
Perin, C. & Dragicevic, P. (2014). Manipulating multiple sliders by crossing. In: Proceedings of the

26th Conference on l'Interaction Homme-Machine. (pp. 48-54). ACM. ISBN 9781450329354

City Research Online

Original citation: Perin, C. & Dragicevic, P. (2014). Manipulating multiple sliders by crossing. In:

Proceedings of the 26th Conference on l'Interaction Homme-Machine. (pp. 48-54). ACM. ISBN

9781450329354

Permanent City Research Online URL: http://openaccess.city.ac.uk/16715/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/82917257?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Crossets: Manipulating Multiple Sliders by Crossing

Charles Perin.∗

INRIA / University of Calgary

Pierre Dragicevic.†

INRIA

Jean-Daniel Fekete.‡

INRIA

(a) (b) (c) (d) (e)

Figure 1: Crossing several continuous sliders (Crossets) in order to change the visual encoding of table cells: (a) selecting the thumb of a Crosset;
(b) modifying the value associated to the selected Crosset by dragging the mouse left; (c) selecting a series of adjacent Crossets by dragging the
mouse down; (d) modifying the value of all selected Crossets by dragging the mouse left; (e) deselecting a Crosset by dragging the mouse up,
restoring its associated value to the one before selection.

ABSTRACT

Crossets are new interactive instruments or widgets based on cross-
ing gestures that exploit the dimension orthogonal to sliders’ axes for
manipulating multiple aligned sliders simultaneously. We propose a
Crossets taxonomy to generalize the sliders’ properties to those of
other standard widgets. We introduce and illustrate the constrained
crossing gesture with Crossets in an interface for the visual explo-
ration of numerical tables. Then, we discuss alternative strategies
to Crossets before exploring persistent unconstrained crossing ges-
tures compatible with Crossets, introducing Spline as a persistent
reusable interactive instrument. This paper highlights promising
perspectives for crossing-based widgets. We hope future interfaces
will make use of this simple technique that can help improve the
efficiency of standard widgets and lead to the generation of new
styles of interfaces.

Index Terms: H.5.2 [User Interfaces]: Graphical user interfaces
(GUI)—User interfaces

1 INTRODUCTION

This paper introduces Crossets—crossable widgets—for manipu-
lating multiple sliders simultaneously, from tens to hundreds. The
design rationale for Crossets is based on principles of direct manipu-
lation [26, 39] and on the instrumental interaction model [8]. The
basic Crosset is a slider enhanced with crossing capabilities, that
generalizes to other widgets (an early version of this article has been
published in French [33]).

Most standard GUIs use only one dimension of the two-
dimensional space of the screen and one dimension of the mouse
to interact with sliders, while some other works use the orthogonal
dimension for the sliders’ axis [4, 16]. Despite the fact that cross-
ing [1] for selecting several objects in a single gesture is well suited
to the simultaneous manipulation of multiple sliders, this technique
has never been applied to manipulate the orthogonal dimension of
sliders (illustrated in Figure 1). While pointing requires to target an
object and press the mouse button to activate it, crossing consists of

∗e-mail: charles.perin@ucalgary.ca.
†e-mail: pierre.dragicevic@inria.fr.
‡e-mail:jean-daniel.fekete@inria.fr.

pressing the mouse button and moving the cursor over a series of
objects to activate them all.

Crossets are beneficial for interfaces presenting objects that are
similar, aligned, and on which users often perform the same small set
of actions over a range of consecutive objects. Two main categories
of applications can benefit from using Crossets. First, list-based
applications such as email readers and file explorers. For exam-
ple, managing emails often involves selecting multiple messages
and invoking some command (e.g., mark as spam or as important).
Crossets would be a great complement to these tools. As another ex-
ample, recent files in a folder could be labelled by first sorting them
by date, and then rapidly switching their color with a Crosset. Sec-
ond, table-based applications such as spreadsheet calculators would
benefit from Crossets for applying specific formatting/coloring to
a subset of rows (or columns). Currently, users must select the
rows on which to apply the action, then open a menu and apply the
action using a selection-action*-deselection cycle. Crossets merge
the selection-action-deselection in a single interaction, and make it
possible to apply the action directly with continuous feedback.

In this article, we first introduce a taxonomy of Crossets based
on standard widgets. We present the constrained crossing gesture,
orthogonal to the sliders’ axis, and we illustrate the benefits of Cros-
sets with a complex visualization application relying heavily on
Crossets [34]. In this application, the gesture interpretation by the
system is constrained to be orthogonal to the widgets’ axes and
compatible with the standard mouse input device. This example il-
lustrates both benefits and limits of this constrained crossing gesture.
Then, we propose and discuss advanced crossing gestures that are
compatible with Crossets, opening the discussion towards a new per-
sistent, reusable, and more expressive interactive instrument than the
constrained gesture called the Spline. In summary, the contributions
of this paper are:

• The implementation of a constrained crossing gesture compati-
ble with, and enhancing, standard widgets.

• A taxonomy of Crossets based on the slider.

• The illustration of the constrained crossing gesture with an
implemented tabular visualization system.

• The exploration of persistent unconstrained crossing gestures
and the introduction of the Spline instrument, opening promis-
ing perspectives for future research and new interfaces.

Crosset

check box

discrete sliderradio button Э

i [1,2]: number of variables

i=1 i=2

n=2 n [2,]

n [2,]: number of accessible values∞Э

Э ∞
quantqual

discrete continuous

continuous slider

discrete continuous

discrete range slider continuous range slider

activeinactive

activeinactive

Figure 2: Taxonomy of Crossets and implementation, based on the slider.

2 BACKGROUND

Sliders and scrollbars are used in many interfaces, e. g., to navigate
time in video players, to navigate into viewports, and to set values
from valid ranges, such as setting color values in photo editors.

2.1 Two-dimensional Sliders

The instrumental interaction framework [8] can help explain how
the design of sliders can be improved by introducing the degree of
integration. This measure is the ratio between the number of degrees
of freedom used to manipulate the instrument and the number of
degrees of freedom of the physical input device (e. g., the mouse).

While instruments should ideally have a degree of integration
of 1, sliders have a degree of integration of 1/2. Thus far, the
two spatial dimensions have been used to interact with sliders: the
Infovis toolkit [16] features multi-resolution sliders with precision
dependent on the orthogonal distance to the slider. Orthozoom [4]
extends the scrollbar by controlling both pan, along the scrollbar’s
axis, and zoom, along the orthogonal axis. FaST Sliders [31] exploit
the orthogonal dimension of sliders to make an additional menu pop
up for further adjustments. As of yet, the orthogonal dimension has
not been used to manipulate multiple sliders.

2.2 Crossing

Crossing-based interfaces let users invoke commands by crossing
(or painting over) widgets instead of clicking them [3]. Crossing
is used to drag and drop icons in background windows [13] and to
successively select elements in hierarchical menus [2]. Crossing has
also been found efficient as a standard point-and-click interaction for
selecting multiple targets in dialog boxes [12]. Similarly, Baudisch
proposes crossing-based interactions for activating check-boxes [7],
which were later generalized to a set of standard widgets with Slid-
ing Widgets [32], for manipulating individual widgets by crossing.
Although Sliding Widgets make it possible to manipulate two sliders
using a pointing area, the orthogonal dimension is not exploited to
manipulate more than two widgets at a time.

Crossable widgets already exist. For example, Photoshop lets
users apply the same action to several layers by pressing an icon and
dragging the mouse cursor to other layers. However, the gesture is
not reversible and requires pointing at as many targets as there are
icons. Moreover, the gesture is available for binary values (layer
visibility), but has not been extended to continuous values (e. g.,
layer opacity).

Finally, the most efficient crossing gestures are continuous and
performed orthogonally to the crossed object [1, 3]. However, cross-
ing requires performing a steering task (e. g., to cross multiple check-
boxes), and steering in a narrow tunnel (dragging along a precise
path) is a slow motor task [1, 3].

To summarize, the slider is a ubiquitous widget but it suffers from
the following limitations:

• It uses only one dimension of two-dimensional space,

• Setting the same value to several sliders is tedious,

• The graphical alignment of multiple sliders is not exploited.

3 CONSTRAINED CROSSING GESTURE

The basic Crosset is an extension of the slider widget, enhanced with
orthogonal crossing capabilities. Figure 1 illustrates the technique
with continuous sliders: (a) selecting a slider’s thumb activates the
gesture; (b) moving the mouse cursor horizontally sets the Crosset
value (here the visual encoding of the cells is updated); (c) moving
the mouse cursor vertically copies the value to other Crossets and
adds them to the list of Crossets to be controlled; (d) moving the
mouse horizontally changes the value of all crossed widgets; and (e)
uncrossing a widget restores its value before selection.

Both dimensions of the plane correspond to one of the following
domains:

Value domain: The domain mapped to the Crosset axis. For exam-
ple, the value domain of a slider is its range of possible values,
and the value domain of a group of radio buttons is the discrete
set of buttons. To be compatible, adjacent Crossets must have
the same value domain.

Selection domain: The domain mapped to the dimension orthog-
onal to the Crosset axis. To make a selection among several
Crossets, the Crossets must have the same type (e. g., sliders
only).

The constrained crossing gesture makes it possible to navigate in
both the value domain and the selection domain and is dedicated to
the simultaneous manipulation of adjacent sliders in a continuous
manner. Despite the fact that the gesture is freely drawn using e. g.,
a mouse cursor, its interpretation by the system is constrained to
the axis orthogonal to the sliders’ axes to ensure a fast and errorless
gesture. It is also possible to adjust both the selection and the values
continuously, therefore eliminating traditional selection–action se-
quential interactions. This implementation state automaton has three
states:

Start: The crossing is enabled when pressing the mouse button
on the thumb/button of a Crosset. The thumb/button visual
appearance is updated to confirm that it is selected.

Drag: Moving the mouse in two dimensions lets users navigate
both in the value domain and in the Crossets selection domain.
The selected Crossets are all highlighted, and an orthogonal
line linking the first selected Crosset to the mouse cursor shows
how crossing has been interpreted by the system. The same
value is applied to the selected Crossets, and unselecting a
Crosset restores its value before selection.

End: Manipulation terminates when releasing the mouse button.

discrete
range sliders

continuous
sliders

continuous
range sliders

radio
buttons radio buttons

discrete
sliders checkboxes

Figure 3: Example of an interface based on Crossets. The axes of
all Crossets are horizontal, and crossing interpretations are vertical.
Here, several continuous range sliders have their maximum value
simultaneously set.

3.1 Taxonomy of Crossets

While the basic Crosset is an enhanced slider, a range of widgets
can become new Crossets as well. Figure 2 illustrates the taxonomy
of Crossets that we have implemented. Let i be the number of
variables controlled by the Crosset. In most cases, i ∈ [1,2] (e.g. a
regular slider or a range-slider), but sometimes i > 2. For example,
Photoshop features 3-thumbs sliders to define color gradients. Let
n ∈ [2,∞] be the number of distinct values reachable by the Crosset
(size of the domain of values). We implemented the following
Crossets:

• The basic Crosset is a continuous slider (i = 1,n ≫ 1).

• The discrete slider is a continuous slider snapping to discrete
positions (i = 1,n > 1).

• The continuous range slider (i = 2,n ≫ 1) is a continuous
slider with two thumbs controlling a min and a max value.

• The discrete range slider is a continuous range slider (i= 2,n>
1) snapping to discrete positions. It inherits the properties of
both the discrete slider and the range slider.

• A group of radio buttons is similar to the discrete slider (i =
1,n> 1) but is dedicated to non-ordinal (nominal) values. Each
button can be seen as a step of a discrete slider and the selection
consists of one of these values.

• The check-box (i = 1,n = 2) has two states. It is similar to
existing implementations [7, 32].

Figure 3 shows an interface where Crossets are grouped and
stacked vertically. The orthogonal dimension of Crossets that do
not have a clear axis (e. g., check-boxes) is the one on which the
Crossets selection is done. Here, all Crossets’ axes and domain of
values are horizontal.

3.2 Properties of Crossets

Crossets align with several principles issued from direct manipula-
tion [26, 39] and instrumental interaction [8]:

Internal Consistency: A wide range of standard widgets can be
converted to Crossets. This ensures the internal consistency of
the interface—the consistency of a design with itself [21], in
terms of interaction, design and graphical properties. Internal
consistency favors initial learning, ease of use, and perceived
quality [21].

External Consistency: Measures the consistence of an interface
regarding other existing interfaces [21]. Crossets have a high
external consistency because they are compatible with standard

(a) (b) (c) (d) (e)

Figure 4: Issues occur when modifying the value of a Crosset affects
the position of one or several Crossets.

interactions, only providing enhancements. In particular, Cros-
sets are compatible with the click state automaton, consisting
of the Start state followed immediately by the End ignoring
the Drags. The crossing gesture is triggered only when the
user takes a trajectory orthogonally to the widget’s axis. Exter-
nal consistency favors fast learning and transfer of knowledge
between UIs [21, 26, 39]. Moreover, crossing-based interfaces
are easier to accept if they are compatible with the standard
point-and-click paradigm [12].

Degree of Integration: In contrast with standard widgets which
have a spatial degree of integration of 0/2 (e. g., buttons) or
1/2 (e. g., sliders), Crossets have a degree of integration of 2/2
because the two spatial dimensions of the mouse are exploited.

Incremental and Reversible Actions: The gesture allows for in-
cremental updates and is reversible, one of the basic principles
of direct manipulation interfaces [39], as illustrated in Fig-
ure 1(d,e).

Support for Multiple Objects: By navigating in the Crosset’s se-
lection domain, the gesture lets users apply the same action to a
series of objects, one of the challenges for direct manipulation
interfaces [18, 19, 20].

Simple Gesture: As crossing is performed in only one dimension
of the two-dimensional space, the gesture is relatively free but
its interpretation by the system is constrained in the direction
orthogonal to the Crosset axis. This property avoids steering
tasks over narrow targets and ensures no selection errors [1],
without the need for intrusive error messages that can interfere
with the task at hand [26, 38].

3.3 A Crosset-based Interface

To illustrate the technique (constrained crossing gesture) and discuss
practical design considerations and issues, we refer in this this sec-
tion to Bertifier, an interface dedicated to the visual exploration of
numerical tables [34] available at www.bertifier.com.

This section is not meant to be a formal evaluation of Crossets, but
rather a conceptual discussion. Moreover, the evaluation of Bertifier
involves the integration of Crossets within the whole interface and
visualization.

Bertifier is based on Crossets, however, the Crossets technique,
taxonomy, and rationale are not detailed in the related previous
publication [34]. Bertifier is a tabular visualization in which Crossets
are placed next to rows and columns, making it possible to perform
actions on arbitrary groups of adjacent rows and columns in a quick
and well-integrated manner. Thus, this interface is a good example
for illustrating table-based interfaces, the first category of interfaces
that can benefit from Crossets.

Large Number of Crossets: UI Guidelines recommend avoid-
ing too many widgets [42], however, the multiplication of Crossets
is a strength of Bertifier. Indeed, it addresses the challenge of ap-
plying an action on several objects of interest by one single interac-
tion [19]. Moreover, applying actions does not require specification

(a) (b) (c) (d)

Figure 5: Preview as immediate feedback for column resizing.

of the selection in advance—it is made on-the-fly—as opposed to
the traditional selection-action sequential approach. Additionally,
the gesture’s reversibility makes the system tolerant to errors. Also,
as objects of interest are rows and columns, duplicating Crossets
makes it possible to align Crossets with their associated object of
interest.

Low Spatial Indirectness of Crossets: As Crossets are
aligned with their target row or column, their spatial offset is null
according to one of the two dimensions of the space. Thus, their
spatial indirectness [8] is lower than widgets not designed to be
aligned with the objects of interest and located far from them.

Low Temporal Indirectness: In Bertifier, the selection of ob-
jects of interest and the manipulation of values are performed with a
unique gesture with immediate feedback [39, 26], and the actions
are instantaneously applied to the objects of interest. Thus, Crossets
minimize temporal indirectness [8] and articulatory distance [26],
with the exception of Crossets affecting the position of other Cros-
sets, as we explain below.

Degree of Compatibility: Designing an entire interface in-
volves tradeoffs, and internal consistency can conflict with the de-
gree of compatibility [8] of some Crossets. For example, to modify
the width of a column, the user must drag the slider thumb up and
down, while horizontal dragging would be more cognitively congru-
ent (i. e. similarity between the intent of the user and the action she
performs).

Scalability: A recognized challenge of direct manipulation in-
terfaces is targeting invisible objects [19]. Crossets must be visible
in the viewport to be reachable, which may be a problem when the
table is too large, requiring users to perform several gestures coupled
with page scrolling. However, zooming out solves the problem in
most cases.

Layout Modifications: When the action associated to a Crosset
affects the position of one or more Crossets (e.g. changing the
size of the columns of a spreadsheet), it may be too disruptive to
apply the result of this action on-the-fly. Indeed, let us consider
the scenario illustrated in Figure 4. Here, each Crosset can be used
to resize a column (shown as black rectangles): dragging up the
Crosset’s thumb enlarges the column. Modifying the value of the
first Crosset is not problematic (b,c). However, crossing the second
Crosset (c2) increases the width of the second column, making c2

move away from the mouse cursor and c2 becomes deselected (d,e).
The value of c2 is then reset, c2 moves back to its initial position,
under the mouse pointer, and is selected again. As a result, c2 and
its associated column are undesirably oscillating from left to right.

Thus, in Bertifier, for Crossets’ actions affecting the position
of other Crossets, a partial feedback is provided during the Drag
phase (Figure 5(a,b,c)) and the final result is only applied once the
mouse button is released, corresponding to the crossing gesture
End (Figure 5(d)). It ensures compatibility with actions affecting
layout, at the cost of reducing temporal directness [8]. The strategy
is generic and applied to all actions affecting the table layout.

Figure 6: Relative dragging to maintain the sliders’ values offset.

User Feedback: Results of a user study involving using Berti-
fier emphasized the benefits of Crossets that participants found both
effective and efficient [34]. Our previous article emphasizes the
fact that no participant had difficulties understanding and perform-
ing the cross-widget gesture, thanks to the external consistency of
Crossets. Participants did not complain about the low degree of
compatibility of some Crossets (e. g., row and column resizing).
Overall, they found the interface playful and easy to use, thanks
to its high internal consistency. Bertifier is regularly used today in
the context of academic courses for data exploration, and also by
many researchers from various research fields (e. g., humanities and
social sciences) who need to visualize, analyze, and communicate
their data. We believe that Crossets are one important reason why
Bertifier successfully revived a previous method for interactively ex-
ploring tabular data while many other attempts, rooted in the WIMP
model and featuring selections and series of menus and buttons,
failed previously.

3.4 Limitations

Designing Bertifier, an interface based only on Crossets, highlighted
several limitations of Crossets:

Layout stability: To ensure interface layout stability when ap-
plying layout actions, we chose to provide immediate but partial
feedback as a preview of the result, and apply the modifications
at the end of the interaction. With this delayed activation, Cros-
sets do not affect the layout stability, at the cost of some temporal
indirectness.

Scalability: Crossets must be visible to be selected, which raises
the issue of accessing objects outside of the viewport. In the case
of Bertifier, we solved this problem by zooming out. Note that
most spreadsheet programs support zooming as well, but often, large
tables cannot be zoomed out to fit all their rows in the viewport.
Crossets could be improved by implementing auto-scrolling in these
cases.

Skipping Crossets: As the crossing gesture is orthogonal to the
Crosset axis, there is no way of avoiding a Crosset on the pointer’s
path. Adding a key modifier to “skip” a Crosset may solve this issue
at the cost of adding complexity to the interaction, when simplicity is
one of its strengths. A possible solution consists of memorizing the
last slider value set, or the last selection range(s). When resuming
a crossing gesture with a key modifier, the values selected would
either snap to the memorized value, or extend the previous selection
to allow direct manipulation of non-adjacent Crossets. Both cases
require a key modifier.

Relative dragging: With the constrained crossing gesture, all
selected Crossets are assigned the same value. One interesting
alternative consists of invoking a relative dragging, in which selected
Crossets maintain their relative offset. This alternative is illustrated
in Figure 6: selecting sliders does not change their values, but instead
navigating in the value domain (vertically in the Figure) maintains
the relative offset between sliders’ values. The drawback of this
alternative is that it also requires activating a new mode, reducing
the simplicity of the interaction.

Figure 7: Setting the zoom factor of two Horizon Graphs using Cros-
sets. From top to bottom, the zoom factor is increased, resulting in
increasing numbers of bands.

3.5 Applications

We do not claim that Crosset-based operations would be useful in
all applications, however we postulate that in appropriate cases, they
can be effective. Crossets can enrich many user interfaces at no extra
cost in usability or screen real estate when widgets are already used.
We discuss two large categories of interfaces that would benefit from
Crossets: table-based and list-based interfaces.

Table-Based Interfaces: Bertifier belongs to the category of
table-based interfaces. Table-based applications include software
such as spreadsheet editors and interactive tabular visualizations
(e. g., TableLens [37] and InfoZoom [40]), as well as calendar views,
adjacency matrices (e. g., MatrixExplorer [23] and Cubix [6]) and
scatterplot matrices (e. g., ScatterDice [14]). Such applications often
require applying identical actions to series of rows or columns.

For example, Crossets could be used to expand/collapse (or
change the weight of) arbitrary sets of rows and columns in an
adjacency matrix. In table-based applications, Crossets can be laid
out around the table, both near to rows, where the selection axis is
vertical, and near to columns, where the selection axis is horizontal,
such as in Bertifier.

List-Based Interfaces: The second category of interfaces that
would benefit from Crossets is list-based, i. e. interfaces that employ
a list layout. In such interfaces, Crossets can be laid out near each
entry of the list. These include file explorers, email readers, layer-
based authoring applications, and stacked visualizations.

Considering the example of layers of authoring software, the
same effect often needs to be applied to several video or audio tracks.
Photoshop already has crossable toggle buttons to hide or unhide
layers. Users are free to rearrange layers or tracks semantically in
order to optimize their manipulation with Crossets.

Another example we implemented is illustrated in Figure 7. Inter-
active Horizon Graphs [35] is a technique for visualizing multiple
stacked time series. It extends and improves Horizon Graphs [17, 22]
by making it possible to interact with two parameters: i) the baseline
panning consists of setting the value of a baseline separating values
above and below it (values in blue and brown in Figure 7, respec-
tively); ii) the zoom factor consists of wrapping the chart around its
frame, creating additional bands, a value being estimated by both
its height and its hue/saturation. In this example, Crossets make it
possible to set the same baseline value or zoom factor to several
time series. As in Bertifier, dragging and dropping time series to
change their layout is necessary to spatially group similar time series
of interest to be modified simultaneously. Moreover, in this touch-
compatible version, both parameters can be manipulated at the same
time to finely adjust them. Stacked time series visualizations may
also directly benefit from other Crossets, such as crossable radio
buttons to select the type of representation of the time series (e. g., in-
verting the baseline or not) and the colors to be used, crossable range

Figure 8: The equalizer in Audacity. Two views are available: curves
(top) and sliders (bottom). Here, a standard bass-cut filter is applied.

sliders to adjust the temporal zoom (i. e. specify a minimum and a
maximum time to be represented), and sort operations to reorder a
subset of time series.

3.6 Noun-verb vs Verb-noun

Traditionally, interfaces provide a noun-verb sequence: objects are
selected first, then an action is applied to the selected objects. The
inverse is the verb-noun sequence, where the action is specified first,
and then a selection is performed. For example, in a vector graphics
editor, selecting several shapes then specifying their stroke width is
a noun-verb sequence. Inversely, selecting a style then applying this
style to a set of shapes is a verb-noun sequence.

Crossets do not require such a choice. Indeed, both the selection
(noun) and the values (verb) are set simultaneously in a continuous
gesture, accelerating the acquisition of expert operational skills [11].
As a result, Crossets are particularly effective when the nouns are sets
of objects that often change over time, requiring the user to perform
multiple selections. Conversely, if actions need to be repeatedly
applied to the same groups of objects, the constrained crossing
gesture we propose is not the best option. Instead, maintaining
selections using inspector windows or surrogate objects [25, 29]
can be a better alternative to apply successive actions to the same
selection. Groups are widely used and extremely powerful, but it
often occurs that they must be un-grouped or re-grouped in order to
carry out an action. We believe these two approaches are compatible
and complementary.

4 PERSISTENT UNCONSTRAINED CROSSING GESTURE

By using the orthogonal dimension of the Crosset axis, with the
selection axis being independent of the manipulation axis [27], Cros-
sets add fluidity to interaction for frequent tasks [15, 28]. The
constrained crossing gesture is one of the possibilities that Crossets
offer, with the benefit of unifying manipulation and selection in a
single gesture [11]. The gesture is interpreted by the system orthog-
onally to the Crosset axis, making it possible to select and adjust
sliders with a loose gesture and to refine the values afterwards. In
particular, this strategy is efficient when Crossets are of discrete type
(e. g., radio-buttons and check-boxes).

However, the caveat is that this simple gesture introduces a con-
straint in the value domain, requiring all the selected widgets to
be set to the same value, thus reducing the expressiveness of the

Draw

Grab

Translate Shear Stretch CompressMove

1

2

3 4

5

7

6 8

9 10

Figure 9: Possibilities of pen and touch interactions to manipulate persistent selections.

interaction. We considered several alternatives with their tradeoffs
for manipulating Crossets:

1. The constrained gesture assigns the same value to all the se-
lected Crossets. The gesture is simple and errorless, and allows
for a loose gesture to rapidly assign the same value to several
objects of interest at the cost of lower expressiveness.

2. The unconstrained gesture lets one freely draw a trajectory
in two-dimensional space, selecting the starting value of each
slider at the last crossing point. This is the standard approach
of crossing interactions. This gesture offers more expressive-
ness, but requires precisely setting each selected slider’s value.
Moreover, adjusting a slider’s value afterwards requires re-
drawing the trajectory entirely.

3. The persistent unconstrained gesture transforms the crossing
gesture into a reusable, editable object (reifying the selection).
This alternative is as expressive as the unconstrained gesture,
but maintains the selection for further editing and reuse. It
also opens a new world of possible interactions on the reified
selection.

Reifying selections (e. g., copy-paste a selection object to apply it
to another set of Crossets) can leverage Crossets to make them more
expressive and powerful [9]. Once Crosset selections are considered
as first-class objects, tools like lassos and magnetic guidelines [36,
41] could be used on them. These tools make the selection persistent
and thus reusable, but they are not always compatible with crossing
gestures and they are not easily reversible. Next, we detail the
persistent unconstrained gesture: the Spline instrument. The Spline
instrument provides interactions that are expressive, reusable, and
editable, while avoiding the tradeoff of noun-verb vs. verb-noun
approaches—it allows both.

4.1 The Spline Instrument

Similarly to Toolglass and Magic Lenses [10], the two-dimensional
unconstrained drawing itself can become a persistent interactive
instrument, where the shape of the selection can be manipulated,
modified, and reused. Basically, after drawing a two-dimensional
Spline both in the selection domain and in the value domain (an
unconstrained crossing gesture), the idea consists of making this
two-dimensional Spline persistent so that the selection and Crossets’

associated values do not disappear. The novelty here is not the
unconstrained crossing gesture, but the persistence of the selection.
Such persistent selection makes it possible to reproduce and modify
patterns representing a strong coupling between selection and values,
with the following properties:

Unconstrained gesture: To assign in a single gesture different val-
ues to different Crossets by drawing a trajectory in two di-
mensions, similar to CrossY [2], in an unconstrained two-
dimensional crossing gesture.

Selection recall: To embed the benefits of both Crossets (contin-
uous navigation in both the value domain and the selection
domain) while tackling the challenge of selection recall [24].

Continuous action: To specify both the noun and verb simultane-
ously and iteratively, while remaining reversible.

Expressive instrument: Making use of input modalities, such as
pen and touch, that offer more powerful, diverse, and expres-
sive gestures than the mouse to leverage Crossets, as these
input technologies are compliant with crossing [30].

4.2 Proof of Concept

To illustrate the potential of the Spline instrument, consider the
manipulation of an audio equalizer. An equalizer is a device used
to achieve equalization, which consists of “altering the frequency
responses of an audio system using linear filters” [43], in recording
studios and during concerts. A basic equalizer consists of several
aligned frequency-specific volume knobs to adjust the signals at
particular frequencies. This example is particularly appropriate be-
cause frequencies are usually not assigned precise values, but are
instead adjusted continuously using the resulting sound as feedback.
Moreover, sliders are manipulated in groups of frequencies. Figure 8
shows the equalizer available in the open-source software Audac-
ity [5]. This standard equalizer provides two alternative views: the
curve for drawing a spline, and the corresponding sliders, with low
frequencies on the left and high frequencies on the right, the verti-
cal axis mapping the volume gain. While these two views are not
superimposed, this interface could benefit from Crossets in order to
merge the two views, and also make it more expressive.

To illustrate how Crossets and the Spline instrument can benefit
equalizers, we explain how common tasks and operations are made

easier using this technique than a standard interface such as the one
illustrated in Figure 8. A prototype of the Spline-based equalizer is
available at www.aviz.fr/intrinseq.

The first standard operation consists of reducing or increasing the
volume of all frequencies simultaneously, e. g., to reduce saturation.
Instead of manually setting a smaller value to one slider at a time, the
constrained crossing gesture is more efficient if all frequencies have
the same original value (1 in Figure 9). As the Spline instrument
enhances the constrained crossing gesture, it also makes this action
possible (2 , 3 in Figure 9). However, if frequencies have different
values, relative dragging is required (5 in Figure 9). With the
persistent Spline instrument, this simply consists of translating the
selection up and down (6 , 7 in Figure 9).

Another common operation consists of creating a band-pass filter,
consisting of two cutoff values and a bandwidth. Once a band-pass
filter has been created, it usually needs to be adjusted. Instead of
redrawing the Spline completely or setting each slider individually,
the Spline instrument makes it possible to perform several meaning-

ful and useful actions: stretch and compress the Spline (8 , 9 , 10

in Figure 9) to increase or decrease the bandwidth (stretching the
curved line to its maximum transforms it into a straight line); move
the Spline vertically (7 in Figure 9) to change both cutoffs and
emphasize a new range of frequencies, making it possible to simply
produce audio effects, such as the ones produced by a wah-wah
pedal.

To illustrate other application examples, the shear gesture (4

in Figure 9) would be useful to apply an opacity pattern to several
successive layers in Photoshop, e. g., to rapidly create a motion effect
similar to the cursors and hands used in the Figures in this paper.
Finally, all of the illustrated gestures in Figure 9 would provide
interesting ways of navigating into the RGB domain to select colors
with similar dependencies and create consistent color schemes.

5 CONCLUSION

We presented Crossets, new widgets for the simultaneous modifica-
tion of multiple widgets similar to sliders. Crossets enhance standard
widgets with crossing capabilities while avoiding steering tasks on
narrow paths, which can be a slow motor task. Instead, the selection
of targets is made easier by constraining the gesture interpretation to
the orthogonal dimension of the widgets. This constrained crossing
gesture makes it possible to specify in a continuous manner (single
gesture) both the noun (the selection of object to be manipulated)
and the verb (the action to apply on the selection).

The benefits of this constrained crossing gesture lie in its im-
proved tradeoff between simplicity and expressive power compared
to traditional slider-based interfaces. Further increasing this power—
while possible, e. g., using relative dragging or making it possible
to skip Crossets—also increases the complexity of the interaction.
Facing this tradeoff between limited but simple, fast, and errorless
gestures, and powerful and complex gestures, we introduced the
Spline as a new persistent interactive instrument. The Spline in-
strument maintains the selection and is both reifiable and reusable,
and makes possible the continuous and simultaneous interaction in
both the selection domain and the value domain in a well-integrated
manner.

Crossets are particularly applicable to table-based and list-based
interfaces. These can greatly benefit from Crossets since they present
multiple similar objects that are graphically aligned, and on which
users often perform the same small set of actions over a range of
consecutive objects. Examples include spreadsheet or visualization
applications, virtual mixing consoles, and more general interfaces
such as file explorers and email browsers.

Crossable widgets open new perspectives, and we hope more in-
terfaces will take advantage of them in the future. In particular, trans-
ferring widget-based interfaces to Crosset-based interfaces would
require little adaptation time from users, as Crossets interactions

are compatible with standard widgets. Crossets also have a gener-
ative power, as they make it possible to completely remodel some
aspects of WIMP interfaces that are tedious to use, and generate
new interfaces for managing multiple objects based on a consistent
interaction paradigm.

ACKNOWLEDGEMENTS

We are grateful to R3, who reviewed an early version of this work
submitted to CHI 2015 and judiciously pointed out the flaws of the
paper, thus helping us to greatly improve the quality of this work.
We also thank Lindsay MacDonald for her thorough proofread of
the camera-ready paper.

REFERENCES

[1] J. Accot and S. Zhai. More than dotting the i’s — foundations for

crossing-based interfaces. In Proc. CHI ’02, pages 73–80. ACM, 2002.

[2] G. Apitz and F. Guimbretière. Crossy: A crossing-based drawing

application. In Proc. UIST ’04, pages 3–12. ACM, 2004.

[3] G. Apitz, F. Guimbretière, and S. Zhai. Foundations for designing and

evaluating user interfaces based on the crossing paradigm. ACM Trans.

Comput.-Hum. Interact., 17(2):9:1–9:42, May 2008.

[4] C. Appert and J.-D. Fekete. Orthozoom scroller: 1d multi-scale navi-

gation. In Proc. CHI ’06, pages 21–30. ACM, 2006.

[5] Audacity, 2014. Available at http://audacity.sourceforge.

net/.

[6] B. Bach, E. Pietriga, and J.-D. Fekete. Visualizing dynamic networks

with matrix cubes. In Proc. CHI ’14, pages 877–886. ACM, 2014.

[7] P. Baudisch. Don’t click, paint! using toggle maps to manipulate sets

of toggle switches. In Proc. UIST ’98, pages 65–66. ACM, 1998.

[8] M. Beaudouin-Lafon. Instrumental interaction: An interaction model

for designing post-wimp user interfaces. In Proc. CHI ’00, pages

446–453. ACM, 2000.

[9] M. Beaudouin-Lafon and W. E. Mackay. Reification, polymorphism

and reuse: Three principles for designing visual interfaces. In Proceed-

ings of the Working Conference on Advanced Visual Interfaces, AVI

’00, pages 102–109. ACM, 2000.

[10] E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and T. D. DeRose. Tool-

glass and magic lenses: The see-through interface. In Proceedings of

the 20th Annual Conference on Computer Graphics and Interactive

Techniques, SIGGRAPH ’93, pages 73–80. ACM, 1993.

[11] W. A. S. Buxton. Chunking and phrasing and the design of human-

computer dialogues. In R. M. Baecker, J. Grudin, W. A. S. Buxton, and

S. Greenberg, editors, Human-computer Interaction, pages 494–499.

Morgan Kaufmann Publishers Inc., 1995.

[12] M. Dixon, F. Guimbretière, and N. Chen. Optimal parameters for

efficient crossing-based dialog boxes. In Proc. CHI ’08, pages 1623–

1632. ACM, 2008.

[13] P. Dragicevic. Combining crossing-based and paper-based interaction

paradigms for dragging and dropping between overlapping windows.

In Proc. UIST ’04, pages 193–196. ACM, 2004.

[14] N. Elmqvist, P. Dragicevic, and J. Fekete. Rolling the dice: Multidi-

mensional visual exploration using scatterplot matrix navigation. IEEE

TVCG, 14(6):1539–1148, Nov 2008.

[15] N. Elmqvist, A. Moere, H. Jetter, D. Cernea, H. Reiterer, and T. Jankun-

Kelly. Fluid interaction for information visualization. Information

Visualization, 10(4):327–340, 2011.

[16] J.-D. Fekete. The infovis toolkit. In Proc. INFOVIS ’04, pages 167–174.

IEEE, 2004.

[17] S. Few. Time on the horizon. available online at

http://www.perceptualedge.com/articles/visual_

business_intelligence/time_on_the_horizon.pdf,

2008.

[18] D. M. Frohlich. The history and future of direct manipulation. Be-

haviour & Information Technology, 12(6):315–329, 1993.

[19] D. M. Frohlich. Direct manipulation and other lessons. In Handbook of

human-computer interaction (2nd ed), pages 463–488. Elsevier, 1997.

[20] D. Gentner and J. Nielsen. The anti-mac interface. Commun. ACM,

39(8):70–82, Aug. 1996.

[21] J. Grudin. The case against user interface consistency. Commun. ACM,

32(10):1164–1173, Oct. 1989.

[22] J. Heer, N. Kong, and M. Agrawala. Sizing the horizon: The effects

of chart size and layering on the graphical perception of time series

visualizations. In Proc. CHI ’09, pages 1303–1312. ACM, 2009.

[23] N. Henry and J. Fekete. Matrixexplorer: a dual-representation system

to explore social networks. IEEE TVCG, 12(5):677–684, Sept 2006.

[24] K. Hinckley, F. Guimbretiere, M. Agrawala, G. Apitz, and N. Chen.

Phrasing techniques for multi-stroke selection gestures. In Proc. GI

’06, pages 147–154. Canadian Information Processing Society, 2006.

[25] R. Hoarau and S. Conversy. Augmenting the scope of interactions

with implicit and explicit graphical structures. In Proc. CHI ’12, pages

1937–1946. ACM, 2012.

[26] E. L. Hutchins, J. D. Hollan, and D. A. Norman. Direct manipulation

interfaces. Hum.-Comput. Interact., 1(4):311–338, 1985.

[27] R. J. K. Jacob, L. E. Sibert, D. C. McFarlane, and M. P. Mullen, Jr.

Integrality and separability of input devices. ACM Trans. Comput.-Hum.

Interact., 1(1):3–26, 1994.

[28] G. Kurtenbach and W. Buxton. Issues in combining marking and direct

manipulation techniques. In Proc. UIST ’91, pages 137–144. ACM,

1991.

[29] B. c. Kwon, W. Javed, N. Elmqvist, and J. S. Yi. Direct manipulation

through surrogate objects. In Proc. CHI ’11, pages 627–636. ACM,

2011.

[30] Y. Luo and D. Vogel. Crossing-based selection with direct touch input.

In Proc. CHI ’14, pages 2627–2636. ACM, 2014.

[31] M. J. McGuffin, N. Burtnyk, and G. Kurtenbach. Fast sliders: Integrat-

ing marking menus and the adjustment of continuous values. In Proc.

GI ’02, pages 35–41. Canadian Information Processing Society, 2002.

[32] T. Moscovich. Contact area interaction with sliding widgets. In Proc.

UIST ’09, pages 13–22. ACM, 2009.

[33] C. Perin and P. Dragicevic. Manipulating multiple sliders by crossing.

In Proc. IHM ’14, pages 48–54. ACM, 2014.

[34] C. Perin, P. Dragicevic, and J.-D. Fekete. Revisiting bertin matrices:

New interactions for crafting tabular visualizations. IEEE TVCG,

20(12):2082–2091, Dec 2014.

[35] C. Perin, F. Vernier, and J.-D. Fekete. Interactive horizon graphs:

Improving the compact visualization of multiple time series. In Proc.

CHI ’13, pages 3217–3226. ACM, 2013.

[36] R. Raisamo and K.-J. Räihä. A new direct manipulation technique

for aligning objects in drawing programs. In Proc. UIST ’96, pages

157–164. ACM, 1996.

[37] R. Rao and S. K. Card. The table lens: Merging graphical and symbolic

representations in an interactive focus + context visualization for tabular

information. In Proc. CHI ’94, pages 318–322. ACM, 1994.

[38] B. Shneiderman. The future of interactive systems and the emergence

of direct manipulation. Behaviour & Information Technology, 1(3):237–

256, 1982.

[39] B. Shneiderman. Direct manipulation: A step beyond programming

languages. Computer, 16(8):57–69, 1983.

[40] M. Spenke, C. Beilken, and T. Berlage. Focus: The interactive table

for product comparison and selection. In Proc. UIST ’96, pages 41–50.

ACM, 1996.

[41] R. St. Amant and T. E. Horton. Characterizing tool use in an interactive

drawing environment. In Proc. SMARTGRAPH ’02, pages 86–93.

ACM, 2002.

[42] A. Van Dam. Post-wimp user interfaces. Commun. ACM, 40(2):63–67,

1997.

[43] Wikipedia. Equalization (audio), 2014. http://en.wikipedia.

org/wiki/Equalization_(audio).

