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Approximate pricing of swaptions in affine and

quadratic models

Anna Maria Gambaro∗, Ruggero Caldana†and Gianluca Fusai‡

Abstract

This paper proposes new bounds on the prices of European-style swaptions for affine and quadratic

interest rate models. These bounds are computable whenever the joint characteristic function of the

state variables is known. In particular, our lower bound involves the computation of a one-dimensional

Fourier transform independently of the swap length. In addition, we control the error of our method by

providing a new upper bound on swaption price that is applicable to all considered models. We test our

bounds on different affine models and on a quadratic Gaussian model. We also apply our procedure to

the multiple-curve framework. The bounds are found to be accurate and computationally efficient.1

JEL classification codes: G12, G13.

KEYWORDS: Pricing, swaptions, affine-quadratic models, Fourier transform, bounds.

1 Introduction

The accurate pricing of swaption contracts is fundamental in interest rate markets. Swaptions

are among the most liquid over-the-counter (OTC) derivatives and are largely used for hedging

purposes. Many applications also require efficient computation of swaption prices, such as

calibration, estimation of risk metrics and credit and debit value adjustment (CVA and DVA)

valuation. In the calibration of interest rate models, a large number of swaptions with different

∗Dipartimento di Statistica e Metodi Quantitativi, Università Milano Bicocca (DiSMeQ), Via Bicocca degli
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maturities, swap lengths and strikes are priced using iterative procedures aimed at fitting market

quotations. Similarly, in the estimation of risk metrics for a portfolio of swaptions, if a full

revaluation setting is used and millions of possible scenarios are considered, a fast pricing

algorithm is essential to obtain results in a reasonable time. In addition, the Basel III accords

introduced the CVA and DVA charge for OTC contracts, and for the simplest and most popular

kind of interest rate derivative, i.e. interest rate swap, the two adjustments can be estimated

by pricing a portfolio of forward start European swaptions (see Brigo and Masetti (2005)).

Hence, the appeal of a fast and exact closed-form solution for the swaption pricing problem is

explained.

The famous Jamshidian (1989) formula is applicable only when the short rate depends on a

single stochastic factor while for multi-factor interest rate models, several approximate methods

have been developed in the literature. Munk (1999) approximates the price of an option on

a coupon bond by a multiple of the price of an option on a zero-coupon bond with time to

maturity equal to the stochastic duration of the coupon bond. The method of Schrager and

Pelsser (2006) is based on approximating the affine dynamics of the swap rate under the relevant

swap measure. These methods are fast but not very accurate for out-of-the-money options. The

method of Collin-Dufresne and Goldstein (2002) is based on an Edgeworth expansion of the

density of the swap rate and requires a time-consuming calculation of the moments of the coupon

bond and it provides reliable estimation only for a low volatility level. An estimation of the error

of the Collin-Dufresne and Goldstein (2002) has been provided in Zheng (2013). Singleton and

Umantsev (2002) (henceforth S&U) introduce the idea of approximating the exercise region in

the space of the state variables. This method has the advantage of producing accurate results

across a wide range of strikes, in particular for out-of-the-money swaptions. However, it does not

allow a simple extension to general affine interest rate models because it requires the knowledge

of the joint probability density function of the state variables in the closed form. Kim (2014)

generalizes and simplifies the S&U method. Up to now, Kim’s method seems to be the most

efficient proposed in the literature. Nevertheless, Kim’s method requires the calculation of as

many Fourier transforms as the number of cash flows in the underlying swap, which implies that

the run time of the algorithm increases with the swap length. Moreover, none of these papers

discusses the direction of the error, i.e. whether the price is overestimated or underestimated.

Further, except for Collin-Dufresne and Goldstein (2002), none of the methods proposed in

the literature is able to estimate or control the approximation error. Recently, a lower and an

upper bound on swaption prices was proposed in Nunes and Prazeres (2014), but these are

applicable only to Gaussian models.
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Similar to S&U and Kim, we propose a lower bound that is based on an approximation of

the exercise region via an event set defined through a function of the model factors. Our pricing

formula consists of the valuation of an option on the approximate exercise region and requires

a single Fourier transform. Our procedure gives a new perspective with respect to existing

methods, such as those of S&U and Kim. Indeed, we prove that their approximations are also

lower bounds to the swaption price. To the best of our knowledge, this has not been reported

previously. Moreover, we develop methods to control the approximation error by deriving a

new upper bound on swaption prices.

Finally, we extend the lower and upper bounds to multiple-curve models that reflect the

presence of various interest curves in the market after the 2007 crisis. Multiple-curve interest

rate models are widely discussed in the literature (see, among others Ametrano and Bianchetti

(2009), Morini (2009) and recently Moreni and Pallavicini (2014) and Fanelli (2016)). In par-

ticular, we concentrate on the affine multiple-curve model developed in Moreni and Pallavicini

(2014). To the best of our knowledge, none of the approximated methods previously described

for pricing swaptions has been developed for a multiple-curve interest rate framework.

The paper is organized as follows. Section 2 introduces a general formula for the lower

bound on swaption prices based on an approximation of the exercise region. In addition, the

popular methods of S&U and Kim are proved to be included in our setting. Then we apply the

general lower bound formula to the case of affine models and Gaussian quadratic interest rate

models and we find an efficient algorithm to calculate analytically the approximated swaption

price. In section 3, the new upper bound is presented for affine-quadratic models. Section 4

extends the previously described bounds to a multiple-curve model. Section 5 shows the results

of numerical tests. Conclusions and remarks are presented in the last section.

2 Lower bound on swaption prices

In this section, we discuss the general pricing formula for a receiver European-style swaption

and the approximations presented in S&U and Kim. In particular, we prove that these approx-

imations are lower bounds.

A European swaption is a contract that gives the right to its owner to enter into an underlying

interest rate swap, i.e. it is a European option on a swap rate. It can be equivalently interpreted

as an option on a portfolio of zero-coupon bonds (or as an option on a coupon bond). Let t be

the current date, T the option expiration date, T1, ..., Tn the underlying swap payment dates

(by construction t < T < T1 < ... < Tn) and R the fixed rate of the swap. The payoff of a
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receiver swaption is

(
n∑
h=1

whP (T, Th)− 1

)+

,

where wh = R (Th − Th−1) for h = 1, .., n − 1, wn = R (Tn − Tn−1) + 1, and P (T, Th) is the

price at time T of a zero-coupon bond expiring at time Th. The time t no-arbitrage price is the

risk-neutral expected value of the discounted payoff,

C(t) = Et

[
e−

∫ T
t r(X(s))ds

(
n∑
h=1

whP (T, Th)− 1

)+]
(1)

where r(X(s)) is the short rate at time s, and X(s) denotes the state vector at time s of a

multi-factor stochastic model. The price formula (1) after a change of measure to the T-forward

measure becomes

C(t) = P (t, T ) ETt

[(
n∑
h=1

whP (T, Th)− 1

)
I(A)

]
(2)

with I denoting the indicator function, and A is the exercise region, which is seen as a subset

of the space events Ω,

A = {ω ∈ Ω :
n∑
h=1

whP (T, Th) ≥ 1}.

By changing the measure of each expected value from the T forward measure to the Th

measure, the pricing formula in expression (2) can be written as

C(t) =
n∑
h=1

whP (t, Th) PTht [A]− P (t, T ) PTt [A]

where PSt [A] denotes the time t probability of the exercise set A under the S-forward measure.

S&U and Kim replace the exercise set A in the above formula by a new set G that makes the

computation of the swaption price much simpler, and then their approximated pricing formula

reads as (see Singleton and Umantsev (2002) and Kim (2014) for further details)

CG(t) =

n∑
h=1

whP (t, Th) PTht [G]− P (t, T ) PTt [G]. (3)

The choice of the approximated exercise region is made so that the above probabilities can be

computed by performing n + 1 Fourier inversions, where n is the number of payments in the

underlying swap. We can now show that CG(t) is a lower bound approximation to the true
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price. Indeed, we observe that for any event set G ⊂ Ω:

ETt

[(
n∑
h=1

whP (T, Th)− 1

)+]
≥ ETt

[(
n∑
h=1

whP (T, Th)− 1

)+

I(G)

]

≥ ETt

[(
n∑
h=1

whP (T, Th)− 1

)
I(G)

]

Then by discounting we obtain:

C(t) ≥ LBG(t) := P (t, T ) ETt

[(
n∑
h=1

whP (T, Th)− 1

)
I(G)

]
, (4)

i.e. LBG(t) is a lower bound to the swaption price for all possible sets G. Using the same change

of measures as in S&U and Kim, it immediately follows that

LBG(t) = CG(t).

Therefore, the approximated pricing formula presented in S&U and Kim are indeed lower

bounds. This was not previously noted. In particular, our new framework allows us to control

the approximation error by providing an upper bound. In addition, we show how to speed

up the computation of the formula (4) by performing a single Fourier transform. This allows

a reduction of the computational cost, mainly when we have to price swaptions written on

long-maturity swaps.

2.1 Affine and Gaussian quadratic models

In affine and quadratic interest rate models, the price at T of a zero-coupon bond with expiration

Th can be written as the exponential of a quadratic form of the state variables,

P (T, Th) = eX>(T )ChX(T )+b>hX(T )+ah (5)

for X(T ) a d-dimensional state vector and ah = A(T−Th), bh = B(T−Th) and Ch = C(T−Th)

functions of the payment date Th, which are model specific. Fixing a date Th, bh is a d-

dimensional vector and Ch is a d× d symmetric matrix.

From the literature (Ahn et al. (2002), Leippold and Wu (2012) and Kim (2014)), we

know that if the risk-neutral dynamics of the state variates are Gaussian, then the functions

A(τ), B(τ) and C(τ) are the solution of a system of ordinary differential equations with initial

condition A(0) = 0, B(0) = 0, C(0) = 0d×d. Affine models can be obtained by forcing Ch to
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be a null matrix. For affine models, under certain regularity conditions, the functions A(τ) and

B(τ) are the solution of a system of d + 1 ordinary differential equations that are completely

determined by the specification of the risk-neutral dynamics of the short rate (see Duffie and

Kan (1996) and Duffie, Pan and Singleton (2000) for further details). The solutions of these

equations are known in closed form for most common affine models.

From Duffie, Pan and Singleton (2000) and Kim (2014), we know that the quadratic

T -forward joint characteristic function of the model factors X has the form

Φ(λ,Λ) = ETt
[
eλ
>X(T )+X(T )>ΛX(T )

]
(6)

= eÃ(T−t,λ,Λ)−A(T−t)+(B̃(T−t,λ,Λ)−B(T−t))>X(t)+X(t)>(C̃(T−t,λ,Λ)−C(T−t))X(t)

where λ ∈ Cd and Λ is a complex d × d symmetric matrix. If X(t) is a Gaussian quadratic

process (or an affine process, i.e. Λ, C̃ and C are null matrices), the functions Ã(τ,λ,Λ),

B̃(τ,λ,Λ) and C̃(τ,λ,Λ) are the solutions of the same ODE system of the zero-coupon bond

functions, but with initial conditions Ã(0,λ,Λ) = 0, B̃(0,λ,Λ) = λ, and C̃(0,λ,Λ) = Λ.

In the case of a quadratic model, it is convenient to define the approximate exercise region

G using a quadratic form of the state vector,

G = {ω ∈ Ω : X(T )>Γ X(T ) + β>X(T ) ≥ k},

where Γ is a constant d× d symmetric matrix, β ∈ Rd and k ∈ R.

Proposition 2.1. The lower bound to the European swaption price for quadratic interest rate

models is given by the following formula:

LB(t) = max
k∈R, β∈Rd, Γ∈Symd(R)

LBβ,Γ(k; t), (7)

where

LBβ,Γ(k; t) = P (t, T )
e−δk

π

∫ +∞

0
Re
(
e−iγkψ(δ + iγ)

)
dγ, (8)

and

ψ(z) =

(
n∑
h=1

whe
ahΦ (bh + zβ, Ch + zΓ)− Φ (zβ, zΓ)

)
1

z
, (9)

with ψ(z) defined for Re(z) > 0 for receiver swaptions and for Re(z) < 0 for payer swaptions.

The integral in formula (8) must be interpreted as a Cauchy principal value integral and δ is a
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positive or negative constant for receiver or payer swaptions, respectively.

Proof: See Appendix A.

For two-factor affine interest rate models, Singleton and Umantsev (2002) propose to ap-

proximate the exercise boundary of an option on a coupon bond with a straight line that

closely matches the exercise boundary where the conditional density of the model factors is

concentrated. Kim (2014) improves on the S&U idea and considers three different types of

approximation for the exercise region. We choose its approximation “A” because it appears to

be the most accurate.2 In the approximation “A”, the approximated exercise region is obtained

by a first-order Taylor expansion of the coupon bond price, which is defined as

B(X(T )) =

n∑
h=1

whP (T, Th), (10)

around the point on the true exercise boundary where the density function of the model factors

is largest. Moreover, Kim (2014) extends his approximation “A” to Gaussian quadratic inter-

est rate models using a second-order Taylor expansion of the coupon bond. In this way, the

optimization of the lower bound (formula (7)), which can be very expensive, is not performed.

It is instead replaced by a preliminary search of the parameters Γ, β and k, which are chosen

via the Taylor expansion of the coupon bond price.

In particular, for affine models, the first-order Taylor expansion of the coupon bond is a

tangent hyperplane approximation. In fact, the approximated exercise boundary is defined as

β>X(T ) + α = 0,

with

α = −∇B(X∗)>X∗, β = ∇B(X∗) and k = −α. (11)

Hence, it is a tangent hyperplane to the true exercise boundary at the point, X(T ) = X∗, where

the density function of the model factors is the largest. In order to calculate the point X∗, we

use the equation (2.20) of Kim (2014). A two-dimensional visualization of the approximate

exercise region is shown in Figure 1.

[Figure 1 approximately here]

2 The three approximations presented in Kim (2014) are lower bounds, as proved in section 2. Therefore,
the most precise is the one that produces the highest price, which was not discussed in the Kim paper.
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Once Γ, β and k are found, the Kim approximation requires the computation of n+ 1 forward

probability PTht [G], as in formula (3). This is done by performing n+ 1 one-dimensional Fourier

inversions. In contrast, our lower bound is calculated as in formula (8), i.e. performing a single

one-dimensional Fourier transform with respect to the parameter k.

3 Upper bound on swaption price

In this section, we define a new upper bound to swaption prices that is applicable to all affine

and quadratic interest rate models. First of all, it is straightforward to see that for a lower

bound defined by a generic approximated exercise set G, the (undiscounted) approximation

error is

1

P (t, T )

(
C(t)− L̂B(t)

)
= ETt [(B(X(T ))− 1)+]− ETt [(B(X(T ))− 1)I(G)]

= ETt [(B(X(T ))− 1)+I(Gc)] + ETt [(1−B(X(T )))+I(G)]

= ∆1 + ∆2,

where B(X(T )) is the coupon bond price defined as in formula (10). The previous formula

for the approximation error is valid also for payer swaptions. In general, ∆1 and ∆2 are not

explicitly computable. However, we can provide upper bounds ε1 and ε2 to them. Hence, an

upper bound to the swaption price easily follows:

UB(t) = L̂B(t) + P (t, T ) (ε1 + ε2), (12)

for ε1 ≥ ∆1 and ε2 ≥ ∆2.

For every set of strikes (K1, ...,Kn) such that
∑n

h=1Kh = 1, upper bounds to the errors are

∆1 ≤ ε1 =

n∑
h=1

ETt [(whP (T, Th)−Kh)+ I(Gc)], (13)

∆2 ≤ ε2 =

n∑
h=1

ETt [(Kh − whP (T, Th))+ I(G)], (14)

where P (T, Th) is the price at time T of the zero-coupon bond with maturity Th. However,

without a proper choice of the strikes (K1, ...,Kn), the approximations can be very rough and

so we want to find the values of (K1, ...,Kn) that reduce the error without performing a time-
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consuming multidimensional numerical minimization. Given that

(B(X(T ))− 1)+ = B(X(T ))

(
1− 1

B(X(T ))

)+

=
n∑
h=1

whP (T, Th)

(
1− 1

B(X(T ))

)+

=
n∑
h=1

(
whP (T, Th)− whP (T, Th)

B(X(T ))

)+

(15)

as B(X(T )) > 0 and whP (T, Th) > 0 ∀X(T ), we note that the following equality holds:

ETt [(B(X(T ))− 1)+ I(Gc)] =
n∑
h=1

ETt [(whP (T, Th)−Kh(X(T )))+ I(Gc)],

for

Kh(X(T )) =
whP (T, Th)

B(X(T ))
.

By similar reasoning, we also have:

ETt [(1−B(X(T )))+ I(G)] =

n∑
h=1

ETt [(Kh(X(T ))− whP (T, Th))+ I(G)].

Hence, if in formula (13) and (14), we choose the strikes (K1, ...,Kn) in the following way:

Kh = Kh(X∗) = wh P (T, Th)|X(T )=X∗ , (16)

then the equalities ε1 = ∆1 and ε2 = ∆2 hold in X(T ) = X∗, the point on the true exercise

boundary where the density function of the model factors is largest. The computation of X∗ is

explained in section 2.1.

This allows us to avoid a multidimensional optimization with respect to (K1, ...Kn).

3.1 Affine and Gaussian quadratic models

The following proposition explains how to compute the quantities ε1 and ε2 defined in expressions

(13) and (14), and hence the upper bound in formula (12), using the Fourier Transform method.

Proposition 3.1. The upper bound to the European swaption price for quadratic interest rate

models is given by the following formula:

UB(t) = L̂B(t) + P (t, T ) (ε1(−α) + ε2(−α)) (17)
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where

ε1(k) =
1

2π2

∫ +∞

0

dγ Re

(∫ +∞

−∞
dω

n∑
h=1

whe
ah e−(δ+iγ)ke−(η+iω)kh ψh(δ + iγ, η + iω)

)
,

ε2(k) = − 1

2 π2

∫ +∞

0

dγ Re

(∫ +∞

−∞
dω

n∑
h=1

whe
ah e(δ−iγ)ke(η−iω)kh ψh(−δ + iγ,−η + iω)

)
,

and

ψh(z, y) = −Φ (zβ + (y + 1)bh, zΓ + (y + 1)Ch)

zy(y + 1)
, (18)

where L̂B(t) is given in Proposition 2.1, kh = log(Kh)−log(wh)−ah, Kh are defined in equation

(16) and Φ(λ,Λ) is defined in equation (6). The upper bound formula is valid for both receiver

and payer swaptions. If Re(z) < 0 and Re(y) > 0, ψh(z, y) is the double Fourier transform of

ETt [(ebh>X+X>ChX − ekh)+ I(X>ΓX + β>X < k)],

and if Re(z) > 0 and Re(y) < −1, ψh(z, y) is the transform of

ETt [(ekh − ebh>X+X>ChX)+ I(X>ΓX + β>X > k)],

with δ > 0, η > 1 constants.

Proof: See Appendix B.

We note some important mathematical features of the swaption pricing problem in the affine

interest rate model case. In this set up, Ch and Γ are null matrices, which simplifies the upper

bound formula. The coupon bond B(X(T )) seen as a function of the model factors X(T ) is

convex as it is a positive linear combination of convex functions, the ZCBs. In fact, the zero-

coupon price seen as a function of the state vector, i.e. P (T, Th) = eb
>
hX(T )+ah , is a convex

function because it is composed of convex monotone functions, the exponential, and a linear

function of X. Thus, the convexity of the sub-level {B(X(T )) ≤ 1} ensues from the previous

argument.

Choosing the tangent hyperplane approximation as the lower bound and resorting to the

hyperplane separation theorem, it follows immediately that the approximate exercise region is

included in the true region, as graphically illustrated in Figure 2 for a two-factor case,

G = {β>X + α ≥ 0} ⊆ {B(X(T )) ≥ 1},
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provided that α and β are defined as in formula (11).

[Figure 2 approximately here]

Hence, the separation theorem guarantees that ∆2 is zero, which allows us to compute only

the term ε1 in Proposition 3.1.

It is possible to show that for one-factor affine interest rate models, the upper bound coin-

cides with the Jamshidian (1989) formula.

4 Bounds for affine Gaussian specification

For the affine Gaussian model, the lower bound can be calculated analytically as follows:

LBβ(k; t) = P (t, T ) ω

(
n∑
h=1

wh e
ah+b>h µ+ 1

2
Vh+ 1

2
d2h N(ω (dh − d))−N(−ω d)

)
,

where ω = 1 for receiver swaptions and ω = −1 for payer swaptions. The upper bound formula

can be simplified to

ε1(k) =

∫ d

−∞
dz

1√
2π
e−

z2

2

n∑
h=1

whe
ah

(
eMh+

Vh
2 N

(
Mh − log Yh + Vh√

Vh

)
− YhN

(
Mh − log Yh√

Vh

))
,

where d = k−β>µ√
β>V β

, dh = b>h v, Vh = b>h (V − vv>)bh, v = V β√
β>V β

, Mh = b>hµ + zb>h v,

Yh = Kh
whe

ah and µ = ETt [X(T )] and V = V art(X(T )) are the mean and covariance matrix of

the variable X(T ) that is multivariate normal under the T -forward measure. N(x) represents

the standard Gaussian cumulative distribution function. Proofs of the simplified bounds are in

Appendix C and D.

5 Approximate pricing of swaption in a multiple-curve frame-

work

In this section, we extend the previously described lower and upper bounds to multiple-curve

models, which better reflect the real behaviour of the interest rate market after the 2007 crisis.

The (payer) swaption formula in the multi-curve framework becomes

C(t) = P (t, T ) ETt

 n∑
j=1

P (T, Tj) x (F x(T, Tj , x)−K)

+ (19)
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where x = Tj − Tj−1 is the tenor ∀j = 1, ..., n and T0 = T . F x(t, T, x) is the fair rate of a FRA

contract written on the Libor rate between T − x and T and tenor x (usually x = 1M, 3M, 6M

or 12M). P (t, T ) is the price at time t of a risk-free zero-coupon bond with maturity T .

We test the lower and upper bounds with reference to the Gaussian specification of the

multiple-curve model presented in Moreni and Pallavicini (2014). In this model, the FRA rate

and the risk-free ZCB price have affine forms. The Markovian-affine representation of the FRA

rate is

log

(
1 + x F x(t, T, x)

1 + x F x(0, T, x)

)
= G(t, T, x)> X(t) + a(t, T, x), (20)

where a(t, T, x) is a deterministic coefficient, G(t, T, x) is a deterministic d-dimensional vector

and X(t) is a vector of the Markovian process and it is multivariate normal. A similar Markovian

representation can be obtained for the ZCB price:

log

(
P (t, T )

P (0, t)

P (0, T )

)
= −G(t, T )> X(t) + a(t, T ), (21)

where a(t, T ) is a deterministic coefficient and G(t, T ) is a deterministic d-dimensional vector.

More model details are given in Appendix H.

5.1 Lower bound formula applied to a multi-curve weighted Gaussian model

Using the Markovian representation of the FRA rate and of the risk-free ZCBs in the swaption

pricing formula (19), we obtain:

C(t) = P (t, T ) ETt

 n∑
j=1

w1j e
(G1j)>X(T )+a1j − w2j e

(G2j)>X(T )+a2j

 I(A)

 ,
where

A is the exercise region and is in the form

A = {ω ∈ Ω :
n∑
j=1

w1j e
(G1j)

>X(T )+a1j − w2j e
(G2j)

>X(T )+a2j > 0},

w1j =
P (t,Tj)
P (t,T ) (1 + x F x(t, Tj , x)) and w2j =

P (t,Tj)
P (t,T ) (1 + xK),

G1j = G(T, Tj , x)−G(T, Tj) and G2j = −G(T, Tj),

a1j = a(T, Tj , x) + a(T, Tj) and a2j = a(T, Tj).

12



If we substitute the set A with any other event set G ∈ Ω, we obtain a lower bound of the

true price. In the affine class models, it is convenient to define the set G using a linear function

of the state variates,

G = {ω ∈ Ω : β>X(T ) ≥ k},

with β and α defined in formula (11). The lower bound is provided in the following proposition.

Proposition 5.1. The lower bound to the European swaption price, for the multiple-curve

weighted Gaussian model, is given by the following formula:

L̂B(t) = max
k∈R, β∈Rd

LBβ(k; t). (22)

For fixed parameters k and β, the lower bound is

LBβ(k; t) = P (t, T ) ω

n∑
j=1

(
w1j exp

(
(G1j)

>µ+ a1j +
1

2
V G1j +

1

2
(d1j)

2

)
N (ω (d1j − d))

− w2j exp

(
(G2j)

>µ+ a2j +
1

2
V G2j +

1

2
(d2j)

2

)
N (ω (d2j − d))

)
, (23)

where ω = −1 for receiver swaption and ω = 1 for payer swaption, d = k−β>µ√
β>V β

, dij = (Gij)
>v

for i = 1, 2 and j = 1, ..., d, v = V β√
β>V β

, V G
ij = (Gij)

>(V − v v>)Gij for i = 1, 2 and j = 1, ..., d

and µ = ETt [X(T )] and V = V art(X(T )) are the mean and covariance matrix of the variable

X(T ), which is multivariate normal under the T -forward measure.

Proof: See Appendix E.

5.2 Upper bound formula applied to a multi-curve weighted Gaussian model

In a multiple-curve framework, the swaption price can also be written as

C(t) = P (t, T ) ETt
[
(B1(X(T ))−B2(X(T )))+] (24)

where

B1(X(T )) =
n∑
j=1

P (T, Tj) (1 + x F x(T, Tj , x)) =
n∑
j=1

w1j e
(G1j)

>X(T )+a1j ,

B2(X(T )) = (1 + x K)
n∑
j=1

P (T, Tj) =
n∑
j=1

w2j e
(G2j)

>X(T )+a2j .

13



Hence, the (undiscounted) approximation error of the lower bound defined in Proposition 5.1 is

1

P (t, T )

(
C(t)− L̂B(t)

)
= ETt [(B1(X(T ))−B2(X(T )))+I(Gc)] + ETt [(B2(X(T ))−B1(X(T )))+I(G)]

= ∆1 + ∆2.

The previous equality holds for both receiver and payer swaptions. Applying the same reasoning

as in the single-curve case, we find that the upper bound is

UB(t) = L̂B(t) + P (t, T )(ε1 + ε2), (25)

where ε1 and ε2 are the upper bounds for ∆1 and ∆2 and their expressions are as follows:

ε1 =

n∑
j=1

ETt [P (T, Tj) (1 + x F x(T, Tj , x)−Kj)
+ I(Gc)]

=

n∑
j=1

ET
[(
w1j e

G>1jX(T )+a1j − w̃2j e
G>2jX(T )+a2j

)+
I(Gc)

]
, (26)

ε2 =

n∑
j=1

ETt [P (T, Tj) (Kj − 1− x F x(T, Tj , x))+ I(G)]

=
n∑
j=1

ET
[(
w̃2j e

G>2jX(T )+a2j − w1j e
G>1jX(T )+a1j

)+
I(G)

]
, (27)

where w̃2j =
P (t,Tj)
P (t,T ) Kj and

Kj = 1 + x F (T, Tj , x)|X(T )=X∗ , (28)

where X∗ is the point on the true exercise boundary (i.e. B1(X(T )) − B2(X(T ) = 0)) where

the density function of the model factors is largest.

Proposition 5.2. The upper bound to the European swaption price for the multiple-curve

weighted Gaussian model is given by the following formula:

UB(t) = L̂B(t) + P (t, T ) (ε1(−α) + ε2(−α)), (29)

14



where

ε1(k) =

∫ d

−∞
dz

1√
2π
e−

z2

2

n∑
j=1

w1j e
a1j+M1j+

1
2
V G1j N (d1j)− w̃2j e

a2,j+M2j+
1
2
V G2j N (d2j) ,

d1j =
log
(
w1j

w̃2j

)
+M1j + a1j −M2j − a2j + V G

1j − Covj√
V G

1j + V G
2j − 2Covj

,

d2j = d1j −
√
V G

1j + V G
2j − 2Covj ,

ε2(k) =

∫ +∞

d
dz

1√
2π
e−

z2

2

n∑
j=1

w̃2j e
a2j+M2j+

1
2
V G2j N (δ1j)− w1j e

a1j+M1j+
1
2
V G1j N (δ2j) ,

δ1j =
− log

(
w1j

w̃2j

)
−M1j − a1j +M2j + a2j + V G

2j − Covj√
V G

1j + V G
2j − 2Covj

,

δ2j = δ1j −
√
V G

1j + V G
2j − 2Covj ,

and L̂B(t) is given in Proposition 5.1, d = k−β>µ√
β>V β

, V G
ij = G>ij(V − vv>)Gij and Covj =

G>1j(V − vv>)G2j for i = 1, 2 and j = 1, ..., d, Mij = G>ijµ + zG>ijv for i = 1, 2 and j = 1, ..., d

v = V β√
β>V β

, and µ = ETt [X(T )] and V = V art(X(T )) are the mean and covariance matrix of

the variable X(T ), which is multivariate normal under the T -forward measure and N(x) is the

standard Gaussian cumulative distribution function. The upper bound formula holds for both

receiver and payer swaption.

Proof: See Appendix F.

6 Numerical results

For each model, we fix a set of parameters and we calculate a matrix of swaption prices with

different maturities, swap lengths and three different strikes, i.e. ATMF (at-the-money forward),

ITMF (0.85 × ATMF for affine models and ATMF - 0.75% for the quadratic model) and OTMF

(1.15× ATMF for affine models and ATMF + 0.75% for the quadratic model). This is a common

choice in the literature (see, for instance, Schrager and Pelsser (2006), Singleton and Umantsev

(2002) and Kim (2014)). The description and values of the parameters for each model are

reported, respectively, in Appendix G and I. The tested models are a three-factor affine Gaussian

model, a two-factor affine Cox, Ingersoll and Ross (CIR) model, a two-factor affine Gaussian

model with double exponential jumps, a two-factor Gaussian quadratic model and a two-factor

affine multiple-curve Gaussian model.

Monte Carlo is used as a benchmark for the computation of the true swaption price. The

97.5% mean-centred Monte Carlo confidence interval is used as a measure of the accuracy. For
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the affine three-factor Gaussian model, we add as a benchmark the lower bound proposed in

Nunes and Prazeres (2014), which is extremely accurate.

For the affine three-factor Gaussian model and the Gaussian multi-curve model, the lower

bounds are obtained via the closed formula described in sections 4 and 5.1. Kim’s prices are

calculated using the closed price formula for the T-forward probabilities (formula (3.9) and

(3.16), Kim (2014)). For the two-factor CIR model, the Gaussian model with jumps and the

Gaussian quadratic model, the integrals involved in the lower bound and in Kim’s method are

evaluated by a Gauss-Kronrod quadrature rule using Matlab’s built-in function quadgk.

The Matlab function quadgk is also used for the integral appearing in the upper bound

formula for the three-factor Gaussian model and for the Gaussian multi-curve model (see section

4 and 5.2). For the two-factor CIR model, the Gaussian model with jumps and the Gaussian

quadratic model, the upper bound formula requires the calculus of double integrals that are

evaluated using Matlab’s function quad2d, an iterative algorithm that divides the integration

region into quadrants and approximates the integral over each quadrant by a two-dimensional

Gauss quadrature rule.

Another important fact is that our lower bound formula is suitable for use as a control variate

to reduce the Monte Carlo simulation error. The approximated formula is easily implemented

in a Monte Carlo scheme and turns out to be very effective. In this way, the simulation error is

considerably reduced.

Numerical results obtained with parameters reported in Appendix I are shown in Tables

1-5. Computational time for each pricing method is also given in Table 7.

6.1 Test with random parameters

In this section, we test the robustness of the bounds’ approximation to parameter changes. We

use 100 randomly simulated parameters for the two-factor CIR model. The model parame-

ters are independent and uniformly distributed within a reasonable range, which is shown in

Appendix I.

For each set of simulated parameters, we calculate a matrix of swaption prices with different

maturities and swap lengths and three different strikes, i.e. ATM, ITMF (0.85 × ATMF) and

OTMF (1.15 × ATMF).

For each swaption, we calculate the root mean square deviation (RMSD) of the lower and

upper bounds with respect to the Monte Carlo estimation, which is used as the benchmark:

RMSD =
1√
N

√∑N
i=1(Bi −MCi)2

(MCavg)2
, MCavg =

∑N
i=1MCi
N

,
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where N is the number of random trials, Bi = LBi or Bi = UBi (lower or upper bound) and

MCi is the Monte Carlo estimation of the swaption price with the ith set of random parameters

and MCavg is the average of Monte Carlo prices over all random trials. Monte Carlo values are

estimated using 107 simulations. Numerical results of this test are shown in Table 6.

6.2 Comments on numerical results

Numerical results are presented across a wide class of affine models for the Gaussian quadratic

model and for a multiple-curve model. The tangent hyperplane lower bound and the approxima-

tion “A” of Kim (2014) produce the same prices because they are two different implementations

of the same approximation. However, the new algorithm, which requires the computation of a

single Fourier inversion, is faster across all models for which the characteristic function is known

in its closed form. In fact, in Table 7, our implementation of the lower bound is faster than

Kim’s method except for the Gaussian quadratic model for which the characteristic function

is available in a semi-analytical form (see Appendix G). The improvement in computational

performance is more evident for swaptions with a large number of cash flows, as illustrated in

Table 8. For the three factor Gaussian affine model, Nunes and Prazeres (2014) conditioning

approach is more efficient than our bounds, however our aim is to find approximations that are

applicable to a wider class of models and not only to Gaussian affine models. Comparing the

speed of different methods is not simple because each algorithm should be optimized. However,

our considerations about the efficiency of an algorithm are also justified by theoretical reasoning

and confirmed by our estimations of the computational time.

Our upper bound is applicable to all affine-quadratic models, both in single- and multiple-

curve frameworks, and it is particularly efficient for affine models. In the literature, upper

bounds are available only for Gaussian affine models. In particular, for the three-factor affine

Gaussian model, we compare our bounds with the ones proposed by Nunes and Prazeres (2014).

Lower bound proposed by Nunes and Prazeres (2014) is comparable to our lower bound for all

maturities and strikes. We find that our upper bound is less accurate for ATMF options but it

seems to be more accurate for OTMF options (see Table 1). We observe that for the given set

of parameters, price estimated using our bounds and the conditioning approach are very close.

On the other hand, with reference to computational time (see Table 7), Nunes and Prazeres

(2014) approach is more efficient than our bounds. However, our aim is to find approximations

that are applicable to a wider class of models and not only to Gaussian affine models.

The computation of the upper bound is slower than the lower bound calculation, but it is

still faster than Monte Carlo simulations for a comparable accuracy (see Table 7). In addition,
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the range between the lower and upper bound is always narrow so, in practice, the combined

use of the two bounds provides an accurate estimate of the true price.

For the multiple-curve model, we compare our bounds with an approximate method that

is widely used in the market, i.e. the freezing drift approximation (see Moreni and Pallavicini

(2014)) and we find that the lower and upper bounds perform better for swaptions with long

maturities (2Y and 5Y in Table 5) with comparable computational times. Moreover, the freezing

technique is a generic approximation, i.e. we cannot know a priori if the approximated price

underestimates or overestimates the true price.

In each table we compute the mean absolute percentage error (MAPE) of bounds with

respect to Monte Carlo prices, taken as a benchmark, for fixed maturity and strike.

The RMSD computation performed for the two-factor CIR model and reported in Table

6 is an important validation for the stability of the accuracy of the bounds to changes in the

parameter set. The RMSD of the lower bound for at-the-money and in-the-money options is

less than 0.1% of the Monte Carlo average price, which is a good result. The relative error is

larger for out-of-the-money options, in particular for the swaptions with a long swap length.

Indeed, the maximum error is around 0.3% of the Monte Carlo price. The RMSDs of the upper

bound are greater than the RMSDs of the lower bound, in particular for swaptions with longer

swap lengths. However, the maximum RMSD of the upper bound is about 0.8% of the Monte

Carlo price, which is also confirmation of the good performance of the upper bound.

Conclusions

In this paper, we propose a general lower bound formula of the swaption price based on an

approximation of the exercise region. We note that previous approximations, such as the Kim

(2014) and Singleton and Umantsev (2002) methods, represent a particular case of our general

formula and so they can also be interpreted as lower bounds. Moreover, we provide a new

algorithm to implement the lower bound that is found to be more efficient for interest rate

models in which the joint characteristic function of state variables is known in analytical form.

Further, this work provides a new upper bound to swaption prices that is applicable to all

affine-quadratic models and that is accurate and computable in a reasonable time. Therefore,

the lower bound approximation error is controlled. Finally, we extend lower and upper bounds

to multiple-curve models. Numerical results confirm our hypothesis about the performance of

the new algorithm in terms of computational times for the calculus of the lower bound, except

for quadratic models in which the characteristic function is not analytic. Moreover, numerical

tests show a very good accuracy of the new upper bound for different models across tenors,
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maturities and strikes.

7 Tables
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2-factor CIR model: RMSD calculation

RMSD - LB

ATM 1 2 5 ITM 1 2 5 OTM 1 2 5

1 0.05% 0.07% 0.08% 1 0.01% 0.02% 0.02% 1 0.2% 0.2% 0.2%

2 0.05% 0.07% 0.08% 2 0.01% 0.01% 0.01% 2 0.2% 0.2% 0.2%

5 0.05% 0.07% 0.09% 5 0.004% 0.01% 0.01% 5 0.2% 0.3% 0.3%

10 0.05% 0.07% 0.09% 10 0.004% 0.01% 0.01% 10 0.2% 0.3% 0.3%

RMSD - UB

ATM 1 2 5 ITM 1 2 5 OTM 1 2 5

1 0.05% 0.07% 0.08% 1 0.01% 0.02% 0.01% 1 0.2% 0.2% 0.2%

2 0.06% 0.09% 0.11% 2 0.01% 0.02% 0.02% 2 0.2% 0.3% 0.3%

5 0.14% 0.20% 0.28% 5 0.03% 0.05% 0.08% 5 0.3% 0.5% 0.6%

10 0.15% 0.22% 0.32% 10 0.04% 0.06% 0.09% 10 0.3% 0.5% 0.7%

Table 6: These tables report for each swaption the RMSD value of the bounds with respect to
the Monte Carlo value obtained by randomly sampling 100 parameter sets.

3 factor Gaussian model

Overall time (sec) MC LB (HP) UB LB (CA) UB (CA)

ATMF 32 × 102 0.084 0.140 0.024 0.024
ITMF 32 × 102 0.170 0.223 0.035 0.035
OTMF 32 × 102 0.169 0.223 0.037 0.037

2 factor CIR model

Overall time (sec) MC LB (HP) UB Kim

ATMF 23 × 102 0.146 17.054 0.391
ITMF 23 × 102 0.150 17.015 0.341
OTMF 23 × 102 0.152 17.018 0.395

2 factor Gaussian model with exponential jumps

Overall time (sec) MC LB (HP) UB Kim

ATMF 35 × 103 1.957 132.229 1.968
ITMF 35 × 103 0.868 129.218 0.977
OTMF 35 × 103 0.845 149.071 0.966

2 factor Gaussian quadratic model

Overall time (sec) MC LB (HP) UB Kim

ATMF 1.472 × 103 0.861 587.403 0.665
ITMF 1.472 × 103 1.124 635.807 0.717
OTMF 1.472 × 103 1.019 509.202 0.633

2 factor multiple-curve Gaussian model

Overall time (sec) MC LB (HP) UB Kim

ATMF 43.280 0.094 0.416 0.346
ITMF 43.3603 0.114 0.403 0.309
OTMF 42.040 0.116 0.409 0.315

Table 7: Computational times shown in the table are the overall time needed for calculating
the matrices of swaption prices reported in Tables 1-5.
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2-factor CIR model: comparison of the algorithms’ performance

Swap length (y) LB (HP) (sec) Kim (sec) LB (HP) (%) Kim (%)
1 0.024 0.022 - -
2 0.023 0.026 0% 20%
5 0.023 0.034 0% 55%
10 0.032 0.051 34% 132%
15 0.040 0.071 69% 225%
20 0.048 0.089 102% 305%

Table 8: For each swaption, we report in the first two columns the run time in seconds and in
the last two columns the percentage variation between the run times and the first row. The
maturity of the swaptions is two years and the frequency of payments is six months.
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A Proof Proposition 2.1

We consider the lower bound to the swaption price as in formula (4) for quadratic models:

LBβ,Γ(k; t) = P (t, T ) ETt

[(
n∑
h=1

wh e
X(T )>ChX(T )+b>hX(T )+ah − 1

)
I(G)

]

where the set G = {ω ∈ Ω : X(T )>Γ X(T ) + β>X(T ) ≥ k}.

We apply the extended Fourier transform (refer to Titchmarsh (1975) for a comprehensive

treatment and to Hubalek et al. (2006) for examples of financial applications) with respect to

the variable k to the T-forward expected value,

ψ(z) =

∫ +∞

−∞
ezkETt

[(
n∑
h=1

wh e
X(T )>ChX(T )+b>hX(T )+ah − 1

)
I(X(T )>Γ X(T ) + β>X(T ) ≥ k)

]
dk.

Assuming that we can apply Fubini’s Theorem, which is verified in concrete cases, we have

ψ(z) = ETt

[(
n∑
h=1

wh e
X(T )>ChX(T )+b>hX(T )+ah − 1

)
∫ +∞

−∞
ezkI(X(T )>Γ X(T ) + β>X(T ) ≥ k) dk

]
.

The function ψ(z) is defined for k → −∞ if Re(z) > 0 and

ψ(z) = ETt

[(
n∑
h=1

whe
X(T )>ChX(T )+b>hX(T )+ah − 1

)
ez(X(T )>Γ X(T )+β>X(T ))

]
1

z
.

Using the (quadratic) characteristic function of X, Φ, calculated under the T-forward measure,

the function ψ(z) can be written as

ψ(z) =

(
n∑
h=1

whe
ahΦ (bh + zβ, Ch + zΓ)− Φ (zβ, zΓ)

)
1

z
. (30)

Finally, the lower bound is the inverse transform of ψ(z) in the sense of the Chauchy principal

value integral,

LBβ,Γ(k; t) = P (t, T )
1

i2π
lim
ξ→∞

∫ δ+iξ

δ−iξ
e−kzψ(z)dz,

where δ is a positive constant. The function ψ(δ + iγ) is the Fourier transform of the real

function e−δkLBβ,Γ(k; t), then ψ(δ+ iγ) has an even real part and an odd imaginary part. This
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is useful to simplify the expression above to

LBβ,Γ(k; t) = P (t, T )
e−δk

π

∫ +∞

0
Re
(
e−iγkψ(δ + iγ)

)
dγ.

The proof for a payer swaption follows the same reasoning.

B Proof of Proposition 3.1

Here, we show the calculation of the quantity ε1, defined in equation (13). The computation of

the quantity ε2 follows the same reasoning. Hence, we have to calculate a sum of terms that

have the following form:

ETt [(whP (T, Th)−Kh)+ I(Gc)].

Substituting into the previous expression the definition of the zero-coupon bond price P (T, Th)

as in formula (5), the strike Kh as in formula (16) and the complement of the approximate

exercise region G as defined in section 2.1, we obtain the following formulation:

ETt [(whP (T, Th)−Kh)+ I(Gc)] = whe
ah f(k, kh),

where

f(k, kh) = ETt [(eX(T )>ChX(T )+b>hX(T ) − ekh)+ I(X(T )>Γ X(T ) + β>X(T ) < k)],

and kh = log(Kh)− log(wh)−ah. We apply the extended Fourier transform with respect to the

variable k to the function f(k, kh) and by Fubini’s theorem we obtain

∫ +∞

−∞
ezk f(k, kh) dk = −ETt

[
(eX(T )>ChX(T )+b>hX(T ) − ekh)+ ez (X(T )>Γ X(T )+β>X(T ))

z

]
.

The integral converges for k → +∞ if Re(z) < 0, then we apply a second extended Fourier

transform with respect to the variable kh,

−
∫ +∞

−∞
ey kh

1

z
ETt
[
(eX(T )>ChX(T )+b>

h X(T ) − ekh)+ ez (X(T )>Γ X(T )+β>X(T ))
]
dkh

= −1

z
ETt
[(∫ +∞

−∞
ey kh

(
eX(T )>ChX(T )+b>

h X(T ) − ekh
)

I(X(T )>ChX(T ) + b>hX(T ) > kh) dkh

)
ez (X(T )>Γ X(T )+β>X(T ))

]
.
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The integral converges for kh → −∞ if Re(y) > 0. Then the function ψ(z, y) is in the form

ψ(z, y) =

∫ +∞

−∞
dk

∫ +∞

−∞
dkh e

zkeykh f(k, kh)

= −Φ(zβ + (y + 1)bh, z Γ + (y + 1)Ch)

zy(y + 1)

and it is defined for Re(z) < 0 and Re(y) > 0.

Finally, f(k, kh) is the inverse transform of ψ(z, y) in the sense of a Cauchy principal value

integral,

f(k, kh) =
1

(i2π)2
lim
ξ→∞

lim
ς→∞

∫ δ+iξ

δ−iξ
dz e−zk

∫ η+iς

η−iς
dy e−ykhψ(z, y),

where δ < 0 and η > 0 are constants. Noting that ψ(δ + iγ, η + iω) is the double Fourier

transform of the function eδkeηkhf(k, kh), we obtain

f(k, kh) =
e−δke−ηkh

4π2
lim
ξ→∞

lim
ς→∞

∫ +ξ

−ξ
dγ e−iγk

∫ +ς

−ς
dω e−iωkhψ(δ + iγ, η + iω),

where δ < 0 and η > 0 are constants. The inner integral of the above formula is the Fourier

transform of a real function, and so we can use the same symmetry properties explained in

Appendix A and we obtain

f(k, kh) =
e−δke−ηkh

2π2
lim
ξ→∞

∫ +ξ

0
dγ Re

(
e−iγk lim

ς→∞

∫ +ς

−ς
dω e−iωkhψ(δ + iγ, η + iω)

)
.

C Proof of the analytical lower bound for Gaussian affine mod-

els

Since X(T ) ∼ N(µ, V ) in T-forward measure, then the approximate exercise region G becomes

G = {ω ∈ Ω : β>X(T ) > k} = {ω ∈ Ω : z > d},

where z is a standard normal random variable and d = k−β>µ√
β>V β

.

The lower bound expression can be written using the law of iterative expectation,

LBβ(k; t) = P (t, T ) ETt

[
ETt

[(
n∑
h=1

whe
bh
>X(T )+ah − 1

)
|z

]
I(z > d)

]
.

Conditionally to the random variable z, the variable X is distributed as a multivariate normal
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with mean and variance

ETt [X|z] = µ + z v and V ar(X|z) = V − vv>, with v =
V β√
β>V β

.

We can now compute the inner expectation,

LBβ(k; t) = P (t, T )

(
n∑
h=1

wh ETt
[
eah+b>h µ+zb>h v+ 1

2
VhI(z > d)

]
− ETt [I(z > d)]

)

= P (t, T )

(
n∑
h=1

wh e
ah+b>h µ+ 1

2
Vh+ 1

2
d2hN(dh − d)−N(−d)

)
.

where Vh = b>h (V − vv>)bh, dh = b>h v and N(x) is the cumulative distribution function of

standard normal variable. The proof for a payer swaption follows the same reasoning.

D Proof of the upper bound formula for Gaussian affine models

Since X ∼ N (µ, V ) in T-forward measure and using the law of iterative expectations, then

ETt [(whe
ah+b>hX(T ) −Kh)+I(β>X < k)]

= ETt [ETt [(whe
ah+b>hX(T ) −Kh)+|Z]I(Z < d)],

=

∫ d

−∞
dz

1√
2π
e−

z2

2 ETt [(whe
ah+b>hX(T ) −Kh)+|Z = z].

where Z ∼ N (0, 1) and d = k−β>µ√
β>V β

.

Since b>hX conditioned to the variable Z is a normal random variable with mean and

variance,

Mh = ETt [b>hX|Z = z] = b>hµ + zb>h v,

Vh = V art[b
>
hX|Z = z] = b>h (V − vv>)bh

v =
V β√
β>V β

,

then the conditioned expectation can be evaluated with a Black formula,

ETt [(whe
ah+b>hX(T ) −Kh)+|Z = z]

= whe
ah

(
eMh+

Vh
2 N

(
Mh − log Yh + Vh√

Vh

)
− YhN

(
Mh − log Yh√

Vh

))
,

where Yh = Kh
whe

ah and N(x) is the cumulative distribution function of a standard normal
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variable.

E Proof of Proposition 5.1

The proof is similar to the single-curve affine Gaussian case. As in that case, X(T ) ∼ N(µ, V )

in T-forward measure and the approximate exercise region G becomes

G = {ω ∈ Ω : β>X(T ) > k} = {ω ∈ Ω : z > d},

where z is a standard normal random variable and d = k−β>µ√
β>V β

.

The lower bound expression can be written using the law of iterative expectation,

LBβ(k; t) = P (t, T ) ETt

ETt
 n∑

j=1

w1je
G1j

>X(T )+a1j − w2je
G2j

>X(T )+a2j

 |z
 I(z > d)

 .
Conditionally to the random variable z, the variable X is distributed as a multivariate normal

with mean and variance

ETt [X|z] = µ + z v and V ar(X|z) = V − vv>, with v =
V β√
β>V β

.

We can now compute the inner expectation,

LBβ(k; t) = P (t, T )

 n∑
j=1

w1j ETt
[
ea1j+G>1jµ+zG>1jv+ 1

2
V G1j I(z > d)

]

−
n∑
j=1

w2jETt
[
ea2j+G>2jµ+zG>2jv+ 1

2
V G2j I(z > d)

]
=

n∑
j=1

w1j e
a1j+G>1jµ+ 1

2
V G1j+ 1

2
d21jN(d1j − d)− w2j e

a2j+G>2jµ+ 1
2
V G2j+ 1

2
d22jN(d2j − d).

where V G
ij = G>ij(V −vv>)Gij , dij = G>ijv and N(x) is the cumulative distribution function of

the standard normal variable. The proof for a receiver swaptions follows the same reasoning.

F Proof of Proposition 5.2

The proof is similar to the single-curve affine Gaussian case except that instead of the Black

formula, we apply Margrabe’s formula (Margrabe (1978)) for exchange options. Here, we

show the computation of the quantity ε1 defined in proposition (5.2). The evaluation of ε2
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follows the same steps. Since X ∼ N (µ, V ) in T-forward measure and using the law of iterative

expectations, then

ETt [(w1j e
a1j+G

>
1jX(T ) − w̃2j e

a2j+G
>
2jX(T ))+I(β>X < k)]

= ETt [ETt [(w1j e
a1j+G

>
1jX(T ) − w̃2j e

a2j+G
>
2jX(T ))+|Z]I(Z < d)],

=

∫ d

−∞
dz

1√
2π
e−

z2

2 ETt [(w1j e
a1j+G

>
1jX(T ) − w̃2j e

a2j+G
>
2jX(T ))+|Z = z].

where Z ∼ N (0, 1) and d = k−β>µ√
β>V β

.

G>ijX conditioned to the variable Z is a normal random variable with mean and variance

Mij = ETt [G>ijX|Z = z] = G>ijµ + zG>ijv,

V G
ij = V art[G

>
ijX|Z = z] = G>ij(V − vv>)Gij

v =
V β√
β>V β

.

Hence, considering for each fixed j the following two underlying variables

S1j = w1j e
a1j+G

>
1jX(T ),

S2j = w̃2j e
a2j+G

>
2jX(T ),

the conditional expectation can be evaluated with the Margrabe formula

ETt [(w1j e
a1j+G

>
1jX(T ) − w̃2j e

a2j+G
>
2jX(T ))+|Z = z]

= w1j e
a1j+M1j+

1
2
V G1j N (d1j)− w̃2j e

a2j+M2j+
1
2
V G2j N (d2j) ,

d1j =
log
(
w1j

w̃2j

)
+M1j + a1j −M2j − a2j + V G

1j − Covj√
V G

1j + V G
2j − 2Covj

,

d2j = d1j −
√
V G

1j + V G
2j − 2Covj ,

where Covj = G>1j(V − vv>)G2j for i = 1, 2 and j = 1, ..., d and N(x) is the standard Gaussian

cumulative distribution function.

G Models description

This section presents the considered affine and quadratic models.
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G.1 Affine Gaussian models

Affine Gaussian models assign the following stochastic differential equation (SDE) to the state

variable X,

dX(t) = K(θ −X(t)) dt+ Σ dW(t) and X(0) = x0

where Wt is a standard d-dimensional Brownian motion, K is a d× d diagonal matrix and Σ is

a d×d triangular matrix. The short rate is obtained as a linear combination of the state vector

X; it is always possible to rescale the components Xi(t) and assume that r(t) = φ+
∑d

i=1Xi(t),

φ ∈ R without loss of generality.

The ZCB formula (5) and T-forward characteristic function (6) of X can be obtained in

closed form using the moment-generating function of a multivariate normal variable or solving

the ODE system in Duffie, Pan and Singleton (2000), and the solution is given, for example,

in Collin-Dufresne and Goldstein (2002).

G.2 Multi-factor CIR model

In this model, the risk-neutral dynamics of the state variates are

dXi(t) = ai( θi −Xi(t))dt+ σi
√
Xi(t)dW

i(t) and X(0) = x0,

where i = 1, ..., d, W i(t) are independent standard Brownian motions, and ai, θi and σi are

positive constants. The short rate is obtained as r(t) = φ+
∑d

i=1Xi(t), where φ ∈ R.

In multi-factor CIR models, the bond price (5) and the characteristic function (6) have

closed-form expressions, which are given, for example, in Collin-Dufresne and Goldstein (2002).

G.3 Gaussian model with double exponential jumps

In this model, the risk-neutral dynamics of the state variates are

dX(t) = K(θ −X(t)) dt+ Σ dW(t) + dZ+(t)− dZ−(t) and X(0) = x0,

where Wt is a standard d-dimensional Brownian motion, K is a d× d diagonal matrix, Σ is a

d × d triangular matrix and Z± are pure jump processes whose jumps have fixed probability

distribution ν on Rd and constant intensity µ±. The short rate is obtained as a linear combi-

nation of the state vector X. In particular, Z± are compounded Poisson processes with jump
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sizes that are exponentially distributed, i.e.

Z±l =

N±(t)∑
j=1

Y ±j,l

where l = 1, ..., d is the factor index, N±(t) are Poisson processes with intensity µ±

d and Y ±j,l ,

for a fixed l, are independent identically distributed exponential random variables of mean

parameters m±l .

Since µ± do not depend on X, we know that

Φ(λ) = ETt
[
eλ
>X(T )

]
= ΦD(λ) eÃ

J (T−t,λ)−AJ (T−t) (31)

where ΦD(λ) is the T-forward characteristic function of the affine Gaussian model and the

function ÃJ(τ,λ) is available in closed form (see Duffie, Pan and Singleton (2000) for further

details).

G.4 Gaussian quadratic model

In this model, the risk-neutral dynamics of the state variates are

dX(t) = K(θ −X(t)) dt+ Σ dWt andX(0) = x0,

where Wt is a standard d-dimensional Brownian motion, θ is a d-dimensional constant vector,

K and Σ are d× d matrix. The short rate is a quadratic function of the state variates, r(t) =

ar + b>r X(t) + X(t)>CrX(t), ar ∈ R, br ∈ Rd and Cr is a d× d symmetric matrix.

We solve the system of ordinary differential equation for the functions Ã(τ,λ,Λ), B̃(τ,λ,Λ),

C̃(τ,λ,Λ) in formula (6), using the method proposed in Cheng and Scaillet (2007). The closed-

form evaluation of these functions proposed in Cheng and Scaillet (2007) requires the calculus

of a matrix exponentiation and a numerical integration. However, numerical tests show that

this method is much faster than numerically solving the ODE system using the Runge-Kutta

or Dormand-Prince schemes.

H Multiple-curve model

We test the lower and upper bounds to the multiple-curve weighted Gaussian model presented

in Moreni and Pallavicini (2014). In this model, the zero-coupon bond price process has the
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following dynamic:

P (t, T ) =
P (0, T )

P (0, t)
e
∫ t
0 (Σ(s,t)−Σ(s,T ))> dW (s)+

∫ t
0 (A(s,t)−A(s,T )) ds, (32)

where

Σ(t, T ) =
∫ T
t σ(t, u) du is a d-dimensional vector volatility function,

W (t) is a d-dimensional standard Brownian motion,

A(t, T ) = 1
2Σ(t, T )>Σ(t, T ).

Moreni and Pallavicini (2014) define the risk-free forward rate F 0, which can be identified in

the market using the overnight rate. It is built as the simple compounded forward rate in a

classical single-curve framework. The risk-free forward rate at time t for the interval [T − x, T ]

is

F 0(t, T, x) =
1

x

(
P (t, T − x)

P (t, T )
− 1

)
. (33)

Substituting equation (32) into (33), the following dynamic under the risk-neutral measure is

obtained:

F 0(t, T, x) =
1

x

[
(1 + x F 0(0, T, x))e

∫ t
0 Σ0(s,T,x)> dW (s)+

∫ t
0 A

0(s,T,x) ds − 1
]
, (34)

where

Σ0(s, T, x) = Σ(s, T )− Σ(s, T − x) =
∫ T
T−x σ(s, u) du,

A0(s, T, x) = A(s, T )−A(s, T − x) = 1
2Σ(s, T )> Σ(s, T )− 1

2Σ(s, T − x)> Σ(s, T − x).

The Libor FRA rate F x(t, T, x) is the fair rate of a FRA contract written on the Libor rate

with tenor x (usually x = 1M, 3M, 6M or 12M). It is defined as

F x(t, T, x) = ETt [L(T − x, T )] , (35)

where

L(T − x, T ) is the spot Libor rate, fixed at time T − x for the time interval [T − x, T ],

ETt [ ] denotes the expectation under T -forward measure, PT .

To model the FRA rate, these constraints have to be respected:
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(i) F x(t, T, x) has to be a martingale under the T -forward measure,

(ii) limx→0 F
x(t, T, x) = limx→0 F

0(t, T, x) and F x(t, T, x) ∼ F 0(t, T, x) if x ∼ 0.

Hence, under the risk-neutral P measure, the FRA rate is in the form

F x(t, T, x) =
1

x

[
(1 + x F x(0, T, x))e

∫ t
0

Σx(s,T,x)> dW (s)+
∫ t
0
Ax(s,T,x) ds − 1

]
, (36)

where

- Σx(s, T, x) =
∫ T
T−x σ(s, u;T, x) du is a d-dimensional volatility function,

- in order to satisfy condition (ii) σ(s, T ;T, 0) = σ(s, T ),

- to satisfy condition (i)

Ax(s, T, x) = −1

2
Σx(s, T, x)> Σx(s, T, x) + Σx(s, T, x)> Σ(s, T ). (37)

H.1 Volatility specification

The weighted Gaussian specification of the multiple-curve model assumes a deterministic volatil-

ity in the form

σ(t, u;T, x) = h(t) q(u;T, x) g(t, u),

g(t, u) = exp (−λ(u− t)) ,

h(t) = ε(t) h R,

where λ is a deterministic array function, h is a diagonal matrix, and R is an upper triangular

matrix such that ρ = R>R is a correlation matrix. The model allows for a time-varying common

volatility shape ε(t) of the form

ε(t) = 1 + (β0 − 1 + β1 t)e
β2 t,

where β0, β1 and β2 are three positive constants. Furthermore, the matrix q is given by

qi,j(u;T, x) = e−ηi x I(i = j) for i, j = 1, ..., d

where η is a deterministic constant vector.
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H.2 Markovian specification for the weighted Gaussian model

By plugging the expression for the volatility into formula (36), it is possible to work out the

expression leading to the following Markovian representation of the FRA rate:

log

(
1 + x F x(t, T, x)

1 + x F x(0, T, x)

)
= G(t, T, x)> X(t) + a(t, T, x), (38)

where a(t, T, x) is a deterministic coefficient and it has the following form:

a(t, T, x) = G(t, T, x)> Y (t)

(
G(t, T )− 1

2
G(t, T, x)

)
(Y (t))ik =

∫ t

0
gi(s, t)(h

>(s) h(s))ikgk(s, t)ds i, k = 1, ..., d,

G(t, T, x) is a deterministic vector with components

Gi(t, T, x) =

∫ T

T−x
qii(u;T, x) gi(t, u) du,

G(t, T ) is a deterministic vector with components

Gi(t, T ) =

∫ T

t
gi(t, u) du,

and X(t) is a vector Markovian process with components, under the risk-neutral measure, in

the form

Xi(t) =

d∑
j=1

∫ t

0

gi(s, t)

(
h>i,j(s)dWj(s) + (h>(s) h(s))i,j

(∫ t

s

gi(s, y)dy

)
ds

)
.

A similar Markovian representation can be obtained for the ZCB price,

log

(
P (t, T )

P (0, t)

P (0, T )

)
= −G(t, T )> X(t) + a(t, T ), (39)

where a(t, T ) is a deterministic coefficient and it has the following form:

a(t, T ) = −1

2
G(t, T )>Y (t)G(t, T ).
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I Parameters values

I.1 Three-factors Gaussian model and Cox–Ingersoll–Ross model

We verify the accuracy of our bounds using models and parameter values that have already

been examined in the literature3

• Three-factor Gaussian model: K =


1.0 0 0

0 0.2 0

0 0 0.5

, θ = [0, 0, 0]>, σ = [0.01, 0.005, 0.002]>,

ρ =


1 −0.2 −0.1

−0.2 1 0.3

−0.1 0.3 1

, Σ = diag(σ) chol(ρ)4, x0 = [0.01, 0.005, −0.02]> and φ =

0.06;

• Two-factor Cox-Ingersoll–Ross model: a = [0.5080, −0.0010]>, θ = [0.4005, −0.7740]>,

σ = [0.023, 0.019]>, x0 = [0.374, 0.258]> and φ = -0.58.

Numerical results for this model are shown in Tables 1 and 2.

Moreover, we specify the interval of parameters of the two-factor CIR model from which

we extract the 100 parameters sets for the RMSD calculation: x0 ∈ [0.001, 0.5] × [0.001, 0.5],

φ ∈ [0.001, 1], a ∈ [0.001, 1] × [0.001, 1], θ ∈ [0.001, 1] × [0.001, 1], σ ∈ [0.001,
√

2a(1)θ(1)] ×

[0.001,
√

2a(2)θ(2)].

I.2 Two-factor Gaussian model with double exponential jumps

We test the affine Gaussian model with exponentially distributed jumps using parameter values

obtained by minimization of the least square distance between the model and the market dis-

count curve implied by bootstrapping the Euribor six-month swap curve up to 30 years. The

calibration is performed on January 4th, 2015, to obtain the parameters set reported below.

Parameters:

• Gaussian parameters: K =

0.050926 0

0 1.3687

, θ = [0, 0]>, σ = [0.0048887, 0.24025]>,

ρ =

 1 −0.1482

−0.1482 1

, Σ = diag(σ) chol(ρ),

3Schrager and Pelsser (2006) and Duffie and Singleton (1997) for the two-factor CIR model.

4diag(σ) means the diagonalization of the vector σ and chol(ρ) means the Cholesky decomposition of the
correlation matrix ρ, where σ and ρ are the volatility vector and the correlation matrix, respectively, of the
original paper.
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x0 = [0.00035256, 0.00035497]> and φ = 4.332 ×10−5;

• Jump parameters: µ+ = 0.4372, m+ = [0.027372, 0.045667]>,

µ− = 0.1101, m− = [0.027043, 0.012339]>.

Figure 3 shows fitting of the calibration. Numerical results for this model are shown in Table 3.

[Figure 3 approximately here]

I.3 Two-factor quadratic Gaussian model

Beyond the affine framework, we test the two-factor quadratic Gaussian model using the fol-

lowing parameter values as proposed by Kim (2007):

K =

−0.0541 0.0361

−1.2113 0.4376

,

θ = [0.1932, 0.1421]>, Σ =

0.0145 0

0 0.0236

, x0 = [0.1690, −0.0501]>,

ar = 0.0444, br = [0, 0]> and Cr =

 1 0.4412

0.4412 1

; Numerical results for this model are

shown in Table 4.

I.4 Multiple-curve two-factor Gaussian model

We verify the accuracy of our bounds using the following fixed parameters:

λ = [0.0073, 4.7344], η = [0.1581, 0.8894], h = [0.0059, 0.0411], ρ12 = −0.8577, β0 = 1.3160,

β1 = 1.3327 and β2 = 0.5900. Numerical results for this model are shown in Table 5.
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