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Abstract

A nonparametric Accelerated Failure Time (AFT ) model is considered to evaluate the de-
pendability measures of a water supply system laid in a city of the Mediterranean Sea. To
do it, a set of breakdown data of sections of pipe of the system is available.

Unlike the usual methods that assume a parametric family for the underlying lifetime,
we propose an AFT model with an unspecified distribution for the underlying lifetime.

To carry out the model fitting we suggest a two-stage procedure. Firstly, we estimate
the influence of certain factors over the lifetime of the system. Secondly, we propose modern
and flexible statistical tools based on counting processes to construct a smooth estimate the
reliability measure of a specific system. We prove the good asymptotic properties of the
estimator.

Simulation experiments show that the proposed methods have a good performance for
finite samples and improve on the performance of other semi-parametric methods commonly
used in practice.

Keywords: Semi-parametric; nonparametric; Survival Function; Local Linear; Water
Supply System; Bootstrap.

1. Introduction

In Reliability Analysis, right-censoring and left-truncation are common features arising in
lifetime datasets. Consequently, specific models and statistical procedures to analyze failure
times data have been developed in the specialized literature. The proportional hazards (PH )
model (Cox [1]) and the accelerated failure time (AFT ) model (Lawless [2] and Nelson [3])
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are frequently used in applied studies (see for example Srivastava and Mittal [4], Leea et al.
[5] and Ismail [6]).

The main advantage of the PH model is that no additional assumptions about the baseline
hazard function are needed to evaluate the effect of the covariates on the lifetime distribution.
However, the basic PH assumption may not hold in many practical cases. In such situations,
the AFT model has proven to be a convenient and intuitive alternative.

The AFT model establishes a direct relationship between the failure time and the co-
variates. The estimation of the model is usually carried out by assuming a parametric
distribution for the lifetime. In this paper we refer to this model as parametric AFT. Several
approaches have been proposed for the estimation of a parametric AFT model, see Lawless
[2], Kalbfleisch and Prentice [7]. However, such parametric AFT model is very restrictive
in most cases. As an alternative, semi-parametric models, where no assumptions are spec-
ified for the underlying survival distribution, can be more convenient in practice. Ritov [8]
studied the general linear square estimation method, rank-based methods for censored data
have been proposed by Tsiatis [9], Lai and Ying [10] or Jin et al. [11], and least squares
based methods for censored data have been explored, for example, by Miller [12], Buckley
and James [13] or Stute [14]. Stute [15, 16] considered a semi-parametric AFT model and in-
troduced a procedure to estimate the regression coefficients under random censorship. Gross
and Lai [17] developed a regression analysis under the presence of left-truncation in addition
to right-censoring. Their approach is based on the estimation of a trimmed functional of
the survival distribution, given that, with this sampling scheme, the lifetime is only observ-
able within the range between the lower boundary of the support of the truncation variable
and the upper boundary of the support of the censoring variable. It leads to estimators of
the regression parameters which are relatively simple to obtain and useful to explore the
relationship between the response variable and the covariate vector.

The interest in this paper goes further the estimation of the regression parameters since
our practical motivation is to evaluate the dependability measures of a water supply system
laid in a city of the Mediterranean Sea. So we aim to provide a reliable estimation of the
probability of survival of a particular pipe beyond a specific period of time. To this goal we
propose the use of nonparametric tools for evaluating the risk of failure in the water supply
system. With the term “nonparametric” we mean that we do not consider any particular
family of distributions for the underlying lifetime. In other words, a semi-parametric AFT
that directly links the failure time of a pipe to its particular characteristics has been taken
into account.

We follow a sequential procedure. Firstly, we consider the methods suggested by Gross
and Lai [17] to estimate the parameters involved in the regression problem. These estimates
are used to transform the data into the baseline scale of time. Then we conduct a nonpara-
metric procedure to estimate the baseline survival function. Finally, a back transformation
provides the estimator of the survival function for a specific subject.

The baseline survival function is estimated using a weighted-least-squares minimization
approach that provides a local linear estimator. The estimator is closely related to the
hazard estimator suggested by Nielsen and Tanggaard [18] and the density estimator by
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Nielsen et al. [19]. In these papers, the authors consider a counting process formulation to
represent survival data. The advantage of this formulation is that complicated truncation
and/or censoring schemes may be easily incorporated to the model. We adopt this point of
view in this paper since the dataset that we analyze consists of breakdown data of sections
of pipe of the system, where left-truncation and right-censoring are present.

The rest of the paper is structured as follows. In Section 2 it is described the model under
a counting process formulation which comprises the important cases of left-truncation or/and
right-censoring. Our proposal is fully described in Section 3. The sequential procedure to
derive the semi-parametric estimator of the survival function is introduced in Section 3.1.
Section 3.2 describes the estimation of the regression coefficients in the semi-parametric
model. Section 3.3 describes the nonparametric local linear estimator of the baseline survival.
The asymptotic properties of the local linear estimator are derived in the Appendix. Section
4 shows a simulation study to report the performance of the proposed model and methods.
The analysis of the water supply system dataset is described in Section 5. Section 6 concludes
the paper.

2. The model

For i = 1, . . . , n, let Ti denote the event time for the i-th subject. We assume that the
subjects are independent. Define Ni(t) as the number of events that have occurred on the
i-th subject by time t in the absence of filtering. That is, Ni(t) = I(Ti ≤ t), where I(·) is
the indicator function. Also define Yi(t) as the indicator function that takes the value 1 if
the i-th individual is at risk at time t, which means that it has not failed and it is under
observation. So, Y (n)(t) =

∑n
i=1 Yi(t) counts the number of individuals at risk at time t and

{Y (n)(t), t ≥ 0} is called the risk process.
Suppose that the mean function of the counting process Ni(t) associated with a k-vector

of covariates Xi takes the form

E {Ni(t)|Xi} = Pr {Ti ≤ t|Xi} = Φ0 (t exp (−β′Xi)) , (1)

where β is a k-vector of unknown regression parameters, and Φ0 is an unspecified continuous
function. If we write T0,i = Ti exp (−β′Xi) and define N0,i(t) = I(T0,i ≤ t), then, clearly
N0,i(t) = Ni (t exp (β′Xi)), and also, under (1) we have that

E {N0,i(t)} = Pr {T0,i ≤ t} = Φ0(t).

It means that the probability of failure by time t at the level Xi = x equals the probability
of failure by time t exp (−β′x) at the level Xi = 0. In other words, the set of covariates
Xi affects the probability of occurrence of the failure by expanding or contracting the time
scale on which this event occurs by a multiplicative factor exp (−β′x) relative to that of a
zero-valued covariate vector, that is we have the following direct and intuitive relationship

Ti = exp (β′Xi) T0,i,
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or, equivalently
log Ti = β′Xi + ǫi, (2)

where the error terms ǫi = log T0,i, for i = 1, . . . , n, have a common distribution with
survival function S0. This function is called the baseline survival and it represents the
survival function of a subject at the zero-valued level of covariates.

The important situation of right-censoring and/or left-truncation can be described from
the general counting process formulation given above just as particular cases. Many pa-
pers in the literature which are relevant to our purposes are described just in the case of
right-censoring or both right-censoring and left-truncation (e.g. Stute [15, 16] and Gross
and Lai [17]). To facilitate the reference to these previous papers we conclude this sec-
tion by describing the data formulation commonly used in the case of right-censoring and
left-truncation, and how it is actually incorporated by the more general counting process
formulation provided above.

Let F denote the distribution function of the failure time T and let assume that model
(2) holds. Right-censoring is one of the most common features of survival data, which means
that the actual failure time T is not always observable and instead it is observed the random
variable Z = min(T, C), where C denotes the random censoring variable (assumed to be
independent of T ). The variable δ = I(T ≤ C) = I(Z = T ) is an indicator of whether T has
been observed or not. Additionally, in many prospective and retrospective survival studies,
where the subjects under study are time followed-up, left-truncation in addition to right-
censoring can arise. Left-truncation may occur if the time origin of the lifetime precedes the
time origin of the observation period. Only those individuals that fail after the start of the
study are being followed, otherwise they are left-truncated.

In the empirical analysis described in Section 5 some of the subjects that are followed in
the study are susceptible to be right-censored during the follow-up period and left-truncation
is present. In consequence, we consider a left-truncated and right-censored (LTRC ) model.
To represent this kind of data, the common formulation defines triplets of random vari-
ables (L, T, C), where T is the lifetime, L is the random left-truncation time and C is the
random right-censoring time. Also it is usual to assume that L, T , and C are mutually
independent. In the conditions of the LTRC the data consist of a set of i.i.d. triplets
{(L1, Z1, δ1), . . . , (Ln, Zn, δn)}, with Li ≤ Zi, for all i = 1, . . . , n, as in case that L > Z there
is no observation. Let β = Pr{L > Z} defined as the probability of being left-truncated, it
is obvious that β < 1 in order to have non-empty sample sets.

Note that the LTRC formulation actually corresponds to a particular case of the fail-
ure and risk processes introduced above. In fact, for each individual i = 1, . . . , n, the
corresponding failure process is given by Ni(t) = I (Zi ≤ t) δi, and the risk process by
Yi(t) = I (Li ≤ t ≤ Zi), for t ≥ 0. So the counting process formulation assumed in this
paper is indeed a more general formulation which incorporates the LTRC case usually as-
sumed in the literature of survival analysis.
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3. The proposed methods

3.1. Sequential estimation

Let assume the counting process formulation described in Section 2. The equation

TX = exp (Xβ) T0

defines the standard AFT model. From this equation we can assess the effect that the
covariates have on the length of the lifetime of a particular subject. However, our interest
goes further the assessment of these effects and we are concerned about the probability that
a particular subject survives beyond a specified time t. In other words, we are interested in
estimating the following function:

SX(t) = Pr {TX > t} = Pr {T0 exp (Xβ) > t} = Pr {T0 > t exp (−Xβ)}

= S0 (t exp (−Xβ)) ,
(3)

where S0 is the baseline survival function. Note that SX(·) is the survival function for a
subject associated to level X = x, while S0(·) represents the survival function of an individual
with covariate level equal to 0.

To estimate the survival function in (3) we propose a sequential procedure. Firstly, we
estimate the vector of regression coefficients β in the model (2) using the semi-parametric

approach by Stute [15, 16] and Gross and Lai [17]. Let denote by β̂ such an estimator. This
estimator is used to transform the data into the baseline scale of time as it is described in
Section 2. Then, from the transformed data, we estimate the baseline survival function by a
nonparametric estimator Ŝ0(·). Specifically we consider the local linear approach by Nielsen
and Tanggaard [18] and Nielsen et al. [19]. Finally, the survival function for a subject
associated to level X = x is estimated by

Ŝx(t) = Ŝ0

(
t exp(−xβ̂)

)
. (4)

A detailed description of these steps is provided in the following sections.

3.2. Estimation of the regression coefficients

In this section the influence of a set of covariates on the failure time is analyzed. To
this goal we consider the regression model specified in (2) and follow the approach by Stute
[15, 16] and Gross and Lai [17]. These papers assume the LTRC formulation described in
Section 2. Using the notation introduced in that section, let us consider a random sample
of size n of the form {(Li, Zi, δi, Xi); i = 1, . . . , n}, with Li ≤ Zi, Zi = min{Ti, Ci} and
δi = I(Zi = Ti). Here Xi = (Xi1, . . . , Xik)

′ is a k-dimensional vector of covariates describing
the i-th subject.

As we showed in Section 2 the above data formulation is a particular case of the general
counting process model where the failure process is Ni(t) = I (Zi ≤ t) δi, and the risk process
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is Yi(t) = I (Li ≤ t ≤ Zi), for t ≥ 0. Then, the cumulative hazard function can be estimated
by

Λ̂(t) =
n∑

i=1

∫ t

0

dNi(s)

Y (n)(s)
ds,

where Y (n)(s) =
∑n

i=1 Yi(s), and thus the corresponding estimator for the survival function
is obtained as the following product-limit estimator

Ŝ(t) =
∏

s≤t

(
1 − dΛ̂(s)

)
.

Computationally it results more tractable the following expression

Ŝ(t) =
∏

Ti≤t

(
1 −

δi

Y (n)(Ti)

)
.

The last expression gives a step function that only has jumps at the failure times Ti

whose sizes are given by

Wi = Ŝ(Ti−1) − Ŝ(Ti) =
i−1∏

j=1

(
1 −

δj

Y (n)(Tj)

)
δi

Y (n)(Ti)
. (5)

To derive the estimator of the vector of parameters β for right-censored data, Stute [15,
16] proposed a method that requires very general hypotheses and the estimation procedure
is developed using weighted-least-squares. Under the model (2), the estimator of β can be
obtained by minimizing

n∑

i=1

Wi

(
log Z(i) − X[i]β

)2
, (6)

where log Z(i) is the i-th ordered value of the observed response variable log Z, X[i] is the
covariate associated with log Z(i). When only right-censoring is considered in the sample,
Wi are the Kaplan-Meier weights, which are obtained as the successive increments of the
Kaplan-Meier estimator.

The minimization of (6) leads to the following estimator of β given by

β̂ = (X′WX)
−1

X′W log Z, (7)

where log Z =
(
log Z(1), . . . , log Z(n)

)′
, W is a diagonal matrix with the Kaplan-Meier

weights, see Kaplan and Meier [20], and X is the (n×k)-matrix with rows Xi (i = 1, . . . , n).
Stute [15, 16] studied the consistency of this estimator and its asymptotic normal distribu-
tion and also proposed the use of a simpler jackknife estimator to calculate the asymptotic
variance.

In a similar way, Gross and Lai [17] consider the regression problem when truncation
is also present in the dataset. In this case, the weights are obtained as in the expression
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(5). These authors proved that, under certain regularity conditions, the solution β̂ of the
equation (6), given in (7), is strongly consistent and asymptotically normal. The authors
also suggested a simple bootstrap method to estimate the standard error of the estimator
β̂ = (β̂1, . . . , β̂k)

′. The bootstrap algorithm consists of the following steps:

1. Generate B random samples of size n with replacement from the n observed quadruples
{(Li, Yi, δi, Xi); i = 1, . . . , n}.

2. From each bootstrap sample (b = 1, . . . , B) calculate a bootstrap estimator of the

regression parameters β using the expression (7). Let denote such estimator by β̂(b).

3. Estimate the standard error β̂j (j = 1, . . . , k) by:

s.e.(β̂j) =

√√√√ 1

B − 1

B∑

b=1

(
β̂

(b)
j − βj

)2

, ∀ j = 1, . . . , k,

with βj =
1

B

B∑

b=1

β̂
(b)
j .

4. Calculate the (1 − α) × 100% confidence interval for β̂j (j = 1, . . . , k) by:

(
β̂j ± zα/2(n − 1) × s.e.(β̂j)

)
,

where zα/2 is the (1 − α/2)-quantile of the standard normal distribution.

3.3. Nonparametric estimation of the baseline survival function

In the previous section we have described estimators for the coefficients of the AFT
regression model. Now, to obtain the survival function for a subject associated to level
X = x, defined in (4), the only thing that remains is to estimate the baseline survival
function S0(·). In the following we describe a nonparametric local linear estimator of such
function. Without any loss of generality we can assume that numeric components of the
covariate vector are centered at 0, that is E[X] = 0.

3.3.1. Transformation of the data

For simplicity let start by considering the LTRC data formulation. Thus, we consider a
random sample of size n of the form {(Li, Zi, δi, Xi); i = 1, . . . , n}. In the previous section we

have derived an estimator β̂ of the coefficients vector β in the AFT model given in (2). Using

such estimator let now consider the transformation of the y axis given by u = exp(−β̂x)y.
So, we construct a new transformed dataset as follows:





L0,i = exp(−β̂Xi)Li

Z0,i = exp(−β̂Xi)Zi

δ0,i = δi
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where L0,i ≤ Z0,i and exp(−β̂Xi) ≥ 0. Note that the dataset {(L0,i, Z0,i, δ0,i); i = 1, . . . , n}
is a LTRC sample from the baseline population which can be used to estimate S0(t) =
Pr{T0 > t}.

Let now simplify the notation by using the general counting process formulation described
in Section 2. For each subject i = 1, . . . , n, let define the failure process by

N0,i(t) =

{
1; if T0,i ≤ t
0; otherwise

,

and the risk process by

Y0,i(t) =

{
1; if L0,i ≤ t ≤ T0,i

0; otherwise
.

Note that the information in the dataset {(L0,i, Z0,i, δ0,i); i = 1, . . . , n} is equivalent to the
one contained in the dataset {(N0,i(t), Y0,i(t)); t ≥ 0, i = 1, . . . , n}.

Using this transformed dataset, we derive in the next section a nonparametric estimator
of the survival function S0 using the local linear approach (Nielsen and Tanggaard [18],
Nielsen et al. [19]).

3.3.2. The local linear estimator

Let S̃0(t) be an empirical estimator of the survival function S0, (e.g. extended Nelson-
Aalen estimator) and K a probability density function. Let define Kb(·) = b−1K(·/b),
with b being the bandwidth parameter (b > 0). The local linear approach by Nielsen and
Tanggaard [18] and Nielsen et al. [19] provides an estimator of S0(t), as a result of the
following weighted-least-squares minimization problem:

argmin
θ0,θ1

n∑

i=1

∫ ∞

0

(
S̃0(s) − θ0 − θ1(t − s)

)2

Kb(t − s)W (s)Yi(s)ds.

Here W (·) denotes a general weighting function. Following recommendations by the authors

we consider the natural weighting W (s) = 1. Let denote by θ̂0 and θ̂1 the minimizers of the

above problem for W (s) = 1. Then, S0(t) is estimated by Ŝ0(t) = θ̂0.

An explicit expression of θ̂0 can be derived by solving the following equations:

0 = −2
n∑

i=1

∫ ∞

0

(
S̃0(s) − θ0 − θ1(t − s)

)
Kb(t − s)Yi(s)ds

=

∫ ∞

0

S̃0(s)Kb(t − s)Y (n)(s)ds − θ0

∫ ∞

0

Kb(t − s)Y (n)(s)ds

−θ1

∫ ∞

0

(t − s)Kb(t − s)Y (n)(s)ds,
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0 = −2
n∑

i=1

∫ ∞

0

(
S̃(s) − θ0 − θ1(t − s)

)
(t − s)Kb(t − s)Yi(s)ds

=

∫ ∞

0

S̃(s)(t − s)Kb(t − s)Y (n)(s)ds − θ0

∫ ∞

0

(t − s)Kb(t − s)Y (n)(s)ds

−θ1

∫ ∞

0

(t − s)2Kb(t − s)Y (n)(s)ds.

Let us consider the following definitions:

aj(t) =

∫ ∞

0

Kb(t − s)(t − s)jY (n)(s)ds, for j = 0, 1, 2

and

Gj(t) =

∫ ∞

0

S̃0(s)Kb(t − s)(t − s)jY (n)(s)ds, for j = 0, 1.

With these definitions, the above equations can be written as:

G0(t) = θ0a0(t) + θ1a1(t)

G1(t) = θ0a1(t) + θ1a2(t).

By simple calculations we get the following expression for the solution in θ0:

θ̂0 =
a2(t)G0(t) − a1(t)G1(t)

a0(t)a2(t) − a2
1(t)

.

Thus, the local linear survival estimator can be explicitly written by:

Ŝ0(t) =
n∑

i=1

∫ ∞

0

(
a2(t) − a1(t)(t − s)

a2(t)a0(t) − a2
1(t)

)
Kb(t − s)S̃0(s)Yi(s)ds,

or equivalently by:

Ŝ0(t) =
n∑

i=1

∫ ∞

0

Kb,t(t − s)S̃0(s)Yi(s)ds, (8)

using the local linear kernel function given by

Kb,t(t − s) =
a2(t) − a1(t)(t − s)

a2(t)a0(t) − a2
1(t)

Kb(t − s).
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Notice that
∫ ∞

0

Kt,b(t − s)Y (n)(s)ds = 1,

∫ ∞

0

Kt,b(t − s)(t − s)Y (n)(s)ds = 0,

∫ ∞

0

Kt,b(t − s)(t − s)2Y (n)(s)ds > 0.

In the appendix we prove a result which states the asymptotic pointwise normality of the
local linear estimator (8).

4. Simulation study

In this section we evaluate the finite sample properties of the estimation procedure pro-
posed in Section 3. The purpose is twofold. On the one hand, we are interested in the
parametric part of the model, that is, we evaluate the accuracy of our estimates of the re-
gression parameters and compare them with alternative methods. On the other hand, we
focus on assessing the accuracy of the local linear estimator of the underlying distribution
of the lifetime.

To achieve our first goal we compare the AFT model and the PH model in a scenario
where the assumptions of both methods hold and the estimations obtained for the regression
parameters are directly comparable. So, in our first comparison study, we do not pay atten-
tion to the underlying distribution family but we focus on the estimators of the regression
parameters, which describe the effect of the covariates on the lifetime for the AFT case, and
on the hazard function for the PH case. Besides, we measure the estimation error obtained
with the two semi-parametric fits and compare these errors with the error obtained under a
parametric approach. The computations have been performed using the statistical software
environment R [21]. To implement the parametric AFT model we used the packages survival
and eha. In particular, the parametric fit has been implemented by using maximum likeli-
hood estimation procedures developed by the aftreg function included in the aforementioned
eha package, see Broström [22].

Since the Weibull parametric regression model can be seen as a PH model as well as an
AFT model, we have decided to use this family of distributions to compare the performance
of the two approaches in a fair scenario. So, we have generated a Weibull regression model
under different sampling schemes. Specifically we consider samples that present different
rates of censoring and truncation.

To be more precise, let us define the PH model according to the following expression

λ(t; X) = λ0(t) exp (γ1X1 + γ2X2) , (9)

where λ0(t) is an unspecified baseline hazard function, γ′ = (γ1, γ2) is a vector of regression
coefficients associated to the covariate vector X ′ = (X1, X2). In terms of the AFT model
we have that the logarithm of the lifetime of a subject with covariate vector X ′ = (X1, X2)
can be written as

10



log T = β1X1 + β2X2 + ǫ, (10)

where ǫ = log T0, with T0 being the lifetime of a subject at a zero level of covariates, that
is, the baseline population, with β1 = −λ1, and β2 = −λ2.

To carry out the simulations we consider the same specifications as given in Orbe et al.
[23]. So, we assume that X1 has uniform distribution U [0, 2], X2 has distribution U [3, 9],
and, β′ = (β1, β2) = (1, 3).

For the baseline population, T0, we consider a Weibull distribution with scale parameter
sc = 1 and three different choices for shape parameter in order to account for decreasing
hazard rate sh = 0.5, increasing hazard sh = 5, and constant hazard function sh = 1, which
is an Exponential distribution. In this situation, both models PH and AFT are directly
comparable (i.e. γ = −β).

The samples have been generated according to the following algorithm:

1. Generate a sample of failure times {T1, . . . , Tn} from the Exponential regression model
with β′ = (β1, β2) = (1, 3), X1 ∈ U [0, 2], X2 ∈ U [3, 9], and ǫ a standard minimum
extreme value distribution.

2. Generate a sample of censoring times independently of the lifetimes, {C1, . . . , Cn}, from
a Uniform distribution U [0, τ ], where τ is properly chosen to get a desirable censoring
rate α1% (i.e. 10%, 30% and 45%).

3. Define the censoring indicator by δi = I(Ti ≤ Ci). Then, represent the i-th observation
by the pair (Zi, δi), with Zi = min(Ti, Ci), for i = 1, . . . , n.

4. Generate n left-truncation times {L1, . . . , Ln} independently of censoring and lifetimes,
from a Uniform distribution U [0, η], where η is chosen to get a desirable truncation
rate, α2= 10%. Only those subjects for which Li ≤ Zi are kept in the sample whereas
the others are discarded.

Each simulated sample consists of a sequence of triplets {(Li, Zi, δi); i = 1, 2 . . . , n∗}, where
Li ≤ Zi for each i = 1, . . . , n∗ ≤ n. And we have repeated the procedure up to R = 2000
times with n = 50, n = 100 and n = 200, for each combination of censoring and truncation
levels.

Given a particular simulated sample, on the one hand we estimate the bias and standard
error of the estimators of the regression parameters using the semi-parametric AFT model
specified in (10) and compare them with the results obtained by using the PH model given in
(9). On the other hand, we provide a measure of the error of the local linear estimation of the
baseline survival distribution. In other words, for the estimations of the regression parameters
(β̂ or γ̂) we have computed the value of the bias (Bias) by means of the expression Bias(β̂) =

E(β̂)−β; and, the standard error (SE) by using the equation SE(β̂) =

√
E

[(
β̂ − E(β̂)

)2
]
.

Finally, as a summary measure of the error estimation, we provide the mean square error
(MSE), which is usually split into a bias term and a variance term as follows:

MSE(β̂) = SE2(β̂) + Bias2(β̂).
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In order to assess the performance of the local linear estimator of the baseline survival, we
consider the average square error (ASE). That is, we first estimate the regression parameters
as it is explained in Section 3.2 and, second we obtain the survival function evaluated at the
observed data times transformed to the baseline time-scale (see Section 3.3). To calculate
the local linear estimator we have considered the Epanechnikov kernel, K(t) = 3

4
(1 − t2)I(|

t |≤ 1), and the bandwidth parameter has been chosen using the reference rule (see Gámiz
et al. [28], pp. 44). The ASE for a particular sample of size n is thus defined by

ASE =
1

n

n∑

i=1

[
Ŝ0

(
exp

(
−β̂1x1,i − β̂2x2,i

)
ti

)
− S0

(
exp

(
−β̂1x1,i − β̂2x2,i

)
ti

)]2

.

The simulation results are summarized in Tables A.1-A.3 and Figs. A.1-A.3. We deduce
that higher levels of censoring tend to increase the variance of estimators, therefore the
estimates lose precision as the censoring rate increases. In terms of the MSE, the AFT
method provides more precise estimates than the PH model in almost all cases, according to
Tables A.1-A.3. For the PH model we see from Table A.2 that the summary measure of the
error gives values that are significantly higher than the ones reported by the AFT model. We
have inspected the simulated samples and we have noticed that for a few simulated samples,
the value of the estimated bias is extremely large which causes this high error measure. It
could be that the use of another measure to summarize the error could result more convenient
in this case to have a more representative picture of the actual situation (i.e. the median or
perhaps a trimmed mean).

Besides, semi-parametric models are, as expected, less accurate when we estimate the
parametric method, which uses the true probability distribution from which we have gener-
ated the data. However, this loss of accuracy is slight, in the sense of justifying the use of
the semi-parametric AFT model when the probability distribution is unknown.

The ASE values for the proposed method are significantly smaller than the ones reported
by the PH method in all cases considered. Notice that, as expected, the ASE values decrease
with increasing sample sizes, see Figs. A.1-A.3.

5. Analysis of the breakdown dataset of a water supply network

5.1. The data and the analysis objectives

In this section we analyze failure data registered in a water supply network of a medium-
sized city of the Spanish Mediterranean coast. The aim is to evaluate the lifetime of pipes
using the semi-parametric approach described above. We consider the same dataset used
by Carrión et al. [27] who evaluated the pipes failure probability using a Cox proportional
hazards model. The full dataset comprises 26034 registers of pipes sections with information
about the installation year of the pipes, the section length, the section diameter, the pipe
material, the traffic conditions as well as the data of failure. According to the dataset, four
types of different material have been employed: ductile cast iron, gray cast iron, polyethylene
and asbestos cement. Also it has been considered three types of traffic conditions of the
installation area of the pipes: under sidewalk, under normal traffic and heavy traffic.
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In our analysis we do not consider the fact that a pipe section can fail more than once and,
following the discussion by Carrión et al. [27], we have restricted the observation window to
the interval of time between years 2000-2005. Note that this sampling scheme induces left-
truncation and right-censoring and it is remarkable that the data present a heavy censoring
rate, up to 98%.

We define the random variable L = max{0, 2000-installation date} to represent the left-
truncation time. It takes value 0 if the corresponding item is not left-truncated. The failure
time is represented by the random variable T = registered failure date - installation date.
And the censoring time by the random variable C = 2006 - installation date. All dates are
given in years. We assume that L, T and C are mutually independent, non negative and
the censoring scheme is non informative, see Fleming and Harrington [24]. Let G, F and H
denote the cumulative distribution functions (c.d.f.) of L, T and C, respectively.

Under the above sampling specifications our objective is to estimate the lifetime of the
water main. To this goal we start by fitting a Cox PH model and checking whether the
PH assumption holds. Then we calculate the semi-parametric AFT approach described in
Section 3.

5.2. Checking the proportional hazards assumption

As a first approach the PH model is proposed to analyze the time period until failure
occurs in a particular pipe in the network. It is identified in terms of a vector of covariates
that consists of the following:

Ductile CI: Type of material (1=ductile cast iron, 0=others).

Gray CI: Type of material (1=gray cast iron, 0=others).

Polyethylene: Type of material (1=polyethylene, 0=others).

Sidewalk: Level of stress of road traffic (1=sidewalk, 0=others).

Normal: Level of stress of road traffic (1=normal, 0=others).

Length: The length of the pipe in (m).

Diameter: The diameter of the section pipe in (mm).

The main hypothesis in the PH model is proportionality of the hazard rates. If the
proportional hazards assumption holds, the logarithms of the cumulative hazard functions
are expected to describe parallel curves. To fit this model to the data we have used the
cox.zph function, included in the R-package survival, see Therneau and Lumley [25]. Tests
and graphical diagnostics of the PH model are based on the scaled Schoendfeld residuals,
see Therneau and Grambsch [26].

A visual inspection reveals that the corresponding curves provided by the material, traffic
and diameter covariates do not seem to be parallel, as can be deduced from Fig. A.4. In
consequence, the PH model is questionable in this study. In addition, we use the Schoenfeld
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residual test to verify the PH assumption. The results from the test are displayed in Table
A.4. If the p-value reported by the Schoenfeld residual test is below a significant level 0.05, we
conclude that PH assumption does not hold. The results suggest that the PH assumption
is not acceptable for the covariates material and traffic. Besides, the global test for PH
assumption leads to similar conclusions, as the p-value is 0.0005. The graphical diagnostics
displayed in Fig. A.5 show that the covariates material and traffic do not hold the PH
assumption.

In this context, one way of accommodating non-proportional hazards may be to consider
time-dependent covariates in the formulation of the regression model. As an alternative, it
can also result adequate to consider a stratified Cox model according to the levels of the
covariates material and/or traffic. This strategy has been carried out by Carrión et al. [27].
However, this extended Cox model has several disadvantages as the loss of the ability to
quantify the effects of these stratified covariates, which in some cases might be of direct
interest, as it is in our dataset the case of the material and traffic covariates.

An additional issue that arises is the non-linearity of the model. That is, an incorrectly
specified functional form in the parametric part of the model. To detect non-linearity the
martingale residuals may be plotted against covariates. To this goal, we examine the plots
of the martingale residuals against Length and Diameter since non-linearity is not an issue
concerning dichotomous covariates. The residual plots are presented in Fig. A.6. As in the
plots of Schoenfeld residuals, smoothing is also helpful to get a clear idea of the picture.
The smoothed curves displayed in Fig. A.6 are produced by local linear regression (using
the lowess function of R software). The graphs in the figures suggest that the hypothesis of
linearity is reasonable.

5.3. The proposed approach

According to the study in the previous section, PH is not adequate for our data so
we propose an alternative procedure. In this section, we describe the results of the semi-
parametric AFT model. The estimation is performed in two steps as it is described in Section
3.1. In the first step we calculate the estimates of the regression coefficients in the model (2)
without assuming any parametric family for the underlying distribution. The second step
consists of estimating nonparametrically the baseline survival function.

The estimated coefficients and the corresponding standard errors are presented in Table
A.5. The reported standard errors have been calculated using the bootstrap method sug-
gested by Gross and Lai [17]. A full description of the bootstrap algorithm is provided in
Section 3.2. The number of simulations considered in the algorithm is B = 10000.

The regression coefficients of the semi-parametric AFT model are given by exp(β). Note
that the categories considered as reference levels, i.e. asbestos cement and heavy traffic, for
the qualitative covariates material and traffic, respectively, are not displayed in Table A.5.

The coefficients can be interpreted for each covariate as follows:

Ductile CI: the failure time corresponding to a pipe made of ductile cast iron is expected
about 29.75% shorter than others.
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Gray CI: the failure time corresponding to a pipe made of gray cast iron is expected about
51.20% longer than others.

Polyethylene: the failure time corresponding to a pipe made of polyethylene is expected
about 52.53% shorter than others.

Sidewalk: under a sidewalk traffic the failure time increases by 245.29%.

Normal: under a normal traffic the failure time increases by 366.90%.

Length: the increase in failure time for an increase of 1 m is 29.62%.

Diameter: the decrease in failure time for an increase of 1 mm is 23.86%.

We consider that the reference (baseline) population is determined by the category as-
bestos cement for the covariate material and heavy traffic for the covariate traffic. For the
numeric covariates, which are Length and Diameter, we take the mean values as reference
levels. To estimate the baseline survival function we have considered the local linear estima-
tor proposed in Section 3.3, equation (8). As in Section 4 we have calculated the estimator
using the Epanechnikov kernel and the bandwidth parameter has been chosen using the ref-
erence rule (following the suggestions by Gámiz et al. [28], pp. 44), which provides the value
b = 0.0707. The resulting local linear estimator of the baseline survival function is shown in
Fig. A.7.

5.4. Discussion

When the PH assumption does not hold, the results obtained from the Cox PH model
lead us to wrong conclusions. On the contrary, our semi-parametric AFT approach provides
more reliable results.

Inadequate parametric assumptions can lead to wrong conclusions derived from wrong
specifications of the probability distribution of the failure time. Thus, if the probability
distribution is unknown, that is, the most usual situation in practice, it seems to be more
convenient to consider semi-parametric approaches.

The methods described in the paper allow us to evaluate the impact of different covariates
on the lifetime of pipes of the analyzed water supply system. In fact, the analysis described
above shows that pipes which were more prone to failure had the following characteristics:
large length, small diameter, with ductile cast iron or polyethylene material and placed
under heavy traffic. The results agree with the derived by previous works that analyze
similar datasets (see for example the recent paper by Carrión et al. [27]).

6. Conclusions

We propose a practical strategy that allows us to estimate an AFT model under a
nonparametric approach. If the PH assumption of Cox’s model holds, the semi-parametric
AFT approach presented here performs better in terms of standard errors and subsequently
in their total mean squared errors. In the case that the PH assumption cannot be hold, the
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semi-parametric AFT is a very convenient alternative to the traditionally used Cox model,
as it is the case of the practical application we present in Section 6. Thus, we use our
procedure to understand the influence of some variables on the reliability of pipes in a water
supply network.

Through simulation experiments, the semi-parametric AFT proposed has been also com-
pared with the parametric AFT model based on the correct probability distribution of errors.
As expected, the semi-parametric proposed is less accurate, although this loss of accuracy is
slight. Besides, this is compensated since in the semi-parametric approach is not necessary
to consider any parametric assumptions about the underlying failure time.

Furthermore, we have compared the baseline survival functions for both models and we
confirm the greater effectiveness of the semi-parametric AFT approach in contrast to the
PH model.

The insights provided in this paper can be very valuable when making decisions con-
cerning the design and construction of water supply networks. The conclusions from the
performed data analysis are valid not only for the particular dataset studied here but also
(to some extent) for any other water supply systems.

Appendix A. Asymptotic theory

In this section we derive the asymptotic properties of the local linear estimator presented
in Section 3.3.2. For simplicity in the notation we write the baseline survival function
S0(·) = S(·) and we denote the local linear estimator by Ŝ(t). This estimator can be written
as

Ŝ(t) =

∫ ∞

0

Kb,t(t − s)S̃(s)Y (n)(s)ds,

just by substituting Y (n)(s) =
∑n

i=1 Yi(s).

Following Nielsen and Tanggaard [18], the error Ŝ(t) − S(t) can be split in two terms as

Ŝ(t) − S(t) = Ŝ(t) − S∗(t) + S∗(t) − S(t) = V (t) + B(t),

where we define

S∗(t) =

∫ ∞

0

Kb,t(t − s)S(s)Y (n)(s)ds,

so that V (t) is the variable part converging to a normal distribution, and B(t) is the stable
part converging in probability to a constant.

Firstly, we study the stable part of the error term, B(t):

B(t) = S∗(t) − S(t) =

∫ ∞

0

Kb,t(t − s)S(s)Y (n)(s)ds − S(t),

given that
∫ ∞

0
Kt,b(t − s)Y (n)(s)ds = 1 we express the expression above of the form

B(t) =

∫ ∞

0

Kt,b(t − s) [S(s) − S(t)] Y (n)(s)ds.
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We assume that S ∈ C2(0,∞), and via Taylor expansion we have:

B(t) =

∫ ∞

0

Kt,b(t−s)

[
S(t) + S

′

(t)(s − t) + S
′′

(t)
(s − t)2

2
+ OP

(
(s − t)2

)
− S(t)

]
Y (n)(s)ds,

as
∫ ∞

0
Kt,b(t− s)(t− s)Y (n)(s)ds = 0, since Kt,b can be interpreted as a second-order kernel

with respect to the measure µ, where dµ(s) = Y (n)(s)ds (see Nielsen et al. [19]). Therefore,

B(t) =

∫ ∞

0

Kt,b(t − s)

[
S

′′

(t)
(s − t)2

2
+ OP

(
(s − t)2

)]
Y (n)(s)ds.

As proven in Nielsen and Tanggaard [18], the stochastic local linear kernel Kt,b(t−s) is asymp-
totically equivalent to the kernel Kb(t− s){Y (n)(s)}−1, where Kb(t− s) = b−1K ((t − s)b−1).
Defining the second moment µ2(K) =

∫
u2K(u)du, we conclude that

B(t) = b2 1

2
S

′′

(t)µ2(K) + OP (b2).

Secondly, we study the variable part of the error term V (t):

V (t) = Ŝ(t) − S∗(t) =

∫ ∞

0

Kt,b(t − s)[S̃(s) − S(s)]Y (n)(s)ds.

Furthermore we use the following approximation

S̃(s) = exp

(
−

∫ s

0

dN (n)(u)

Y (n)(u)

)
= exp

(
−Λ̃(s)

)
≈ 1 − Λ̃(s),

S(s) = exp

(
−

∫ s

0

α(u)du

)
= exp (−Λ(s)) ≈ 1 − Λ(s).

Here α(·) and Λ(·) denote the hazard and the cumulative hazard functions, respectively.

Replacing S̃(s) and S(s) into the expression V (t) we have

V (t) =

∫ ∞

0

Kt,b(t − s)
[
1 − Λ̃(s) − (1 − Λ(s))

]
Y (n)(s)ds

=

∫ ∞

0

Kt,b(t − s)
[
−Λ̃(s) + Λ(s)

]
Y (n)(s)ds

= −

∫ ∞

0

Kt,b(t − s)

[∫ s

0

(
dN (n)(u)

Y (n)(u)
− α(u)du

)]
Y (n)(s)ds

= −

∫ ∞

0

Kb(t − s)

(∫ s

0

dN (n)(u) − α(u)Y (u)(u)du

Y (u)(u)

)
ds

= −

∫ ∞

0

Kb(t − s)

(∫ s

0

dM (n)(u)

Y (n)(u)

)
ds,
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where M (n)(t) = N (n)(t) − α(t)Y (n)(t) is a squared integrable local martingale, and again
we use the asymptotic equivalence between the kernels. We can exchange the order of the
integrals in the above expression and, after a convenient change of variable, we get

V (t) = −

∫ ∞

0

(∫ ∞

u

Kb(t − s)ds

)
dM (n)(u)

Y (n)(u)

=

∫ ∞

0

(
−K

(
t − u

b

))
dM (n)(u)

Y (n)(u)
,

where K(x) =
∫ x

−∞
K(v)dv, and hence we can proceed following from standard martingale

theory (see Nielsen and Tanggaard [18]). To obtain the limiting distribution we only need
to prove, for some sequence an → ∞ and some positive function C(t) (see Ramlau-Hansen
[29]), that

an 〈V 〉 (t)
P

−→ C(t),

for n → ∞, where

〈V 〉 (t) =

∫ ∞

0

(
K

(
t − u

b

))2
1

Y (n)(u)
α(u)du.

Under the usual assumption
∣∣Y (n)(t)/n − γ(t)

∣∣ P
→ 0, where γ is a positive function such that

γ ∈ C1(0,∞), we obtain that the previous integral can be approximated, after some easy
computations, by the expression

b

nγ(t)
α(t)

(∫ t/b

−∞

{K(v)}2 dv

)
, (A.1)

where we have used the continuity of functions γ and α.
In most cases the kernel function K is a symmetric density function with domain the

interval [−1, 1], so that K denotes the corresponding cumulative distribution function, and
then (A.1) can be written

b

nγ(t)
α(t)

(∫ 1

−1

(K(v))2 dv +

∫ t/b

1

dv

)
=

b

nγ(t)
α(t)

(
R (K) +

t

b
− 1

)
, (A.2)

where R (K) =
∫ 1

−1
(K(v))2 dv is a constant that only depends on the kernel. Equation (A.2)

can be written as
α(t)

γ(t)

(
R (K) − 1

nb−1
+

t

n

)
. (A.3)

The leading term of the expression (A.3) is of order OP (n−1), so we can approximate it
by

α(t)

γ(t)

t

n
+ OP

(
n−1

)
.
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All the above arguments prove the asymptotic pointwise normality of the local linear
estimator. The following theorem summarizes the above derivations.

Theorem 1. Let assume the following conditions:

(A.1) The bandwidth b → 0 and nb → ∞.

(A.2) There exist a positive function γ such that
∣∣Y (n)(t)/n − γ(t)

∣∣ P
→ 0.

(A.3) S ∈ C2(0,∞).

(A.4) α, γ ∈ C1(0,∞).

Then,

B(t) = b2 1

2
S

′′

(t)µ2(K) + OP (b2),

and
n−1/2V (t)

D
−→ N (0, σ(t)) ,

where σ(t) = [tα(t)]/γ(t).

Note that this result is in accordance to the discussion in Chapter 1 of Gámiz et al. [28].
It states that the order of convergence of variance of the local linear estimator agrees with the
one of the empirical cumulative distribution function, that is, OP (n−1). However, from (A.3),
we also get here that the variance has an additional term of a lower order, i.e. Op(bn

−1),
and this term, which depends only on the kernel, can be negative. In particular for the most
usual kernel function, the Epanechnikov kernel, we obtain that R (K) − 1 = −0.2571429.
This means that local linear estimator presented here provides an improvement in efficiency
estimation.
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Table A.1: MSE for PH, AFT and Exponential regression models.

Sample Censorship 10% Censorship 30% Censorship 45%
size PH AFT Exp PH AFT Exp PH AFT Exp

n = 50 0.4750 0.1368 0.0975 0.7336 0.1763 0.1335 1.2125 0.2458 0.2122

n = 100 0.1715 0.0770 0.0461 0.2085 0.0772 0.0545 0.3116 0.1197 0.1330

n = 200 0.0689 0.0444 0.0205 0.0932 0.0503 0.0277 0.1403 0.0671 0.0393

Table A.2: MSE for AFT and Weibull(1, 5) regression models.

Sample Censorship 10% Censorship 30% Censorship 45%
size PH AFT Weib PH AFT Weib PH AFT Weib

n = 50 0.6472 0.0048 0.0036 0.9302 0.0072 0.0057 1.3221 0.0108 0.0082

n = 100 0.2014 0.0028 0.0018 0.2282 0.0033 0.0022 0.3523 0.0048 0.0032

n = 200 0.0656 0.0016 0.0008 0.0852 0.0018 0.0010 0.1379 0.0027 0.0014

Table A.3: MSE for AFT and Weibull(1, 0.5) regression models.

Sample Censorship 10% Censorship 30% Censorship 45%
size PH AFT Weib PH AFT Weib PH AFT Weib

n = 50 0.7062 0.5983 0.3682 1.1566 0.8357 0.5627 1.6963 0.9948 0.8012

n = 100 0.3223 0.3712 0.1828 0.4365 0.3959 0.2509 0.5625 0.5001 0.3247

n = 200 0.1384 0.2166 0.0840 0.1909 0.2309 0.1149 0.2676 0.3046 0.1595
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Table A.4: Testing results about the proportional hazards assumption.

Covariate ρ χ2 p − value
Ductile CI 0.1110 10.5 0.0012
Gray CI 0.0007 0.0003 0.9859
Polyethylene 0.0396 0.983 0.3214
Sidewalk 0.1206 8.86 0.0029
Normal 0.1388 11.8 0.0005
Length 0.0395 0.529 0.4670
Diameter 0.0583 1.88 0.1707
Global 25.7 0.0005

Table A.5: Estimated regression coefficients using a semi-parametric AFT model.

Covariate β̂ exp(β̂) se(β̂) 95% bootstrap CI
Ductile CI -0.3530 0.7025 0.0974 (-0.5439, -0.1621)
Gray CI 0.4134 1.5120 0.1058 (0.2059, 0.6209)
Polyethylene -0.7449 0.4747 0.1838 (-1.1052, -0.3845)
Sidewalk 1.2392 3.4529 0.5466 (0.1677, 2.3107)
Normal 1.5409 4.6690 0.5058 (0.5495, 2.5323)
Length 0.2594 1.2962 0.0727 (0.1169, 0.4019)
Diameter -0.2725 0.7614 0.0619 (-0.3939, -0.1511)
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Figure A.1: Case 1. Exponential Model. Box-plots of the ASE estimations for the PH
and AFT models n = 50, 100 and 200 with truncation level α2 = 10% and a censoring level
α1 = 10%, 30% and 45%.
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Figure A.2: Case 2. Model Weibull with shape parameter 5. Box-plots of the ASE
estimations for the PH and AFT models n = 50, 100 and 200 with truncation level α2 = 10%
and a censoring level α1 = 10%, 30% and 45%.

25



PH AFT

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

n=50 and censoring level 10%

A
S

E

(a)

PH AFT
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7

n=100 and censoring level 10%

A
S

E

(b)

PH AFT

0.
3

0.
4

0.
5

0.
6

n=200 and censoring level 10%

A
S

E

(c)

PH AFT

0.
2

0.
4

0.
6

0.
8

n=50 and censoring level 30%

A
S

E

(d)

PH AFT

0.
2

0.
3

0.
4

0.
5

n=100 and censoring level 30%

A
S

E

(e)

PH AFT
0.

20
0.

30
0.

40
0.

50
n=200 and censoring level 30%

A
S

E

(f)

PH AFT

0.
0

0.
2

0.
4

0.
6

n=50 and censoring level 45%

A
S

E

(g)

PH AFT

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

n=100 and censoring level 45%

A
S

E

(h)

PH AFT

0.
2

0.
3

0.
4

0.
5

n=200 and censoring level 45%

A
S

E

(i)

Figure A.3: Case 3. Model Weibull with shape parameter 0.5. Box-plots of the
ASE estimations for the PH and AFT models n = 50, 100 and 200 with truncation level
α2 = 10% and a censoring level α1 = 10%, 30% and 45%.
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Figure A.4: Cumulative hazard functions stratifying by material, traffic, length and diameter,
respectively
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Figure A.5: Scaled Schoenfeld residuals plots for covariates material, traffic, length and
diameter, respectively.
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Figure A.6: Martingale residual plots for the covariates length and diameter.
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Figure A.7: Local linear estimator of the baseline survival function.
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