  is the solution to 𝑑𝑇𝐶2.3−2 𝑑𝑇⁄ = 0 , the second-order derivative of 

𝑇𝐶2.3−2 at this point is: 

 

 
𝑑2𝑇𝐶2.3−2(𝑇)

𝑑𝑇2 |
𝑇2.3−2

∗
=

√(𝐷 (ℎ + 𝐼𝑐2
𝐶2

𝑃
(1 + 𝐼𝑐1(𝑁 − 𝑀))

2

))

3

2𝐴 + 𝑃𝐷𝑁2(𝐼𝑐2(1 + 𝐼𝑒𝑁 2⁄ )2 − 𝐼𝑒)⁄ > 0. 

 

Hence, 𝑇2.3−2
∗  is the global minimum of 𝑇𝐶2.3−2. Additionally, by substituting 𝑇2.3−2

∗  

into 𝑁 < 𝑇  and 𝐶𝐷𝑇(1 + 𝐼𝑐1(𝑁 − 𝑀)) > 𝑃𝐷𝑁(1 + 𝐼𝑒𝑁 2⁄ ) , we know that if and 

only if 2𝐴 > 𝐷𝑁2 (ℎ + 𝐼𝑐2
𝐶2

𝑃
(1 + 𝐼𝑐1(𝑁 − 𝑀))

2
) ∆5

2 − 𝑃𝐷𝑁2(𝐼𝑐2(1 + 𝐼𝑒𝑁 2⁄ )2 −

𝐼𝑒)  with ∆5= max {1, (
𝑃(1+𝐼𝑒𝑁 2⁄ )

𝐶(1+𝐼𝑐1(𝑁−𝑀))
)} , then 𝑁 < 𝑇2.3−2

∗  and 𝐶𝐷𝑇2.3−2
∗ (1 + 𝐼𝑐1(𝑁 −

𝑀)) > 𝑃𝐷𝑁(1 + 𝐼𝑒𝑁 2⁄ ). 

 

Appendix G: Proof of Theorem 9. 

 

(a) By rearranging (44), we get 𝐹(𝑇) = 2𝐴 𝑇⁄  and 𝐺(𝑇) = 𝐷(ℎ + 2𝐼𝑐2𝐶(1 + 𝐼𝑐1(𝑁 −

𝑀)) − 𝐼𝑒𝑃)𝑇. If there is a unique solution to 𝐹(𝑇) = 𝐺(𝑇) with 𝑇 > 0, then (44) has 

a unique solution. Since 𝐹′(𝑇) = −2𝐴 𝑇2⁄ < 0, 𝐹(𝑇) is a strictly decreasing function 

in 𝑇 . In contrast, since 𝐺′(𝑇) = 𝐷(ℎ + 2𝐼𝑐2𝐶(1 + 𝐼𝑐1(𝑁 − 𝑀)) − 𝐼𝑒𝑃) > 0  (note 

that the necessary condition (ℎ + 2𝐼𝑐2𝐶(1 + 𝐼𝑐1(𝑁 − 𝑀)) > 𝐼𝑒𝑃) needs to be satisfied 

to avoid situations in which retailer has an incentive to never pay back the trade credit 

to the supplier), 𝐺(𝑇) is a strictly increasing function in 𝑇. In addition, 𝐹(0) > 𝐺(0), 

whereas 𝐹(∞) < 𝐺(∞). Consequently, there is a unique T such that 𝐹(𝑇) = 𝐺(𝑇) 

which implies that 𝑑𝑇𝐶3.3 𝑑𝑇⁄ = 0 has a unique solution. 

(b) If 𝑇 = 𝑇3.3
∗  is the solution to 𝑑𝑇𝐶3.3 𝑑𝑇⁄ = 0, the second-order derivative of 𝑇𝐶3.3 at 

this point is: 

 

 
𝑑2𝑇𝐶3.3(𝑇)

𝑑𝑇2 |
𝑇3.3

∗
= √(𝐷(ℎ + 2𝐼𝑐2𝐶(1 + 𝐼𝑐1(𝑁 − 𝑀)) − 𝐼𝑒𝑃))

3

2𝐴⁄ > 0. 

 

Hence, given the condition that ℎ + 2𝐼𝑐2𝐶(1 + 𝐼𝑐1(𝑁 − 𝑀)) > 𝐼𝑒𝑃, 𝑇3.3
∗  is the global 

minimum of 𝑇𝐶3.3. Additionally, by substituting 𝑇3.3
∗  into 𝑁 < 𝑇, we know that if and 

only if 𝐷𝑁2(ℎ + 2𝐼𝑐2𝐶(1 + 𝐼𝑐1(𝑁 − 𝑀)) − 𝐼𝑒𝑃) < 2𝐴, then 𝑁 < 𝑇3.3
∗ . 
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