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Abstract

In this paper we introduce a new fast and accurate numerical method for
pricing exotic derivatives when discrete monitoring occurs, and the under-
lying evolves according to a Markov one-dimensional stochastic processes.
The approach exploits the structure of the matrix arising from the numerical
quadrature of the pricing backward formulas to devise a convenient factor-
ization that helps greatly in the speed-up of the recursion. The algorithm
is general and is examined in detail with reference to the CEV (Constant
Elasticity of Variance) process for pricing different exotic derivatives, such as
Asian, barrier, Bermudan, lookback and step options for which up to date no
efficient procedures are available. Extensive numerical experiments confirm
the theoretical results. The MATLAB code used to perform the computation
is available online at http://www1.mate.polimi.it/~marazzina/BP.htm.
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1. Introduction

Over the years exotic options, such as Asian, barrier, and lookback con-
tracts, have become more and more popular in equity markets and raised
the attention in the academic research. Most of the articles in this litera-
ture price these contracts assuming a continuous monitoring, i.e., the payoff
is triggered by events occurring continuously before expiry. Under this as-
sumption, the option can often be priced in closed form. However, many real
exotic contracts specify discrete monitoring instants, such as daily or weekly,
see for example [4] for a detailed description of the real market functioning
of foreign exchange discrete barrier options. On the other hand, analytical
formulae are available only when the underlying evolves according to a ge-
ometric Brownian motion (GBM) process and barrier and lookback options
are considered, see [21], whilst other path-dependent options, such as Asian,
do not admit closed form pricing formula. In addition, as at first noticed
in [10], there can be substantial differences between discrete and continuous
monitoring prices, even under very frequent monitoring. In fact, given the
complexity of financial models and option contracts used in practice, we need
a numerical method able to calibrate plain vanilla options, and at the same
time price and hedge in a fast and accurate way exotic derivatives, such as the
ones considered in this paper. As discussed in [6], errors in computing sensi-
tivities replacing the discrete feature with the continuous one (or a different
discrete one) can cause large damages in the dynamic hedging strategy. As
an example, in Figure 1 we show how the Deltas of exotic contracts (barrier,
Bermudan, Asian and lookback) vary according to different discrete monitor-
ing features: with the exception of the Asian call, where the Deltas are very
similar, for all the other contracts different monitoring features result in sig-
nificant differences in Deltas, and thus in very different replicating portfolios.
This problem is illustrated in detail in [12]: the author considers a market
maker who is short a reverse knock-out option with a short time to maturity
and the underlying spot price is around the barrier level and between two
fixings dates, it is not possible to take the unequivocal decision whether to
completely unwind the Delta-hedge. This uncertainty generates the so-called
slippage cost that can be quite significant, and motivates the search for a fast
and accurate algorithm for pricing the above mentioned contracts.
The discrete monitoring feature here considered is also relevant in real op-
tion application, for which the management decision making to continue or
to abandon the project is determined on the basis of accounting reports pub-
lished periodically. An interesting application using additive processes is
given by [1].

The discretely monitoring pricing procedure for exotic options is based on
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Figure 1: Deltas of different exotic contracts. The maturity of all the contracts is T = 1
year, and the strike price is 105. For the down-and-out option, the barrier is equal to 90.
The underlying asset is described according to a square-root process of parameter σ = 2.5,
and the risk-free interest rate is equal to 0.1.

the standard backward recursion: at each monitoring date the option price
is updated by taking the expectation of the derivative price at the previous
date and checking if the underlying satisfies the monitoring condition. For
example, in a down-and-out barrier option we set to zero the option value if
the corresponding underlying price falls below the barrier. A possible numer-
ical implementation consists of computing the nested (iterated) expectation
via a recursive numerical quadrature (integration), as shown for example in
[2, 20]. This approach allows us to move directly from one date to the follow-
ing one without any intermediate time discretization. In contrast lattice and
finite difference or element methods are affected by errors due to the time
discretization between monitoring dates. A considerable speed-up in the re-
cursion can be obtained when the underlying asset evolves according to an
exponential Lévy model. In this case the iterated expectation is a convolu-
tion between the transition density and the contract price at the previous
monitoring date. The convolution can be computed efficiently via Fourier
transform and exploiting the Fast Fourier Transform (FFT) algorithm: at
each monitoring date we apply a Fourier transform-convolution-Fourier in-
version, see for example [18, 20, 27] and references therein. In this case,
the computational cost is linear in the number of monitoring dates and of
order m log(m) with respect to the number of discretization points m of the
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quadrature scheme. However the convolution structure of the transition den-
sity is due to the independent and identically distributed (i.i.d.) assumption
on log-price increments. Unfortunately, if this assumption does not hold, the
numerical integration becomes computational intensive with a cost propor-
tional to m2.

Therefore the main contribution of the present paper is to devise an ef-
ficient algorithm to price discretely monitored options previously described
exploiting the structure of the probability transition density of the underlying
asset and of its sampling matrix when log-price increments are not i.i.d. and
the FFT algorithm cannot be used. More precisely, we introduce the concept
of cluster of eigenvalues of a sequence of matrices arising from the numerical
quadrature of the backward recursion as we increase the number of nodes m.
We formally prove (Theorem 3) that the number of significant eigenvalues
(i.e., larger than a fixed tolerance ǫ) is approaching a constant rǫ independent
of m, rǫ << m, as we take larger values of m. This result can be exploited to
factorize the iteration matrix, giving a computational cost of O(kǫm) opera-
tions, kǫ ≈ rǫ, for the matrix-vector multiplication, instead of the standard
O(m2). Given that the cost of the factorization is nearly independent on the
number of monitoring dates, the advantage of our approach will be the great-
est, greater the number of monitoring dates. The algorithm is general in the
sense that it can be applied to stochastic processes for which the transition
density is known in closed form. However, to make concrete our analysis,
we examine it in detail with reference to the Constant Elasticity of Variance
(CEV) model, introduced by [15, 16]. This dynamics is interesting allowing
for very different transition densities and implied volatility shapes. Very few
option pricing models yield fully analytical results, and most require numer-
ical evaluations. The CEV model is not an exception. Numerical methods
for pricing derivatives under the CEV process are presented, for example, in
[7, 8, 14, 31]. All the mentioned articles refer to the continuous monitoring
case and do not admit a simple implementation for exotic derivatives, whilst
our approach can easily deal with a variety of path-dependent options.

Our algorithm is suitable to fast and accurate computation of prices and
sensitivities of discretely monitored path-dependent options and therefore
makes a real novel contribution for pricing real life contracts, see [4], and risk-
management decision making, [12]. For this reason our research is relevant
to the methodology of operational research and to the practice of decision
making. From the methodological point of view, we would like also to stress
that the proposed factorization has potential and immediate applications
to the study of properties of discrete time Markov Chains as well, a very
important topic in operational research for modeling queuing sequences and
many other practical systems, see [29].
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To confirm the efficiency of the proposed methodology, theoretical results
are proved in appendix, and extensive numerical experiments are conducted
to compare the accuracy and the computational cost of our algorithm with
respect to a standard backward recursive quadrature and to Monte Carlo
simulation. In particular, numerical experiments confirm that the greatest
benefits are achieved for a large number of monitoring dates.

The structure of the paper is as follows. First of all, Section 2 intro-
duces the general setup to price exotic derivatives with the discrete moni-
toring feature. Section 3 deals with the quadrature approach to solve the
recursive pricing formulas, and we introduce the factorization idea, based on
the structure of the pricing matrix. Finally, in Section 4 we validate the
pricing procedure with numerical results assuming a CEV dynamics for the
underlying. Accuracy and computational cost of our pricing algorithm are
compared with the above mentioned benchmarks, i.e., the classical quadra-
ture approach and Monte Carlo simulation. Theoretical results supporting
the proposed methodology are provided in appendix.

2. The Option Pricing Problem

Let us consider a derivative contract with a payoff φ (·) at maturity
T = N∆, where N is the number of ∆-equally spaced monitoring dates, and
let S be the underlying asset price. The standard backward procedure com-
putes the derivative price V (S, n) at time n∆ through the following recursion
(eventually with a modification to deal with the early exercise feature):

V (S, n)=e−r∆

∫

Ω

p (S, ξ; ∆)V (ξ, n+ 1) dξ, n = N − 1, · · · , 0, (1)

where r is the risk-free rate, and p (S, ξ; ∆) is the transition density from S
at time t to ξ at time t+∆. Ω refers to the integration domain and can vary
depending on the trigger event. The above recursion starts with the payoff
condition at maturity V (S,N) = φ(S). We are interested in computing
V (S0, 0), S0 being the current spot price.

In the following subsections, we show how the above framework fits dif-
ferent exotic contracts.

2.1. Barrier Options

If we deal with barrier options, the pricing recursion (1) starts from the
payoff function φ(S) := (ϕ(S − E))+, where E is the strike price and ϕ is a
binary variables taking value 1 for calls, and -1 for puts. If we denote with
L (U) the lower (upper) barrier, the domain Ω is (L,+∞) for down-and-out,
(L,U) for knock-and-out, and (0, U) for up-and-out barrier options.
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For numerical purposes, the integration interval in (1) is truncated to (L,U)
- for down-and-out options - or (L, U) - for up-and-out options - with L < S0

(U > S0). The truncation is chosen such that the probability of moving from
S0 to L (U) is less than a preassigned tolerance.

2.2. Bermudan Options

A Bermudan option gives the holder the right to early exercise at each
monitoring date. This option is worth more than the corresponding European
version, but less than the American counterparty, for which the exercise
occurs continuously. To take into account the early exercise possibility we
modify (1) into:

V (S, n)= max

{
e−r∆

∫

Ω

p (S, ξ; ∆)V (ξ, n+ 1) dξ, φ(S)

}
, n = N − 1, · · · , 0,

(2)
with Ω = (0,+∞) for standard Bermudan options. If we have Bermudan
contracts with a barrier trigger, then Ω = (L,+∞), Ω = (0, U) or Ω = (L,U).
Payoff function and domain truncation are as in Section 2.1.

2.3. Lookback Options

The maturity settlement of lookback options is based on the minimum or
the maximum value of the underlying asset as registered during the lifetime
of the option. At maturity, the holder can “look-back” and select the most
favorable figure of the underlying as occurring at the monitoring dates. If we
let S(n∆) to be the asset price at the n-th monitoring date, we can define
the discretely observed minimum price as

Jn := min{S(0), · · · , S(n∆)}.

The payoff function of a fixed-strike lookback on the minimum is given by
(E − JN)

+ . The lookback option price at time n∆ depends on the underlying
asset price S, and on the up-to-date minimum Jn = J and we denote it by
V (S, J, n). Clearly it must be J ≤ S. Similar considerations hold for payoffs
written on the maximum.
Respect to the GBM dynamics, where a change of numeraire argument re-
duces the number of state variables, under a more general process specifica-
tion we must keep track of both state variables, underlying price and running
minimum. Given that Jn+1 = min{Jn, S((n+1)∆)}, the backward recursion
becomes V (S, J,N) = (ϕ (J − E))+ and for n = N − 1, · · · , 0

V (S, J, n) = e−r∆

∫ +∞

0

p(S, ξ; ∆)V (ξ,min{J, ξ}, n+ 1)dξ, (3)
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S being greater or equal to J . Here min{J, ξ} is the minimum value of the
underlying asset at the (n + 1)-th monitoring date given that Jn = J and
S((n+ 1)∆) = ξ. The initial option price is then given by V (S0, S0, 0).

2.4. Asian Options

Asian options are a very popular type of exotic derivative. Such as for
lookback options, their pricing requires the introduction of a new state vari-
able, i.e., the (arithmetic) average up to time n∆

An =
1

n+ 1

n∑

i=0

S(n∆).

The arithmetic average follows the updating rule

An+1 =
n+ 1

n+ 2
An +

1

n+ 2
S((n+ 1)∆),

so that the price of the arithmetic fixed-strike Asian option satisfies the
following backward recursion:

V (S,A, n) = e−r∆

∫ +∞

0

p(S, ξ; ∆)V

(
ξ,

n+ 1

n+ 2
A+

1

n+ 2
ξ, n+ 1

)
dξ, (4)

for n = N − 1, · · · , 0, with V (S,A,N) = (ϕ(A− E))+.

2.5. Step Options

Step options are similar to barrier options, but the knock-and-out feature
operates only gradually. To this aim we define the occupation time In of the
subset I, I ⊂ R

+,

In =
n∑

i=1

1{S(i∆)∈I},

where 1{S(i∆)∈I} is the indicator function, i.e., it is equal to 1 if S(i∆) ∈ I,
0 otherwise. Notice that In measures the time spent by the underlying asset
in the set I up to time n∆. In takes values in {0, 1, 2, · · · , n} and satisfies
the updating rule In+1 = In + 1{S((n+1)∆)∈I}.

Given S(N∆) = S and IN = I, the payoff of a step option with principal
amortization below the barrier is

V (S, I,N) =
(
1−

ρ

N
I
)+

(ϕ(S − E))+,

where ρ is the knock-out killing rate. The introduction of the knock-out range
has the advantage of regularize the barrier option by making the price and
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the delta continuous at the barrier, see for example [26]. The price recursion
for step options reads as: for n = N − 1, · · · , 0

V (S, I, n) = e−r∆

∫ +∞

0

p(S, ξ; ∆)V
(
ξ, I + 1{ξ∈I}, n+ 1

)
dξ.

We also refer to [11] for further details.

3. The Quadrature Approach and the “Breaking into Pieces” Al-

gorithm

As shown in the previous section, the general pricing framework requires
the numerical computation of the following recursive integral equation

W (x, n) =

∫ b

a

H(x, y; ∆)W (y, n+ 1)dy, ∀ x ∈ (a, b), (5)

for n = N − 1, · · · , 0, with W (x,N) assigned. This recursion holds for Eu-
ropean and barrier options. Bermudan options also require an early exercise
clause.

If we have more than one state variable (such as for lookback, Asian and
step derivatives), the function W depends on the time index n and on two
state variables, so that we write W (x, ·, n). The additional state variable is
the minimum value J if lookback options are considered, the average value
A for Asian contracts and the occupation time I for step options.

If we apply a quadrature formula to (5), with nodes si and weights wi,
i = 0, · · · ,m− 1, we obtain

W (si, n) =
m−1∑

j=0

wjH(si, sj; ∆)W (sj, n+ 1). (6)

If we define the matrix Hm as Hm = [H(si, sj ,∆)]m−1
i,j=0, then (6) can be

written as

Wn = HmDmWn+1, n = N − 1, · · · , 0, (7)

where Wn = [W (si, n)]
m−1
i=0 , and Dm = diag(w0, . . . , wm−1). The matrix Hm

is called the sampling matrix of the function H, while HmDm is the iteration
matrix of the backward procedure (in the following we omit the subscripts
to lighten the notation). Due to additional contractual features, such as
early exercise, lookback or time averages, the recursion in (7) needs addi-
tional changes. In particular, the iteration matrix is the same for European,
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Bermudan, Asian, lookback and step options. The knock-out trigger event
in barrier options generates a different structure of the domain Ω and thus
of the iteration matrix. This is discussed in Appendix A.

In the recursion (7) the size of the iteration matrix equals the number of
discretization points (nodes). It is well-known that increasing the number
of nodes improves the accuracy of the solution. More precisely, the speed
of convergence of the quadrature error to zero can be determined by using
results on the speed of convergence of the integration rule when it is applied
to the integral

∫
Ω
H(·, ξ; ∆)dξ, as discussed in [3, Chapter 4]. In this setting

the backward recursion (7) has a cost proportional to N m2 operations.
Our aim is to reduce this cost substantially by exploiting the spectral

properties of the iteration matrix HD, analyzed in details in Appendix B,
as the matrix size m grows. In fact, in the present context, the iteration ma-
trix has two interesting properties: 1) its eigenvalues are clustered at zero,
i.e., only a small number of non negligible eigenvalues can be retained, and
2) it is close, within a prefixed tolerance, to a banded matrix. Given these
properties, the main idea is at first to replace the iteration matrix by its fac-
torization PJQH , where P and Q are unitary matrices, QH is the hermitian
of matrix Q, and J is a bidiagonal matrix.1 The factorization gives a relevant
computational advantage in performing the matrix-vector multiplications re-
quired at each step of the backward procedure. The factorization, performed
via the bidiagonalization algorithm of Golub and Reinsch [22], is very fast
given the clustering property of the eigenvalues of the iteration matrix. In
fact, as proved in Appendix B.2, the number rǫ of eigenvalues greater than
a fixed tolerance ǫ is small with respect to the size m of the given matrix
(usually, in applications, we use matrices of size at most 4000 × 4000). To
grasp the idea, if we consider an Asian option with 252 monitoring dates,
and we let m to grow from 1000 to 4000, rǫ remains constant at 412 (this
will be throughly discussed in the numerical section part).

Secondly, due to the fact that the matrix HD is obtained by the dis-
cretization of a transition probability density, it turns out to be ‘nearly’
banded: the significant entries having values larger than a prefixed toler-
ance are confined to a diagonal band. The banded behavior is illustrated by
the blue part of the iteration matrix in Figure 2. Therefore we can exploit
the banded structure by “breaking into pieces” the matrix HD as shown
in the same figure. In practice, we factorize separately each piece via the
bidiagonalization algorithm. This is possible because each sub piece of the

1For the sake of completeness, we recall that the hermitian matrix of a matrix Q is its
transpose conjugate, and Q is unitary if and only if QQH is the identity matrix.
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Figure 2: “Breaking into pieces” a banded matrix. The black parts of the vectors overlap
in the final sum. btop = max{bctop, brtop} is the bandwidth size.

sampling matrix HD inherits its cluster property, so that it is convenient
to perform the factorization on matrices of a smaller size. This makes the
procedure even faster (especially when the size of the original matrix is very
large). It is clear that a too large band leads to consider “pieces of matrix”
having a large size, so that we do not achieve any benefit from the suggested
breakdown procedure. In this case, the standard quadrature will remain
the preferred approach. However, if a band structure is detected, once each
piece is factorized we can calculate the matrix-vector product as shown in
Figure 2: the original matrix (top left corner of Figure 2) is “broken” into
smaller pieces (top right corner of Figure 2). Then each piece is factorized
using the Golub-Reinsch algorithm (bottom left corner of Figure 2) and the
matrix-vector product is computed exploiting the Householder or bidiagonal
structure of the matrices involved. Finally the resulting vectors are “summed
up” taking into account the overlapping parts.

In conclusion, the combination of the clustering and bandwidth prop-
erties allows us to reduce the computational cost of the pricing procedure,
thanks to the factorization, which can be performed in a fast way due to
the spectral properties above mentioned. More precisely, since in the recur-
sive quadrature equation (7) we have to compute N matrix-vector products,
the classical approach requires O(Nm2) operations against O(kǫm

2+Nkǫm)
operations, being O(kǫm

2) (O(kǫm)) the cost of the factorization (matrix-
vector multiplication). In practice kǫ ≈ rǫ, and we have a cost reduction if
rǫ < mN/(N + m). In particular, as the number of monitoring dates in-
creases, the cost reduction is effective if rǫ < m, that, in general, it is always
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the case for the examples here considered, such as the previously mentioned
Asian option contract. Using the proposed “Breaking into pieces” algorithm,
it is thus possible even to achieve a larger time reduction exploiting the struc-
ture of the matrix HD, since the factorization and the matrix-vector prod-
ucts are computed considering the smaller submatrices and not the whole
(large) iteration matrix, as shown in Figure 2. The idea here described find
a theoretical support in Appendix B.

4. Numerical Results

In this section we validate with numerical experiments the ideas put for-
ward in the previous section (theoretical results are in the appendix). The
setup is absolutely general but for aim of clarity we consider the CEV pro-
cess. This dynamics is indeed quite interesting allowing for very different
transition densities and implied volatility shapes. For this reason, we de-
scribe it in some detail in Section 4.1. Then in Section 4.2 we show that
the matrix HD obtained by the discretization of the CEV transition density
exhibits eigenvalues strongly clustered at zero: if we increase the size (num-
ber of quadrature points) of the matrix, the number of eigenvalues greater
than a given tolerance remains constant. Thus the CEV process admits the
cluster property that allows us to improve the performance of the recursive
approach. Finally, in Section 4.3 we apply our algorithm (hereafter denomi-
nated BP algorithm) to “break into pieces” the matrix HD and we apply it
to price exotic derivatives. This algorithm is detailed with a pseudo-code in
the electronic supplementary material.

For the numerical discretization of (5) we opt for a Gauss-Legendre quadra-
ture [32]. Numerical experiments not reported here have shown that the
cluster of eigenvalues of the iteration matrix is independent of the adopted
quadrature formulas, but the bandwidth of the matrix is larger for Gaussian
quadrature respect to Newton-Cotes ones. However the results are similar,
in terms of computational efficiency, for both classes of quadrature formulas.

All calculations were performed using Matlab R2008a on a PC Intel Core2
Quad 2.40 GHz with 3.24 GB RAM and Windows XP operating system.

4.1. The CEV Process
Even if our algorithm is quite general, from now on, we assume that the

underlying asset evolves according to a CEV process [15], i.e.,

dS(t) = rS(t)dt+ σSβ+1(t)dW (t), S(0) = S0, (8)

and thus the transition probability density is given by

p (S, ξ; ∆) := e−r∆ p0

(
S, e−r∆ξ;

1

2rβ

(
e2rβ∆ − 1

))
,

11



with

p0 (S, ξ; ∆) =
ξ−2β− 3

2S
1
2

σ2|β|∆
e
−S−2β+ξ−2β

2σ2β2∆ I 1
2|β|

(
S−βξ−β

σ2β2∆

)
,

where Iν is the modified Bessel function of the first kind of order ν. In
particular, when β = 0 we have the classical geometric Brownian process
(GBM), when β = −1 we have an arithmetic Brownian motion (ABM),
while when β = −0.5 the Cox-Ingersoll-Ross square-root process (SR) is
obtained. For details see also [15, 17, 20]. In Figure 3 we plot the density
function for different values of the leverage parameter β (left panel) and
the corresponding implied volatility curve (right panel). In particular, large
negative values of β generate a skewed to the left density function and a
very steep implied volatility curve, as often observed in the market. The
CEV process, consistently with empirical studies, allows for the volatility to
depend on the price level and in addition the two are negatively correlated
(leverage effect); moreover, the model is able to generate the smirk effect
often observed in the market implied volatility curve. See for example [7, 14].
Unfortunately, the transition density of the CEV process is not of convolution
type, thus a fast computation of the recursion via the FFT is not feasible.
For these reasons, the CEV dynamics turns out to be an interesting case to
test our pricing procedure.

Numerical methods for pricing derivatives under the CEV process are
presented, for example, in [7, 8, 14, 31]. These articles price derivatives con-
tracts, like barrier [7], lookback [7, 8, 14] and geometric Asian [31] options,
assuming continuous monitoring and using a lattice approach, i.e., binomial
or trinomial trees. In general, if we consider a non-Gaussian diffusion pro-
cess, the diffusion coefficient is not constant and it is not possible to construct
a recombining tree in the usual way. Therefore, the price process is trans-
formed into another process having a constant diffusion coefficient, and the
tree is built for the transformed process. In this case, advanced technique,
like the adaptive averaging binomial method presented in [28] are available.
Unfortunately, this procedure is reliable only for barrier options. For exam-
ple, results in [7] for lookback options are not accurate. To cope with this
problem, in [14] the author proposes a forward induction procedure that al-
lows to compute the risk-neutral probability of each different payoff of the
lookback option at maturity but with a computational cost that is cubic
in the number of time step against the linear cost of the recursive quadra-
ture. In addition, by using trees, we have slow and erratic convergence to
the true price largely caused by the position of the barrier relative to the
adjacent stock prices, see the theoretical results in [25] with reference to
the GBM dynamics. We can have large errors even with thousands of time
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Figure 3: Density function (left) and implied volatility (right) of the CEV model for
different values of β.

steps and millions of node calculations. American options are considered in
[30], where the author proposes an alternative characterization of the early
exercise premium that is valid for any Markovian and diffusive underlying
price process. However, the author does not consider Bermudan options, for
which early exercise can occur only on discrete dates. Finally, an analytical
Laplace transform approach based on the scale function of a diffusion pro-
cess is pursued in [17]. These authors obtain Laplace transform of barrier
and lookback option prices involving Whittaker and Bessel functions of com-
plex argument. Option prices are then obtained via a numerical inversion of
the Laplace transform. Unfortunately, the procedure is quite computational
intensive mainly for lookback options: this problem requires the numerical
computation of an integral involving the inverse Laplace transform.

Unless otherwise specified, we consider the same parameter setting as in
[17]: the initial asset price is S0 = 100, the risk-free interest rate is 10%
per annum (r = 0.1), the volatility is σ = 0.25/Sβ

0 . Moreover, we assume
that the asset pays no dividends (q = 0), and all options have six months
to expiration (T = 0.5). If necessary, we truncate the integration interval as
stated in Section 2.1 with a 10−8 tolerance.

4.2. Cluster of the HD matrix

Table 1 provides the number of eigenvalues greater, in absolute value, than
ǫ = 10−11 and the bandwidth size btop of the matrix HD, see Figure 2. The
bandwidth size is fixed setting to zero the elements smaller, in absolute value,
than 10−9. The leverage parameter β in the CEV model is set equal to −0.5
(results for different values of β are reported in the electronic supplementary
material). We stress that this table refers to pricing problems characterized
by a different iteration matrix. We notice that:
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• a strong cluster at zero always occurs. For example, let us consider
down-and-out options in Table 1, given a number of monitoring dates
N = 52. The number of significative eigenvalues (greater than ǫ) is
107, independently of the matrix dimension m;

• the cluster increases less than linearly with respect to the number of
monitoring dates N . Thus our algorithm will achieve a large time
reduction when N is large. In fact, we see in Table 1 that, given m,
as the number of monitoring dates increases, the same happens to the
number of eigenvalues greater than ǫ, but the ratio rǫ/N decreases;

• the presence of barriers strongly improves the cluster. This is evident
if we compare the double barrier case in Table 1 to other contracts. In
particular this suggests a relative better performance of the algorithm
in pricing this kind of exotics;

• changing the value of the leverage parameter β in the CEV density does
not affect the cluster. This is shown in the electronic supplementary
material.

rǫ bandwidth=btop
Contract N m m

1000 2000 3000 4000 1000 2000 3000 4000
European 52 190 190 190 190 126 249 372 493
Lookback 104 266 267 267 267 105 208 310 411
Asian 252 411 412 412 412 83 165 247 328
Step 504 576 580 581 581 70 139 207 275

1008 774 819 819 832 59 116 174 231
Down-and-out 52 107 107 107 107 209 414 617 818

104 149 149 149 149 174 345 514 683
252 230 230 230 229 139 275 410 544
504 322 322 323 322 116 231 344 456
1008 455 455 455 454 98 194 289 384

Up-and-out 52 115 115 115 115 183 362 540 716
104 161 161 161 161 152 301 449 596
252 247 247 247 247 121 239 357 474
504 348 348 348 348 101 201 299 397
1008 489 490 490 490 85 168 251 333

Double barrier 52 32 32 32 32 471 929 1382 1831
104 44 44 43 43 383 757 1126 1493
252 65 65 65 65 300 592 882 1170
504 90 90 90 90 249 493 734 974
1008 125 125 125 125 208 412 614 814

Table 1: Number rǫ of eigenvalues of HD greater than ǫ = 10−11. Legend: m is the matrix
dimension, N is the number of monitoring dates, β = −0.5 is the leverage parameter in
(8) and btop is the bandwidth size of the matrix HD. Contracts are grouped according to
the iteration matrix HD.

We can also make some additional considerations on the bandwidth of the
matrix:
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• we always have banded matrices; for example in Table 1 for European,
lookback, Asian or step options with N = 52 and m = 4000, the band-
width size is btop = 493. However, the presence of barriers increases
btop. Indeed barriers cut the tails of the density so that we have to
sample a function that does not approach zero on the frontier of the
domain. In general, the ratio btop/m remains constant as m varies.

• the bandwidth size decreases as we increase the number N of monitor-
ing dates; this is, for example, confirmed for all contracts in Table 1
when m = 4000 and we let N to vary from 52 to 1008;

Since the performance of the algorithm is optimized when the cluster size
rǫ and the bandwidth size btop are both small, the above remarks suggest
that this happens in all cases and the greatest benefit occurs as we increase
N .

N=252 N=504 N=1008
European 1.1604 1.3270 1.4151
Barrier Down-and-out 1.1045 1.4104 1.7289
Barrier Up-and-out 1.1784 1.4872 1.7964
Double barrier 0.7263 0.9809 1.9535
Bermudan 1.1634 1.3476 1.4189
Bermudan Down-and-out 1.1102 1.4176 1.7126
Bermudan Up-and-out 1.1891 1.5065 1.7883
Bermudan Double barrier 0.7315 0.9867 1.9412
Lookback 2.3617 2.1688 1.9565
Lookback (ω = 4) 3.0116 2.8686 2.5773
Asian 1.8654 1.7169 1.5609
Asian (ω = 4) 1.9707 1.9769 1.9624
Step 4.3515 3.6113 3.1951

Table 2: Speed-up values for different contracts with β = −0.5 and m = 4000. The initial
asset price is S0 = 100, the volatility is σ = 0.25/Sβ

0 , the risk-free interest rate is 10% per
annum (r = 0.1), the asset pays no dividends (q = 0), and all options have six months to
expiration (T = 0.5). The strike price E is equal to 105. Additional payoff’s parameters
for step options are ρ = 0.5 and A = [90, 110]. ω is the parameter in Remark 1 in the
appendix.

In Table 2 we show the speed-up for different contracts. Here the speed-up
is defined as the ratio between the CPU time for the classical recursive (Rec.)
algorithm and the one for our pricing procedure (Rec.+BP). As expected, the
speed-up is always greater than 1. Double barrier options are the exception
when the number of monitoring dates is small, due to a too large bandwidth.

4.3. Pricing options

In this section we validate our pricing procedure comparing it to stan-
dard numerical quadrature and to Monte Carlo simulation. This has been
implemented with an Euler discretization scheme with 300 steps between two
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consecutive monitoring dates, and 1.000.000 runs. In general Monte Carlo
simulations applied to the CEV process achieve a two digits accuracy, but
with a CPU time that turns to be higher than the recursive quadrature of a
factor that varies from 4 to 10.2 Extended numerical results are reported in
the electronic supplementary material.

4.3.1. Barrier and Bermudan Options

In Tables 4 and 5 we price European and barrier call options. Analyti-
cal formulas for European options are available in terms of the non-central
chi-square distribution, see [36]. Prices of continuously monitored barrier
options, i.e., N = ∞, are given in [17] and reported here in Table 3.

β = 0 β = −0.5 β = −1
European 7.0995 7.0170 6.9403

Down-and-out 6.3722 6.2554 6.1438
Up-and-out 0.6711 0.7734 0.8904

Double barrier 0.4418 0.5126 0.5945

Table 3: Prices in [17, Table 1].

β m Prices CPU Times (sec.)
Rec. Rec.+BP Rec. Rec.+BP

0 2000 7.099596 7.099596 1.01 4.60
4000 7.099571 7.099571 3.90 18.20

-0.5 2000 7.017063 7.017063 6.09 10.16
4000 7.016999 7.016999 23.63 39.66

-1 2000 6.940388 6.940388 8.09 12.96
4000 6.940318 6.940318 31.40 50.87

Table 4: European call: m is the matrix dimension and β is the leverage parameter in (8).
Parameters as in Table 2.

Since European options are path-independent contracts, their pricing re-
quires a single recursion. For this reason, in Table 4 we set N = 1 and the
BP algorithm is not at all convenient because the factorization is too costly
with respect to a single matrix-vector multiplication. However the algorithm
has the same accuracy as the analytical formula: our price estimates agree
with those of the first row of Table 3.

Numerical results for barrier options with β = −0.5 are given in Table
5. Prices for different values of β and for up-and-out options are reported in
the electronic supplementary material. We notice that:

2We also considered an exact Monte Carlo simulation by sampling from the known tran-
sition cumulative density function, but the procedure turns out to be too time consuming
and of no practical relevance.
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• prices computed with the BP algorithm agree with the ones from the
pure recursion up to five decimal digits;

• as expected, the BP algorithm performs better as we increase the num-
ber of monitoring dates N , since the factorization has to be performed
only once, and, at the same time, the bandwidth decreases (see Table
1 - we recall that our algorithm performs well if the bandwidth size is
not too large). In fact, from Table 5 we notice the benefits of the BP
factorization for N = 252 or greater;

• the algorithm works better as we increase the number of quadrature
nodes m, since the cluster size rǫ does not increase varying m, while
the computational cost of the matrix-vector multiplication increases;

• for double barrier options we observe that, increasing N , we have a
trade-off between the cluster size (it improves) and the bandwidth size
(it becomes larger). On this point we can make two remarks:

1. In general, our algorithm improves the standard recursion for N
larger than 252. Additional numerical tests have shown that the
algorithm applied to the double barrier case can achieve a speed-
up up to 3.6 when N = 10000.

2. Numerical results in Table 2 show that the BP algorithm performs
better for single barrier respect to double barrier options if N is
lower than 1008.

• concerning the convergence of the discrete monitoring price to the con-
tinuous monitoring case, we notice a slow convergence from above of
prices in Table 5 to the ones in Table 3. For example, when β = −0.5
and N = 10000, a single barrier option with discrete monitoring is
worth 6.2756, whilst the continuous version is 6.2554. Moreover, com-
paring the two tables, it is clear that pricing a discrete monitoring
contracts with a continuous monitoring algorithm could result in a
substantial different, and thus wrong, price. As an example, consider-
ing β = −0.5 and assuming to price a twice-a-day monitoring double
barrier option, i.e., N = 52, the real price, i.e., the one computed con-
sidering the real monitoring is 0.7710, while the one computed assuming
the continuous monitoring is 0.5126. Thus the importance of consid-
ering numerical algorithms with discrete monitoring, when contracts
with this feature have to be priced.

Experiments not reported here show similar performances for Bermudan
options. The results are not affected by the presence or absence of dividends.

17



Down-and-out call Double barrier call
N m Prices CPU (sec.) Prices CPU (sec.)

Rec. Rec. Rec. Rec. Rec. Rec. Rec. Rec.
+BP +BP +BP +BP

52 2000 6.497277 6.497277 4.47 6.03 0.771025 0.771025 4.16 8.70
52 4000 6.497278 6.497278 17.13 23.74 0.771024 0.771024 16.12 34.37
104 2000 6.434699 6.434699 4.87 5.51 0.694140 0.694140 4.48 8.41
104 4000 6.434700 6.434700 18.73 22.22 0.694140 0.694140 17.21 32.49
252 2000 6.375374 6.375374 6.03 5.70 0.628248 0.628248 5.39 7.61
252 4000 6.375375 6.375375 23.24 21.04 0.628248 0.628248 20.68 28.47
504 2000 6.342071 6.342072 7.91 7.06 0.593922 0.593922 6.94 7.46
504 4000 6.342072 6.342073 30.65 21.73 0.593922 0.593922 26.77 27.29
1008 2000 6.317620 6.317621 11.63 11.24 0.569846 0.569846 13.99 8.47
1008 4000 6.317621 6.317623 45.04 26.05 0.569846 0.569846 54.64 27.97
10000 2000 6.275649 6.275652 72.95 122.85 0.530602 0.530603 85.20 49.35
10000 4000 6.275651 6.275652 282.11 154.93 0.530602 0.530604 331.26 91.33

Table 5: Down-and-out and double barrier call: β = −0.5 is the parameter in (8), m is
the matrix dimension and N is the number of monitoring dates. Parameters as in Table
2.

4.3.2. Lookback Options

Pricing lookback options is in general more expensive than pricing bar-
rier options, because we have to keep trace of an additional state variable,
the running minimum J . Thus, we expect an increase in the CPU time with
respect to barrier and Bermudan option. However, since the matrix factoriza-
tion is independent on the J-grid nodes, we still expect an improvement with
respect to the standard recursion. Results reported in Table 6 confirm this.
In addition the two recursive algorithms show comparable accuracy. Table 7
provides, as benchmark, confidence intervals computed by the Monte Carlo
algorithm. An additional speed-up can be obtained considering less nodes
on the J-grid, up to ten times if we reduce by a factor of four the nodes on
the J-grid (ω = 4 in the mentioned table), maintaining a two decimal digits
accuracy.

4.3.3. Asian Options

Asian options (see Section 2.4) share with lookback options the presence
of an additional state variable. Given that the iteration matrix is the same
for the two contracts, we expect a similar performance of the algorithm in the
Asian as in the lookback case. Results are given in Table 8, and comments
given in Section 4.3.2 still apply. For example, if we set ω = 4, we reduce the
CPU time by a factor of seven, still maintaining a two decimal digits accuracy.
Reported option prices always fall into the Monte Carlo confidence intervals.

Finally, in Table 10 we consider the log-normal process (β = 0). In this
case, indeed, it is more efficient to use a FFT approach, as in [13], or a
randomization technique, as in [19]. We use the results in [13, Table 7] as
benchmark. In Table 10 we also analyze the effect on the price accuracy of
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N m Prices CPU Times (sec.)
Rec. Rec. Rec. Rec. Rec. Rec. Rec. Rec.

+BP +BP +BP +BP +BP +BP
ω = 1 ω = 1 ω = 2 ω = 4 ω = 1 ω = 1 ω = 2 ω = 4

52 2000 14.545701 14.545701 14.544358 14.553307 592 323 140 64
52 4000 14.542978 14.542978 14.542853 14.546845 4566 1422 703 332
104 2000 14.887939 14.887940 14.886958 14.893453 1069 629 270 124
104 4000 14.886366 14.886366 14.886282 14.889097 8084 2897 1381 618
252 2000 15.191305 15.191306 15.190640 15.194984 2193 1361 598 254
252 4000 15.190981 15.190982 15.190932 15.192716 16567 7015 3212 1376
504 2000 15.353628 15.353629 15.353129 15.356335 3953 2684 1194 534
504 4000 15.354248 15.354250 15.354219 15.355452 29570 13634 5969 2573
1008 2000 15.469194 15.469194 15.468811 15.471220 6886 5117 2043 986
1008 4000 15.470853 15.470857 15.470839 15.471678 51971 26563 11362 5025

Table 6: Fixed-strike lookback put: β = −0.5 is the parameter in (8), m is the matrix
dimension and N is the number of monitoring dates. Parameters as in Table 2. ω is the
parameter in Remark 1 in the appendix.

N Confidence CPU Times
Interval (sec.)

52 14.5242 - 14.5576 2523
104 14.8738 - 14.9073 5014
252 15.1781 - 15.2116 12104
504 15.3483 - 15.3818 24180
1008 15.4511 - 15.4846 48331

Table 7: Monte Carlo values for fixed-strike lookback put options with 1.000.000 iterations,
parameters as in Table 6.

N m Prices CPU Times (sec.)
Rec. Rec. Rec. Rec. Rec. Rec. Rec. Rec.

+BP +BP +BP +BP +BP +BP
ω = 1 ω = 1 ω = 2 ω = 4 ω = 1 ω = 1 ω = 2 ω = 4

52 2000 2.919996 2.919996 2.920009 2.919707 843 573 284 157
52 4000 2.920010 2.920010 2.920007 2.920017 5615 2377 1186 673
104 2000 2.928446 2.928446 2.928341 2.926760 1642 1128 543 307
104 4000 2.928465 2.928465 2.928459 2.928347 10072 4814 2379 1304
252 2000 2.933353 2.933353 2.932724 2.929454 3592 2591 1370 725
252 4000 2.933498 2.933499 2.933402 2.932702 21221 11376 5755 3140
504 2000 2.934878 2.934878 2.933790 2.929121 6448 5137 2796 1400
504 4000 2.935238 2.935238 2.934972 2.933777 38909 22662 11140 5495
1008 2000 2.935444 2.935444 2.933788 2.927539 12413 9834 5488 2992
1008 4000 2.936030 2.936031 2.935583 2.933823 71120 45563 22044 10207

Table 8: Fixed-strike Asian call: β = −0.5 is the parameter in (8), m is the matrix
dimension and N is the number of monitoring dates. Parameters as in Table 2. ω is the
parameter in Remark 1 in the appendix.

the truncation of the integration interval (see Section 2.1). The Rec.+BP
algorithm always achieves a three to five decimal digits accuracy depending
on the tolerance level when we truncate the domain. Significant reduction in
the CPU time, without loss of accuracy, can be achieved with a sparser grid
(ω = 2 and ω = 4) on the running average.
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N Confidence CPU Times
Interval (sec.)

52 2.9151 - 2.9356 2523
104 2.9196 - 2.9401 5014
252 2.9272 - 2.9477 12104
504 2.9283 - 2.9487 24180
1008 2.9264 - 2.9468 48331

Table 9: Monte Carlo values for fixed-strike Asian call options with 1.000.000 iterations,
parameters as in Table 8.

σ

ω m Tol 10−8 Tol 10−10

0.1 0.3 0.5 0.1 0.3 0.5
1 1000 11.58113 13.66975 17.19193 11.58113 13.66991 17.19255
1 2000 11.58113 13.66977 17.19196 11.58113 13.66980 17.19236
1 4000 11.58113 13.66977 17.19192 11.58113 13.66982 17.19240
2 1000 11.58118 13.67068 17.19441 11.58120 13.67232 17.19750
2 2000 11.58113 13.66974 17.19191 11.58113 13.66982 17.19272
2 4000 11.58113 13.66977 17.19191 11.58113 13.66982 17.19239
4 1000 11.58175 13.67434 17.20552 11.58184 13.68018 17.20388
4 2000 11.58118 13.67081 17.19409 11.58121 13.67196 17.19835
4 4000 11.58113 13.66973 17.19192 11.58113 13.66981 17.19270

Table 10: Fixed-strike Asian call: A comparison between the Rec.+BP algorithm and [13,
Table 7]: Gaussian case (β = 0) and strike price E = 90. Benchmark price: 11.58113
(σ = 0.1), 13.66981 (σ = 0.3) and 17.19239 (σ = 0.5).

4.3.4. Step Options

Numerical results given in Table 11 show that our algorithm applied to
step options achieves the same accuracy as the direct recursive procedure:
they agree up to the sixth digit, but with a strong reduction in the compu-
tational time. Thus, also for this kind of contracts the Rec.+BP algorithm
is more efficient than the plain recursion and Monte Carlo simulation.

N m Prices CPU Times (sec.) Monte Carlo values
Rec. Rec.+BP Rec. Rec.+BP Confidence CPU Times

Interval (sec.)
52 2000 5.580878 5.580878 13.08 7.46 5.5772-5.6133 2446.38
52 4000 5.581670 5.581670 50.64 23.71
104 2000 5.564554 5.564554 35.21 13.98 5.5473-5.5832 4881.28
104 4000 5.565345 5.565345 134.63 35.45
252 2000 5.554981 5.554981 154.47 60.41 5.5414-5.5772 11811.86
252 4000 5.555772 5.555773 589.53 135.57
504 2000 5.551620 5.551620 533.47 241.04 5.5367-5.5725 23616.72
504 4000 5.552411 5.552412 2003.21 554.70
1008 2000 5.549940 5.549940 1823.83 1044.87 5.5276-5.5634 47231.25
1008 4000 5.550731 5.550732 6931.57 2169.42

Table 11: Step call: m is the matrix dimension, N is the number of monitoring dates.
Parameters as in Table 2.
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5. Conclusion

In this paper we have shown how to price exotic options when discrete
monitoring is considered exploiting the structure of the matrix arising from
the numerical quadrature of the pricing backward formulas. This has been
accomplished through a convenient factorization of the iteration matrix that
helps greatly in the speed-up of the recursion. The proposed BP algorithm
is general and is examined in detail with reference to the CEV process, for
which, according to our knowledge, no efficient and general enough procedure
is available in literature, and to discretely monitored option.
Our numerical experiments show that the BP algorithm performs well respect
to the standard recursive quadrature for all considered exotic options (barrier,
lookback, Asian, Bermudan and step options), mainly when the number of
dates is large: they have a similar accuracy, but our scheme is considerably
faster. In addition, we show how to accelerate the scheme for both lookback
and Asian options, losing a little bit of accuracy.

We would like to stress that, according to our knowledge, this article
is the first one investigating a fast and accurate algorithm for pricing exotic
options when the discrete monitoring is assumed and a CEV process (or, more
generally, processes for which the log-price is not i.i.d.) is considered. Finally
the proposed factorization has potential and immediate applications to the
study of properties of discrete time Markov Chains as well, a very important
topic in operational research for modeling queuing sequences and many other
practical systems, see [29]. Extension to other processes, as normal mixture
distribution, see [5], and options with multiple risk factors, such as stochastic
volatility models or multi-assets contracts, as in [9, 24, 33], are also amenable
to the presented technique, and will be treated in a follow-up paper.
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Appendix A. Quadrature for exotic derivatives

In the following we detail how the quadrature applies to different con-
tractual settings.

Appendix A.1. Barrier and Bermudan Options

For barrier options, i.e., recursions (1) and (2), we have W (x,N) = φ(x),
H(x, y; ∆) = e−r∆p(x, y; ∆), and a, b depend on the domain Ω. For example,
for down-and-out barrier options, we set a = L and b = U . From the
discretization of (1), we obtain a recursion of the form (7) with WN =
[φ(si)]

m−1
i=0 .

If Bermudan options are considered, we have W (x,N), H(x, y; ∆), and
a, b as above. From the discretization of (2) we obtain

{
WCV

n = HmDmWn+1

Wn = max{WCV
n ,Φ},

where WCV is the continuation value, and Φ = [φ(si)]
m−1
i=0 = WN .
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Appendix A.2. Lookback Options

If fixed-strike lookback put options are considered, we set H(x, y; ∆) =
e−r∆p(x, y; ∆), a = 0 and b = +∞ (truncated to L and U for numerical
valuation). Thus the semi-discrete formulation of (3) is

W (si, J, n) =
m−1∑

l=0

wlH(si, sl; ∆)W (sl,min{J, sl}, n+ 1),

i = 0, . . . ,m − 1, with W (si, J,N) = (E − min{si, J})
+. Since J is the

minimum value of the underlying asset, we discretize J on the same grid
{si}

m−1
i=0 used for the underlying asset. More precisely, we can implement

recursion (3) as follows: considering m quadrature nodes sj and weights wj,
j = 0, · · · ,m− 1, we define for n = N − 1, · · · , 0 the vectors

Wj
n := [W (si, sj, n)]

m−1
i=0 and Ŵj

n := [W (si,min{si, sj}, n)]
m−1
i=0 ,

with Ŵ
j
N = [(E −min{si, sj})

+]m−1
i=0 .

The fully-discretized lookback recursion (3) is: for n = N − 1, · · · , 0

Wj
n = HmDmŴ

j
n+1,

with Dm and Hm defined as above. Notice that (Ŵj
n)i corresponds to

W (si, sj , n) (and thus to (Wj
n)i) only if si ≥ sj, and thus i ≥ j. Thus,

moving from Wj
n to Ŵj

n, an update of the minimum value is necessary for
the indices i such that sj > si. This implies that the pricing recursion can
be written as: for n = N − 1, · · · , 0 and j = 0, · · · ,m− 1,





Wj
n = HmDmŴ

j
n+1 Recursion Step

(Ŵj
n)i =

{
(Wj

n)i if i ≥ j
(Wi

n)i if i < j
Updating Step

(A.1)

Remark 1. The iteration (A.1) can be accelerated using a subset s̃ of m/ω
quadrature nodes, i.e., for n = N − 1, · · · , 0, for jω = 0, · · · ,m/ω − 1, being
(Wjω

n )i = W (si, s̃jω , n), it holds





Wjω
n = HmDmŴ

jω
n+1,

(Ŵjω
n )i =

{
(Wjω

n )i if i ≥ jω,
(Wi

n)i if i < jω,

where the element (Wi
n)i is computed by cubic interpolation if the node si

do not belong to the subgrid s̃.
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Appendix A.3. Asian Options

For Asian options, at each step the possible new values of the state vari-
able A do not fall on the A-grid at the previous step. Therefore an inter-
polation is also required at each iteration. More precisely, the semi-discrete
formulation of (4) is: for i = 0, . . . ,m− 1

W (si, A, n) =
m−1∑

l=0

wlH(si, sl; ∆)W

(
sl,

n+ 1

n+ 2
A+

1

n+ 2
sl, n+ 1

)
.

To obtain the fully-discrete formulation, we define for j = 0, · · · ,m− 1

Wj
n = (W (si, sj, n))

m−1
i=0 and Ŵj

n =

(
W

(
si,

n

n+ 1
sj +

1

n+ 1
si, n

))m−1

i=0

.

Thus the discretization of (4) can be written as: for n = N − 1, · · · , 0, given
W

j
n+1, compute Ŵj

n exploiting cubic interpolation, and then set

Wj
n = HmDmŴ

j
n+1.

Again, as stated in Remark 1, we can assume that the average falls on a
subset s̃ of m/ω quadrature nodes, i.e., Wjω

n = (W (si, sjω , n))
m−1
i=0 , jω =

0, · · · , m
ω
− 1.

Appendix A.4. Step Options

Finally, for step derivatives, In can only assume the n+1 values 0, 1, · · · , n.
The payoff is discretized according to

Ŵ
j
N =

((
1−

ρ

N

(
j + 1{si∈I}

))
(ϕ(si − E))+

)m

i=0
, j = 0, · · · , N − 1.

Then, for n = N − 1, · · · , 0, we compute

Wj
n = HmDmŴ

j
n+1, j = 0, · · · , n,

and then, if n > 0, we construct Ŵj
n as follows: for i = 0, · · · ,m− 1, for j =

0, · · · , n− 1, if si /∈ I, then
(
Ŵj

n

)
i
= (Wj

n)i, otherwise
(
Ŵj

n

)
i
= (Wj+1

n )i.

Appendix B. Matrix Factorization

In this section, we analyze the spectral properties of the matrix HD.
These properties allow us to factorize HD by using the bidiagonalization
algorithm of Golub and Reinsch [22]. For this purpose, at first we define the
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cluster point of eigenvalues of a sequence of matrices of increasing dimension
(that can be obtained, for example, by increasing the number of nodes in the
quadrature formula (7)). This means to analyze the asymptotic behavior of
eigenvalues of a sequence of matrices, and to show that, in our case, they
cluster around zero. In particular, the number rǫ of eigenvalues greater than
a fixed tolerance ǫ remains constant as we increase the number of quadrature
nodes. Therefore the factorization of the matrix HD into the product PJQH

returns a bidiagonal matrix J having as non-zero elements only the first kǫ
elements, kǫ ≈ rǫ, on the main and on the upper diagonals. This means that
it is not necessary to perform the full factorization PJQH , but we can stop
at the kǫ-th step. If kǫ is much smaller than m, where m is the dimension
of the matrix, this implies a significant reduction in the computational cost.
Furthermore, the particular “composition” of matrices P and Q allows us
to compute the matrix-vector multiplication in O(kǫm) operations instead of
the O(m2) characterizing the standard recursive approach.

Appendix B.1. Spectral properties of a sequence of matrices

In this section we give the main definitions and theorems related to the
spectral properties of sequences of matrices that satisfy certain conditions.
In the following, we denote with {Am} = {Am}

∞
m=1 a sequence of matrices

in C
m×m joined by a structural content that remains unchanged when the

size varies. For brevity, we will denote the sequence simply by {Am} and

we use the symbols λ
(m)
j and σ

(m)
j , j = 1, . . . ,m, to denote, respectively, the

eigenvalues and the singular values of Am.
A property of the spectrum of a sequence of matrices is its cluster point.

Definition 1. [37] A matrix sequence {Am} is strongly clustered at s ∈ C

(in the eigenvalue sense), if for any ε > 0 the number of the eigenvalues
of Am off the disc D(s, ε) := {z : |z − s| < ε} can be bounded by a pure
constant qε possibly depending on ε, but not on m. In other words

qε(m, s) := #{j : λ
(m)
j /∈ D(s, ε)} = O(1), m → ∞.

If every Am has only real eigenvalues (at least for large m) then we may
assume that s is real and that the disc D(s, ε) is the interval (s−ε, s+ε). We
replace the term “strongly” by “weakly”, if qε(m, s) = o(m), when m → ∞.
Similar definitions hold if we replace the term eigenvalues with singular val-
ues.

A sufficient condition under which a sequence of matrices is strongly
clustered is given in the following theorem.
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Theorem 1. [34, Theorem 1.2] Let {Am} be a sequence of matrices of strictly

increasing dimension (Am ∈ C
m×m) with eigenvalues |λ

(m)
1 | ≥ |λ

(m)
2 | ≥ · · · ≥

|λ
(m)
m | and singular values σ

(m)
1 ≥ σ

(m)
2 ≥ · · · ≥ σ

(m)
m . If

- there exist a number N > 0, independent of m, such that σ
(m)
1 =

‖Am‖2 ≤ N , that is {Am} is a sequence uniformly bounded;

- the sequence {Am} is strongly clustered at 0 in the singular value sense,
that is, following Definition 1, ∀ǫ > 0 ∃C = Cǫ independent of m such
that #{j : σ

(m)
j > ǫ} ≤ Cǫ, uniformly ∀m;

then {Am} is strongly clustered at 0 in the eigenvalue sense, that is ∀ ǫ >

0 ∃Ĉ = Ĉǫ independent of m such that #{j : |λ
(m)
j | > ǫ} ≤ Ĉǫ, uniformly

∀m.

The following lemma gives us a sufficient condition under which a se-
quence of matrices is strongly clustered at zero.

Lemma 2. Let {Am} be a sequence of matrices (Am ∈ C
m×m), if ∃N > 0,

independent of m, such that ‖Am‖F ≤ N , where ‖·‖F is the Frobenius norm,
then the sequence {Am} is strongly clustered at zero in the singular value and
eigenvalue sense.

Proof. For the singular value cluster see [35, Section 4, Corollary 4.1, point

2, with Bn = 0]. For the cluster of the eigenvalues, if σ
(m)
1 ≥ σ

(m)
2 ≥ · · · ≥

σ
(m)
m are the singular values ofAm and σm = [σ

(m)
1 , σ

(m)
2 , . . . , σ

(m)
m ], we observe

that N ≥ ‖Am‖F = ‖σ(m)‖2 ≥ ‖σ(m)‖∞ = σ
(m)
1 = ‖Am‖2, then we are under

the hypotheses of Theorem 1 and we can conclude that the sequence {Am}
is strongly clustered at zero in the sense of the eigenvalues.

We conclude this section with our main result on the clustering of se-
quences of matrices that arise from discretization of integrals of functions in
two variables.

Theorem 3. Let us define Am = KmDm, where Km is the sampling matrix
of a continuous function k, k(·, ·) : Ω × Ω → R, Ω ⊂ R

d, d ≥ 1, Ω closed
and bounded, and Dm = diag(w0, . . . , wm−1) is the diagonal matrix with the
weights of the quadrature formula wi. Then the sequence {Am} is strongly
clustered at zero in the singular value and eigenvalue sense.

Proof. We consider the Frobenius norm of the matrix Am:

‖Am‖
2
F =

m∑

i,j=0

(Am)
2
i,j =

m∑

i,j=0

k2(ih, jh)w2
j =

∫

Ω2

k2(x, y)dxdy + ǫm ≤ C,

28



where C is a constant which depends on Ω and the smoothness of the function
k, and ǫm is the error of the quadrature formula which approaches to 0 as m
increases. The application of Lemma 2 concludes the proof.

In conclusion, we observe that the above theorem can be applied to the
sampling matrix Hm in (7). Thus we have proved that our iteration matrix
is strongly clustered at zero.

Appendix B.2. Bidiagonalization

Formula (7) implies that the option price W0 can be obtained by per-
forming N times the matrix-vector multiplication HDv, starting from the
payoff vector WN . In order to speed-up the matrix-vector product, we use
the spectral properties of the matrix HD as discussed above. These proper-
ties allow us to factorize the iteration matrix into the product of “simpler”
matrices. To this end, we consider the following theorem.

Theorem 4. [22, Theorem 1] Let A be any m × m matrix with complex
elements. Then A can be decomposed as A = PJQH where P and Q are
unitary matrices and J is an m×m bidiagonal matrix of the form

J =




α1 β1 0 · · · 0

0 α2 β2
. . .

...
...

. . . . . . . . . 0
...

. . . . . . . . . βm−1

0 · · · · · · 0 αm




.

Matrices P and Q are obtained as products of Householder’s elementary
(rank 1) matrices, i.e., matrices of the form I − 2xxH , x ∈ C

m, xHx = 1.
Moreover, the matrix-vector product with Householder matrix requires only
2m multiplicative and 2m− 1 additive operations. This means that it is not
necessary to calculate explicitly the matrices P and Q, but we can simply
store the vectors of the Householder’s matrices that generate them. If, for
example, P = (I−2x1x

H
1 )(I−2x2x

H
2 ) · · · (I−2xmx

H
m), xi ∈ C

m it is sufficient
to store the vectors x1, x2, . . . , xm to get all the informations necessary to
calculate the matrix-vector product Pv.

Using Theorem 4 we can factorize the matrix HD as PJQH . In gen-
eral, this algorithm is very expensive requiring O(m3) operations (see [23]).
However, using the cluster property of the matrixHD, it is possible to see ex-
perimentally that the elements (α1, · · · , αm,) on the main diagonal and those
(β1, · · · , βm−1,) on the upper diagonal of the matrix J, exhibit, in modulus,
the behavior shown in Figure B.4. Therefore, if we consider to be non-zero
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Figure B.4: Trend of the absolute values of αj on the main diagonal and βj on the upper
diagonal of the matrix J obtained from the discretization of the iteration matrix HD for
a double barrier option in the lognormal model with N = 252, m = 1000. Parameters
setting as in Section 4. In this case ǫ = 10−8, rǫ = 64 and j ≤ kǫ = 65.

only the kǫ elements above a certain threshold ǫ, the computation of the ma-
trices P, J and Q can stop at the kǫ-th iteration with O(kǫm

2) operations.
The value of kǫ is closely related to the fixed tolerance ǫ and to the cluster of
the matrix. As a rule of thumb, if the number of eigenvalues greater than a
tolerance ǫ is rǫ, then the number of steps kǫ of the algorithm is only slightly
larger than rǫ.
Given the matrix HD and using the algorithm of Golub and Reinsch [22],
we compute the vectors x1, x2, . . . , xkǫ , y1, y2, . . . , ykǫ and the elements
α1, . . . , αkǫ , and β1, . . . , βkǫ−1, so that

Pkǫ = (I− 2x1x
H
1 )(I− 2x2x

H
2 ) · · · (I− 2xkǫx

H
kǫ
),

Qkǫ = (I− 2y1y
H
1 )(I− 2y2y

H
2 ) · · · (I− 2ykǫy

H
kǫ
),

and

Pkǫ




α1 β1 0 · · · 0

0
. . . . . .

...
...

. . . βkǫ−1
...

... αkǫ 0
0 · · · · · · · · · 0




QH
kǫ
= PkǫJkǫQ

H
kǫ
∼= HD.

Using this factorization, we compute PkǫJkǫQ
H
kǫ
v, instead of HDv, v ∈ C

m.
In addition, exploiting the Householder structure of matrices Pkǫ and Qkǫ

we can reduce the number of operations in the matrix-vector product from
O(m2) to O(kǫm).
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