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ABSTRACT In this note, we provide the correct formula for the price of the European exchange option given in Cheang
and Chiarella (2011) in a bi-dimensional jump diffusion model.

KEY WORDS: exchange option, jump-diffusion.

Theorem 5.1 in Cheang and Chiarella (2011), page 259, gives a formula for the price of a
European exchange option under jump diffusion dynamics. The formula is based on a wrong
application of the change of numéraire from the risk-neutral to the spot measure. We amend
the proof and provide the correct pricing formula for the exchange option.

Theorem 1: Suppose the asset prices follow the dynamics in formula (38) of Cheang and
Chiarella (2011), and the continuous dividend rate for each asset is &. Then when S1; = s1
and S = s2, the European exchange option price is
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where ® is the standard normal probability distribution function.

2 _ 2
Uk,m,n =0"+

Proof: Without loss of generality, we derive a formula for the exchange option price at time
t = 0. The option price at ¢ = 0 is then
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(2)
Using twice the change of numéraire from the risk neutral measure Q to the spot measures Q;
(stock S7 is taken as numéraire) and Qg (stock S is taken as numéraire), and conditioning on
the number of idiosyncratic and common jumps the pricing formula of the exchange option
requires the computation of Q;(A|Ny 7 =k, Nor = m, Ny =n) and Q2(A|N1 1 =k, Ny =
m, Ny = n), where A|n, ,—k.N, r—m,Ny—n is the set defined as
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The proof in Cheang and Chiarella (2011) has to be corrected in the specification of the
distribution of Z, ;,, , under Q; and Q. In particular to compute the distribution of Y under
Q; and Q2, we have to apply Theorem 3.1 of Cheang and Chiarella (2011), according to the
following Radon—Nikodym derivatives
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The parameter « defined in Theorem 3.1 determines the distribution of the jump component
Y through the following relation on the moment-generating function

M, u—+
M,y (u) = Mex(a ),

=1,2.
Moy ()



November 25, 2013
dynamics'v5”

11:10 Applied Mathematical Finance ”Correction Exchange option under jump diffusion

REFERENCES 3

Setting v = [1,0]T, Theorem 3.1 implies that the Wiener and the jump components, condi-
tioned on the event Ny = k, No 7 = m, Np = n, are normally distributed as

Ekmn ~ N((0F = po102)T + n(G1 — ag + 67 — py0102) + k(a1 + 671) — maaa, 03y, T)-

The Poisson process Nt has arrival intensity 5\1 = 5\(1 + #1) and the Poisson process N; 7 has
arrival intensity A 7, = 5\1(1 + Rz, ) under Qq, with the intensity of N 7 unchanged.

Similarly setting v = [0, 1]T, it follows that the random variable Z7 ., is therefore nor-
mally distributed as

Ek,m,n ~ N((p0'10'2 - U%)T + n(dl — Qg + pyd12 — 55) + ko — m(&gz + 5%2), Ul?:,m,nT)‘

The Poisson process Nt has arrival intensity 5\2 = 5\(1 + k2) and the Poisson process N 7 has
arrival intensity Az, = A2(1 + Az,) under Q2, and the intensity of N1, unchanged.
Straightforward computations as in Cheang and Chiarella (2011) conclude the proof. O

Table 1 provides numerical results. We consider nine different parameter scenarios (we also
set {4 =& =0,7=0,t=0and T = 1). Formula (1), row CZ, has been computed truncating
the triple sum to n = m = k = 25. We also provide the Monte Carlo estimate, row MC,
obtained with N™¢ = 107 random trials, implemented using a control variate method as
described in Caldana and Fusai (2013). The row labeled C.I.L. gives the length of the 95%
mean-centered Monte Carlo confidence interval. In all cases CF matches the Monte Carlo
solution up to the sixth digit.

Scenario 1 2 3 4 5 6 7 8 9
Si.o 100.00 100.00 96.00 100.00 100.00 96.00 100.00 100.00 96.00
Sa.0 96.00 100.00 100.00 96.00 100.00 100.00 96.00 100.00 100.00
o1 0.10 0.10 0.10 0.15 0.15 0.15 0.10 0.10 0.10
oo 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

p —0.90 —0.90 —0.90 0.50 0.50 0.50 0.90 0.90 0.90
X 0.50 0.50 0.50 0.20 0.20 0.20 0.10 0.10 0.10
&y 0.03 0.03 0.03 0.06 0.06 0.06 0.03 0.03 0.03
o 0.10 0.10 0.10 0.03 0.03 0.03 0.03 0.03 0.03
51 0.10 0.10 0.10 0.03 0.03 0.03 0.03 0.03 0.03
5o 0.03 0.03 0.03 0.09 0.09 0.09 0.03 0.03 0.03
oy —0.90 —0.90 —0.90 —0.80 —0.80 —0.80 0.90 0.90 0.90
X1 0.50 0.50 0.50 0.20 0.20 0.20 0.10 0.10 0.10
a1 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
511 0.01 0.01 0.01 0.06 0.06 0.06 0.01 0.01 0.01
X2 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
ago 0.02 0.02 0.02 —0.07 —0.07 —0.07 0.02 0.02 0.02
529 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
cF 10.770907 8.758581 6.694056 7.908547 5.820837 3.949209 4.463981 1.835108 0.463981
MC 10.770907 8.758581 6.694056 7.908547 5.820837 3.949209 4.463981 1.835108 0.463981
C.ILL. |6.048 x 10~7 6.135 x 10~7 6.083 x 10”7 6.034 x 10”7 6.130 X 10~ 7 5.917 x 10”7 4.785 x 10”7 6.136 x 10”7 4.785 x 10~ "

Table 1. Exchange option values are computed for nine different scenarios. CtE prices the exchange option according to the
analytical formula (1). MC displays the Monte Carlo estimate and C.I.L. gives the length of the 95% mean-centered Monte
Carlo confidence interval.
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