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ABSTRACT

Automatically following rhythms by beat tracking is by

no means a solved problem, especially when dealing with

varying tempo and expressive timing.

This paper presents a connectionist machine learning ap-

proach to expressive rhythm prediction, based on cogni-

tive and neurological models. We detail a multi-layered

recurrent neural network combining two complementary

network models as hidden layers within one system.

The first layer is a Gradient Frequency Neural Network

(GFNN), a network of nonlinear oscillators which acts as

an entraining and learning resonant filter to an audio sig-

nal. The GFNN resonances are used as inputs to a second

layer, a Long Short-term Memory Recurrent Neural Net-

work (LSTM). The LSTM learns the long-term temporal

structures present in the GFNN’s output, the metrical struc-

ture implicit within it. From these inferences, the LSTM

predicts when the next rhythmic event is likely to occur.

We train the system on a dataset selected for its expressive

timing qualities and evaluate the system on its ability to

predict rhythmic events. We show that our GFNN-LSTM

model performs as well as state-of-the art beat trackers and

has the potential to be used in real-time interactive systems,

following and generating expressive rhythmic structures.

1. INTRODUCTION

“Composition is not a matter of filling or di-

viding time, but rather of generating time.” [1]

The examination of the expressive qualities of music has

been ongoing since the Ancient Greeks [2]. For instance,

performers have been shown to express the higher metrical

structures within a piece of music by tending to slow down

at the end of certain phrases [3].

What Roads is alluding to in the above quote is that it is

the perception of rhythmic events that provides a subjec-

tive experience of time to the listener. As the performer

expressively varies the temporal dynamics, metrical dis-

sonances and consonances are formed, affecting our per-

ception of musical time and our expectation of rhythmical
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events. Our research concerns this interplay of metric per-

ception, expectational prediction with respect to expressive

variations on musical timing.

In order to achieve rhythmic prediction, we need to first

overcome the current problem with perceiving expressive

timing. Automatically processing an audio signal to de-

termine pulse event onset times (beat tracking) is a mature

field, but it is by no means a solved problem. Analysis of

beat tracking failures has shown that a big problem for beat

trackers is varying tempo and expressive timing [4, 5].

We take a cognitive approach, utilising a neurologically

inspired model of rhythm perception known as a Gradi-

ent Frequency Neural Network (GFNN) [6]. In a GFNN

a network of oscillators are distributed across a frequency

spectrum. Internal connections between oscillators in the

network can be learned via Hebbian learning. When stimu-

lated by a signal, the GFNN resonates nonlinearly, produc-

ing larger amplitude responses at related frequencies along

the spectrum. When the frequencies in a GFNN are dis-

tributed within a rhythmic range, resonances can occur at

integer ratios to the pulse. These resonances can be inter-

preted as the perception of a hierarchical metrical structure.

GFNNs have shown promise even when dealing with

more complex input, such as syncopated rhythms [7] and

polyrhythms [8]. The oscillators’ entrainment properties

make them good candidates for solving the expressive tim-

ing problem and so the GFNN forms the basis of our per-

ception layer.

In our system the GFNN is coupled with a Long Short-

Term Memory Neural Network (LSTM) [9], which is a

type of recurrent neural network able to learn long-term

dependencies in a time-series. The LSTM takes the role of

prediction in our system; it reads the GFNN’s resonances

to make predictions about the expected rhythmic events in

the piece.

A future goal of our research is to use the GFNN-LSTM

model for expressive rhythmic production. That is, the

generation of new expressive timing structures based on its

own output and/or other music agents’ output. This system

would be fast enough to operate in real-time.

In this paper, Section 2 details previous work in this area,

Section 3 details a rhythm prediction experiment we have

conducted with the GFNN-LSTM model and shares its re-

sults. Finally, Section 4 offers conclusions and points to

future work.
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Figure 1. Metrical levels marked with Lerdahl and Jack-

endoff’s ‘dot notation’. The pulse level in this score would

be at the crotchet (quarter note) level.

2. BACKGROUND

2.1 Pulse and Metre

A central idea in Lerdahl and Jackendoff’s Generative The-

ory of Tonal Music (GTTM) is the notion of structures in

music which are not present in the music itself, but per-

ceived and constructed by the listener [10].

GTTM presents a detailed grammar of the inferred hi-

erarchies a listener perceives when they listen to and un-

derstand a piece of music. Lerdahl and Jackendoff define

four such hierarchies in tonal music, however in this paper

we focus predominantly on metrical structure, considering

other grammars only in relation to this.

A natural and often subconscious behaviour when we lis-

ten to music is that we tap our feet or nod our heads along

to it. By doing so, we are reducing the music we hear into

a series of periodic events. These events can sometimes

be present in the music, but are often only implied by the

rhythm of the music events and are constructed psycholog-

ically in the listener’s mind. This process is known as beat

induction; it is still an elusive psychological phenomenon

that is under active research [11,12], and has been claimed

to be a fundamental musical trait [13].

When performing beat induction, one listener may tap

along at twice the rate of another listener. In fact, there

are several ways in which the music can be tapped along

to, existing in a hierarchically layered relationship. The

layers of beats are referred to in GTTM as ‘metrical levels’

and together they form a hierarchical metrical structure.

The beats at any given level can be perceived as ‘strong’

or ‘weak’. If a beat on a particular level is perceived as

strong, then it also appears in the next highest level, which

creates the aforementioned hierarchy of beats. Theoreti-

cally, large measures, phrases, periods, and even higher or-

der forms are possible in this hierarchy. Figure 1 illustrates

a metrical analysis of a score.

Although tapping along at any metrical level is perfectly

valid, humans often choose a common, comfortable period

to tap to. Lerdahl and Jackendoff explain this selection

process as a preference rule [14]. In general, this common

period is referred to as the ‘beat’, but it is a problematic

term since a beat can also refer to a singular rhythmic event

or a metrically inferred event. Here we use a term that has

recently grown in popularity in music theory: ‘pulse’ [15].

2.2 Nonlinear Resonance

GTTM is a musicological theory beginning with (but not

limited to) the musical score as a source for analysing me-

tre. What actually occurs in our brains as we listen to music

and perform metre induction is another matter entirely.

Entrainment is the phenomena that occurs when two or

more oscillations become synchronised in frequency and

phase. It has been studied in a variety of disciplines such

as mathematics and chemistry [16–18]. One can observe

entrainment in action by placing several metronomes on

a connected surface; over time the metronomes will syn-

chronise [19].

Jones was among the first to propose an entrainment the-

ory for the way we perceive, attend and memorise tempo-

ral events [20]. Jones posits that rhythmic patterns such as

music potentially entrain a hierarchy of oscillations, form-

ing an attentional rhythm. These attentional rhythms in-

form an expectation of when events are likely to occur, by

extending the entrained period into the future.

Large takes this idea one step further with the notion of

nonlinear resonance [6]. He states that musical structures

occur at similar time scales to fundamental modes of brain

dynamics, causing the nervous system to resonate to the

rhythmic patterns. According to this theory, perceptions

of pulse and metre perception arise as patterns of nervous

system activity.

dz

dt
= z(α+ iω + (β1 + iδ1)|z|2 +

(β2 + iδ2)ε|z|4
1− ε|z|2 )

+ kP (ǫ, x(t))A(ǫ, z̄) (1)

Eq. (1) shows the differential equation that defines a Hopf

normal form oscillator with its higher order terms fully ex-

panded. This form is referred to as the canonical model,

and was derived from a model of neural oscillation in ex-

citatory and inhibitory neural populations [21]. z is a com-

plex valued variable, z̄ is its complex conjugate, and ω

is the driving frequency in radians per second. α is a

linear damping parameter, and β1, β2 are amplitude com-

pressing parameters, which increase stability in the model.

δ1, δ2 are frequency detuning parameters, and ε controls

the amount on nonlinearity in the system. x(t) is a time-

varying external stimulus, which is also coupled nonlin-

early and consists of passive part, P (ε, x(t)), and an active

part, A(ε, z̄), controlled by a coupling parameter k.

The α parameter acts as a bifurcation parameter: when

α < 0 the model behaves as a damped oscillator, and when

α > 0 the model oscillates spontaneously, obeying a limit-

cycle. The gradual dampening of the amplitude allows the

oscillator to maintain a long temporal memory of previ-

ous stimulation. This oscillator will resonate to an external

stimulus that contains frequencies at integer ratio relation-

ships to its natural frequency. Ratios such as 1:1, 2:1, 1:2,

3:1, 1:3, 3:2, and 2:3 are common and even higher order

integer ratios are possible.

Optionally, canonical oscillators can be coupled together

with a connectivity matrix as is shown in Eq. (2).

dz

dt
= f(z, x(t)) +

∑

i 6=j

cij
zj

1−√
ǫzj

.
1

1−√
ǫz̄i

(2)

Where f(z, x(t)) is the right hand side of Eq. (1) and cji
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Figure 2. Amplitudes of connectivity matrix. Hebbian

parameters are set to the following: λ = .001, µ1 =
−1, µ2 = −50, ǫc = 16, κ = 1, oscillator parameters are

set to a limit cycle behaviour. Strong connections have

formed at high-order integer ratios.

is a complex number representing phase and magnitude of

a connection between the ith and jth oscillator.

Hebbian learning can be incorporated on these con-

nections, in a similar way to Hoppensteadt and Izhike-

vich [22]. This can allow resonance relationships between

oscillators to form stronger bonds and is shown in Eq. (3).

dcij

dt
= cij(λ+ µ1|cij |2 +

ǫcµ2|cij |4
1− ǫc|cij |2

)

+ κ
zi

1−√
ǫczi

.
zj

1−√
ǫcz̄j

.
1

1−√
ǫczj

(3)

Here λ, µ1, µ2, ǫc and κ are all canonical Hebbian learn-

ing parameters.

Figure 2 shows a connectivity matrix after Hebbian learn-

ing has taken place. In this example the oscillators have

learned connections to one another in the absence of any

stimulus due to the oscillators operating in their limit cycle

behaviour. Connections have been learned at high order

integer ratios.

2.3 Gradient Frequency Neural Networks

Connecting several canonical oscillators together with a

connection matrix forms a Gradient Frequency Neural

Network (GFNN) [21]. When the frequencies in a GFNN

are distributed within a rhythmic range and stimulated with

music, resonances can occur at integer ratios to the pulse.

Velasco and Large connected two GFNN networks to-

gether in a pulse detection experiment for syncopated

rhythms [7]. The two networks were modelling the sensory

and motor cortices respectively. In the first network, the

oscillators were set to a bifucation point between damped

and spontaneous oscillation (α = 0, β1 = −1, β2 =
−0.25, δ1 = δ2 = 0 and ε = 1). The second network was

tuned to exhibit double limit cycle bifurcation behaviour

(α = 0.3, β1 = 1, β2 = −1, δ1 = δ2 = 0 and ε = 1), al-

lowing for greater memory and threshold properties. The
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Figure 3. Amplitudes of oscillators over time.

first network was stimulated by a rhythmic stimulus, and

the second was driven by the first. The two networks were

also internally connected in integer ratio relationships such

as 1:3 and 1:2. The results showed that the predictions of

the model match human performance, implying that the

brain may be adding frequency information to a signal to

infer pulse and metre. Other rhythmic studies with GFNNs

include rhythm categorisation [23] and polyrhythmic anal-

ysis [8].

Figure 3 shows the amplitude response of a GFNN to

a rhythmic stimulus over time. Darker areas represent

stronger resonances, indicating that that frequency is rel-

evant to the music. A hierarchical structure can be seen

to emerge from around 8 seconds, in relation to the pulse

which is just below 2Hz in this example. At around 24

seconds, a tempo change occurs, which can be seen by the

changing resonances in the figure. These resonances can

be interpreted as a perception of the hierarchical metrical

structure.

2.4 Beat Tracking

By far the most common form of automatically predicting

rhythmic events is that of automatically processing an au-

dio signal to determine pulse event onset times. In Music

Information Retrieval (MIR) this is known as beat track-

ing.

Automated beat tracking has a long history of re-

search [24]. The MIR Evaluation eXchange (MIREX) 1

project runs a beat tracking task each year, which evaluates

several submitted systems against various datasets. This

provides an easy way to discern what the current state-of-

the-art is in terms of beat tracking, which lately has been

Böck and Schedl’s system [25].

State-of-the-art beat trackers do a relativity good job of

finding the pulse in music with a strong beat and a steady

tempo, yet we are still far from matching the human level

of beat induction. Furthermore, despite a recent surge in

new beat-tracking systems, there has been little improve-

ment over Klapuri et al.’s system [26].

Grosche et al. [4] have performed an in-depth analysis

1 http://www.music-ir.org/mirex/



of beat tracking failures on the Chopin Mazurka dataset 2

(MAZ). MAZ is a collection of audio recordings com-

prising on average 50 performances of each of Chopin’s

Mazurkas. Grosche et al. found that properties such as ex-

pressive timing and ornamental flourishes were contribut-

ing to the beat trackers’ failures.

Holzapfel et al. [5] have selected ‘difficult’ excerpts

for a new beat tracking dataset by a selective sampling

approach. This is now publicly available as the SMC

dataset 3 . The SMC excerpts are tagged with a selection of

signal property descriptors, which allows for an overview

of what contributes to an excerpt’s difficulty. Most of the

descriptors refer to temporal aspects of the music, such as

slow or varying tempo, ornamentation, and syncopation,

and over half of the dataset is tagged with the most promi-

nent tag: expressive timing.

From this it is clear that being able to track expres-

sive timing variations in performed music is one area in

which there is much room for improvement. This has

been attempted in many cases, most notably in the work

of Dixon [27] and Dixon and Goebl [28]. However, these

systems do not perform well on today’s standard datasets,

scoring poorly on the SMC dataset in 2014’s MIREX re-

sults.

2.5 Neural Network Music Models

Todd [29] and Mozer [30] were among the first to utilise

a connectionist machine learning approach to music gen-

eration. One of the major advantages of this approach is

that it replaces rule-based systems, which can be strict,

lack novelty, and not deal with unexpected inputs very

well. Instead, the structure of existing musical examples

are learned by the network and generalisations are made

from these learned structures to compose new pieces. Both

Todd and Mozer’s systems are recurrent networks that are

trained to predict melody. They take as input the current

musical context as a pitch class and note onset marker and

predict the same parameters at the next time step.

Whilst Todd and Mozer were mainly concerned with pre-

dicting pitch sequences over time, Gasser et al. [31] have

taken a connectionist approach to perceive and produce

rhythms that conform to particular metres. Their neural

network model SONOR is a self-organising network of

adaptive oscillators that uses Hebbian learning to prefer

patterns similar to those it has been exposed to in a learn-

ing phase. A single input/output (IO) node operates in two

modes, perception and production. In the perception mode,

the IO node is excited by patterns of strong and weak beats,

conforming to a specific metre. Hebbian learning is used

to create connections and between the oscillators in the

network. Once these connections have been learned, the

network can be switched to production mode, reproducing

patterns that match the metre of the stimuli.

Recurrent neural networks (RNNs) such as the those used

in the above systems can be good at learning temporal pat-

terns. However, as noted by Todd [29] and Mozer [30],

2 http://www.mazurka.org.uk/
3 http://smc.inescporto.pt/research/data-2/
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Figure 4. A single LSTM memory block showing (A) in-

put, (B) output, (C) CEC, (D) input gate, (E) output gate,

(F) forget gate and (G) peephole connections.

they often lack global coherence due to the lack of long-

term memory. This results in sequences with good local

structures, but long-term dependencies are often lost. One

way of tackling this problem is to introduce a series of time

lags into the network input, so that past values of the in-

put are presented to the network along with the present.

Kalos [32] used a model of a similar type to generate mu-

sic data in symbolic MIDI format. One advantage of this

method is that it performs well on polyphonic music, but

the time lag method still does not capture long-term struc-

ture very successfully.

2.6 Long Short-Term Memory

Introduced by Hochreiter and Schmidhuber in 1997, Long

Short-Term Memory Neural Networks (LSTMs) were de-

signed to overcome the problem of modelling long term

structures. Whilst RNNs can theoretically learn infinitely

long patterns, in practice this is difficult due to the ‘vanish-

ing gradient problem’ [9]. It can take as little as 5 time

steps for this problem to occur in an RNN [33]. In an

LSTM, a self-connected node known as the Constant Error

Carousel (CEC) ensures constant error flow back through

time, meaning that LSTMs can bridge time lags in excess

of 1000 time steps [9].

A simplified diagram of an LSTM memory block can be

seen in Figure 4. The input and output gates control how

information flows into and out of the CEC, and the forget

gate controls when the CEC is reset. The input, output and

forget gates can be connected via ‘peepholes’. For a full

specification of the LSTM model we refer to [9] and [34].

As time-series predictors, LSTMs perform very well, as

is shown by Böck and Schedl’s beat tracker [25]. LSTMs

have also had some success in generative systems. Eck and

Schmidhuber [35] trained LSTMs which were able to im-

provise chord progressions in the blues and more recently

Coca et al. [36] used LSTMs to generate melodies that fit

within user specified parameters.

Lambert et al. have combined a GFNN with an LSTM

(GFNN-LSTM) as two layers in an RNN chain and used

it to predict melodies [37, 38]. Providing nonlinear res-

onance data from the GFNN helped to improve melody

prediction with an LSTM. This is due to the LSTM being
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Figure 5. An overview of our GFNN-LSTM system

showing (A) audio input, (B) mid-level representation, (C)

GFNN, (D) LSTM, and (E) rhythm prediction output. The

variable ν can be a mean field function or full connectivity.

able to make use of the relatively long temporal resonance

in the GFNN output, and therefore model more coherent

long-term structures. Here we take this work further by

working with audio data and differing tempos.

3. EXPERIMENTS

We have performed an experiment where we have trained a

GFNN-LSTM to predict expressive rhythmic events from

audio data. The system takes audio data as input and out-

puts an event activation function. The system operates in

a number of stages which are detailed below. A schematic

of the system is provided in Figure 5.

The pieces in the MAZ dataset are expressively per-

formed by various performers and vary in tempo and dy-

namics throughout the performance. However, the pieces

are all within the same genre and are all performed on the

piano, making drawing conclusions about the rhythmic as-

pects more valid. We have collected a subset of 50 ex-

cerpts, each 40 seconds long, by randomly choosing the

full pieces and slicing 40 seconds worth of data.

When processing audio data for rhythmic events, it is

common to first transform the audio signal into a more

rhythmically meaningful form from which these events can

be inferred. This representation could be extracted note

onsets in binary form, or a continuous function that ex-

hibits peaks at likely onset locations [39]. These functions

are called onset detection functions and their outputs are

known as mid-level representations.

Since we are dealing with expressively rich audio, we

have chosen an onset detection function which is sensi-

tive both to sharp and soft attack events such as those

found in the MAZ piano performances. From Bello et

al.’s tutorial on onset detection in music signals [40], we

have selected the complex spectral difference onset detec-

tion function. This is a good general onset detector which

works well with a variety of timbres. It is a continuous

function that can be converted into binary onset data by

using suitable threshold levels for peak picking. A sample

rate of 86.025Hz was used, which was recently found to

yield accurate detection results [41].

3.1 GFNN layer

The GFNN was implemented in MATLAB using the

GrFNN Toolbox [42]. It consisted of 192 oscillators, loga-

rithmically distributed with natural frequencies in a rhyth-

mic range of 0.5Hz to 8Hz. The GFNN was stimulated

by rhythmic time-series data in the form of the mid-level

representation the audio data.

We have selected two parameter sets for the oscillators

themselves, which affect the way the oscillators behave.

The first is set to the bifurcation point between damped

and spontaneous oscillation. We term this ‘critical mode’,

as the oscillator resonates with input, but the amplitude de-

cays over time in the absence of input: α = 0, β1 = β2 =
−1, δ1 = δ2 = 0, ǫ = 1. By setting δ1 = 1, we define

the second parameter set: ‘detune mode’. These param-

eters allow the oscillator to change its natural frequency

more freely, especially in response to strong stimuli. This

essentially allows more entrainment to occur, so should al-

low for greater tracking of tempo changes. We obtained

these values from the examples provided with the GrFNN

Toolbox.

We have also selected three approaches to performing the

Hebbian learning in the GFNN layer. The first approach

simply has no connectivity between oscillators and there-

fore no learning activated at all (None). This is so that we

can measure the effect (if any) that learning in the GFNN

layer has on the overall predictions of the system.

The second approach is to activate online Hebbian learn-

ing with the following parameters: λ = 0, µ1 = −1, µ2 =
−50, ǫc = 4 and κ = 1 (Online). Under these parame-

ters, the network should learn connections between related

frequencies as they resonate to the stimulus.

The third approach is where generic initial connections

have first been set in the network, learned by operating the

oscillators in limit cycle mode (InitOnline). In this mode,

the internal connections can be learned in the absence of

any stimulus and results in a connectivity matrix shown in

Figure 2. This provides a much more general state for the

connection matrix to be in and potentially overcomes the

limitations of the fixed frequency connections learned in

online-only mode.

We found in some initial experimentation that during

learning phase, the differential equations that drive the con-

nectivity matrix can tend to spiral off to infinity. To ensure

greater stability in the system, we have limited the connec-

tions in the connectivity matrix to have a magnitude less

than 1√
ǫc

(0.5 in our experiments). We also and rescaled

all stimuli to be in the range 0 <= x(t) <= 0.25.

3.2 LSTM layer

The LSTM was implemented in Python using the PyBrain

library [43]. For each variation of the GFNN, we trained

two LSTM topologies. The first had 192 linear inputs,

one for each oscillator in the GFNN, which took the real

part of each oscillator’s output. The second topology took

only one linear input, which consisted of the mean field of

the GFNN. The mean field reduces the dimensionality of

the input whilst retaining frequency information within the

signal.

All networks used the standard LSTM model with peep-

hole connections enabled. The number of hidden LSTM

blocks in the hidden layer was fixed at 10, with full recur-

rent connections. The number of blocks was chosen based

on previous results which found it to provide reasonable



prediction accuracy, whilst minimising the computational

complexity of the LSTM [38].

All networks had one single linear output, which serves

as a rhythmic event predictor. The target data used was the

output of the onset detection algorithm, where the sam-

ples were shifted so that the network was predicting what

should happen next. The input and target data was nor-

malised before training.

Training was done by backpropagation through time [44]

using RProp- [45]. During training we used 5-fold cross-

validation [46]. Training stopped when the total error

had not improved for 20 epochs, or when this limit was

reached, whichever came sooner.

3.3 Evaluation

The two main aims of this experiment were to firstly cre-

ate a meaningful internal representation of metrical struc-

ture, and secondly to create good predictions in terms of

the rhythmic structure. Therefore we are evaluating the

system on its ability to predicted expressively timed rhyth-

mic events, whilst varying the parameters of the GFNN and

connectivity.

The results have been evaluated using the standard infor-

mation retrieval metrics of precision, recall and F-measure.

Events are predicted using a gradient threshold of the out-

put data. The threshold looks for peaks in the signal by

tracking gradient changes from positive to negative. When

this gradient change occurs, an onset has taken place and

is marked as such.

These events were subject to a tolerance window of

±58.1ms. This means that an onset can occur within this

time window and still be deemed a true positive. At the

sample rate used in this experiment, this equates to 5 sam-

ples either side of an event. We also ensured that neither

the target nor the output can have onsets faster than a rate of

16Hz, which is largely considered to be the limit of where

rhythm starts to be perceived as pitch [6]. These are limita-

tions to our evaluation method, but since we are mainly in-

terested in predicted rhythmic structures and are not explic-

itly evaluating the production of expressive micro-timing,

we believe they are acceptable concessions.

The first 5 seconds of output by the network are ignored,

making the evaluation only on the final 35 seconds of pre-

dictions.

Table 1 and Table 2 display the results of the experiment,

Figure 6 shows an example network output. These numer-

ical metrics and visual figures provide some indication of

how well the system is capturing the rhythmic structures.

However, this information may be better understood by lis-

tening to the predicted rhythms. To this end, the reader is

invited to visit this paper’s accompanying website 4 , where

we have assembled a collection of audio examples and fur-

ther output plots for each network’s target and output data.

3.4 Discussion

We can see from the results that the best overall network

incorporates detune oscillators, online learning with ini-

4 http://andyroid.co.uk/research/gfnn lstm rhythm prediction/
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Figure 6. The output of the GFNN-LSTM. The top fig-

ure shown the predicted onset likelihood, the bottom figure

displays the threshold events.

tial generic connections in the GFNN layer, and mean field

connections.

The mean field networks always outperformed the

LSTMs with full connections to the GFNN. This is prob-

ably due to the mean field being able to capture the most

resonant frequencies, whilst filtering out the noise of some

less resonant frequencies. The resulting signal to the

LSTM would therefore be more relevant for predicting

rhythmic events. However, this may be due to the limited

number of LSTM blocks in each network forming a bottle-

neck in the fully connected networks. Increasing number

of hidden LSTM blocks may mitigate this limitation.

Another downside of the mean field networks is shown

in the standard deviation figures. Whist performance im-

proved in all cases using the mean field, the standard devi-

ation also increased. This means there was a greater range

of performances between the folds and could possibly in-

dicate some networks being trained to local optima. Dur-

ing training we observed that the mean field networks took

many more epochs for errors to converge.

The detuning oscillators outperformed the critical oscil-

lators in all cases. This can be attributed to the greater

amount of entrainment occurring in the network. Tempo

changes can be tracked as an entrainment process between

a local population of oscillators in the network. Where

there is a local area of strong resonance the oscillators will

take on very near frequencies to one another. As the stim-

ulus frequency changes, this local area will be able to fol-

low it, moving the local resonance area along the frequency

gradient.

When compared to the results of our previous work

on rhythm prediction with the GFNN-LSTM model [38],

these results may at first seem a little underwhelming. The

best network in our previous experiment achieved a rhythm

prediction mean F-measure of 82.2%, compared with the

71.8% mean achieved here. However, this reflects the

added difficulty of the task being undertaken here. Our pre-

vious work was on symbolic music at a fixed tempo and no

expressive variation, whereas this study is undertaken on



Learning LSTM Precision Recall F-measure

None Full 0.6114 (0.035) 0.6182 (0.034) 0.6059 (0.021)

None Mean 0.6878 (0.100) 0.6883 (0.067) 0.6823 (0.081)

Online Full 0.5637 (0.043) 0.6185 (0.076) 0.5798 (0.042)

Online Mean 0.6862 (0.039) 0.6401 (0.050) 0.6548 (0.042)

InitOnline Full 0.5982 (0.055) 0.6230 (0.041) 0.6000 (0.018)

InitOnline Mean 0.7032 (0.031) 0.6979 (0.041) 0.6958 (0.036)

Table 1. Critical oscillation mode results. These results show the mean results calculated on the validation data. The

number in brackets denotes the standard deviation.

Learning LSTM Precision Recall F-measure

None Full 0.5972 (0.027) 0.6508 (0.036) 0.6161 (0.027)

None Mean 0.7208 (0.058) 0.6891 (0.069) 0.6959 (0.057)

Online Full 0.5831 (0.044) 0.6443 (0.067) 0.6020 (0.015)

Online Mean 0.6943 (0.028) 0.6911 (0.045) 0.6866 (0.034)

InitOnline Full 0.5666 (0.023) 0.6787 (0.033) 0.6114 (0.013)

InitOnline Mean 0.7239 (0.013) 0.7178 (0.061) 0.7142 (0.033)

Table 2. Detune oscillation mode results. These results show the mean results calculated on the validation data. The

number in brackets denotes the standard deviation.

audio data performed in expressive way at varying tem-

pos. The overall best single system (Detune oscillators,

InitOnline connections, and Mean input) was achieving an

F-measure of 77.2%, which is extremely promising.

For comparison with other systems, the best beat tracker

performance on MAZ submitted to MIREX in 2014 scored

an F-measure of 71.5% (see [47]). Whilst this is not a di-

rect comparison as we are predicting expressive rhythm,

not pulse events, we believe it shows our system is at least

comparable to state-of-the-art systems.

4. CONCLUSIONS

In this paper we have detailed a multi-layered recurrent

neural network model for expressively timed rhythmic per-

ception and prediction. The model consists of a perception

layer, provided by a GFNN, and a prediction layer pro-

vided by an LSTM. We have evaluated the GFNN-LSTM

on a dataset selected for its expressive timing qualities and

found it to perform at a compatible standard to a previous

experiment undertaken on symbolic data.

Our system’s performance is comparable to state-of-the-

art beat tracking systems. For the purposes of rhythm gen-

eration, we feel that the F-measure results reported here

are already in a good range. Greater values may lead to too

predictable and repetitive rhythms, lacking in the novelty

expected in human expressive music. On the other hand,

lower values may make the generated rhythms too random

and irregular, so that they may even not be perceived as

rhythmic at all. To make any firm conclusions on this, we

would need to conduct formal listening tests based on the

rhythms we have generated with our system. This is left

for future work.

By using an oscillator network to track the metrical struc-

ture of expressively timed audio data, we have moved to-

wards real-time processing of audio signals. We intend to

extend this initial system for complete use as a MuMe sys-

tem. Firstly, we will incorporate polyphonic rhythms into

the system, instead of outputting a single rhythm output.

Secondly, incorporating some melody model as in our pre-

vious work would be of use for complete autonomy of the

system as a musical agent. Finally, we will close the feed-

back loop by connecting the system’s output to its input.

This would allow indefinite generation of new rhythmic

structures which can be evaluated for their novelty. In do-

ing so we will have created an expressive, generative, real-

time agent.
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