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The Spectral Toolbox is a suite of analysis–
resynthesis programs that locate relevant partials of
a sound and allow them to be resynthesized at spec-
ified frequencies. This enables a variety of routines
including spectral mappings (changing all partials
of a source sound to fixed destination frequencies),
spectral morphing (continuously interpolating be-
tween the partials of a source sound and those of
a destination sound), and what we call Dynamic
Tonality (a novel way of organizing the relationship
between a family of tunings and a set of related
spectra). A complete application called the Trans-
FormSynth provides a concrete implementation of
Dynamic Tonality.

Wendy Carlos looked forward to the day when
it would be possible to perform any sound in any
tuning: “[N]ot only can we have any possible timbre
but these can be played in any possible tuning . . . that
might tickle our ears” (Carlos 1987b). The Spectral
Toolbox and TransFormSynth address two needs
that have previously hindered the realization of this
goal: (1) the ability to specify and implement detailed
control over the sound’s spectrum and timbre and
(2) a way to organize the presentation and physical
interface of the infinitely many possible tunings.
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The analysis–resynthesis process at the heart of
the Spectral Toolbox is a descendent of the Phase
Vocoder (PV) (Moorer 1976; Dolson 1986). But where
the PV is generally useful for time stretching (and
transposition after a resampling operation), the
spectral resynthesis routine SpT.ReSynthesis allows
arbitrarily specified manipulations of the spectrum.
This is closely related to the fixed-destination spec-
tral manipulations of Lyon (2004) and the audio
effects in Laroche and Dolson (1999), but it includes
more flexible mappings and an effective decom-
position of tonal from noise material. It is also
closely related to the spectral-mapping technique of
Sethares (1998) but can function continuously (over
time) rather than being restricted to a single slice of
time. In the simplest application, SpT.Sieve, the par-
tials of a sound (or all the partials in a performance)
can be remapped to a fixed template; for example,
the partials of a cymbal can be made harmonic, or all
partials of a piano performance can be mapped to the
scale steps of N-tone equal temperament (i.e., a divi-
sion of the octave into N equal parts). By specifying
the rate at which the partials may change, the spec-
trum of a source sound can be transformed over time
into the spectrum of a chosen destination sound,
as demonstrated in the routine SpT.MorphOnBang.
Neither the source nor the destination need be fixed.
The mapping can be dynamically specified so that
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a source with partials at frequencies f0, f1, f2, . . . , fn

is mapped to g0, g1, g2, . . . , gn. For example, the
SpT.Ntet routine can be used to generate sounds
with spectra that align with scale steps of the N-tone
equal tempered scale.

Carlos (1987a) observed that “the timbre of an
instrument strongly affects what tuning and scale
sound best on that instrument.” The most complex
of the routines, the TransFormSynth, allows the
tuning to be changed dynamically over a broad
continuum, and the tuning and timbre to be coupled
(to an arbitrary degree). It does this by analyzing ex-
isting samples, and then resynthesizing the partials
using the routines of Dynamic Tonality. Dynamic
Tonality builds upon the concepts of transpositional
invariance (Keislar 1987), tuning invariance (Milne,
Sethares, and Plamondon 2007, 2008), and dynamic
tuning (Milne, Sethares, and Plamondon 2007) by ad-
ditionally including various just-intonation tunings
and allowing the spectrum (overtones) of every note
to be dynamically tempered toward a tuning that
minimizes sensory dissonance (for intervals tuned
to low integer ratios, or temperings thereof).

Transpositional invariance means that a pitch
pattern, such as a chord or melody, has the same
shape and the same fingering in all musical keys—
it requires a controller with a two-dimensional
lattice (array) of keys or buttons. Tuning invariance
means that a pitch pattern has the same shape and
the same fingering over a continuum of tunings,
even though its intonation may change somewhat.
Dynamic tuning is the ability to smoothly move
between different tunings within such a tuning
continuum. Control of the additional parameters
required by Dynamic Tonality is facilitated by the
Tone Diamond—a novel GUI object that allows the
note-tuning and associated spectral-tuning space to
be traversed in a simple and elegant fashion.

The TransFormSynth is compatible with con-
ventional controllers (such as a MIDI keyboard or
piano roll sequencer), but the transpositional and
tuning invariant properties inherent to Dynamic
Tonality are best demonstrated when using a com-
patible two-dimensional controller (such as a MIDI
guitar fretboard, a computer keyboard, the forth-
coming Thummer controller (www.thummer.com),
or the forthcoming software sequencer called Hex

(available on the Dynamic Tonality Web site at
www.dynamictonality.com).

The TransFormSynth can produce a rich variety
of sounds based on (but not necessarily sonically
similar to) existing samples, and it provides a
straightforward interface for the integrated control
of tuning and spectrum. This means that when
it is coupled with a two-dimensional controller,
it provides an excellent showcase for the creative
possibilities opened up by transpositional and
tuning invariance and the spectral manipulations of
Dynamic Tonality.

A current version of the Spectral Toolbox (in-
cluding all the routines mentioned previously) can
be downloaded from the Spectral Tools home page
at eceserv0.ece.wisc.edu/∼sethares/spectoolsCMJ
.html. It runs on Windows and Mac OS X using
Max/MSP from Cycling ’74, including both the full
version and the free Max/MSP Runtime version.
The spectral-manipulation routines are written in
Java, and all programs and source code are released
under a Creative Commons license.

Analysis–Resynthesis

To individually manipulate the partials of a sound, it
is necessary to locate them. The Spectral Toolbox be-
gins by separating the “signal” (which refers here to
the deterministic portion, the most prominent tonal
material) from the “noise” (the stochastic portion,
consisting of rapid transients or other components
that are distributed over a wide range of frequencies).
This allows the peaks in the spectrum to be treated
differently from the wide-band components. This
separation (Serra and Smith 1990) helps preserve the
integrity of the tonal material and helps preserve
valuable impulsive information such as the attacks
of notes that otherwise may be lost due to transient
smearing (Laroche and Dolson 1999). The noise
parts may be inverted without modification even
as the tonal components are changed significantly.
The basic flow of information in all of the routines
is shown in Figure 1.

We propose a possibly novel technique using a
median filter of length n that takes the median of
each successive set of n values. (If a list of numbers
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Figure 1. The input sound
is broken into frames and
then analyzed by a series
of overlapping FFTs. The
partials (the peaks of the
spectrum) follow the top

path; they are mapped to
their destination
frequencies, then
optionally processed in the
frequency domain.
Similarly, the noise

portion follows the bottom
path and can be processed
in the frequency domain
before adding and
returning to the time
domain.

is ordered from smallest to largest, the median is the
number in the middle position of the list. For exam-
ple, the median of [1, 2, 3, 100, 200] is 3.) The noise
floor is approximated as the output of a median filter
applied to the magnitude spectrum. Because peaks
are rarely more than a handful of frequency bins
wide, a median filter with length between mL = 20
to mL = 40 allows good rejection of the highs as
well as good rejection of the nulls. For example,
the left-hand plot in Figure 2 shows the spectrum
in a single 4,096-sample frame from Joplin’s Maple
Leaf Rag. The median filter, of length 35, provides
a convincing approximation to the noise floor.

For example, SpT.AnalySynth, whose help file
is shown in Figure 3, can be used to demonstrate
the separation of signal and noise. A sound file is
chosen by clicking on the “open” box; alternatively,
it is possible to use a live audio input. Pressing “x”
starts the processing and displays the magnitudes of
the signal and the noise. (The scales are controlled
by several boxes that are not shown in Figure 3.)
When the “% noise” parameter is set to 0.5, the
signal and noise are balanced, and the output
resynthesizes the input. With “% noise” set to
zero, the output consists of only the signal path.
When it is set to 1.0, the output consists of only
the noise path. Experimenting with different values
of the “threshold multiplier” (which multiplies the
noise floor by this factor) and the “maximum #
peaks” parameter affects how well the noise-signal

separation is accomplished. For example, applying
the values shown in the figure to a version of Scott
Joplin’s Maple Leaf Rag gives the Noisy Leaf Rag
(found on the Spectral Tools home page), where both
melody and harmony are removed, leaving only the
underlying rhythmic pattern.

One problem with standard short-time Fourier-
transform processing is that the frequencies specified
by the Fast Fourier Transform (FFT) are quantized
to s

w
, where s is the sampling rate and w is the

size of the FFT window. The phase values from
consecutive FFT frames can be used to refine the
frequency values of the partials as is often done in
the PV (Moorer 1976; Laroche and Dolson 1999).

Suppose that two consecutive frames j and j + 1
separated by dt seconds have a common peak in
the ith frequency bin of the magnitude spectrum
(corresponding to a frequency of i s

w
). Let θ

j
i and

θ
j+1

i be the phase values of the ith bins, and define
�θi = θ

j
i − θ

j+1
i . The frequency estimate is

fi = 1
dt

[
Round

(
dt s
w

i − �θi

2π

)
+ �θi

2π

]
. (1)

The accuracy of this estimate has been shown to
approach that of a maximum-likelihood estimate
(the value of the frequency f that maximizes the
conditional probability of f given the data) for some
choices of parameters (Puckette and Brown 1998).
In practice, this improves the frequency estimates
significantly.
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Figure 2. The left-hand
graph shows a typical
spectrum and the noise
floor (the dark line) as
calculated using the
output of the median filter
(multiplied by a constant).
The right-hand figure

zooms in on a small
portion of that graph.
The noise floor is used
to distinguish the peaks
of the spectrum: The M
largest local maxima
above the noise floor
(shown by the small

circles) are treated as
significant partials and
processed through the top
path of Figure 1; data
below the noise floor are
processed through the
bottom path.

Similarly, in the resynthesis step, the destination
frequencies for the partials can be specified to a
much greater accuracy than s

w
by adjusting the

frequencies of the partials using phase differences in
successive frames. To be explicit, suppose that the
frequency fi is to be mapped to some value g. Let k
be the closest frequency bin in the FFT vector (i.e.,
the integer k that minimizes |k s

w
− g|). The kth bin

of the output spectrum at time j + 1 has magnitude
equal to the magnitude of the ith bin of the input
spectrum with corresponding phase

θ
j+1

k = θ
j

k + 2πdt g. (2)

Together, Equations 1 and 2 allow a more accurate
measurement of the frequencies in the source and
destination sounds than is possible with a naive
use of the FFT. Similarly, in the resynthesis step,
the frequencies of the partials can be specified
more precisely. The phase values in Equation 2 also
guarantee that the resynthesized partials will be
continuous across frame boundaries, reducing the
likelihood of discontinuities and clicks.

Spectral Mappings

Suppose that a source sound F has n partials
f1, f2, . . . , fn with magnitudes a1, a2, . . . , an, and let
g1, g2, . . . , gm be mdesired partials of the destination
sound G. The mapping changes the frequencies
of the partials while preserving their magnitudes.
Phase values then are created as in Equation 2. A key
issue is how to assign the input frequencies fi to the
output frequencies g j. Two methods that we have
found useful are shown schematically in Figure 4. In

each diagram, there are two sets of stacked lines that
represent the peaks in the magnitude spectra of the
source F (on the left) and the destination G (on the
right). The arrows show how the assignments are
made (and hence which partials of the source map
to which partials of the destination). The dark dots
represent frequencies that are not in F or G but are
nonetheless needed when n �= m.

Multiphonics occur in wind instruments when
the coupling between the driver (the reed or lips)
and the resonant tube evokes more than a single
fundamental frequency. Their sounds tend to be
inharmonic and spectrally rich. The two different
assignment strategies, described in Figure 4, are
contrasted by conducting a 15-sec spectral morph
(see “Spectral Morphing,” subsequently) between
four different pairings of clarinet multiphonics
(entitled multiphonics morph #1, #2, #3, and #4 on
the Spectral Tools home page). For each pairing, both
assignment strategies—labeled “type 1” for nearest
neighbor, and “type 2” for sequential alignment—are
used. It can be heard that the different assignment
strategies can cause significant differences in the
sound, with the partials sometimes appearing to
rise, and sometimes to fall.

There are also other ways that the assignments
might be made. For example, the sequential align-
ment might begin with the highest, rather than the
lowest, partials. The partials with the maximum
magnitudes might be aligned, followed by those
with the second largest, and so forth, until all are
exhausted. Alternatively, some important pair of
partials might be identified (e.g., the largest in mag-
nitude, or the ones nearest the spectral centroid) and
the others aligned sequentially above and below.
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Figure 3. SpT.AnalySynth
demonstrates the
decomposition of the
magnitude spectrum into
signal (the top plot) and
noise (the bottom plot).
Parameters that affect the

decomposition appear
across the top. The
proportion of signal to
noise in the reconstructed
signal can be adjusted by
changing the “% noise”
parameter.

However, early experiments suggest that many of
these other methods lead to erratic results in which
the pitch changes dramatically in response to small
changes in the input sound.

Applications of the Spectral Toolbox

The analysis, spectral mappings, and resynthesis
processes described in the previous sections enable a
variety of routines including fixed spectral mappings
(which transform the partials of a source sound
to a fixed set of destination frequencies), spectral
morphing (continuously interpolating between the
partials of a source sound and a destination), and
Dynamic Tonality. These are described in the next
few sections.

Fixed Destinations

Perhaps the most straightforward use of the spec-
tral mapping technology is to map the input to a
fixed destination spectrum G. For example, since

harmonic sounds play an important role in percep-
tion, G might be chosen to be a harmonic series built
on a fundamental frequency g (i.e., gi = ig) as imple-
mented in the SpT.MakeHarm routine of Figure 5.
A sound is played by clicking on “sfplay∼” and the
root g is chosen either by typing into the rightmost
number box or by clicking on the keyboard. (This
can easily be replaced with a MIDI input.) The input
might be an inharmonic sound such as a gong (see
harmonicgong on the Spectral Tools homepage), or
it may be a full piece such as the 65 Hz Rag (also
found on the Spectral Tools home page) which maps
all partials of a performance of Joplin’s Maple Leaf
Rag to integer multiples of g = 65 Hz. It is also
possible to “play” the mini-keyboard to change the
fundamental frequency of the harmonic series over
time. Maple-makeharm (on the Spectral Tools home
page) is a brief improvisation where the fundamental
is changed as the piece progresses. One fascinating
aspect is that there is a smooth transition from
rhythmic pulsation (when the piece is mapped to all
harmonics of a low fundamental) to melody (when
mapped to all harmonics of a high fundamental).
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Figure 4. Two ways to
align the partials of the
source spectrum with the
partials of the destination
spectrum. The
nearest-neighbor
assignment locates fi that
are close to gj, and these

neighbors are paired.
Zero-amplitude partials
are added to the list of
destination partials and
assigned to fi whenever
there are no nearby
partials gj, and these are
spaced between the

nearest destination
partials. Similarly,
unassigned destination
partials are mapped to
partials of zero magnitude
that are located midway
between nearby source
partials. The

sequential-alignment
method assigns the
lowest-frequency peak in F
to the lowest frequency
peak in G, then pairs the
next-lowest frequencies,
and so forth, until all are
exhausted.

Similarly, the SpT.Ntet routine maps all partials
of the input sound to scale steps of the N-tone
equal tempered scale. This can be used to create
sounds that are particularly appropriate for use in
a given N-TET scale (Sethares 2004) or to map a
complete performance into an approximation of the
“same” piece in N-TET. For example, Maple5tet
(found on the Spectral Tools home page) maps all the
partials of Joplin’s Maple Leaf Rag into a fixed 5-TET
template. The more sophisticated Make Believe Rag
(found on the Spectral Tools home page) transforms
the same piece into many different N-TETs, using
different tuning mappings in a way that is somewhat
analogous to the change of chord patterns in a more
traditional setting. The most general of the fixed
destination routines is SpT.Sieve, which maps the
input sound to a collection of partials specified by a
user-definable table.

Spectral Morphing

Spectral morphing generates sound that moves
smoothly between a source spectrum F and a
destination spectrum G over a specified time τ

(Slaney, Covell, and Lassiter 1996; Cospito and
de Tintis 1998). Suppose that F has partials at
fi, i = 1, 2, . . . , k with magnitude ai, and G has
partials at gi, i = 1, 2, . . . , k with magnitude bi.
The two spectra are assumed to be aligned (using
one of the methods of Figure 4) so that both have
the same number of entries k. Let NF and NG be

the noise spectra of F and G. Let λ be 0 at the start
of the morph and be 1 at time τ . The morph then
defines the spectrum at all intermediate times with
log-spaced frequencies

h(λ) = fi

(
gi

fi

)λ

, (3)

and linearly spaced intermediate magnitudes

m(λ) = (1 − λ)ai + λbi, (4)

and interpolated noise spectra

N (λ) = (1 − λ)NF + λNG. (5)

Logarithmic interpolation is used in Equation 3
because it preserves the intervallic structure of the
partials. The most common example is for harmonic
series. If the source and destination each consist of a
harmonic series (and if the corresponding elements
are mapped to each other in the alignment proce-
dure), then at every λ, the intervening sounds also
have a harmonic structure. This is shown mathe-
matically in Appendix A and can be demonstrated
concretely using SpT.MorphOnBang, which appears
in Figure 6.

To explore the spectral morphing, we recorded
Paris-based instrumentalist Carol Robinson playing
a number of short clarinet multiphonics whose
timbres ranged from soft and mellow to noisy and
harsh. Pairs of 1- to 3-second-long multiphonics
were spectrally morphed over 15 seconds giving a
resulting sound file of about 20 seconds. Examples
of these morphs (multiphonics morph #1, #2, #3,
and #4) were previously referenced in the section
“Spectral Mappings.”

The next set of examples on the Spectral Tools
home page uses a more complex set of morphings
with two layers: one layer is a simple quarter-tone
melody called Legend (24-TET melody only); the
other layer is a succession of multiphonics that
have been morphed between each other. Each of
the four examples Legend (melody morphed into
multiphonic #1, #2, #3, and #4) uses a different
succession of multiphonics, and in each of them
the clarinet melody layer is morphed (over 1
second) into the multiphonic layer. Observe that,
in these examples, neither the source (the clarinet
melody) nor the destination (the multiphonic
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Figure 5. SpT.MakeHarm
maps all partials of the
input sound to a single
harmonic series with root
specified by the keyboard
or by the rightmost
number box. The three

number boxes labeled
“# peaks,” “multiplier,”
and “width of median” set
the parameters for spectral
peak detection and
noise/signal separation.
The box labeled “noise

level” controls the relative
volumes of the signal and
noise paths. These
parameters are common to
all routines in the Spectral
Toolbox.

morph) is a static set of partials, but rather changes
as time progresses. The morphing from melody
to multiphonics was, if anything, too successful
because, although the effect is interesting, the
changes to the spectrum of the clarinet render it in
many places unrecognizable.

In the piece entitled Legend of Spectral Phollow,
the process is reversed; rather than choosing the
succession of multiphonics in advance, a Max/MSP
patch “listens” to the live clarinet melody and reacts
by periodically choosing the closest multiphonic
and then morphing it into the melody over the same
time period (in this example, 20 msec). The quarter-
tone melody provides the basis of the melodic
material, but the score also calls for significant
microtonal improvisation by the performer. The
electronics retunes and chooses multiphonics on-
the-fly to create an unusual kind of inharmonic
backdrop, using the (morphed) multiphonics as an
accompaniment analogous to the way block chords
may accompany a standard melody. The Legend of
Spectral Phollow premiered at CCMIX in Paris on
13 July 2006. Carol Robinson played the clarinet,
and William Sethares “played” the software.

Dynamic Tonality

There are many possible tunings: equal temper-
aments, meantones, circulating temperaments,
various forms of just intonation, and so forth. Each
seems to require a different method of playing and a

different interface, necessitating significant time and
effort to master. In Milne, Sethares, and Plamondon
(2007, 2008), we introduced a way of parameterizing
tunings so that many seemingly unrelated systems
can be performed on one keyboard with the same
fingerings for the same chords and melodies; this is
called tuning invariance. For example, the Syntonic
continuum begins at 7-TET, moves through 19-TET,
a variety of meantone tunings, 12-TET, 17-TET,
22-TET, and on up to 5-TET (as shown on the main
tuning slider in Figure 7). On a musical controller
with a two-dimensional array of keys, a chord or
melody can usually be fingered the same throughout
all the tunings of this continuum.

The TransFormSynth, which is implemented
using the same audio routines as described in the
Spectral Toolbox, realizes these methods and ex-
tends them in two ways. First, the tuning can be
moved toward a nearby just intonation. Second,
the spectrum of the sound can be tempered along
with the tuning. Both of these temperings are im-
plemented using the Tone Diamond—a convenient
two-dimensional joystick interface—which is the
diamond-shaped object at the top-left of Figure 7.

A Dynamic Tonality synthesizer (like Trans-
FormSynth) has a small number of parameters
that enable many musically useful, and relatively
unexplored, features:

1. The continuous parameters α, β, and γ

(explained subsequently) move the tuning
between a number of equal temperaments
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Figure 6. SpT.MorphOn-
Bang can be applied to
individual sounds or to
complete musical
performances. The time

over which the morph
occurs is specified by the
slider and is triggered by
the button on the
right.

(e.g., 7-TET, 31-TET, 12-TET, 17-TET,
and 5-TET), non-equal temperaments (e.g.,
quarter-comma meantone, and Pythagorean),
circulating temperaments, and closely
related just intonations.

2. The mapping to a two-dimensional lattice
of buttons j and k on a musical controller
provides the same fingering pattern for all
tonal intervals across all possible keys and
tunings within any given tuning continuum
(Milne, Sethares, and Plamondon 2008).

3. The continuous parameter δ moves the tim-
bre from being perfectly harmonic to being
perfectly matched to the tuning, thus mini-
mizing sensory dissonance (Sethares 1993).

4. The discrete parameter c switches between a
number of different tuning continua, some of
which embed traditional well-formed scales
like the pentatonic, diatonic, and chromatic
(Carey and Clampitt 1989), and some of
which embed radically different well-formed
scales (e.g., scales with three large steps and
seven small steps per octave).

Each of these parameters is defined and explained
in more depth in the following subsections.

Generator Tunings (α and β) and Note
Coordinates ( j and k)

Invariant fingering over a tuning continuum re-
quires a linear mapping of the notes of a higher-
dimensional just intonation to the notes of a one- or
two-dimensional temperament (such as 12-TET or
quarter-comma meantone), and a linear mapping of
these tempered notes to a two-dimensional array of
buttons or keys on a musical controller. (The dimen-
sionality of a tuning is equivalent to the minimum
number of unique intervals (expressed in log( f ))
that are required to generate, by linear combination,
all of that tuning’s intervals.) Perhaps the simplest
way to explain the system is by example. A p-limit
just intonation contains intervals tuned to ratios
that can be factorized by prime numbers up to, but
no higher than, p (Partch 1974). Consider 11-limit
just intonation (in which p = 11), which consists
of all the intervals generated by integer multiples
of the primes 2, 3, 5, 7, and 11. Thus simple inter-
vals, such as the just fifth or just major third, can
be represented as the frequency ratios 3

2 = 2−131

and 5
4 = 2−251, respectively, while a less simple

interval such as the just major seventh (a perfect
fifth plus a major third) is 15

8 = 2−33151. A comma
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Figure 7. The tuning panel
of TransFormSynth
displaying the Syntonic
tuning continuum. The
vertical slider at the center
controls the β-tuning

(typically, the perfect
fifth); the rotary knob at
the top-right controls the
α–tuning (typically, the
octave); the Tone Diamond
(at the top left) controls

the value of γ (the
proximity to a just
intonation tuning) and the
value of δ (the degree of
spectral tempering). See
text for further details.

(i1, i2, i3, i4, i5) ∈ Z
5, in 11-limit just intonation, is a

set of integers that tempers (changes the numerical
values of) the generators so that Gi1

1 Gi2
2 Gi3

3 Gi4
4 Gi5

5 = 1.
For example, the well-known syntonic comma,
which can be written in fractional form as 81

80 , is
represented by (−4, 4, −1, 0, 0), because it is equal
to 2−4345−170110. A system of commas can be
represented by a matrix of integer values, so the
commas G−7

1 G−1
2 G1

3G1
4G1

5 = 1, G1
1G2

2G−3
3 G1

4G0
5 = 1,

G−4
1 G4

2G−1
3 G0

4G0
5 = 1, can be represented as the

matrix C = (
−7 −1 1 1 1
1 2 −3 1 0

−4 4 −1 0 0
), which has a null space

(kernel) N (C) = ( 13 24 44 71 0
10 13 12 0 71 )

T
, where (•)T is the

transpose operator. This matrix is transposed and
then written in row-reduced echelon form to give

the transformation matrix R = (1 0 −4 −13 24
0 1 4 10 −13). Using

R ∗ (i1, i2, i3, i4, i5)T = ( j, k)T, the matrix R transforms
any interval (i1, i2, i3, i4, i5) ∈ Z

5 into a similarly sized
(i.e., tempered) interval ( j, k) ∈ Z

2. A basis (i.e.,
a set of vectors that can, in linear combination,
represent every vector in that space) for the gener-
ators can be found by inspection of the columns of
R as G1 �→ α, G2 �→ β, G3 �→ α−4β4, G4 �→ α−13β10,
and G5 �→ α24β−13. Thus, every interval in the con-
tinuum (this is the 11-limit Syntonic continuum
shown in Figure 7) can be represented as integer
powers of the two generators α and β—that is, as
α jβk. For further information and examples, see
Milne, Sethares, and Plamondon (2008).

This means that if α and β are mapped to a
basis (ψ , ω) of a button lattice (i.e., α jβk �→ jψ + kω),
such as the Thummer’s (see Figure 8), then the
fundamental frequency of any button of coordinate
( j, k) with respect to that basis, is given by

f j,k(α, β, fr) = fr ∗ α jβk, (6)

where fr is the frequency of the reference note.
By default the reference note (0, 0), on which the
pitches of all other notes are based, is D3 (whose
concert pitch is 146.83 Hz).

In the Syntonic continuum, the value of α is near
2/1 and can be adjusted by the rotary knob labeled
“pseudo octave” at the top-right of Figure 7; the
value of β is near 3/2 and is specified (in cents) by
the main tuning slider. Altering the β-tuning while
playing allows a keyboard performer to emulate the
dynamic tuning of string and aerophone players who
prefer Pythagorean (or higher) tunings when playing
expressive melodies, quarter-comma meantone
when playing consonant harmonies, and 12-TET
when playing with fixed pitch instruments such as
the piano (Sundberg, Friberg, and Frydén 1989).

Related Just Intonations (γ )

The vertical dimension of the Tone Diamond (at the
top-left of Figure 7) alters the tuning in a different
way—by moving it towards a related 5-limit just
intonation. Just intonations contain many intervals
tuned to ratios of small integers (3/2, 4/3, 5/4, 6/5,
7/5, 7/6, etc.), and these intervals are typically
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Figure 8. The coordinates
(j, k) of the Thummer’s
button lattice, when using
its default Wicki note
layout (Milne, Sethares,
and Plamondon 2008).

thought to be maximally consonant and “in tune”
when using sounds with harmonic spectra. For
this reason, just intonation has been frequently
cited as an ideal tuning (e.g., by Helmholtz 1954;
Partch 1974; Mathieu 1997). However, 5-limit just
intonation (JI) is three-dimensional, and higher-limit
JI’s have even more dimensions, making it all but
impossible to avoid “wolf” intervals when mapping
to a fixed pitch instrument (Milne, Sethares, and
Plamondon 2007).

Deciding precisely which JI ratios should be
used also presents a problem, because there is
always ambiguity about precisely which JI interval
is represented by a tempered interval (because the
mapping matrix R is many-to-one, any “reverse-
mapping” is somewhat ambiguous). For this reason
we provide two aesthetically motivated choices:
“Major JI,” at the bottom of the diamond, maximizes
the number of justly tuned major triads (of ratio
4:5:6); and “Minor JI,” at the top of the diamond,
maximizes the number of justly tuned minor triads
(of ratio 10:12:15).

The major and minor JI tuning ratios (relative to
the reference note) for every note ( j, k) are stored in a
table. The major JI values are used when the control
dot is in the lower half of the Tone Diamond (i.e.,
sgn(γ ) = −1), the minor JI values are used when the
control dot is in the upper half of the Tone Diamond
(i.e., sgn(γ ) = 1). Every different tuning continuum
c requires a different set of values. The vertical
dimension of the Tone Diamond controls how much
the tuning is moved towards these JI values, denoted
pc,sgn(γ ), j,k, using the formula ( pc,sgn(γ ), j,k

α jβk )|γ |, where

−1 ≤ γ ≤ 1 is the position of the control dot on the
Tone Diamond’s y-axis. This means the frequency
of any note can be calculated accordingly as

f j,k(α, β, fr, c, γ ) = fr ∗ α jβk ∗
(

pc,sgn(γ ), j,k

α jβk

)|γ |
. (7)

The Tone Diamond and main tuning slider, there-
fore, facilitate dynamic tuning changes between
many different tuning systems. When the Tone
Diamond’s control point is anywhere along the
central horizontal line (the “Max. Regularity” line),
the tuning is a one- or two-dimensional tuning such
as 12-TET or quarter-comma meantone, as shown
on the main tuning slider. When the control point
is moved upward or downward the tuning moves
towards a related just intonation. The tunings that
are intermediate between perfect regularity and
JI are like the circulating temperaments of Kirn-
berger and Vallotti in that every key has a (slightly)
different tuning. And all of these tunings have
the same fingering when played on a 2D lattice
controller.

Spectral Tempering (δ)

The resynthesis method employed by the Trans-
FormSynth enables the tuning of every partial to be
independently adjusted in real time. To make these
dynamic alterations of spectral tuning musically
useful, a Dynamic Tonality synthesizer can tune the
partials to be perfectly harmonic (i.e., with partials
whose frequencies are at integer multiples), temper
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them to match the current tuning (so that the par-
tials coincide with other notes found in the scale),
or tune them anywhere in between. For any given
value of γ , the degree of coupling between spectrum
and tuning can be dynamically changed by moving
the Tone Diamond’s control dot left or right—when
it is on the left edge of the diamond, the sound is
perfectly harmonic; when it is on the right edge, the
sound is perfectly matched to the current tuning. To
implement this, it is necessary to define a method
by which a spectrum can be matched to a tuning.

The matrix R can be used to parameterize the
timbres so as to minimize sensory dissonance when
playing in the “related” scale (Sethares 1993). Par-
tials of a harmonic (or approximately harmonic)
sound are indexed by integers and can be repre-
sented as a vector in Z

5. Thus 2 ↔ (1, 0, 0, 0, 0)T ≡
h2, 3 ↔ (0, 1, 0, 0, 0)T ≡ h3, 4 ↔ (2, 0, 0, 0, 0)T ≡
h4, 5 ↔ (0, 0, 1, 0, 0)T ≡ h5, 6 ↔ (1, 1, 0, 0, 0)T ≡ h6,
etc. Every different tuning continuum c (such as
the Syntonic, discussed previously) has a different
R matrix, and these Rc are stored in a table. The
ith partial can therefore be tempered to Rchi = ( mc,i

nc,i
)

and then mapped to αmc,i βnc,i . Thus the timbre is
tempered in a fashion consistent with (and using the
same interface as) the tuning. It is easy to verify that
these temperings are the same as those identified
by Sethares (2004) for the special case of equal
temperaments.

Both the horizontal and vertical dimensions of the
Tone Diamond control how much of this tempering
is applied using the interpolation formula i( α

mc,i β
nc,i

i )δ,
where δ = x − |γ |

2 , 0 ≤ x ≤ 1 is the position of the
control dot on the Tone Diamond’s x-axis, and γ is
the position on the y-axis. This means that when
the control dot is anywhere on either of the two line
segments at the diamond’s left boundary (labeled
“max harmonicity”), then δ = 0, and the sound
remains harmonic with integer partials i. When the
control dot is fully to the right, δ = 1, and the partials
are tempered to αmc,i βnc,i ; whenever the control dot is
on either of the two line segments at the diamond’s
right boundary (labeled “max consonance”), the
partials are always fully related to the tuning. It also
means that if the control dot is moved vertically
upward from the center of the diamond, not only is
the tuning modified, but also the spectral tempering

δ (from 0.5 in the center to 0 at the top or bottom
end).

The frequency of any partial can, therefore, be
defined in terms of α, β, j, k, c, i, γ , and δ, using the
following formula:

fi, j,k(α, β, fr, c, γ , δ) = fr ∗ α jβk ∗
(

pc,sgn(γ ), j,k

α jβk

)|γ |

∗ i
(

αmc,i βnc,i

i

)δ

= fr ∗ (α jβk)1−|γ | ∗ p|γ |
c,sgn(γ ), j,k ∗ i1−δ

∗ (αmc,i βnc,i )δ. (8)

If α, β, and pc,sgn(γ ), j,k, are expressed in cents, which
may be more convenient for the user, this formula
can be rewritten as

fi, j,k(α, β, fr, c, γ , δ)

= fr ∗ 2
(1−|γ |)( jα+kβ)+|γ |pc,sgn(γ ), j,k

1200 ∗ i1−δ

∗ 2
δ(αmc,i+βnc,i )

1200 . (9)

The Tone Diamond is labeled to show that
the further the control point is from the “max
harmonicity” line, the less harmonic its partials;
the further the control point is from the “max
consonance” line, the less related its partials are to
the tuning; the further the control point is from the
“max regularity” line, the less regular are its interval
sizes. The diamond clearly illustrates how every
possible position of the control point represents
a compromise between maximal harmonicity,
maximal consonance, and maximal regularity; no
system can have all three at the same time. (Any
corner of the diamond provides two out of the
three.)

Tuning Continua (c) and Compositional
Possibilities

Although this article has focused on the Syntonic
tuning continuum, there are numerous other useful
continua, each with unique and unfamiliar inter-
vallic structures. The TransFormSynth currently
implements two other continua—”Magic” and
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“Hanson” (Erlich 2006)—which open up interesting
compositional avenues. They contain scales that
embed numerous major and minor triads, but these
scales have a radically different structure than those
found in any standard Western tuning. For example,
the Magic continuum has a ten-note well-formed
scale (with seven small steps and three large steps)
that contains ten major or minor triads; the Hanson
continuum has an eleven-note well-formed scale
(with seven small steps and four large steps) that
also contains ten major or minor triads. Magic
Traveller (found on the Spectral Tools home page)
uses this Magic scale. It may well be that the chords
in these systems have functional relationships that
are quite different from those found in standard
diatonic/chromatic harmony. Such systems, there-
fore, open up the possibility of an aesthetic research
program similar to that which may be said to have
characterized the development of common-practice
music from the rise of functional harmony in the
seventeenth century to the “crisis of tonality” at
the end of the nineteenth.

But the well-structured tonal relationships found
in these continua do not support only a strictly tonal
compositional style. Serial (and other “atonal”) com-
positional techniques are just as applicable to these
alternative continua, as are techniques that explore
the implications of unusual timbral combinations
and structures. Each continuum offers a unique set
of mathematical possibilities and constraints. For
example, the familiar 12-note division of the octave
includes many factors (2, 3, 4, and 6), thus enabling
interval classes of these sizes to cycle back to the
starting note, and modes of limited transposition
to be formed (Messiaen 1944). Conversely, a 13-note
division of the octave, which can be made to sound
quite “in-tune” when the spectrum is tempered to
the Magic continuum, has no factors and so contains
no modes of limited transposition and no interval
cycles. The 15-note division found in Hanson has
factors of 3 and 5, suggesting a quite different set of
structural possibilities. ChatterBar and Lighthouse
(found on the Spectral Tools homepage) are both
non-serial “atonal” pieces—in 53-TET Syntonic and
11-TET Hanson, respectively.

Alongside these structural possibilities are the
dynamic variations in tuning and timbre that can

be easily controlled (and even notated) with the α,
β, γ , and δ parameters. Smooth changes of tuning
and timbre are at the core of C2ShiningC, while in
Shred (found on the Spectral Tools home page), the
music switches from 12-TET to 5-TET Syntonic.
We believe Dynamic tonality offers a rich set
of compositional possibilities of both depth and
simplicity.

Discussion

The analysis–resynthesis method used by the
Spectral Toolbox allows the independent control
of both frequency and amplitude for every partial
in a given sound. However, because a typical
musical sound consists of tens or even hundreds of
audible partials, it is apparent that their individual
manipulation is not necessarily practical. To reduce
information load and retain musical relevance,
there is need for an organizational routine that
parameterizes spectral information in a simple
and musically meaningful interface. The Spectral
Toolbox has addressed this problem by providing
three different routines: (1) mapping partials to a
fixed destination, (2) morphing between different
spectra, and (3) Dynamic Tonality.

Although we have so far only discussed the
reconstruction of preexisting sounds, it is also pos-
sible to manipulate the harmonic information of
purely synthesized sound. The ideas presented in
this article are applicable to virtually any synthesis
method that allows complete control over harmonic
information. For example, The Viking (Milne and
Prechtl 2008) is an additive synthesizer that imple-
ments Dynamic Tonality in the same manner as the
TransFormSynth, except that it synthesizes each
partial with its own sinusoidal oscillator. Similarly,
2032 (available on the Dynamic Tonality Web site)
is a modal synthesizer that implements Dynamic
Tonality in a physical-modeling algorithm. In this
case, an excitation signal is fed through a series
of resonant filters that represent specific partials
through their individual feedback coefficients.

There are benefits pertaining to each of these
synthesis methods: Additive synthesis is, relatively
speaking, computationally efficient, whereas modal
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synthesis, at the cost of greater computational
power, enables realistic and dynamic physical mod-
eling. However, the analysis–resynthesis method is
interesting because it enables the harmonic manip-
ulation of any sound, and it can do so for both fixed
and live audio inputs. This means that, given its rel-
atively simple user interface, the Spectral Toolbox
has the capacity to provide novel and worthwhile
approaches to computer-music composition and
performance. The musical examples available on
the Web site are intended to illustrate some of these
artistic possibilities.

Beyond the artistic benefits described herein, this
work also provides strong implications for music
research, particularly in the area of cognition. The
mutual control of tuning and timbre facilitates a
deeper examination of the musical ramifications
that such a relationship entails. Perhaps of greatest
interest is how formerly inaccessible (that is, in an
aesthetic sense) tunings can be rendered accessible
through the timbral manipulations described in
this article. Such an idea calls for further research
regarding varying forms of dissonance—most no-
tably melodic dissonance (Van der Merwe 1992;
Weisethaunet 2001)—and harmonic tonality in gen-
eral. Such concepts can now take alternative tunings
into account. Tools such as the Spectral Toolbox can
facilitate a wider use of microtonality in electro-
acoustic composition, performance, and research.
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Appendix: Preservation of Intervallic Structure
Under Logarithmic Interpolation

Suppose that the n source peaks fi and the n
destination peaks gi have the same intervallic
structure, i.e., that

fi+1

fi
= gi+1

gi
(10)

for i = 1, 2, . . . , n − 1. Morphing the two sounds
using the logarithmic method (Equation 3) creates a
collection of intermediate sounds with peaks at

hi(λ) = fi

(
gi

fi

)λ

. (11)

Then, for every 0 ≤ λ ≤ 1, the intervallic structure
in the hi(λ) is the same as that in the source and
destination. To see this, observe that

hi+1(λ)
hi(λ)

=
fi+1

(
gi+1
fi+1

)λ

fi
(

gi
fi

)λ
= fi+1

fi

(
gi+1

fi+1

)λ (
fi
gi

)λ

= fi+1

fi

(
gi+1

gi

fi
fi+1

)λ

= fi+1

fi
(12)

The last equality follows directly from Equation
10. In particular, if the fi and gi are the n partials
of harmonic sounds (though perhaps with different
magnitudes and different fundamentals) then the
interpolated sounds h(λ) are also harmonic, with
spectra that smoothly connect f and g and with
fundamental frequency (and hence, most likely,
with pitch) that moves smoothly from that of f to
that of g.
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