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Executive summary 

This report describes the findings of a project sponsored by the United Kingdom Civil 

Aviation Authority (UK CAA), the Colt Foundation and City University London. 

Background 

The use of colour in Air Traffic Control (ATC) applications has increased greatly 

during the past two decades largely as a result of advances in colour display 

technologies and lighting systems. There are numerous advantages to using colour 

in complex visual display applications, particularly when large visual fields are 

involved, as well as in lighting and signalling of information such as in airport lighting 

systems. The aim of this study was to examine and quantify the advantages of using 

colour with emphasis on ATC applications. In addition, we also aimed to quantify the 

relationship between severity of colour vision loss and the corresponding changes in 

visual performance when colour signals are involved. 

Colour is arguably a very effective and compelling, but also attractive and efficient 

method available for enhancing visual performance when using visual displays. The 

appropriate use of colour signals can speed up visual search and hence reduce the 

time needed to locate objects and to absorb information in crowded scenes. Colour 

coding has also been shown to be superior to other achromatic visual attributes in 

many tasks that involve the processing of visual information over a large visual field, 

particularly when ‘grouping’ operations are involved in complex scenes. A 

fundamental property of colour mechanisms in human vision that yields significant 

advantages in visual search is the independent processing of colour and luminance 

contrast signals. The existence of different visual mechanisms dedicated to the 

processing of colour signals also means that objects defined by luminance and 

colour are resilient to background clutter and are often picked up instantly and 

processed in parallel over large regions of the visual field. There is little doubt that 

the use of colour signals can enhance visual performance and subsequent motor 

responses in visually demanding tasks. In spite of significant progress, the need to 

quantify the advantages of using colour signals and to establish safe and fair 
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minimum colour vision requirements within visually demanding occupations continue 

to remain important challenges in human factors research. 

The aim of this project was to examine and quantify the advantages of using both 

red / green (RG) and yellow / blue (YB) colour signals in large field, visual displays in 

subjects with normal trichromatic colour vision and to establish how these 

advantages change in subjects with measured levels of congenital loss of RG 

chromatic sensitivity. The Colour Assessment and Diagnosis (CAD) test has been 

used throughout to quantify each subject’s RG and YB chromatic sensitivity. 

New findings 

The enhancement of key aspects of visual performance through the use of RG and / 

or YB colour signals has been investigated in large field visual displays involving 

visual search tasks. These include ‘pop-out’ in visual search, enhancement of target 

conspicuity, signalling information by means of colour and grouping / segmentation 

of spatial content into categories by colour. Task Completion Times (TCTs) and the 

subject’s corresponding Correct Performance Scores (CPS) have been measured for 

targets defined by luminance contrast with or without the addition of RG and / or YB 

colour signals. The results confirm well established findings which show the 

importance of luminance contrast and the use of colour signals in visual search. In 

addition, the following new experimental findings have emerged from the study: 

 Targets with higher luminance contrast can be detected quicker and 

easier than those of lower contrast, but the addition of colour signals to 

such targets can greatly reduce TCTs and also improve task performance 

accuracy. This is particularly obvious when the visual tasks involve the 

use of large visual fields and suprathreshold coloured targets and 

chromatic saturations typical of those employed in current ATC 

applications. 

 In normal trichromats, TCTs decrease gradually with increasing colour 

signal strength with little additional benefit above 10 to 12 standard normal 

(SN) CAD threshold units. This is also the case when the target is defined 



CAP 1429 Executive summary 
 

October 2016 Page 10 

by spatial cues and the task can be carried out (although more slowly) in 

the absence of colour signals. 

 Both RG and YB colour signals yield significant advantages by shortening 

TCTs (often as much as four fold), even when colour is used redundantly 

and the task can be completed without the use of colour signals. 

 When task specific information is displayed over large visual fields, YB 

colour signals have some advantage over RG, largely because YB 

chromatic sensitivity falls off less rapidly with increasing distance on the 

retina (measured as the angular separation between the location of the 

target and the point of regard). Although RG signals, particularly when 

small targets are involved, have advantages over YB signals in central 

vision, the opposite seems to be the case when the working visual field is 

large. 

 Colour signals are more effective when added to targets defined by 

increments in luminance (i.e., when viewing bright as opposed to dark 

objects presented against a uniform background). This observation 

applies to both RG and YB stimuli. 

 The loss of colour vision was assessed accurately in subjects with varying 

severity of congenital colour deficiency together with the corresponding 

loss in visual performance. In general subjects with even mild congenital 

RG colour deficiency perform less well when the task involves the use of 

colours of low chromatic saturation which they confuse, i.e., colours that 

differ mostly in RG content. The same mildly deficient subjects perform 

the same task as well as normal trichromats when YB colour signals are 

employed. 

 Subjects with mild congenital colour deficiency (e.g. those with thresholds 

less than ~ 4 SN CAD units) can perform colour related tasks when 

several coloured targets are involved, but only when larger chromatic 

saturations are employed (i.e., > 10 SN CAD units). The addition of YB 

colour difference signals to targets defined by luminance and RG colour 

contrast ensures that mild congenital colour deficients perform visual 
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search tasks with virtually the same speed and accuracy as normal 

trichromats. Under such conditions, subjects with mild RG congenital 

deficiencies perceive suprathreshold colours defined by a normal YB 

component and a reduced RG signal. 

 Visual performance in dichromats and also in subjects with severe loss of 

RG colour vision is significantly worse when compared to normal 

trichromats except for colours that rely almost entirely on YB colour 

differences. The ‘effective’ luminance contrast of red and green coloured 

targets in subjects with severe RG colour deficiency also varies with 

increasing chromatic saturation, even when the luminance contrast, as 

seen by normal trichromats, remains unchanged. This can have 

unexpected results on visual performance since increasing the chromatic 

saturation towards red or green will have no effect on RG colour contrast 

in dichromats, but such changes can alter significantly the luminance 

contrast of the target (as seen by the colour deficient subject). This effect 

can either cause an improvement or worsening of visual performance in 

an anomalous trichromat, although the effects will be largest in 

dichromats. The type of outcome depends on the size and polarity of the 

initial luminance contrast (as specified for a normal trichromat), type of 

colour deficiency involved (i.e., deutan or protan) and whether the 

increased colour saturation is in the red or green direction. 

 By studying a large number of deutan- and protan-like subjects with 

varying severity of colour vision loss we were able to derive some 

equivalence between the subject’s performance on Holmes-Wright type A 

(HW-A) lantern and the corresponding CAD threshold. In addition, 

analysis of historical evidence of certification outcomes based on 

conventional tests (i.e., Ishihara pseudoisochromatic plates and the HW-A 

lantern tests) was also carried out. This analysis and the new results led 

to the establishment of the statistical equivalence between historically 

accepted pass / fail limits (based on the use of conventional tests) and the 

severity of colour vision loss as measured on the CAD test. We were 

therefore able to propose CAD threshold limits that correspond to 100% 

correct performance on the HW-A lantern. This approach yields justifiable 
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‘colour safe’ standards based on CAD thresholds without the need for 

detailed studies.  

These new findings and the analysis of results obtained in normal trichromats and in 

subjects with congenital colour deficiency led to three categories that one can 

justifiably use to describe trichromatic colour vision: 

1. ‘Normal’ trichromatic Colour Vision (CV1). This category includes all 

those with RG and YB CAD thresholds below the upper normal limits that 

have been established for healthy aging (Barbur and Rodriguez-Carmona 

2015). 

2. ‘Functionally normal’ trichromatic colour vision (CV2). This category 

includes all applicants with a CAD threshold ≤ 2.35 CAD units. This limit is 

sufficient to pass all normal trichromats, irrespective of age and ~ 7% of 

the least affected deutans. The latter exhibit almost normal RG colour 

discrimination and pass the HW-A lantern test with zero errors. In terms 

of anomaloscope match parameters, the deutans that pass exhibit match 

ranges within normal limits, but require more ‘green’ in the red / green 

mixture field to match the monochromatic yellow field. These subjects are 

not likely to have any colour detection and discrimination problems when 

suprathreshold colours defined by both RG and YB components are 

employed in visual displays. The least affected protan-like subjects make 

errors on the HW-A lantern and exhibit minimum RG colour thresholds 

well above 2.35 CAD units. No protan subjects can therefore be included 

in this category. 

3. ‘Safe’ trichromatic colour vision (CV3). This category includes all 

applicants with YB CAD thresholds within the normal range and RG 

thresholds ≤ 4 CAD units. The higher limit is sufficient to pass all normal 

trichromats and ~ 22% of deutan subjects. This higher limit matches the 

percentage of deutans that pass the HW-A lantern (22%) when using the 

CIE protocol that has been recommended for use with this lantern. 

Although some of the deutans included in this group will have RG colour 

discrimination difficulties with small RG colour signals that are close to 

normal thresholds, all these subjects exhibit normal levels of visual 
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performance when suprathreshold colours defined by both RG and YB 

components are employed in visual displays. The least affected protan-

like subjects make errors on the HW-A lantern and exhibit minimum RG 

colour thresholds above 4 CAD units. As a result, no protan subjects 

would be included. 

Important recommendations 

The enhancement of key aspects of visual performance as a result of adding RG and 

/ or YB colour signals to targets defined by luminance contrast in large field visual 

tasks has been investigated in normal trichromats and in subjects with congenital 

colour deficiency. Speed of performance and accuracy have been measured and 

related to the subject’s RG and YB colour vision sensitivity. The recommendations 

put forward in this report are based largely on these findings and also on the 

correlation between CAD thresholds and pass / fail error scores on Ishihara test 

plates and HW-A lantern tests measured in over 1000 subjects with both normal 

trichromacy and congenital colour deficiency. 

In the absence of detailed studies designed to establish minimum colour vision 

requirements for specific occupational tasks (as has been done for flight crew in 

aviation and for train drivers for Transport for London), an acceptable alternative 

would be to consider carefully the three categories described above and to select the 

one that can be considered safe, without discriminating unfairly against those 

subjects with congenital colour deficiencies that can achieve levels of performance 

equivalent to normal trichromats. 

 If the visual task requires detection and naming of colours for small signal 

lights (e.g. red, green, yellow, blue and white, etc.), or the discrimination 

of the smallest possible colour differences in order to judge uniformity of 

colour reproduction in manufactured goods, or the need to adhere to the 

commonest appreciation of perceived colour appearance and colour 

names and / or the ability to use efficiently faint, desaturated colours to 

segment objects into groups on visual displays, a CV1 pass would be 

justified. 
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 When the visually-demanding, colour-related tasks involve the use of 

suprathreshold colours (e.g. with chromatic saturations and colour 

differences that are well above detection thresholds, which is the normal 

practice when colour is used deliberately to enhance visual performance 

in working environments), a CV2 pass can be allowed without 

compromising either efficiency or safety. Applicants with a CV2 pass can 

discriminate small RG colour differences, make few errors on the Ishihara 

plates test, and more importantly, make no errors with signal lights that 

are equivalent to the HW-A lantern (i.e., small (often diffraction limited) 

whites, greens and reds of varying intensity). Based on these findings, a 

CV2 pass would be appropriate for air traffic controllers and seafarers 

(i.e., lookout officers). 

 The CV3 category is appropriate for the majority of normal working 

environments that employ suprathreshold colours and do not involve 

discrimination of fine colour differences or the need to make correct 

judgements of colour appearance. Subjects with a CV3 pass will have 

sufficient RG chromatic sensitivity to carry out suprathreshold, colour-

related tasks, even when RG colour signals align along the corresponding 

colour confusion lines. CV3 is an important category for a number of 

reasons and hence benefits from further justification. Visual scenes in real 

working environments involve the use of large objects with spatial features 

that are often several times above the acuity limit. This is also the case 

when objects and images are generated on visual displays. The overall 

appearance of each object is determined by a combination of its size, 

luminance and YB and RG chromatic contrast. Differences in YB colour 

signals are often present in objects that are commonly classed as reddish 

and greenish and in red / white signal colours (such as the Precision 

Approach Pathway Indicator (PAPI) lights). If large chromatic saturations 

are employed, subjects with mild RG colour deficiency (e.g. those with a 

CV3 pass) will be able to make use of the reduced RG colour signal to 

carry out the colour-related task, even in those rare cases when YB colour 

differences are absent. The only slight disadvantage is that these subjects 

will be slower than normal trichromats when the tasks require visual 
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search in large displays. One can, however, make use of this information 

and the novel findings that have emerged from this study in relation to the 

increased efficiency of YB signals in the periphery of the visual field to 

optimise the colours used in visual displays. When suprathreshold YB 

colour difference signals are also added to objects defined by luminance 

and RG colour contrast, congenital deficients that fall into the CV3 

category can perform multi-colour visual search tasks with the same 

accuracy and speed as normal trichromats. Equally importantly, the 

majority of these subjects pass the HW-A lantern test, with equal number 

of false positives and false negatives centred with respect to the pass / fail 

limit of 4 CAD SN units. A CV3 pass is therefore appropriate for 

applications that involve the use of large colour differences, particularly 

when these also involve YB colour signals. With appropriate design and 

choice of colours, the CV3 category can also be appropriate for use in the 

ATC environment as well as in many other occupations that involve the 

use visual displays. 
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Chapter 1 

Introduction 

Air traffic control officers (ATCOs) are tasked with providing the aeronautical 

guidance needed for safe and efficient movement of air traffic from origin to 

destination. The primary purpose of air traffic control (ATC) worldwide is to provide 

information and support for pilots to ensure safe transit of aircraft and to organise 

and expedite the flow of traffic. 

The immediate airport environment is controlled by visual observation from the 

airport control tower, including movement of aircraft and vehicles operating on 

taxiways and runways of the airport itself and aircraft in the air near the airport 

(anywhere from 10 to 20 km). Surveillance displays are also available to controllers 

for airborne traffic approaching and departing. These dynamic displays include a 

map of the area, the position of various aircraft, and data tags with aircraft 

identification, speed, altitude and other relevant information. En-route air traffic 

controllers work in facilities called ATC Centres and provide services to aircraft in 

flight between airports. Each centre is responsible for many thousands of square 

kilometres of airspace, known as a Flight Information Region, and for the airports 

within that airspace. The National Air Traffic Services, commonly referred to as 

NATS, is the main air navigation service provider in the United Kingdom. It provides 

en-route air traffic control services to flights within the UK Flight Information Regions 

and the Swanwick Oceanic Control Area (north eastern part of the Atlantic Ocean). 

NATS also provides ATC services to fourteen UK airports. 

The main problems faced by ATC services are primarily related to peak volumes of 

air traffic demand and weather changes. Several factors dictate the amount of traffic 

that can land at an airport in a given period of time. About four minutes is allowed for 

each landing aircraft to touch down, slow, and exit the runway before the next aircraft 

crosses the approach end of the runway. Further challenges can also arise when 

departures are slotted in the time between arrivals. Advances in ATC systems have 

now made it possible to sequence planes hours in advance; nonetheless it is critical 

to monitor cruising altitude and horizontal separation between airborne aircraft. 
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Weather is also a major factor in traffic capacity. Rain, ice or snow on the runway 

cause landing aircraft to take longer to slow down and exit, thus reducing the safe 

arrival rate and requiring more space between landing aircraft. Fog can also cause a 

decrease in landing rate and thunderstorms present a variety of hazards to aircraft 

and disruption to prearranged sequences. As a result, there is an unavoidable need 

for ATCOs to handle a large amount of information on visual displays and to sustain 

attention to visually-demanding operations over long periods of time. 

This report follows on from a previous CAA report on “Minimum Colour Vision 

Requirements for Professional Flight Crew: II. The Use of Colour Signals and the 

Assessment of Colour Vision Requirements in Aviation” published in 200λ. Although 

this mainly involved professional pilots many of the concepts and methodology 

employed are similar. 

1.1 The use of colour in ATC applications 

Colour is arguably a very effective, compelling, and attractive method available for 

enhancing visual performance when using visual displays. The appropriate use of 

colour signals can speed up visual search and hence reduce the time needed to 

locate objects in crowded scenes (Carter 1982). Evidence that has emerged from 

several studies demonstrates clearly that colour coding is superior to other 

achromatic visual attributes in many tasks that involve the processing of visual 

information over a large visual field, particularly when ‘grouping’ operations are 

involved in complex visual scenes (Christ 1975). A fundamental property of colour 

mechanisms in human vision that yields significant advantages in visual search is 

the independent processing of colour and luminance contrast signals (Barbur et al. 

1994; Birch et al. 1992; Kaiser and Boynton 1996). The existence of different visual 

mechanisms dedicated to the processing of colour signals also means that objects 

defined by colour are resilient to background clutter and are often picked up instantly 

and processed in parallel over large regions of the visual field (Barbur et al. 2003; 

Barbur and Forsyth 1988; Treisman and Gelade 1980). Colour signals can therefore 

be used as a distinct, additional feature to increase target ‘conspicuity’, but also to 

signal information and to group together spatially discrete objects that are usually 

defined by luminance contrast. Although the mechanisms that process luminance 
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contrast have a much higher spatial resolution and enable us to see fine edges and 

contours and to detect very small spatial detail in low contrast, the addition of colour 

signals can enhance the conspicuity of objects of low luminance contrast (Barbur 

and Forsyth 1988), but more importantly, different colours can be used to signal 

information through colour coding and also to segment objects into groups and the 

visual field into areas of interest. All these advantageous attributes can enhance 

visual performance and speed up motor responses in visually demanding tasks. 

In the past, the primary colour-related task of ATCOs involved the identification of 

coloured text on flight progress strips and recognition of aircraft and their direction of 

flight at night. The latter was performed from the ATC tower and was based largely 

on perception of red, white and green navigation lights. These early techniques were 

important since the use of colour was not usually accompanied by redundant cues 

(Mertens 1990). The use of colour has increased greatly in the ATC environment and 

has become an important tool in arranging and presenting information as a result of 

rapid advancement in applications and the use of visual displays. New technologies 

and automation tools have been added to existing displays which allow users to 

customise their own colour schemes. Consequently, many recommendations as to 

the use of colour for ATC followed (HF-STD-001 2003; CAA 2014; Cardosi and 

Hannon 1999; HF-STD-002 2007). In general, ATCOs have to process a large 

amount of information and even when used redundantly, colour signals can help 

speed up visual processing, enhance performance and enable operators to cope 

with more challenging tasks. Knowledge on the use of colour in visual displays has 

increased significantly during the last few decades and largely pragmatic guidelines 

have emerged to maximise the benefits of colour coding. The following is a summary 

of some known guidelines: 

 Whenever colour is used on a display for coding safety critical information, 

it should be used redundantly with additional cues, i.e. spatially unique 

features defined by luminance contrast, moving or briefly presented, 

repeated flashes, audible signals, etc. 

 Colour should be used consistently for the same functions across all the 

displays used by a single controller. The same colour conventions and 

meanings assigned to individual colours also need to be compatible 

across displays. 
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 Historical / cultural colour conventions should not be violated, such as red 

for danger, yellow for warning and green for clear. 

 When a specific colour is used to assign a unique meaning, the number of 

unique colours employed should be less than six. 

 All colour coded text and symbols should be at least three times above 

the normal acuity limit and presented in sufficient luminance contrast. 

 The specific colours and background luminance selected for use on a 

visual display must also take into account the environment, ambient 

lighting and the limits of the specific monitors. 

 Pure, bright, highly saturated colours should be used sparingly. These 

colours should only be used for displaying critical information briefly, so as 

to avoid perceptual habituation and strong chromatic adaptation. 

Saturated red and blue colours, when presented simultaneously, can 

create unwanted issues with depth perception. 

 Saturated blue should not be used for displaying text or other small 

symbols and fine spatial details and blue should in general not be used as 

a background colour. 

Although existing guidelines are undoubtedly useful, they also have limitations since 

they are largely concerned with the perception of colour and are not always based 

on studies designed to evaluate the effect of colour on task performance (Xing and 

Schroeder 2006). Enhancement of sustained attention, parallel processing of colour 

defined features with immediate identification of coloured objects, signalling of 

specific information by means of colour coding and grouping operations by 

segmenting objects of interest into groups and / or useful categories are important 

attributes that benefit from appropriate use of colour signals. Other benefits of colour 

vision in relation to large field, visually demanding tasks have also been identified. 

The work carried out at the Centre for Applied Vision Research at City University on 

the use of colour in displays also identified the advantages of enhanced conspicuity 

that can be achieved by adding colour signals to objects defined by luminance 

contrast (Barbur and Forsyth 1988; Walkey et al. 2005), the relative benefits of using 

RG and YB signals when the visual scene involves the use of large visual fields and 

the contribution colour signals can make to reaction times (Barbur et al. 1998; 

Walkey et al. 2006). In this study we have identified the most important benefits of 
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using colour in visual displays (with emphasis on ATC applications) and have 

developed visual tests to quantify these benefits in subjects with normal trichromatic 

vision. In general, colour signals were used redundantly so that completion of the 

task was possible even in the absence of colour. In addition, we also investigated a 

large number of subjects with congenital colour deficiency and examined how the 

severity of colour vision loss affects the levels of performance measured in normal 

trichromats. The following sections describe in greater detail the roles colour signals 

can play in complex visual tasks. 

Enhancement of object conspicuity 

An important property of colour signals is to enhance the ‘effective’ contrast of 

objects. An object defined by both luminance and chromatic contrast, in general has 

a higher ‘perceived’ contrast. In the absence of colour signals, visual search times 

and other aspects of visual performance that involve detection and recognition of 

spatial cues depend largely on the luminance contrast of the target. When the 

luminance contrast is low, the addition of colour signals, particularly to targets 

defined by luminance increments, results in improved visual performance and 

shorter task completion times (Barbur and Forsyth 1988; Walkey et al. 2005). 

Pop-out and parallel processing of colour signals 

ATCOs are often required to detect and interpret quickly novel, critical information 

that may appear in different sections of an ATC display. This is usually not a problem 

on a simple, un-crowded display, but when the display is cluttered with additional 

information, visual crowding can make the visual search more challenging. Crowding 

caused by objects and characters defined by luminance contrast has less effect on 

coloured stimuli which can still be detected and localised rapidly. This phenomenon 

is called “pop-out” and has been described in earlier studies (Treisman and Gelade 

1980). Pop-out is especially useful when crowded and large visual displays are 

employed. Many stimulus features that enable spatial judgements such as the 

presence of a gap in a ring can only be detected in central vision within a small 

visual field around the point of regard, often described as ‘visual lobe size’. Eye-

movements shift the point of regard over the scene until the target of interest is 

detected. When the visual lobe size is very small (as is the case for a very 

demanding high acuity task), serial search follows and consequently the time needed 
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to locate the target can be very large. A coloured target, on the other hand, is 

detected in parallel without the need for serial search. This is because adding colour 

to the target causes a large increase in visual lobe size and this in turn decreases 

significantly the time required to locate the target. Large objects that in addition to 

being defined by luminance contrast are also coloured can often be detected and 

localised in crowded scenes without the need for any eye-movements. In such 

cases, the visual search is reduced to a single saccade which directs the point of 

regard onto the target. Large stimuli cannot always be employed since the amount of 

information to be displayed is substantial in many flight situations as well as in menu 

bars, usually placed along the sides of the display. More than one saccade is 

normally required to search for objects in the visual field, but the use of colour 

reduces significantly the time needed for visual search. Because achromatic 

attributes are used in the form of text, shape, graphics and shading to represent 

detailed information, colour appears as a distinct dimension to create conspicuous 

differences between a target and distractors. Thus, pop-out of colour-coded 

information in complex scenes is efficient and desirable (Treisman and Gelade 

1980). In order to minimise the variability in performance one experiences in natural 

environments, laboratory experiments often employ visual scenes consisting of 

distractors that cause visual crowding and a target that differs in one of more visual 

attributes to the distractor elements. The subject’s task is to search the scene and to 

locate the target in repeated trials as rapidly as possible. These are the reasons why 

one of the experiments designed for this study measures how the choice and 

strength of colour signals employed shortens TCTs and how this advantage is 

affected in subjects with congenital colour deficiency. 

Coding known information by means of colour 

While our sensory system can handle a large amount of information, the bottleneck 

is often our cognitive system when parallel processing of information is not usually 

the norm. 
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Source: Daily Mail (hyperlink - 
http://video.dailymail.co.uk/video/bc/rtmp_uds/1418450360/2015/07/07/1418450360_4342043187001_4341
995080001.mp4) 

To speed up cognitive processing, one needs to reduce cognitive load by organising 

complex information into categories defined by visual attributes that can be easily 

identified and often processed in parallel. One example is the representation of daily 

flights to and from each of five UK airports as shown in Figure 1. This is made more 

dramatic by showing the build-up of traffic as a rapidly advancing movie (see link 

above). A less impressive, but equally important example of the use of colour is the 

representation of precipitation in ATC displays. Although precipitation varies 

continuously, it is categorised into six levels in the ATC environment: Levels 1-2 for 

light weather, Levels 3-4 for moderate heavy weather, and Levels 5-6 for severe 

weather. Controllers make decisions by identifying the weather levels instead of the 

precise value of the precipitation. Colour is often used to convey information which is 

essentially a task of colour naming. Colours that are linked directly to certain objects 

must be linked correctly to specific colour names. In the example of weather 

precipitation, the six levels are displayed in different colours. Seeing some areas 

filled with red, a controller can immediately recognize the presence of severe 

weather. In the ATC environment, identification of two stimuli is usually performed at 

separate spatial locations and times. Typically, a controller remembers the colour by 

its name and searches for and identifies the target by its colour. When certain 

objects are combined with specific colour signals these objects become easier to 

Figure 1: The use of superimposed coloured paths to represent the daily flights to and from each of five 
UK airports (Paul Haskins, National Air Traffic Services (NATS), 2015). 

http://video.dailymail.co.uk/video/bc/rtmp_uds/1418450360/2015/07/07/1418450360_4342043187001_4341995080001.mp4
http://video.dailymail.co.uk/video/bc/rtmp_uds/1418450360/2015/07/07/1418450360_4342043187001_4341995080001.mp4
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remember in identification tasks when memory is required. Moreover, colour 

becomes increasingly more effective as an aid in the recall of memorized items 

(Sachtler and Zaidi 1992). For example, when used to identify information such as 

aircraft shapes, geometric shapes, and alphanumeric signs, colour cues were often 

more effective than size, brightness, shape or text (Christ 1975). The superiority of 

colour signals to the use of spatially discrete cues defined by luminance contrast 

becomes more noticeable in complex scenes when challenging identification tasks 

are involved. 

Segmentation of complex scenes into areas of interest by means of 

colour 

The human visual system organises complex scenes into meaningful objects and / or 

spatially distinct regions. This is often described as ‘segmentation’ (Pinker 1λ84). 

Visual segmentation can enhance performance and make the visual task less 

demanding and less tiresome. For example, a controller can spatially separate the 

aircraft situations area, or the number of aircraft of immediate responsibility from the 

menu areas in a radar display. Thus, when controllers need to find a command in the 

menu bars, they can direct their attention to specific regions of the display. As ATC 

displays are usually complex, grouping operations are needed to reduce controller 

workload. Since the human visual system processes colour separately from 

achromatic visual features, colour is one of the ways to segment a display into 

separate regions (Nothdurft 1993). 

Segmentation tasks can be either regional or intended to group objects of interest 

into categories. Regional segmentation involves segmenting a spatially continuous 

region from its surrounding materials, i.e. filling an area with colour to segment a 

restricted airspace from non-restricted airspace. Specifically, Yamagishi and Melara 

(2001) demonstrated that chromaticity information is more effective than luminance 

in regional segmentation. On the other hand, pattern segmentation involves grouping 

together spatially discontinuous features that share some common characteristics, 

i.e. data blocks of aircraft owned by a controller in white and those of un-owned 

aircraft in green (see Fig. 2). By doing so, the owned aircraft and un-owned data 

blocks are visually segregated, which in turn makes the visual tasks easier to carry 

out. 
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Source: Heathrow’s Advanced Surface Movement Guidance control system. 

En-route air traffic control facilities do not require a direct view of the airport or 

surrounding airspace and the ambient lighting conditions can be controlled. Display 

operations carried out in the control tower are often more challenging because of 

varying daylight levels and the possibility of direct sunlight falling on the displays. 

The luminance and chromatic contrast of the information presented on visual 

displays can change as a result of variations in ambient illumination (Cardosi and 

Hannon 1999). The light output of visual displays for use under such conditions 

should ideally adjust dynamically to account for changes in ambient light level with 

separate configurations for daytime and night time operation. Glare shields or anti-

glare coatings may also be necessary, depending upon the location of the display in 

the tower. 

1.2 Colour vision deficiencies and visual displays 

The advancement in the technology of visual displays has provided great 

opportunities for the use of colour to provide many of the benefits described so far. 

The obvious requirement is that the operator must be able to make use of colour 

Figure 2: Example of colour coded data blocks used in air traffic control. Data blocks are clusters of 
small text containing descriptive information of a flight and altitude, the colour indicates whether they 
are owned or not and whether there are any warnings associated with a particular aircraft. 
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signals. Subjects with normal trichromatic colour vision possess three distinct 

classes of cone photoreceptor. These contain short (S), middle (M) and long (L) 

wavelength sensitive photopigments with appropriate peak absorption wavelengths 

( max). Variant L- and / or M-cone genes can cause significant shifts in the 

corresponding max values and this in turn can cause large changes in chromatic 

sensitivity. In addition to max changes, other factors such as the amount of pigment 

present in photoreceptors and the relative numbers of L- and M-cones in the retina 

can also affect chromatic sensitivity. Red / green deficiency is the most common type 

and is caused by either the absence of or the abnormal functioning of L- or M-cones. 

The corresponding condition is normally described as protan or deutan deficiency, 

respectively. Colour vision deficiency affects approximately 8% of men and less than 

1% of women (Sharpe et al. 1999).  

 

Table 1: The different classes and relative distribution of colour deficient subjects that make up ~ 8% of 
the male population. 

There is little doubt that when the stimulus conditions involve small RG colour 

differences that are close to normal thresholds, subjects with congenital colour 

deficiency perform less well when compared with normal trichromats. Studies carried 

out over several decades have shown that subjects with abnormal colour vision 

made more errors and produced slower motor responses than those with normal 

colour vision (Bergman and Duijnhouwer 1980). Mertens and Milburn (1996) 

examined and compared the performance of normal trichromats and colour 

deficients on a number of simulations of colour dependent ATC tasks, i.e. colour 

coding in flight strips, aircraft lights and signal lights in tower operations and colour 

weather radar. Their results show higher error scores in colour defectives compared 

to normal trichromats. In addition they found that only two per cent of protanomalous 

could name the colours (light and dark green, light and dark yellow and light and 

dark red) of a weather radar display without error, although 43% of deuteranomalous 

and 10% of deuteranopes could achieve normal scores. Ramaswamy and Hovis 

(2004) in a study of visual displays used for the control of train movements found 

that more than half of their 52 colour deficient observers could perform as well as the 

Protanope Deuteranope Tritanope P-nomalous D-nomalous T-nomalous Total

1 1.1 0.002 1 4.9 0 8.002

†Gegenfurtener, K.R. & Sharpe, L.T.  "Color Vision, from Genes to Perception" : Cambridge University Press.

Accepted Prevalence of Color Vision Deficiencies†

Other facts based on normal trichromats and colour deficient subjects studies at AVRC
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99th percentile performance of the colour normal control group in naming eight 

colours (red, yellow, green, blue green, blue, purple, white and grey) generated on a 

visual display. Mahon and Jacobs (Mahon and Jacobs 1991) found that observers 

with abnormal colour vision, except mild deutans who passed the Farnsworth 

Dichotomous test, D15 (Richmond, USA), made 30 to 40 per cent errors naming the 

six colours used on aviation electronic flight instrument displays (white, red, green, 

amber, blue and magenta). 

Such findings and significant discrepancies in outcome are not surprising since the 

severity of colour vision loss in subjects with congenital RG deficiency forms a 

continuum from almost normal chromatic sensitivity to complete absence of colour 

vision (Barbur and Rodriguez-Carmona 2012). The level of difficulty associated with 

colour-related tasks also varies considerably from task to task. In general, redundant 

cues are almost always involved and the colours used are always well above normal 

thresholds and stimulate both RG and YB mechanisms. The latter are rarely affected 

in congenital colour deficiency. Nevertheless, even mild RG colour deficients 

confuse some colours, particularly those that rely mostly on RG colour differences 

and this can be of concern in some applications. 

1.3 Visual standards for European Class 3 (ATCO) 
certification 

ATCOs are required to identify correctly the colours of aviation lights, and to use 

effectively the display screen equipment designed for the management of air traffic. 

Accordingly, ATC applicants must obtain the European Class 3 Air Traffic Controller 

medical certificate, which requires normal trichromatic colour vision. In spite of this 

clearly stated requirement, the criteria for obtaining this certificate specifies zero 

errors on the first 15 plates of the Ishihara test (24 plates edition) which examines 

only RG colour vision (CAA 2015). In the UK, those failing the Ishihara test (see 

Section 2.1) will need to take the Colour Assessment and Diagnosis (CAD) test (see 

Section 2.4) and to pass as ‘normal trichromats’ in order to gain a Class 3 certificate. 

In other states in Europe, those that fail the Ishihara test can opt to be examined on 

the anomaloscope (Nagel or equivalent) (EATM 2006), which in turn examines only 

the applicant’s RG colour vision. The parameters associated with an anomaloscope 
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match show significant inter subject variability and do not correlate well with the 

severity of colour vision loss (Barbur et al. 2008; Wright 1946). In the UK, the 

Holmes-Wright lantern type A (HW-A) (see Section 2.3) was accepted as a 

secondary test when applicants failed the Ishihara plates prior to the introduction of 

European Class 3 medical requirements. 

Follow up colour vision tests are not carried out when the European Class 3 medical 

certificates are renewed. If the Ishihara plates were used for assessing colour vision, 

only RG deficiency would be screened for and any yellow-blue loss (either congenital 

or acquired) would not therefore be picked up. Since changes in chromatic sensitivity 

are often indicative of early-stage systemic (e.g. diabetes) or ocular diseases (e.g. 

glaucoma, age-related macular degeneration), it may be appropriate for both RG and 

YB colour sensitivity to be assessed regularly at medical examinations. These data 

can then be used to detect when the progression of any inherent (often subclinical) 

disease yields colour thresholds that fall outside the upper, age-corrected limits 

established for normal vision (Barbur and Rodriguez-Carmona 2015). 

1.4 Problems identified with current and past colour 
assessment methods 

There are two versions of the Ishihara test and the analysis of errors made by 

normal trichromats and subjects with congenital colour deficiency is specific to the 

version used. The 38 plates edition includes all the plates that make up the 24 plate 

version, but the probability of making an error on a particular plate depends on the 

subject’s class of colour vision and is also plate-specific within each class 

(Rodriguez-Carmona et al. 2012). The analysis presented here is restricted to the 

use of plates 1 to 15 of the 24 plate version since this version is most commonly 

used. Before the introduction of the European Class 3 colour vision certification for 

ATCOs, the standard UK CAA protocol for colour assessment relied on the use of 

the 24 plates version of the Ishihara test followed by HW-A lantern as a secondary 

test. All those that failed the Ishihara test were assessed using the HW-A lantern. 

Table 2 (A, B) describes the expected outcome for this protocol when 1000 

applicants are assessed. The calculations are based on the accepted prevalence of 

congenital colour vision deficiency (see Table 1). Almost all normal trichromats pass 
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the first 15 plates of the 24 plate version with two or less errors (see Table 2A). In 

addition, 8.3% of deutan subjects also pass when two or less errors are allowed. 

Those that failed the Ishihara test (see Table 2) were then assessed using the HW-A 

lantern test. The HW-A lantern is used as a secondary test and all normal 

trichromats and also 15% of the deutan applicants that failed Ishihara with two or 

less errors also pass. If all the deutans are tested on the HW-A lantern, 22% pass. 

These results confirm earlier findings which have been known for some time and 

stated by the CIE (CIE 2001). What is important to note is that the protocol based on 

first 15 plates of the Ishihara 24-plate version with two or less errors as a pass 

followed by the HW-A lantern test passed all normal trichromats and 22% of 

applicants with deutan deficiency. About 8% of applicants were required to carry out 

the secondary test.  

Predicted outcome per 1000 applicants (Ishihara pass: 2 or less errors) 

Applicants 1000 

No. that fail 

Ishihara  

No. that 

fail HW-A 
No. of ATCs 

Normals 920 4 0 920 

Deutans 60 55 47 13 

Protans 20 20 20 0 

Total 1000 79 67 933 

% of applicants that undergo secondary tests= 7.9 

% of normal that fail Ishihara =  0.5 

% of deutans that pass = 21.7 

% of protans that pass = 0.0 

% total colour deficient subjects that pass = 16.3  

Table 2a: Predicted outcome per thousand applicants based on two or less errors on plates 1 to 15 of the 
Ishihara 24 plates test as a pass followed by the HW-A lantern test.  
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Predicted outcome per 1000 applicants (Ishihara pass: zero errors) 

Applicants 1000 

No. that fail 

Ishihara 

No. that 

fail HW-A 
No. of ATCs 

Normals 920 92 0 920 

Deutans 60 59 47 13 

Protans 20 20 20 0 

Total 1000 171 67 933 

% of applicants that undergo secondary tests = 17.1 

% of normal that fail Ishihara =  10.0 

% of deutans that pass = 21.7 

% of protans that pass = 0.0 

% total colour deficient subjects that pass = 16.3 

Table 2b: Predicted outcome per thousand applicants based on zero errors on plates 1 to 15 of the 
Ishihara 24 plates test as a pass followed by the HW-A lantern test. The percentages of applicants that 
fail either Ishihara or HW-A lantern within each class are based on results obtained in 742 subjects 
(Rodriguez-Carmona et al, 2012). The least affected deutans who pass Ishihara with either zero errors or 
two or less errors would also pass the HW-A lantern test. Since the overall outcome is the same, the only 
advantage of using Ishihara as the primary test is to reduce significantly the number of applicants that 
require a lantern test. 

The first protocol was followed for decades and ensured that all normal trichromats 

and ~ 22% of deutan subjects passed and could therefore obtain the medical 

certification required to work as ATCOs. EU Commission Regulation (No 1178/2011) 

requires ATCO applicants to have normal trichromatic colour vision which is most 

commonly assessed using a criterion of zero errors on the first 15 plates of the 

Ishihara 24 plates test version. 

When the protocol is changed so that a pass requires zero errors, the number of 

colour deficient subjects that pass the full protocol (with the HW-A lantern as a 

secondary test) remains the same, but 10% of normal trichromats and almost all 

subjects with congenital colour deficiency fail the Ishihara test and go on to do the 

secondary test. The latter becomes essential if one wishes to ensure that all subjects 

with normal trichromatic colour vision pass. If the HW-A lantern test is not carried 

out, the EU regulation requiring that all ATCO applicants that pass should have 

normal trichromatic colour vision is achieved (at least in respect of RG colour vision 

by allowing zero errors on the Ishihara test). More importantly, the unwanted 

consequence is that 10% of normal trichromats will not pass. The HW-A lantern is no 

longer being manufactured and existing lanterns have been unserviceable for 

several years. To overcome this problem, UK CAA have replaced the HW-A lantern 

with the CAD test. Figure 3 shows the small but clear separation between the least 
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sensitive normal trichromats and mildest deuteranomalous subjects. The CAD test 

also examined YB colour vision. 

 

Figure 3: RG and YB CAD thresholds measured in normal trichromats (n=333) and deutan (n=269) and 
protan (n=132) subjects. The results show the clear separation between the least affected 
deuteranomalous subjects and the least sensitive normal trichromats. 

Since 2009 the CAA have been using zero errors on plates 1-15 of the 24-plate 

version as the pass criterion. The severity of colour vision loss for those that fail the 

Ishihara test is then quantified using the CAD test (Civil Aviation Authority 2013). 

ATC applicants are required to have normal trichromatic colour vision. The CAD test 

has the sensitivity and specificity required to diagnose correctly the class of colour 

vision involved and to quantify the severity of YB and RG loss. This protocol ensures 

that all ATC applicants that have normal trichromatic colour vision pass. The same 

protocol is also used to assess pilot applicants, but different pass / fail limits are 

employed depending on the applicant’s class of colour vision deficiency (UK CAA 

and FAA 2009). As a result of applying the new CAD based pass / fail limits to pilot 

applicants, ~ 35% of subjects with congenital colour deficiency pass and are classed 

as safe to fly. 

When using the full CAD test, the subject’s RG and YB thresholds are measured and 

compared against the age-matched upper normal limits. The subjects are also 

classified automatically as: 

 Normal trichromats, 

 Deutan-like, 

 Protan-like, 

 Tritan-like, 

 Acquired loss of colour vision. 
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The strict adherence to current regulations for ATC operators (i.e., normal 

trichromatic colour vision) means that the 22% of deutans that passed secondary 

testing prior to 2009 and were allowed to work as ATCOs in the past can no longer 

do so. Although these deutan-like observers may not perform colour-related, 

‘threshold’ tasks as well as subjects with normal trichromatic colour vision, they are 

nevertheless able to cope with the ‘suprathreshold’ use of colour in the ATC 

environment and can name accurately the white, red and green signal colours in the 

size and varying intensities employed in the HW-A lantern. 

This clear example justifies the need to make best use of past evidence and current 

knowledge to ensure that ATCO applicants with mild colour deficiency are not 

disadvantaged unfairly by requiring normal trichromatic colour vision. It is generally 

accepted that the aim of regulatory authorities is to ensure that colour deficient 

applicants who pass ‘specified requirements’ are able to achieve the level of 

performance in safety-critical ATC tasks that may reasonably be expected of 

subjects with normal trichromatic colour vision. There are at least three possible 

options that should be considered:  

 The need to conduct a detailed study to assess the use of colour signals 

within the ATC environment, similar to what was carried out for 

professional pilots (UK CAA and FAA 2009). Set up pass / fail limits based 

on the evidence that is likely to emerge from this study. This option will be 

discussed further in section 3. 

 Restrict the chromaticities of the colours employed in ATC applications to 

those that generate large YB colour signal differences and set a RG pass 

/ fail limit similar to that employed for pilots (i.e., thresholds < 6 CAD 

units). These measures would ensure that adequate, residual colour 

discrimination remains and that the supra-threshold colours employed will 

always be detected by those that pass. 

 Develop and adopt a practical approach using modern colour assessment 

tests with pass / fail limits that virtually replicate the outcome of earlier 

practices based on Ishihara and the HW-A lantern. This approach would 

ensure that those that pass can name accurately very small red, green 

and white signal lights of varying intensity pass. The HW-A limit based on 
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past practices does not rule out a higher limit being equally appropriate, 

but in the absence of a detailed study, no solid evidence exists at this time 

to justify a higher limit. This option will be discussed further in section 4 of 

this report. 

There are also further considerations that justify the need to establish safe, minimum 

colour vision requirements that are appropriate within specific environments and to 

avoid the easier alternative (from a regulatory viewpoint) of requiring every applicant 

to have normal trichromatic colour vision. The recent UK Disability Discrimination Act 

(2004) has to a certain extent exposed weaknesses in the current standards and 

procedures. Companies rely on existing regulations and require applicants to hold a 

valid medical certificate that conforms to these regulations. The problem arises when 

these regulations are not adequate and reliable evidence can be produced to 

demonstrate that a colour deficient applicant is able to carry out essential, colour-

related occupational tasks with the accuracy and efficiency that can be expected of 

normal trichromats. 
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Chapter 2 

Description of the relevant colour vision tests 

2.1 Ishihara plate test 

The Ishihara pseudoisochromatic plates test consists of a series of numbers outlined 

by different coloured dots as shown in Figure 4. This is the most widely accepted 

screening test for RG colour deficiency and uses camouflage to exploit the expected 

colour confusions of colour deficient observers (Belcher et al. 1958; Birch 1997; Frey 

1958; Sloan and Habel 1956). The Ishihara test consists of single or double-digit 

numbers that have to be identified verbally and pathways for tracing for those who 

cannot read numbers. The 24-plate test version consists of the following: plate 1 for 

demonstration of the visual task, plates 2-15 for screening, plates 16-17 for protan / 

deutan classification and plates 18-24 contain pathways which are intended for the 

examination of non-verbal subjects (only the first 15 plates are used for screening in 

aviation). The Ishihara test employs a range of designs, such as transformation, 

vanishing or hidden digit. In the vanishing type plate (Fig. 4B) a figure is seen by 

colour normals but not by colour deficients; the reverse of this, the hidden figure 

design, is harder to design and not always so effective. More complex patterns are 

contained in transformation plates (Fig. 4A), with careful placement of the colour dots 

giving an apparent transformation of the perceived figure; normal trichromats see 

one figure and colour deficient people see a different figure in the same design. 

Positive evidence of colour deficiency is given by transformation designs whereas 

vanishing designs give negative evidence. The test employs luminance and YB 

colour noise and is therefore limited to RG deficiency. The test does not assess loss 

of YB sensitivity. 
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Figure 4: Examples of the types of plates used in the Ishihara test (24 plate edition): (A) a transformation 
plate; while a normal trichromat would see the number ‘8’, colour deficients would see ‘3’ (B) a vanishing 
plate; the number ‘73’ would not be visible to most colour deficients. 

The plates are viewed at about 65-75cm (i.e., an arm’s length) distance using a 

MacBeth easel lamp for illumination. The book is placed in the tray beneath the lamp 

which has been filtered to have a spectral power distribution that is equivalent to 

average daylight. The direction of illumination is approximately 45⁰ with respect to 

the surface of the plate. The choice of illuminant used is important because the 

reflectance of the patches on the plates have been chosen to have certain 

chromaticities when illuminated with daylight. The examiner instructs the person 

being tested to report the number they see on each plate as the pages are turned, 

and warns the subject that on some occasions they may not see a number. The first 

introductory plate is used to demonstrate the visual task. This plate is designed so 

that anyone, including colour deficient subjects should see this number. With a 

viewing time of no more than 3 seconds allowed for each plate, undue hesitation on 

the part of the subject is the first indication of colour deficiency. 

Figure 5 shows that 90.2% (213) of the subjects with normal trichromatic colour 

vision make no errors on the first 15 plates of the 24-plate version of the Ishihara test 

and almost all normals (except for 1) get all plates correct with 3 or less errors. 

Figure 5 shows that the probability of making � or less errors is much greater for 

deutan than for protan subjects. If the number of Ishihara plates failed is a valid 

indicator of the severity of colour vision loss then the results of Figure 5 demonstrate 

that for the same number of errors made, the severity of colour vision loss is much 

greater in protan than deutan subjects. For example, 26% of deutan subjects make 8 

or less errors compared with only 7% of protan subjects. Note that no subject made 

errors on the introductory plate, hence the maximum number of possible errors is 14. 

  

A B 
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Figure 5: The probability of making � or less errors when reading the numerals on the first 15 plates of 
the Ishihara 24-plate test version plotted for a group of normal trichromats and for subjects with 
congenital, deutan, and protan colour deficiency. 

2.2 Nagel anomaloscope 

The Nagel anomaloscope (Fig. 6) is based on colour matching and is often regarded 

as the standard clinical reference test for identifying and diagnosing red / green 

colour deficiency, NRC-NAS Committee on Vision (1981). This instrument produces 

a disc stimulus that consists of two half fields and is viewed in an optical system. The 

top half of this disc is illuminated by a mixture of spectrally narrow red and green 

wavelengths, and the lower half is illuminated by spectrally narrow yellow light. Two 

control knobs are used, one to alter the red-green colour mixture ratio in the top field, 

and the other to alter the luminance of the yellow lower field (as shown on the right in 

Fig. 6). The test is administered in two stages. Usually only the dominant eye is fully 

tested and the other eye is then checked to ensure the same match. This confirms 

the high probability of any congenital colour deficiency. Following familiarisation with 

the instrument controls, the subject is then asked to alter both the control knobs until 

the two halves of the circle match completely in both colour and brightness. The 

subject is not asked to name the colours. A few matches are made, with the 

examiner "spoiling" the match after each setting. About ten seconds are allowed for 

each match and then, to minimise the effect of chromatic after images, the subject 

looks away from the instrument into the dimly lit room for a few seconds and then the 

procedure is repeated. The second stage of the test is to determine the limits of the 
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matching range. The initial matches made by the subject are used as a guide by the 

examiner to set the red / green mixture ratio near to the estimated limits of the range. 

The subject has to just alter the luminance of the lower yellow half of the field and 

see if an exact “match” in both colour and brightness can be made with the set red / 

green mixture in the upper half. The ratio of the red / green mixture field is altered 

systematically by the examiner until the limits of the matching range are found. The 

matching range is recorded from the matching limits on the red / green mixture scale 

and the midpoint calculated. 

Ideally, the red / green “match” parameters should provide enough information to 

determine whether a person has normal or defective red / green colour vision; 

whether colour deficiency is deutan or protan; and whether the subject is a dichromat 

(absence of a cone-type) or an anomalous trichromat (anomalous cone-type). The 

matching range and the match midpoint should also provide an indication of the 

severity of the RG colour vision loss. Normal Nagel match parameters have however 

been recorded in a small number of subjects with clear loss of RG sensitivity as 

assessed using the CAD test. Such observations and the large variation in match 

midpoint in ‘normal’ trichromats have not passed unnoticed in earlier studies. “While 

the anomaloscope is thus eminently satisfactory for distinguishing the protanomalous 

from the deuteranomalous observer, the correlation between the abnormality of the 

yellow match and the deficiency of colour discrimination is not always maintained. 

Although on average, the observer with poorer colour discrimination makes a more 

erroneous yellow match than the observer with better discrimination, the reverse can 

happen with individual observers” (quotation from W.D.Wright 1946). More recently a 

model based on the genetic analysis of cone pigment genes in congenital colour 

deficiency was developed to examine how spectral shifts in the wavelength of peak 

Red
670 nm

Green
546 nm

Yellow
589 nm

2 degrees

B

Figure 6: Photograph of the Nagel anomaloscope (Model I, Schmidt and Haensch, Germany) and 
schematic illustration of the Nagel anomaloscope split field. The percentage mixture of red to green in 
the top half and the luminance of the yellow bottom field can be changed until a match of the two fields is 
achieved. 
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spectral sensitivity and the corresponding optical densities of L- and M-cones, as 

well as their relative numbers in the retina affect the parameters of the yellow match 

(Barbur et al. 2008). The model predicts the shifts in midpoint caused by differences 

in optical density in subjects with normal trichromatic vision and also the normal 

match parameters observed in some subjects with significant loss of RG chromatic 

sensitivity. The latter observation is predicted by the model in subjects with variant L- 

and M-cone pigments who make relatively normal matches, but exhibit reduced RG 

chromatic sensitivity (Barbur et al. 2008). These observations and the need for an 

experienced examiner make the Nagel anomaloscope less attractive, particularly 

when some level of colour deficiency can be allowed as a pass. 

2.3 Holmes-Wright lantern (type A) (HW-A) 

The first colour vision lanterns were devised in the late 19th Century and were 

introduced as vocational tests for occupations as a practical means of determining 

whether applicants can identify signals and navigational aids. 

The Holmes-Wright lantern type A (see Fig. 8), manufactured in 1974 and was 

designed to reproduce the spectral features of some earlier lanterns, but with 

improved mechanical construction and modern light sources (Holmes and Wright 

1982). HW-A lantern is currently one of the CIE recommended colour vision tests for 

the transport services (CIE 2001). Although still is use, the HW-A lantern is no longer 

manufactured or supported.  

The HW-A lantern shows two vertical colours (Fig. 7 & 8A). Two reds, two greens 

and one white are used, which have x, y chromaticity co-ordinates within the 

internationally agreed specifications for signal lights (CIE 2001). Nine pairs of the 

colours are shown representing all the possible colour combinations (Fig. 7). The 

lanterns are viewed at 6 m (20 ft). Before beginning the test, the examiner 

demonstrates (the ‘DEM’ setting shown in Fig. 8B) the colours by showing red, green 

Figure 7: The nine pairs of vertical lights that are presented to an applicant as part of the HW-A colour 
screening test. 
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and white lights in the top positions of the first three pairs and naming them correctly. 

The examination is then carried out, starting in fairly dim room illumination, with 

colours at high luminous intensity (200 cd) (‘HIGH’ setting in Fig. 8B). 

In order to assess variability, several repeats of the HW-A test were carried out as 

part of this study. The nine pairs of colours were shown three times, making 27 

presentations of about five seconds each. The subject had to name the top and then 

the lower colour shown each time. The room was then darkened and the subject 

dark adapted for about 15 minutes; the test was then repeated again with the three 

sequences of nine colour pairs. Thus each subject was shown 54 pairs of lights. The 

examiner noted each colour misnaming the subject made. The results were sorted 

into number of types of misnaming for both light levels, e.g. 3 greens called ‘white’, 2 

whites called ‘green’, etc. The protocol followed by the CAA (prior to the introduction 

of the CAD test) consisted firstly in showing one run and if all nine pairs of lights 

were named correctly, no further runs were carried out and the subject passed the 

test (CP3 or ‘colour-safe’). If there were any errors (excluding red / green 

confusions), two more runs were carried out. In order to pass the test (CP3), the 

subject had to report correctly the colours of each of the 18 pairs of lights involved in 

the last two runs. However, if the subject made one or more errors, one more test 

was carried out in the dark following 15 minutes of dark adaptation. If the subject 

made no errors on this final run, the results were taken as a pass (CP3); otherwise 

the subject was considered ‘colour-unsafe’ or CP4. If at any stage the subject named 

a red as ‘green’ or a green as ‘red’, then the test was discontinued with a CP4 

certification outcome. 
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2.4 The CAD test 

The Colour Assessment Diagnosis (CAD) test has been described in an earlier CAA 

report (CAA 2009; CAA 2006). The CAD test is implemented on a calibrated visual 

display and consists of coloured stimuli of precise chromaticity and saturation that 

are presented moving along each of the diagonal directions of a square foreground 

region made up of dynamic luminance contrast (LC) noise (see Fig. 9B). The 

subject’s task is to report the direction of motion of the colour-defined stimulus by 

pressing one of four appropriate buttons. Randomly interleaved staircase procedures 

are used to adjust the strength of the colour signals involved according to the 

subject’s responses in order to determine the thresholds for colour detection in each 

direction of interest. This makes it possible to establish reliable estimates of red-

green and yellow-blue colour thresholds. The CAD test has a number of advantages 

over conventional tests both in terms of isolation of colour signals as well as 

sensitivity and accuracy: 

 Isolation of colour signals is achieved by masking luminance contrast 

signals generated by the moving coloured stimulus that is only 

photopically ‘isoluminant’ for the standard CIE ‘normal’ observer. This is 

particularly important since there is a large variation in L:M cone ratio 

Figure 8: Photographs of the Holmes-Wright type A lantern; front view (A) and rear view (B). 

A B 
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within normal trichromats (Carroll et al. 2002) and the variation in cone 

spectral responsivity functions in colour deficient observers will introduce 

variations in the perceived luminance contrast of most coloured stimuli. 

This is simply because the resulting luminance efficiency function, V( ), is 

likely to vary both amongst normal trichromats and within colour deficient 

observers. When using dynamic luminance contrast masking the 

applicants cannot make use of any other cues apart from colour to see the 

moving target and to carry out the task. 

 The severity of both red-green (RG) and yellow-blue (YB) colour vision 

loss is quantified in Standard Normal Units (SNU) which are easy to 

understand (see Fig. 10A&B) (Barbur et al. 2006; Rodriguez-Carmona et 

al. 2005). 

 The CAD test has close to 100% sensitivity and specificity in detecting 

congenital colour deficiencies and in classifying the type of deficiency 

involved. There is also excellent agreement (Barbur and Rodriguez-

Carmona 2012) with the Nagel anomaloscope (with a kappa statistic of 

0.97 based on 289 subjects). Since subjects with two potential variant 

genes can produce normal anomaloscope matched, but exhibit RG colour 

thresholds just outside normal limits (Barbur et al. 2008), there may well 

be good reasons why 100% agreement with the anomaloscope cannot be 

achieved. In terms of sensitivity, the CAD test can detect even minimal 

colour deficiencies (particularly in subjects with acquired loss of chromatic 

sensitivity) that may produce variable results or pass unnoticed in 

conventional colour vision tests. 

 The availability of built in, monocular and binocular normal, upper 

threshold limits from 6 to 85 years of age (see Fig. 11A&B) make the CAD 

test particularly useful in allowing for normal aging changes and in 

diagnosing acquired loss of RG and YB colour vision. 
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Figure 10: Ranked distribution of RG colour thresholds measured in subjects with congenital (A) deutan- 
and (B) protan-like deficiency. The spread in RG thresholds varies over a large range; mildest deutan 
deficiency starts at a RG threshold of just over 2 SNU whilst the lowest protan deficient subject 
measured had a threshold of ~4 SNU. The black circles show the best prediction of the ranks based on 
samples taken from four discrete distributions in the case of deutan-like subjects (i.e., four distinct 
subgroups that are needed to describe deutan deficiency) and only two to three discrete distributions in 
the case of protan-like subjects (Barbur and Rodriguez-Carmona 2012). 
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Figure 9: (A) The statistical limits for the standard normal (SN) CAD observer are plotted in the CIE (x,y) 
1931 chromaticity chart. The black cross at the centre of the diagram shows the chromaticity of the white 
background, (xb, yb): 0.305, 0.323. The dotted black ellipse represents the mean values computed from 
the distribution of RG and YB thresholds in 333 normal trichromats. The red and blue arrows indicate the 
corresponding SN unit for RG and YB colour vision, respectively. The grey-shaded area represents the 
statistical distribution of thresholds in a young population of normal trichromats. The inner and outer 
ellipses represent the 2.5% and the 97.5% limits of variability, respectively. The red, green, and blue 
dotted lines denote the “colour confusion bands” based on data measured in protanopes, deuteranopes, 
and tritanopes, respectively. The large coloured dots within the centre grey area plot measured 
thresholds that are typical of a normal trichromat. (B) Screen dumps showing the RG and YB stimuli 
employed in the CAD test. (C) Bespoke numeric keypad with raised buttons used by the subject to 
indicate the direction of movement of the coloured stimulus. 
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Figure 11: The statistical limits of RG (A) and YB (B) normal variability as a function of age for a sample 
of normal eyes. The dotted lines represent the mean thresholds and the corresponding ±2.5σ limits as a 
function of age (Barbur and Rodriguez-Carmona 2015). The results reveal the well-documented increase 
in thresholds below 10 years of age (Knoblauch et al. 2001) the optimum age for best thresholds around 
20 years, and the remarkably gradual and linear increase which almost doubles both the RG and the YB 
thresholds during the normal life span. The age dependence of CAD thresholds is also in excellent 
agreement with the square root of the total error score (√ TES) as measured in 382 normal subjects on 
the F–M 100-hue test (Kinnear and Sahraie 2002). The latter are shown by the dotted grey line which is 
almost indistinguishable from the mean CAD thresholds above 15 years of age. 
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Chapter 3 

Setting minimum colour vision requirements 

3.1 Identification of the most safety-critical colour 
vision tasks in ATC 

The exact benefits of colour vision in occupational environments are often difficult to 

assess, largely because of redundancy in the coding of visual information. The task 

of setting minimum colour vision requirements that are both fair and safe remains an 

important challenge, but the studies carried out for pilots and train drivers and the 

establishment of pass / fail limits based on task-related levels of performance 

equivalent to those measured in normal trichromats may offer an acceptable 

alternative to less rigorous practices that are currently employed in many 

occupational environments. 

The methodology introduced by the CAA (UK CAA and FAA 2009) to establish 

minimum colour vision requirements for pilots based on the applicant’s ability to carry 

out the most demanding, colour related tasks with the same accuracy as normal 

trichromats, can also be applied to other professional environments. This method 

can be summarised as follows: 

 The first task is to establish the most important, visually-demanding, 

colour-related tasks when the use of colour can enhance significantly the 

performance the operator can achieve over longer times, or / and the 

correct processing of colour signal involves safety-critical tasks. 

 Produce accurate (photometrically, radiometrically and spatially 

equivalent) simulations of the most demanding tasks in the laboratory and 

develop a method for quantifying the subject’s performance in these tests. 

 Measure percentage correct scores on each task identified as important 

or / and safety-critical in normal trichromats and also in subjects with 

varying severity of colour vision loss. 
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 Assess the severity of colour vision loss in each congenital colour 

deficient subject included in the study using a test that quantifies 

accurately the loss of chromatic sensitivity. 

 Relate the subjects’ ability to perform the specified tasks (in terms of 

efficiency and accuracy) to their colour thresholds and use these findings 

to establish pass / fail limits which ensure safe and acceptable levels of 

performance. 

Although many colour-related tasks can be identified within the ATC environment, 

the most important involve the use of large-field visual displays and the correct 

interpretation of signal lights (as seen from control towers). Many colour-related 

tasks do not require a direct view of the airport or surrounding airspace (particularly 

in an en-route control environment), and so ambient lighting conditions can be 

controlled. 

Work in control towers may also require the detection and correct interpretation of 

signal lights and the use of colour displays in ambient environments with poorer 

control of ambient illumination. Under such conditions, adequate display designs that 

make optimum use of visual parameters such as background luminance, object size, 

colour and luminance contrast become more important (Cardosi and Hannon 1999). 

In addition, there are no internationally or nationally agreed standards or 

specification regarding display and related human factors aspects. The use of colour 

in ATC displays is only one of the many aspects related to how information is 

displayed. Facilities often exist to change the colour palette within the air traffic 

management software to suit individual Air Navigation Service Provider 

requirements. 

The majority of colour-related tasks in the ATC environment involve large-field visual 

search where targets of interest presented on a display and located amongst 

multiple distractors must be processed efficiently. Based on the fact that any colours 

could potentially be selected to convey warnings related to a particular flight, the 

most critical condition in terms of colour deficient use would be when coloured 

targets separated by small chromatic differences fall along deutan or protan 

confusion axes. 
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In view of such observations, the work in this study focused on experiments 

designed to quantify the advantages of colour vision in ATC displays, the enhanced 

performance that can be achieved in optimum designs and the extent to which 

improved designs can benefit subjects with anomalous trichromatic colour vision. In 

addition to examining and relating the severity of colour vision loss to accuracy and 

speed of performance in large-field visual displays, we also examined how subjects 

with the same range of colour vision loss perform tasks that involve identification of 

signal lights. The measures of efficiency and accuracy achieved on display tasks and 

the percentage correct scores achieved on lantern tests were then compared against 

measures of the subject’s RG and YB chromatic sensitivity. This approach made it 

possible to grade the severity of colour vision loss into functional categories that may 

be appropriate for use within different occupational environments. 

3.2 Visual search 

The effect of reduced RG chromatic sensitivity on visual search times when colour 

signals are used in addition to other cues has been investigated previously (Cole et 

al. 2004; Cole and Macdonald 1988; O'Brien et al. 2002). The findings from these 

studies show that colour deficients require significantly longer visual search times to 

complete the task. The selection of parameters for the visual search task in these 

studies was not however intended to reflect the demands on the use of colour in 

ATC displays and the performance achieved in normal trichromats and colour 

deficient subjects was not related directly to accurate estimates of their RG and YB 

chromatic sensitivity. 

Performance in visual search is generally quantified by measuring the time taken to 

locate an object (i.e., the target of interest) that differs in some visual attribute to a 

large number of similar objects, usually described as distractors. The target can 

differ from distractors in one or more visual attributes such as size, orientation, 

contrast, colour or it can be flickering or moving. The time taken to locate the target 

stimulus amongst distractors relates strongly to the ‘visual conspicuity’ of the object 

(Barbur et al. 2003; Walkey et al. 2005) and is taken to reflect the capacity of the 

visual system to extend the visual field over which the target feature of interest is 

processed in parallel. In addition to measuring visual search times, it is also 
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important to check the percentage of correct scores achieved by the subject and this 

usually requires a second response to select one of a possible number of 

alternatives. Our visual search experiments required two responses from the subject. 

The first response signalled the detection of the target. When this button is pressed, 

the visual display returns to a uniform field. The program then waits until the subject 

indicates the location of a gap in a ring or its colour using a four-alternative, forced-

response procedure. A variant of this experiment employed 36 achromatic 

distractors (all Landolt rings with randomly selected gap orientation), three coloured 

distractors and a coloured test target. The subject’s task is to search for and locate 

the Landolt ring shown in one of four specified colours. Once the target is located, 

the subject has to press the centre button on the numeric keypad (see Fig. 13) to 

indicate the detection of the target. The pressing of the button returns the screen to 

the uniform background and the program waits for the subject’s second response 

which is needed to indicate the orientation of the gap or the colour of the target. In 

this way, it is possible to measure the subject’s response accuracy, by simply 

measuring the percentage of correct responses during the test. 

3.3 CRATO test study 

The Colour Requirements for Air Traffic Operators (CRATO) test was designed to 

measure the mean time needed to carry out the task, labelled as ‘Task Completion 

Time’ (TCT) and the ‘Correct Response Scores’ (CRS) for visual tasks that involve 

large visual fields and for stimuli of equivalent size and contrast to the data blocks 

employed in ATC displays. Although the objects employed are somewhat abstract 

since they consist of similar targets and distractors, the use of such stimuli makes it 

possible to evaluate how target contrast and colour affect visual performance. Stimuli 

were presented over a square region subtending ~ 20° of visual angle on a high 

resolution, ‘spectraview’, NEC monitor (PA301W, Tokyo, Japan). The background 

field was set at a luminance of 32 cd/m2 and had a chromaticity of xb = 0.305, yb = 

0.323 in CIE – (x,y) 1931 chromaticity chart. The coloured stimuli in all experiments 

were defined as chromatic displacements from background chromaticity (xb, yb) in 

specific colour directions. The programs needed for the study were developed by 

City Occupational Ltd (London, UK). The display calibration programs were the same 

as those employed in the CAD system (Barbur and Connolly 2011). 



CAP 1429 Chapter 3: Setting minimum colour vision requirements 
 

October 2016 Page 47 

As part of this study 70 subjects were examined: 33 normal trichromats and 37 

subjects with deutan- and protan-like colour deficiencies. The age of the subjects 

ranged from 17 to 65 years (mean 37 years, median 34 years). All subjects had best 

corrected visual acuities of 6/9 or better. 

Stimuli developed for CRATO experiments 

The following stimulus designs have been produced in order to quantify how 

luminance and colour contrast affect TCTs and CRSs in visual search tasks. We 

started by establishing the relationship between target luminance contrast, correct 

scores and TCTs on achromatic displays when spatial features are used to 

distinguish the target from distractors. The stimuli developed to achieve this aim 

consist of achromatic ‘ring’ distractors and a single target ring with a gap that can 

take one of four randomly assigned locations (Fig. 12). 

 

Figure 12: Examples of displays designed to investigate the effect of luminance contrast on visual 
search. Section (A) shows the uniform field with the centre cross that guided the participant’s point of 
regard before stimulus onset. The remaining sections show visual search scenes with targets of 15% (B), 
30% (C), 60% (D), -30% (E) and -60% (F) contrast. 

The gap size equals the width of the ring which in turn equals 1/5 of the outer ring 

diameter. The rings can have either negative or positive contrast with gap sizes 

selected randomly in the range 5 to 6 min arc. When viewed directly, the subjects 

have no difficulty in resolving the gap since its size is approximately equivalent to a 

Achromatic targets, gap detection, % contrast shown: -60 to 60
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full letter size at the limit of resolution of the eye (i.e., ~ 1’). 40 distractors were 

usually employed. 

The outer diameter of targets and distractors were selected randomly within the 

range 25’ to 30’. Data blocks on ATC displays are not of a fixed size and some 

variation will occur based on the amount of information available for a particular flight 

(see Fig. 1). The choice of size accounts for the fact that data blocks are made up of 

multiple characters and the visual acuity of ATCOs is presumed to be normal (6/6 

when tested binocularly). 

Prior to each presentation, a central fixation is displayed briefly to attract the 

subject’s point of regard to the centre of the field. Each target specification (i.e., each 

colour saturation or luminance contrast) was presented to the subject ~90 times so 

as to be able to compute the mean TCT and CRS performance parameters. If a 

subject failed to respond within 12 seconds from the start of a presentation, then that 

presentation was terminated and recorded as an error. 

Class I experiment – Achromatic visual search 

A fixation target (as shown in Fig. 14, section A) is presented briefly for ~ 350 ms in 

the centre of the screen. This is done to guide the subject’s point of regard to the 

centre of the field. Some 500 ms after the fixation is turned off, the display is 

populated with randomly distributed distractors. The target is positioned randomly 

and consists of a ring with a gap. Up to four different luminance contrasts can be 

investigated in the same experiment by randomly allocating one of four contrasts to 

the test target. The subject’s task is to search for and locate the target. One of four 

possible gap locations (i.e., top right, top left, bottom right and bottom left) is selected 

randomly in each display. The subject’s first task is to press the centre button on the 

numeric keypad as soon as the target is located. This action returns the screen to a 

uniform background. The subject’s second task is to press one of the four ‘red’ 

buttons (see Fig. 13) on the numeric keypad to indicate the location of the gap. This 

is an intuitively obvious task that requires negligible learning to carry out. On 

average, the time needed to locate the target and to note the orientation of the gap 

(i.e., the task completion time) decreases with increasing target contrast. Although 

some differences exist between positive and negative luminance contrast, both 

reach an asymptote above ~ 60% contrast (Fig. 13). 
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Figure 13: Typical results showing the effect of target luminance contrast on task completion times 
(TCT). The subject’s first task was to locate the target and to register the location of the gap. When the 
luminance of the target approaches that of the background, i.e. the target approaches 0% luminance 
contrast, the task can no longer be carried out, in fact below 10% contrast measurements took too long 
to complete. Little or no improvement in TCTs can be observed beyond ~ ±60% contrast. CRS values in 
this test were close to 100%. 

 

Class II experiment – Single coloured target with achromatic 

distractors 

In these experiments the distractors are defined only by luminance contrast and can 

be either full rings or Landolt Cs with randomly selected gap positions. The target 

stimulus was defined by both luminance and colour contrast. When full ring 

distractors were employed with a Landolt C target, the task could be carried out in 

the absence of colour signals (Fig 14 A,B&C). This we label as Class IIA 

experiment. The stimulus colour became very important when Landolt Cs were used 

as distractors (see Fig14 D,E&F). In the absence of detectable colour signals, the 

task could not be carried out. This condition we label as Class IIB experiment. The 

two stimulus conditions distinguish between the redundant (full ring distractors and 

Landolt C target) and the non-redundant (all Landolt Cs) use of colour signals. TCTs 

were measured for a number of chromatic displacement directions that generate 

colour contrast signals in only RG, only YB or RG and YB chromatic mechanisms. A 

number of colour signal strengths (i.e., chromatic saturations) were investigated 

along each direction. Figure 14 shows typical single coloured targets employed in 

Class II TCT experiments. The addition of colour signals causes what is often 

described as ‘pop-out’ and this shortens considerably the TCTs that can be achieved 

with only spatial cues. 
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Figure 14: Examples of displays designed to investigate how colour can reduce TCTs in visual search 
tasks. The target in sections A, B and C is defined by colour as well as the presence of the gap. Colour is 
therefore used redundantly. The target shown in sections D, E and F can only be distinguished from the 
background distractors by means of its colour signal. When the chromatic saturation is large, the target 
‘pops-out’ amongst distractors and the spatial cue becomes redundant. When this happens the visual 
performance is determined entirely by the colour cue. As a result, suprathreshold chromatic saturations, 
yield TCTs that are statistically equivalent for the two conditions (i.e., the presence of the gap adds no 
additional advantage to TCTs). 

Another variant of this (i.e., a Class IIC) experiment also used only colour to define 

the target (i.e., both target and distractors were shown as full rings so as to eliminate 

the spatial cue, see inset to Fig. 15B). In order to measure the percentage correct 

response scores, the subject was required to name the colour of the target. Four test 

colours were interleaved randomly in each experiment and the single coloured target 

displayed could have one of four possible colours which were shown to the subject 

before the start of the experiment. The subject’s first task was to press the target 

detection button as soon as the target was located. The display screen returned 

within a few milliseconds to a uniform field and the subject’s remaining task was to 

name the colour of the target by pressing one of four buttons assigned to yellow, 

blue, green and red colours. Since colour was the only target cue, TCTs became 

much longer as the chromatic saturation approached the subject’s chromatic 

threshold for the colour direction investigated. Surprisingly, this was less so for ‘blue’ 

targets which were easier to detect in the periphery of the visual field. This variant 

task is in principle similar to the Class IIB experiment since the target is defined only 

D

CBA

E F

Single coloured target – redundant (A,B,C) versus non-redundant (D,E,F) colour cues
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by colour. The task was however more demanding since in addition to discriminating 

between four possible colours, the subject also had to remember the colour 

assignments of the four buttons (See inset to Fig. 15B). Typical data in experiments 

using Class IIA and Class IIC are shown in Figure 15 for a 60yrs old subject with 

normal trichromatic colour vision. Although the results are very similar when the 

colours employed are well above threshold (which is usually the case in ATC 

displays), the absence of the spatial cue in the Class IIC experiment results in longer 

TCTs when faint colours are employed. The majority of experiments that involved 

single coloured targets were therefore carried using either Class IIA (colour and 

spatial cues) or Class IIB (colour only cues) experiments. 

 

Figure 15: Example of TCTs measured using Class IIA experiments (i.e., target defined by gap and colour 
cues, section A) and full rings (in the absence of spatial cues, section B) when the task of the subject 
was to name the colour of the target (Class IIC). Although colour signals are more effective for targets of 
positive luminance contrast, the TCTs converge to similar values for both positive and negative contrast 
when the colour signal is absent (A). Blue and yellow colours appear to be marginally more effective in 
large visual fields at low chromatic saturations, but the benefit of colour signals becomes very similar for 
all colours when the chromatic saturation is large. 
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Class III experiment – Multiple coloured objects with achromatic 

distractors 

In addition to achromatic distractors and the coloured target, three additional 

distractors were also coloured. Four different coloured objects were therefore always 

present in each display, as shown in Figure 16. As in Class I and II experiments, one 

of four luminance contrasts were allocated randomly to each object. This experiment 

is important since the use of more than one colour in a complex display may 

increase the need for trichromatic colour vision in order to benefit fully from the use 

of colour signals. The use of colour and spatial gap (Class IIIA) or colour only (Class 

IIIB) cue to define the test target gave rise to two distinct experiments. In Class IIIA 

experiments, only rings were used to generate both coloured and achromatic 

distractors. The subject had to search the scene for the Landolt C target which was 

always presented in the same colour, but could have one of four, randomly selected 

luminance contrasts. The target could therefore be identified by its colour and / or the 

presence of the gap. The test procedure remained the same in all experiments. The 

subject’s first task was to press the centre button on the numeric keypad as soon as 

the target was located. This caused the display screen to return to a uniform field 

and the subject’s second task was to press one of four corner buttons to indicate the 

orientation of the gap. Class IIIB experiments were again very similar, but the spatial 

cue was made ineffective by adding a randomly selected gap location to each ring in 

the display. The only cue available to locate the target was therefore its colour. The 

subject was shown all four colours at the beginning of the experiment and was then 

instructed to search for one of the four colours. Percentage correct responses were 

again measured by requiring the subject to press one of four buttons to indicate the 

location of the gap in the test target after each presentation. Although for very small 

chromatic signal strengths (that were close to the subject’s colour detection 

threshold), the two types of experiment yield vastly different TCTs, when larger 

colour saturations were employed, the two methods yielded very similar TCTs which 

suggests that colour coding is the dominant cue, even when the display contains 

multiple colours. As a result of these observations, the majority of experiments were 

carried out using Class III type experiments. 
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Figure 16: Examples of Class III displays designed to investigate how the use of multiple coloured 
objects affects TCTs in visual search tasks. The target in sections A, B and C is defined by colour as well 
as the presence of the gap. Colour is therefore used redundantly. In sections D, E and F the target has no 
distinguishable spatial cues and consequently its detection relies entirely on the correct processing of 
its colour. In practice, suprathreshold chromatic saturations, yield TCTs that are statistically equivalent 
(i.e., the presence of the saturated colour is sufficient to achieve the shortest possible TCT). 

 

Class II experiments (colour ‘pop-out’) – Preliminary findings 

To reveal the advantages of the use of colour in visual search an initial study was 

carried out to investigate by how much observers benefit from ‘pop-out’, i.e. when 

colo ur allows for rapid separation of target objects from distractors, see Figure 17. 
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Figure 17: Reminder of CRATO pop-out experiment (Class IIA) with a coloured target defined by a large 
chromatic displacement of 12 SN CAD units (i.e., 12 times above the mean normal threshold) towards the 
‘green’ region of the spectrum locus. In the absence of colour, a TCT of ~ 3s is needed on average to 
locate the target. With pop-out the, TCT is well under 1s. Following target detection and response, the 
subject’s second task is to report the location of the gap in the ring (in this case by pressing the bottom 
left button on the numeric keypad). 

Figure 13 shows the response times when the target was not defined by colour, but 

instead by a spatial cue; the target was a Landolt C whilst the distractors were 

complete rings. These results provide a baseline measurement which allows us to 

evaluate the advantage of pop-out. When colour is added to the target visual search 

times are improved. Figure 18 shows that the addition of yellow (62°), blue (242°), 

green (157°) and red (337°) separately, lowered the response times compared with 

the achromatic target (which corresponds to a chromatic displacement of zero CAD 

units). Targets and distractors had a percentage luminance contrast of ±60% and 

±30% with respect to the uniform background. These values are typical of luminance 

contrasts employed in ATC displays. TCTs were measured for chromatic saturations 

from 2 up to 28 CAD units in the RG direction and 2 to 12 CAD units, along the YB 

axis. This range of chromatic saturations is limited by the maximum limits that can be 

achieved on the visual display along the colour confusion lines, away from the 

selected background chromaticity. The presence of the additional spatial cue (i.e., a 

Landolt C target versus full ring distractors) meant that the subject can carry out the 

task, even in the absence of a colour signal. The addition of a colour signal facilitates 

the visual search process with TCTs below one second for larger chromatic 

saturations. In addition, yellow and blue targets appear to illicit faster responses for 

equivalent saturations. The polarity of luminance contrast for coloured targets does 

not appear to have a significant effect on TCTs. For all four coloured targets, there 

was no effect of chromatic displacement or luminance contrast with virtually 100% 

correct scores. 
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Figure 18: Class IIA experiment – pop-out. TCTs measured in a young subject with normal trichromatic 
colour vision as a function of colour signal strength measured along each of four directions away from 
the background chromaticity in the CIE 1931 chromaticity chart. The task is to locate a coloured target 
(Landolt C) amongst 40 achromatic distractors (rings). Achromatic response times to the same target are 
shown at a chromatic displacement of 0 CAD units. Data points represent the average response times of 
90 presentations with error bars representing the standard error. 

 

Effective luminance contrast of coloured targets in colour 

deficients 

TCTs measured as a function of colour signal strength in protanomalous subjects 

produced unexpected findings which merit further discussion. The luminance 

contrast of the coloured targets (as seen by a subject with normal trichromatic colour 

vision) in all CRATO experiments was always kept constant at a fixed value and 

independent of chromatic signal strength. In this way, we were able to investigate the 

benefit of increasing chromatic saturation on task completion times independently on 

luminance contrast. We know from the results obtained in Class I experiments that 

luminance contrast can affect TCTs, particularly for low contrasts. The results in 

subjects with normal trichromatic colour vision show that TCTs decrease to an 

asymptote with increasing colour signal strength or in the case of Class I 

experiments with increasing target luminance contrast. In the case of normal 

trichromats, the presence of the additional spatial cue makes it possible to identify 
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the target and to report the location of the gap correctly for every contrast value and 

chromatic saturation investigated. 

 

Figure 19a: Class IIA experiment. TCTs for two protan observers for yellow, green, blue and red targets 
as a function of colour signal strength (in CAD units). The targets had luminance contrasts of +60% and 
+30% and could therefore be detected easily by the colour deficient subjects when no colour signal was 
present. Although the luminance contrast of the targets remains independent of colour signal strength in 
normal trichromats, this is not the case in subjects with congenital deficiency and this can affect the 
‘conspicuity’ of the target and hence the TCTs. Subject DC and JY had RG CAD thresholds of 6.8 and 
21.5 SN units, respectively. The average CRS value measured in these tests was 99.2 ± 1.8%. 

TCTs for protanomalous subjects (Fig.19A and B) improve with chromatic saturation 

for yellow, blue and green target colours, but the opposite can be the case when one 

starts with targets of positive contrast and the increase in colour signal is towards the 

red region of the spectrum locus. This effect can be accounted for by the predicted 

changes in effective luminance contrast and the weak RG chromatic signal expected 

in a subject with protan deficiency. The right combination of initial target luminance 

and chromatic signal strength can reduce significantly the effective luminance 

contrast of the target in subjects with protanomaly or protanopia. This prediction also 

applies to targets of negative contrast and chromatic displacements towards the 

‘green’ region of the spectrum locus. The precise outcome remains difficult to predict 

accurately since the effectiveness of the residual RG colour signal may also depend 

on the luminance contrast of the target. One can however say with confidence that in 
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the absence of a strong chromatic and / or luminance contrast signal, the target can 

no longer be detected efficiently and this inevitably leads to long TCTs, as observed 

experimentally. In the absence of a strong chromatic signal, the subject relies on the 

luminance contrast to locate the ring with the gap, but the latter is being either 

increased or decreased by increasing the chromatic saturation of the target. It is 

therefore not unexpected to find that for some colour deficient subjects, the initial 

luminance contrast of the target can be reduced significantly by the addition of colour 

contrast. The subject can still rely on the use of some colour signals and in principle 

an initial positive contrast can also become negative by increasing the colour signal 

strength. These possibilities may account for the increased TCTs and the 

unexpected changes measured for large chromatic saturations in these subjects. 

The effect is also diminished or absent when the direction of chromatic displacement 

does not correspond to the protanopic colour confusion line and the increased 

chromatic saturation also generates YB colour difference signals which the subject 

can use to carry out the task. 

 

Figure 19b: Class IIA experiment. TCTs measured as a function of colour signal strength in two protan 
observers for yellow, green, blue and red targets defined by luminance contrasts of -60% and -30%. 
Subject DC and JY had CAD thresholds of 6.8 and 21.5 SN units, respectively. The average CRS value 
measured in these tests was 99.4 ± 1.0%. 

0 2 4 6 8 10 12

Chromatic Displacement (CAD units)

0
1

2
3

4
5

V
is

u
a
l 
s
e
a
rc

h
 t

im
e
 (

s
)

DC (-60% LC)
DC (-30% LC)
JY (-60% LC)
JY (-30% LC)

Blue (242°)

0 2 4 6 8 10 12

0
1

2
3

4
5

V
is

u
a
l 
s
e
a
rc

h
 t

im
e
 (

s
)

0 2 4 6 8 10 12

DC (-60% LC)
DC (-30% LC)
JY (-60% LC)
JY (-30% LC)

Yellow (62°)

0
1

2
3

4
5

0 4 8 12 16 20 24 28

Chromatic Displacement (CAD units)

DC (-60% LC)
DC (-30% LC)
JY (-60% LC)
JY (-30% LC)

Red (337°)

0 4 8 12 16 20 24 28

0
1

2
3

4
5 DC (-60% LC)

DC (-30% LC)
JY (-60% LC)
JY (-30% LC)

Green (157°)



CAP 1429 Chapter 3: Setting minimum colour vision requirements 
 

October 2016 Page 58 

Deutan subjects show improvement in TCTs with increasing target saturation for 

both red and green target colours (Fig. 20A and B). This is more obvious for the 

mildly affected deutan subject (JL), whereas for the more severe subject (LS) this 

improvement is less obvious, with only a slight reduction in TCTs for targets of 

largest chromatic saturation. 

For yellow and blue targets, both protan and deutan subjects, performed the visual 

search task with the speed and accuracy measured in normal trichromats. 

 

Figure 20a: Class IIA experiment – pop-out. TCTs measured in two deutan observers for yellow, green, 
blue and red targets with positive luminance contrasts of 60% and 30%. Subject JL is a mild deutan with 
a CAD threshold of 3.4 SN units, and LS is a severe deutan with a threshold of 19.5 SN units. The average 
CRS value measured in these tests was 99.5 ± 0.9%.  
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Figure 20b: Class IIA experiment – pop-out. TCTs measured in two deutan observers for yellow, green, 
blue and red targets with negative luminance contrasts of 60% and 30% compared to the background 
field. Subject JL is a mild deutan with a CAD threshold of 3.4 SN units, and LS is a severe deutan with a 
threshold of 19.5 SN units. The average CRS value measured in these tests was 99.6 ± 0.8%. 

 

Effect of eccentricity across a visual display 

Large field displays are often used in ATC applications to present the complex 

information needed to carry out the task. Coloured objects are often seen in the 

periphery of the visual field, but the colours appear less saturated, particularly when 

red or green. Yellow and blue targets, on the other hand, are somewhat less 

affected. As a result, both normal trichromats and subjects with congenital RG colour 

deficiency perform well in large-field, visual search tasks when yellow or blue colour 

signals are added to a target defined by luminance contrast. The effect is particularly 

strong for targets of positive contrast. A separate experiment was carried out to 

investigate the extent to which the better performance achieved with yellow and blue 

targets may, at least in part, be linked to the differential loss of RG and YB chromatic 

sensitivity with eccentricity. The results in Figure 21 show how YB and RG 

thresholds vary with target eccentricity for stimuli defined by luminance contrast. 

Yellow-blue detection thresholds show only a small increase whereas red-green 
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thresholds increase more rapidly with a significantly greater loss of chromatic 

sensitivity at 10° eccentricity. 

 

Figure 21: Variation in RG and YB colour vision with eccentricity. (A) Thresholds for detection of red, 
green, yellow and blue colours measured at a number of discrete eccentricities using a four-alternative, 
forced-choice procedure. Each data point shows the average threshold for 3 normal trichromats and the 
error bars indicate ±SD. For convenience the thresholds are expressed in CAD units. Each disc (see 
inset) subtended 25 min arc and its luminance contrast was selected randomly in the range 50% to 70% 
to avoid the use of luminance contrast cues when a colour signal is added to one of the four discs (see 
inset). The subject’s task was to press one of four buttons to indicate the location of the coloured disc. 
(B) Chromatic sensitivity, i.e., the reciprocal of the threshold colour signal (plotted on a log scale) for 
each of the four colour directions employed. 

In summary, YB colour signals have some advantage over RG, largely because YB 

chromatic sensitivity falls off less rapidly with increasing distance on the retina 

between the point of regard and the target location. RG colour signals, particularly 

when small targets are involved, have advantages over YB signals in central vision. 

TCTs in subjects with colour vision deficiency 

When no spatial feature is used to define the target (see Fig. 16 D, E&F), the task is 

more demanding and the subjects need to see and register correctly the colour of 

the target in order to locate and identify it. Data blocks contain detailed information, 

however this information must be read in a serial manner in order to determine which 

are relevant and should be ‘attended’ and which are not. There will therefore often 

be no guiding spatial cue that delineates target data blocks from other information on 

the display. Efficient and effortless processing of visual information and the ability to 

sustain a high level of performance over long periods of time benefits greatly from 

the use of colour signals. Multiple coloured targets are often presented on ATC 
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displays and the use of colour makes segmentation and identification of objects into 

different categories easy to achieve. This in turn leads to more efficient visual search 

and overall improvement in visual performance.  

The use of multiple colours over a large visual field and the absence of additional 

spatial cues to define the test target is arguably the most demanding use of colour in 

visual displays. This corresponds to Class IIIB experiment as described in section 

3.3.4. It was therefore decided that this type of test should be carried out with a 

larger number of normal trichromats and subjects with varying degrees of colour 

vision loss. Multiple coloured distractors were shown on the screen and both target 

and distractors were Landolt Cs. The target could therefore only be located if the 

subject had adequate chromatic sensitivity to do so. The colour hues that isolate RG 

and YB chromatic mechanisms can be more challenging when the subject has 

reduced chromatic sensitivity as a result of congenital deficiency. With respect to the 

background employed in CRATO tests these colours correspond to chromatic 

displacement directions of: 337° (red), 157° (green), 62° (yellow) and 242° (blue). 

Only one of these colours was assigned to the target in each experiment and the 

remaining three colours and the many achromatic Landolt Cs acted as distractors. 

The chromatic saturation of the target was set at 12 CAD units. This suprathreshold 

colour signal is easily achievable on visual displays. Subjects with normal 

trichromatic colour vision also show little or no improvement in TCTs for chromatic 

displacements above 12 CAD units (see Fig. 18). In other words, TCTs reach an 

asymptote well before 12 units. Luminance contrasts of targets and distractors were 

set at ±45%, values that are well above detection thresholds for the target sizes 

employed. 

Figure 22 shows visual search times and performance scores (expressed as 

percentage correct responses), for normal and colour deficient subjects in Class IIIB 

experiments. Fifteen normal trichromats and ten deutan subjects completed this 

experiment. The results show that on average colour deficient subjects cannot carry 

out the visual search task as quickly as normal trichromats and consequently they 

end up with significantly longer TCTs. Deutan subjects with minimal deficiencies, i.e. 

RG colour thresholds below 3 CAD units, can however carry out the task accurately 

with similar percent correct scores. The negative luminance contrast condition tends 

to produce longer TCTs for both red (Fig. 22A) and green (Fig. 22B) targets, within 
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the deutan group. In contrast, for both yellow (Fig. 22C) and blue (Fig. 22D) target 

colours, and for both luminance contrast conditions, the colour deficient subjects 

perform as well as normal trichromats both in terms of speed and response 

accuracy. It is worth noting that not all subjects achieved 100% correct responses 

and this may well be due to errors in using the keypad, or other lapses in attention, 

rather than an inability to register accurately the colour of the target. This observation 

applies both to normal trichromats and to colour deficients. Only results for normal 

trichromats and deutan subjects are presented since only minimally affected deutans 

can pass Class IIIB experiments. Several protans were also tested, but everyone 

failed to complete the test for RG colours. 

 

Figure 22a: Results of Class IIIB experiments in normal trichromats and colour deficient subjects. TCTs 
and CRS values plotted against the subject’s RG CAD threshold. Both targets and distractors were 
Landolt Cs, 40 distractors (3 coloured). The chromatic signal strength was set at 12 CAD units. 
Luminance contrast (LC): +45% and -45%; colours displayed: 64o, 157o, 244o and 337°; colour 
investigated: red (337°). 
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Figure 22b: Same as Fig. 22A, but the colour investigated was green (157°). 

 

Figure 22c: Same as Fig. 22A, but the colour investigated was yellow (62°). 
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Figure 22d: Same as Fig. 22A, but the colour investigated was blue (242°). 

 

Pastel colours – targets with suprathreshold RG and YB 

components 

The experimental findings so far have shown that for yellow and blue targets 

congenital colour deficient subjects can perform, in terms of TCTs and correct 

scores, in a similar way to normal trichromats. In contrast, for the red and green 

targets, only the mildest colour deficient subjects managed to achieve the 

percentage correct scores of normal trichromats and in general, they all produced 

longer TCTs. Since colour hues and chromatic saturations can technically be altered 

in ATC applications to suit individual operators, it is of interest to examine whether 

suprathreshold colours with both RG and YB colour differences (that are 

conveniently although not always correctly described as pastel colours) can be used 

by subjects with congenital RG colour deficiency to achieve the levels of 

performance that are associated with normal trichromatic colour vision. To test this 

possibility, we repeated the Class IIIB experiments with four suprathreshold colours 

selected to ensure that each colour generates both RG and YB colour differences. 
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The aim of this experiment was therefore to establish whether use of pastel colours, 

as defined in Figure 23, yield visual performance equivalent to normal trichromats. 

 

Figure 23: New colour directions (lines at 22°, 109°, 198° and 293°, plotted in CIE 1931 chromaticity chart). 
The central point indicates the background chromaticity. Note that for the background chromaticity 
shown, the colour confusion lines correspond to 64° and 244° for YB discrimination, and 337° and 157° 
for RG discrimination. Protan, deutan and tritan confusion axes with respect to the selected background 
field are indicated by the corresponding red, green and blue dots, respectively. The phosphor limits of 
the monitor are indicated by the grey lines. 

For simplicity, the background chromaticity remained unchanged, but new colour 

directions of 22°, 109°, 198° and 293° (as shown in the in CIE-x,y 1931 chromaticity 

chart) were selected to ensure that each of the four potential coloured targets had a 

RG and a YB colour contrast component. Any other directions that are closer to the 

YB axis than those selected for this study (see Fig. 23) will generate even greater YB 

colour differences which RG colour deficients can use. Screen dumps showing 

coloured distractors drawn in the new (pastel colours) and the old (RG and YB axes 

isolating colours) are shown for comparison in Fig. 24). 
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Figure 24: Sections A and C show stimuli for Class IIIA experiments when the target is defined by both 
colour and spatial cues. Section B and D display Class IIIB experiments when the subject has to search 
for the named target colour. ‘Pastel’ colours generated along chromatic displacement directions of 22°, 
109°, 198° and 293° are shown in sections A and B. Colours generated along directions that isolate RG 
and YB mechanisms (i.e., 64°, 157°, 244° and 337°) are shown in sections C and D. Following the 
detection of a named colour (selected in advance), the subject has to report the orientation of its gap. 

TCTs were measured in 31 normal trichromats and 39 congenital colour deficients 

(25 deutans and 14 protans) in Class IIIB experiments, for each of the four colour 

directions proposed to ensure the colours generated were suprathreshold for both 

RG and YB chromatic mechanisms. The subjects with congenital colour deficiency 

varied in the severity of RG colour loss from almost normal thresholds to complete 

absence of RG colour vision. Figure 25 shows the results for each of the four pastel 

colours investigated in normal trichromats and in deutan and protan subjects. TCTs 

and the corresponding correct scores are plotted as a function of subject’s RG CAD 

thresholds. 
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Figure 25a: Results of Class IIIB experiments with the modified pastel colours (generated along 
directions of 22°, 109°, 198° and 293°) in normal trichromats and colour deficient subjects. TCTs and CRS 
values plotted against the subject’s RG CAD threshold. The results shown are for the ‘orange’ direction 
of 22o. Both targets and distractors were Landolt Cs, 40 distractors (3 coloured), chromatic signal 
strength: 12 CAD units. Luminance contrast (LC): +45% and -45%. Data are shown for 31 normal 
trichromats, 25 deutan and 14 protan observers. 

The results for normal and colour deficients show that the addition of a YB colour 

signal to a target defined by luminance and RG colour contrast can benefit 

significantly both deutan and protan subjects. In fact, some of the colour deficients 

achieve TCTs and CRSs that are equivalent to those measured in normal 

trichromats. This was particularly the case for targets that also had positive 

luminance contrast. Although some deutans required slightly longer TCTs 

particularly for greenish (109°) and reddish (293°) colours when shown in negative 

luminance contrast, the correct response scores remained high and equivalent to 

normal trichromats even in deutans with large RG colour thresholds. Protans, on the 

other hand, take longer to carry out the visual search task for targets of both positive 

and negative luminance contrast, particularly those with thresholds above 7 CAD 

units. In spite of being on average slower to carry out the task, protans continue to 
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produce accurate percent correct scores even when their RG CAD thresholds are as 

high as 20 SN CAD units. 

 

Figure 25b: Same as Fig. 25a, but the colour investigated was greenish (109°). 

 

These modified colour directions improve visual search in subjects with colour 

deficiency. In addition, these directions do not impair the performance achieved in 

normal trichromats. In fact ‘pastel’ colours often produced shorter TCTs in normal 

trichromats when compared to the primary ‘green’ colour (i.e., 157°). 
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Figure 25c: Same as Fig. 25A, but the colour investigated was bluish (corresponding to an angle of 198°). 

 

Figure 25d: Same as Fig. 25A, but the colour investigated was reddish (corresponding to an angle of 
293°). 
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Demonstration of ‘normal’ performance with pastel colours in 
deutans 

As part of a separate study designed to investigate eye-tracking and visual search 

we have examined how well a deutan subject with moderate deficiency (RG 

threshold of 4.8 CAD units) performs the visual search task when presented with 

multiple colours that isolate either RG or YB chromatic mechanisms (i.e., 64°, 157°, 

244° and 337°). The chromatic saturation employed in this study was 10 CAD units 

above threshold for each of the four colours. Although not part of this study, the 

results are of interest and relevant to this report. The same experiments were then 

repeated with the four pastel colours, each of which generates both RG and YB 

chromatic signals (i.e., chromatic directions of 22°, 109°, 198° and 293°). In addition, 

the colour deficient subject carried out the Class I experiment with pure achromatic 

targets of 15% and 60% luminance contrast. Two normal trichromats also carried out 

the same tests to provide comparison data. The results are presented in Figures 26-

28 and the key findings are summarised below: 

 When the target is purely achromatic and defined by a spatial cue or when 

YB colour signals are added to the target, the deutan subject performs as 

well as normal trichromats. This is also the case when no spatial cue is 

available and the subject has to rely totally on the named colour of the 

target. 

 The deutan subject produces 100% correct scores in all these tests. 

 When the same experiments are carried out with suprathreshold colours 

that isolate the RG chromatic mechanism (i.e., 157° and 337°), the subject 

continues to produce 100% correct scores (see Fig. 26), but his TCTs are 

significantly longer than those measured with YB colours (Fig. 26A). 

 When only the four pastel colours are employed in the visual search 

experiment (i.e., 22°, 10λ°, 1λ8° and 2λ3°), the subject’s TCTs are similar 

for all colours and completely within the normal range. His scores are 

100% correct for each colour in both Class IIIA (colour and spatial cue) 

and IIIB (colour only) experiment. 
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These findings confirm that the deutan subject is able to use each of the four pastel 

colours to find the target of interest with the same speed and accuracy as normal 

trichromats. 

 

Figure 26: Results for Class IIA (A), IIIA (B) and IIIB (C) experiment for a deutan subject with a RG 
threshold of 4.8 CAD units. Coloured bars show TCTs for a chromatic saturation of 10 CAD units for, 
from left to right, yellow, blue, green and red. Targets and distractors had a percentage luminance 
contrast of 15% and 60% with respect to the uniform background. The grey bars show results for the 
achromatic condition (Class I experiment) for 15% and 60 % luminance contrast. The results show that 
this deutan subject performs as well as normal trichromats (see Figs. 27 and 28) when the target is 
purely achromatic and defined by a spatial cue or when YB colour signals are added to the target. The 
subject’s TCTs are similar for all colours and completely within the normal range when pastel colours are 
employed (B and C). When RG isolating colours are employed the subject requires longer TCTs 
compared to YB isolating colours. Percent correct scores are also displayed (black crosses) and reveal 
practically 100% scores on all the tests. 
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Figure 27: Same as Fig. 26, for a normal trichromat with a RG threshold of 1.4 CAD units. 
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Figure 28: Same as Fig. 26, for a normal trichromat with a RG threshold of 0.7 CAD units. 
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Chapter 4 

Analysis of HW-A 

4.1 Data and correlation with severity of RG loss 

The ability to name correctly the colours of signal lights is important in some ATC 

applications, particularly when work in ATC tower centres is involved. Performance 

on the HW-A lantern as recommended by the CIE and used by the UK CAA has 

provided for decades confirmatory or secondary testing to assess whether 

candidates with congenital colour deficiency have sufficient chromatic sensitivity to 

carry out colour-related tasks within selected environments. The HW-A lantern is 

currently used by the British Armed Forces and prior to 2009 was the accepted 

secondary test for the UK CAA. HW-A is a useful lantern test which all subjects with 

normal trichromatic colour vision pass. The test employs red, green and white lights 

of small angular subtense and varying intensities (see section 2.3). The task requires 

the subject to name correctly the colours of the lights presented to the eye according 

to specific protocols. Only normal trichromats and mild deutan subjects pass these 

protocols (CIE 2001; CAA 2009). No protans pass the HW-A lantern using the same 

protocols. With increasing severity of colour vision loss, deutan subjects exhibit 

greater variability in the number of errors they make in repeated tests. This remains 

a problem since on some occasions, an applicant may fail a first assessment, yet 

pass on repeated testing. We examined this problem by analysing statistically the 

errors subjects make and the pass / fail rates as a function of the severity of their 

colour loss. These results are presented in this report and the findings contribute 

significantly to the final recommendations. 

Another reason for examining the HW-A lantern and for attempting to find equivalent 

methods of assessment that could replace the HW-A lantern is simply because this 

lantern is no longer manufactured or supported in terms of calibration and servicing. 

It is now known from previous studies that neither the Ishihara test nor the Nagel 

anomaloscope can be used to screen with certainty for normal trichromacy or to 

quantify the severity of colour vision loss in subjects with colour deficiency (Barbur et 

al. 2008; Rodriguez-Carmona et al. 2012). A large number of normal trichromats (~ 
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10%) make at least one error on the Ishihara test (first 15 plates on the 24-plate 

version) and some subjects with minimal colour deficiency can pass the 

anomaloscope test. It is also worth noting that ~ 1.5% of deutans pass the 24-plate 

system with zero errors, but all protans fail. The more thorough examination using 

the first 25 plates of the Ishihara 38-plate edition results in improved sensitivity. 

When a pass requires zero errors, only ~ 0.6% of deutans pass and all protans fail. 

The disadvantage of using the 38-plate edition is that 19% of normal trichromats also 

fail when the pass criterion is based on zero errors. The UK CAA has always used 

the Ishihara test for the screening of colour vision and has used a secondary colour 

vision test (such as the HW-A which all normal trichromats pass) to determine ‘safe’ 

colour vision for a particular occupation. In order to obtain reliable data on pass / fail 

outcomes, we examined over 300 colour defective subjects (226 deutans and 92 

protans) and 41 normal trichromats on the HW-A, Ishihara and the Colour 

Assessment and Diagnosis (CAD) test. Following the UK CAA protocol (outlined in 

Section 2.3), the Ishihara / HW-A passes ~ 22 % deutans, 1.1% protans and 100% 

of normals. The ~ 22% of deutans that pass the HW-A lantern and Ishihara test 

using the pre-2009, UK CAA protocol (based on two or less errors on the first 15 

plates of the 24 plate Ishihara test followed by the HW-A lantern) were 

indistinguishable from normal trichromats (see Table 2). Although these deutans are 

in general those with least severe loss of RG colour vision, more moderate deutans 

can also pass. The latter group tend to exhibit greater variability with increased 

number of mean errors on repeated runs. The data presented in Figure 29 are of 

great interest since they show that even those deutans that pass can make colour 

naming errors on the HW-A lantern test on repeated runs. The results are based on 

six runs carried out in each of the 226 deutan subjects. Although subjects in both 

groups make a number of mean errors per run, those that fail make significantly 

more errors per run than those that pass. For example, the least affected 50% of 

those that pass make 0.6 or less errors per run. The equivalent number for those 

that fail is 3.4 or less errors per run. Although statistically these observations are not 

surprising, it is worth noting that because of the large crossover, some of the 

subjects that fail the HW-A test make less errors per run than some of the subjects 

that pass.  
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Figure 29: Plot showing the probability of making k or less errors per run for the deutan subjects that 
pass and for those that fail the HW-A protocol. 

The cumulative frequency distributions show that 50% of those that pass make less than 0.6 errors / run, 
but those that fail make less than 3.4 errors / run. Each subject carried out a total of 6 runs (i.e., 54 
presentations of the paired vertical lights). 

The results show that several of the subjects that failed the standard protocol make fewer errors than 
many of the subjects that pass. This does mean that some deutans that pass in some runs may fail the 
same procedure in repeated runs. Deutans that passed and failed the HW-A lantern are indicated by 
green and red squares, respectively. 

As mentioned in Section 1.3, the current requirements for European Class 3 medical 

certification is normal trichromatic colour vision as stipulated by the Ishihara test and 

the CAD test. This means that since 2009 when this approach was implemented 

~22% of deuteranomalous applicants that have in the past, been classed as safe, no 

longer pass. The important observation that emerges from this analysis (which 

accounts for the ranked data shown in Fig. 30) is that deutans with intermediate 

levels of RG colour loss exhibit greater variability in their scores. They can therefore 

either pass or fail in repeated runs. 

Figure 30 shows the distribution of CAD RG thresholds of deutans that pass and fail 

the HW-A lantern according to this protocol. Not unexpectedly, the results reveal that 

there is an overlap in RG thresholds measured on the CAD test among deutans that 

pass and fail this lantern. This is caused largely by the inherent within subject 

variability on repeated measurements on the HW-A lantern and the CAD tests 

(Squire et al. 2005). Although the mean number of errors per run on the HW-A test 

would provide a less variable pass / fail criterion, this would require several repeats 

and is therefore impractical. 
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The findings in Figure 30 also show that all deutans with a threshold less than 2.35 

RG CAD units (~ 6%) pass the HW-A. A useful analysis of the overlapping section of 

deutans that pass and fail (lower part of Fig. 30), reveals that a RG threshold value 

of 4 units ensures an equal number of false positives and false negatives. In other 

words, the number of deutans that pass the standard protocol with a threshold > 4 

units equals the number of deutans that fail with a threshold ≤ 4. The RG CAD 

threshold of 4 units passes 22% of deutans which is equivalent to the pass / fail 

outcome reported previously (CAA, pre-2009 protocol). 

 

Figure 30: Ranked distribution of CAD RG thresholds for the 226 deutan subjects examined in the study. 
Deutan subjects that failed or passed the HW-A lantern according to the CAA protocol (Section 2.3) are 
indicated by black or green circles, respectively. Section B shows that shaded area of section A on an 
expanded scale for clarity of presentation. All deutan subjects with RG CAD thresholds < 2.35 units pass 
the HW-A lantern with close to zero errors. 
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4.2 Summary of outcomes based on HW-A lantern 
scores 

By examining the HW-A scores in relation to the subject’s severity of RG colour 

vision loss, CAD threshold limits can be recommended that are statistically 

consistent with the outcome of past practices. Although a value of 4 SN CAD units is 

statistically equivalent to the outcome of past practices, it is worth noting that 

applicants with even higher levels of deutan deficiency have passed a HW-A lantern 

in the past and are currently working safely in the ATC environment with no known 

problems. This demonstrated ability supports the argument that in the absence of a 

detailed study of colour vision requirements within the ATC environment, the 

recommended limit of 4 SN CAD units is safe and hence justifiable. 

 

Figure 31: Magnified section of Fig. 30 with the proposed limits of 2.35 and 4 units. When these limits are 
applied, respectively, ~ 6% and 22% of deutans pass. No protans pass since with a few exceptions their 
thresholds tend to be above 5 CAD units. 

The results of Fig. 30 and the evidence gained from past practice using protocols 

based on Ishihara and HW-A lantern suggest that two limits emerge that can be 

used to separate mild congenital colour deficients into two categories. These limits 

ensure that subjects perform well when the task involves discrimination and naming 

of red, green and white lights. The new categories can be summarised as follows: 
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 Subjects with thresholds ≤ 2.35 can be classed as safe and virtually 

equivalent to normal trichromats. In general, these subjects do not make 

errors on repeated HW-A tests. 

 Subjects with thresholds ≤ 4 CAD units can perform all CRATO tests that 

employ suprathreshold ‘pastel’ colours with the same speed and accuracy 

as normal trichromats. These subjects can also discriminate red, green 

and white lights, although the statistical distribution expected for those 

with a mean threshold close to four units means that some of these 

subjects may pass and then fail the standard protocols on repeated tests. 

This point is illustrated clearly in Figure 29 which shows that some 

deutans that fail the HW-A make fewer mean errors per run than the 

deutans with the largest RG thresholds that pass the same protocol. The 

two RG CAD limits of 2.35 and 4 are illustrated in Figure 31 together with 

the subjects that fail the standard protocol with a RG threshold < 4 CAD 

units and those that pass with threshold > 4 units. 
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Chapter 5 

Discussion 

5.1 Colour vision concerns in ATC 

Extensive research studies have been carried out by the FAA and other 

organisations into the effectiveness of using colour in ATC displays. Several human 

factors guidelines have been produced to advise on the use of colour in ATC 

applications. The progress made in colour display applications has been very rapid 

and in spite of what has been achieved; much remains to be understood in order to 

produce national and international standardisation for the use of colour in ATC and 

for specifying minimum colour vision requirements for ATC controllers. The relative 

ease of customising colours to suit different users creates new opportunities and 

potential problems. The findings of this study can be used to maximise the benefits 

of using colour and also to enable some subjects with congenital colour deficiency to 

work in the ATC environment. In addition, the data may also be useful for display 

designers to optimise the use of colour / luminance combinations and to avoid 

potential colour related problems. 

The results of CRATO tests are important for a number of reasons: 

 The experiments yield TCTs and CRSs when single or multiple colours 

are used with targets similar in size to data blocks employed in ATC 

applications. 

 The tests also yield equivalent visual performance data as a function of 

luminance contrast which provide a scale against which the advantages of 

colour signals can be assessed. 

 The experiments assess how RG and / or YB colour signals benefit visual 

performance in visual search tasks that involve the processing of visual 

information over large visual fields. 

 The results obtained separate the effects of colour signals when added to 

targets of positive and negative luminance contrast. These observations 



CAP 1429 Chapter 5: Discussion 
 

October 2016 Page 81 

are important in normal trichromats and reveal significant differences in 

subjects with congenital deficiency. 

 The study identifies suprathreshold use of colour and stimulus conditions 

when many subjects with congenital deficiency perform as well as normal 

trichromats. 

In addition, the analysis of HW-A lantern scores and the comparison with the 

applicant’s severity of RG colour vision loss help provide RG threshold limits that are 

statistically equivalent to the old UK CAA colour assessment protocol (the latter are 

still being used by the Maritime Coastguard Agency, the British Army and the UK 

Electrical Contractors Association). 

In relation to ATC applications, the following recommendations ensure that the 

applicants that pass can make full use of colour within large-field visual displays with 

the speed and accuracy expected of normal trichromats. In addition, those that pass 

would also be able to discriminate the red, green and white signal lights when 

varying in intensity (as employed in the HW-A lantern test). 

1. All applicants with RG and YB CAD thresholds below the upper normal 

limits that have been established for healthy aging (Barbur and 

Rodriguez-Carmona 2015) should pass by default since they have normal 

trichromatic colour vision and are likely to exhibit the best performance 

that can be achieved. According to the new classification system these 

applicants would be classed as having ‘Normal’ trichromatic colour 
vision (CV1). This category is appropriate without any further 

considerations of changes to display requirements or signal lights. 

2. All applicants with a RG threshold ≤ 2.35 CAD units. These subjects 

exhibit almost normal RG colour discrimination and pass the HW-A 

lantern test with zero errors. In terms of anomaloscope match 

parameters the deutans that pass exhibit match ranges within normal 

limits, but require more ‘green’ in the red / green mixture field to match the 

monochromatic yellow field. These subjects are not likely to have any 

colour detection and discrimination problems when suprathreshold 

colours defined by both RG and YB components are employed in visual 

displays. No protan subjects can be included in this category. This limit is 
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sufficient to pass all normal trichromats, irrespective of age and ~ 7% of 

the least affected deutans. The latter exhibit almost normal RG colour 

discrimination and pass the HW-A lantern test protocol consistently in 

repeated tests. According to these observations and the results of CRATO 

tests, subjects with ‘Functionally normal’ trichromatic colour vision 
(CV2) perform as well as normal trichromats when suprathreshold colours 

are involved. This category is appropriate providing the display 

requirements are designed to ensure that saturated, suprathreshold 

colours are employed, which is usually the normal practice. 

3. Applicants with YB CAD thresholds within the normal range and RG 

thresholds ≤ 4 CAD units can also work as Air Traffic Controllers provided 

certain restrictions are imposed on the use of colour signals in ATC 

displays. The higher limit is sufficient to pass all normal trichromats and ~ 

22% of deutan subjects. This higher limit matches the percentage of 

deutans that pass the HW-A lantern (22%) using the CIE protocol that has 

been recommended for use with this lantern. No protan subjects are 

included in this category since their minimum thresholds are in general 

larger than five SN units. Some of the deutans included in this group will 

have RG colour discrimination difficulties with small RG colour signals that 

are close to normal thresholds. These subjects do however exhibit normal 

levels of visual performance when suprathreshold colours defined by both 

RG and YB components are employed, which is often the normal practice 

in visual displays. This category can be described as ‘Safe’ trichromatic 
colour vision (CV3). 

5.2 Summary and recommendations 

The enhancement of key aspects of visual performance as a result of adding RG and 

/ or YB colour signals in large field visual tasks has been investigated in normal 

trichromats and in subjects with congenital colour deficiency. Speed of performance 

and accuracy have been measured and related to the subject’s RG and YB colour 

vision sensitivity. The recommendations put forward in this report are based largely 

on these findings and also the correlation between CAD thresholds and pass / fail 
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error scores on Ishihara test plates and HW-A lantern tests measured in over 1000 

subjects with both normal trichromacy and congenital colour deficiency. 

In the absence of detailed studies designed to establish minimum colour vision 

requirements for specific occupational tasks (as has been done for flight crew), an 

acceptable alternative is to consider carefully the three categories described above 

and to select the one that can be considered safe, without discriminating unfairly 

against those subjects with congenital colour deficiencies that achieve levels of 

performance equivalent to normal trichromats. 

 If the visual task requires detection and naming of colours for small signal 

lights (e.g. red, green, yellow, blue and white, etc.), or the discrimination 

of the smallest possible colour differences in order to judge uniformity of 

colour reproduction in manufactured goods, or the need to adhere to the 

commonest appreciation of perceived colour appearance and colour 

names and / or the ability to use efficiently faint, desaturated colours to 

segment objects into groups on visual displays, a CV1 pass may be 

justified. 

 When the visually-demanding, colour-related tasks involve the use of 

suprathreshold colours (e.g. with chromatic saturations and colour 

differences that are well above detection thresholds, which is the normal 

practice when colour is used deliberately to enhance visual performance 

in working environments), a CV2 pass can be allowed without 

compromising either efficiency or safety. Applicants with a CV2 pass can 

discriminate small RG colour differences, make very few errors on the 

Ishihara plates test, and more importantly, make no errors with signal 

lights that are equivalent to the HW-A lantern (i.e., small, often diffraction 

limited whites, greens and reds of varying intensity). Based on these 

findings, a CV2 pass would be appropriate for air traffic controllers and 

seafarers (i.e., lookout officers). 

 The CV3 category is appropriate for the majority of normal working 

environments that employ suprathreshold colours and do not involve 

discrimination of fine colour differences or the need to make correct 

judgements of colour appearance. Subjects with a CV3 pass will have 
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sufficient RG chromatic sensitivity to carry out suprathreshold, colour-

related tasks, even when RG colour signals align along the corresponding 

colour confusion lines. CV3 is an important category for a number of 

reasons and hence benefits from further justification. Visual scenes in real 

working environments involve the use of large objects with spatial features 

that are often several times above the acuity limit. This is also the case 

when objects and images are generated on visual displays. The overall 

appearance of each object is determined by a combination of its size, 

luminance and YB and RG chromatic contrast. Differences in YB colour 

signals are often present in objects that are commonly classed as reddish 

and greenish and in red / white signal colours (such as the Precision 

Approach Pathway Indicator (PAPI) lights). If large chromatic saturations 

are employed, subjects with mild RG colour deficiency (e.g. those with a 

CV3 pass) will be able to make use of the reduced RG colour signal to 

carry out the colour-related task, even in those rare cases when YB colour 

differences are absent. The only slight disadvantage is that these subjects 

may be slower than normal trichromats when the tasks require visual 

search in large displays. One can, however, make use of this information 

and the novel findings that have emerged from this study in relation to the 

increased efficiency of YB signals in the periphery of the visual field to 

optimise the colours used in visual displays. When suprathreshold YB 

colour difference signals are also added to objects defined by luminance 

and RG colour contrast, congenital deficients that fall into the CV3 

category can perform multi-colour visual search tasks with the same 

accuracy and speed as normal trichromats. Equally importantly, the 

majority of these subjects pass the HW-A lantern test, with equal number 

of false positives and false negatives centred with respect to the pass / fail 

limit of 4 CAD SN units. A CV3 pass is therefore appropriate for 

applications that involve the use of large colour differences, particularly 

when these also involve YB colour signals. These findings show that with 

appropriate design and choice of colours for work in visual displays, the 

CV3 category can also be appropriate for use in the ATC environment as 

well as in many other occupations that involve the use of visual displays. 
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There is little doubt that subjects with congenital RG colour deficiency cannot 

perform as well as normal trichromats under the most demanding, unfavourable 

conditions when colour signals are close to colour detection threshold limits for 

normal trichromatic vision. This obvious conclusion does mean that many of these 

subjects cannot perform the most demanding, suprathreshold, colour-related tasks 

as efficiently and as accurately as normal trichromats. ATC applications involve well 

above threshold stimuli (defined by both colour and luminance contrast). Subjects 

with thresholds < 2.35 CAD can perform suprathreshold, colour-related tasks as well 

as normal trichromats. The findings described in this report also suggest that with 

appropriate design and choice of colours for work in visual displays, the CV3 

category can also be appropriate for use in the ATC environment as well as in many 

other occupations that involve the use visual displays. If this category was adopted 

as appropriate, all normal trichromats and 22% of subjects with deutan deficiency 

would pass. Higher limits may also be appropriate for other specific occupations and 

working environments, but this can only be recommended with confidence if detailed 

studies designed to establish such limits are carried out. 
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