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Abstract 

Existing Bezier curve based shape description techniques primarily focus upon determining a set of pertinent Control 

Points (CP) to represent a particular shape contour. While many different approaches have been proposed, none 

adequately consider domain specific information about the shape contour like its gradualness and sharpness, in the 

CP generation process which can potentially result in large distortions in the object’s shape representation. This 

paper introduces a novel Bezier Curve-based Generic Shape Encoder (BCGSE) that partitions an object contour into 

contiguous segments based upon its cornerity, before generating the CP for each segment using relevant shape 

curvature information. In addition, while CP encoding has generally been ignored, BCGSE embeds an efficient 

vertex-based encoding strategy exploiting the latent equidistance between consecutive CP. A nonlinear optimisation 

technique is also presented to enable the encoder is automatically adapt to bit-rate constraints. The performance of 

the BCGSE framework has been rigorously tested on a variety of diverse arbitrary shapes from both a distortion and 

requisite bit-rate perspective, with qualitative and quantitative results corroborating its superiority over existing 

shape descriptors. 
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Bezier Curves (BC) were independently developed by P. de Casteljau and P. E. Bézier, and while their origin can be 

traced to the design of car body shapes in the automotive industry, their contemporary applications encompass many 

diverse disciplines. In particular, their robustness in curve and surface representation means they pervade many fields 

of multimedia technology including shape description of characters [1], [2] and objects [3], active shape lip 

modelling [4], shape error concealment for MPEG-4 objects [5] and surface mapping [6]. The classical BC is defined 

by a set of control points (CP) with the number and orientation of these points governing the overall size and shape 

of the curve. In shape encoding applications, the distance between a shape contour and the approximating curve 

(distortion) crucially depends upon the generated CP, so efficacious CP computation is vital for any BC-based shape 

coder. Furthermore, the use of a single BC to represent a complex shape is computationally very expensive as a high 

order BC will be mandated, with the corresponding CP calculations also incurring a substantial computational cost.  

To reduce this overhead, composite BC [7] have been used to represent more complex shapes, whereby the entire 

shape is sub-divided into segments, with each individually represented by a BC.  

Cinque et al. [3] introduced a Shape Description using Cubic polynomial Bezier curves (SDCB) technique 

which divides the shape-boundary into an a priori number of segments, each comprising the same number of 

boundary points, with the CP evenly distributed over the entire boundary irrespective of its complexity. As both the 

segment division and CP generation processes consider only the number of shape points, this approach is 

independent of boundary complexity which can lead to large distortions, even when a high number of relatively short 

segments are used. Moreover, as the segments are of equal length in terms of boundary points, the strategy does not 

consider aspects of a shape such as its cornerity and branches. Composite BC (CBC) has successfully been applied 

in the Automatic outline Capture of Arabic Fonts (ACAF) [1] and Shape Description for Chinese calligraphy 

Characters (SDCC) [2] algorithms to respectively describe Arabic and Chinese character outlines, as well as in 

Active Shape Lip Modelling (ASLM) [4] applications to represent different lip formations. In all these algorithms 

however, while the shape is divided into segments by considering the cornerity at the shape points, more localised 

shape information within each segment is not subsequently considered during CP generation. The two end-points of 

each segment are respectively chosen as the start and end CP, with intermediate points calculated in a variety of 

ways. For instance in both SDCC and ASLM, the intermediate CP locations are derived from the two tangents at the 

segment endpoints using either the intersection of the tangents [2] or a computationally intensive trial-and-error 

approach [4]. The CP on the tangents at the segment ends however, does not guarantee efficient shape approximation 



as they are not necessarily representative of the entire segment. In contrast, ACAF [1] adopts a distortion 

minimisation approach, though this is computationally expensive and usually dictates a further subdivision of a 

segment in order to obtain low distortion.   

Within the MPEG-4 standardisation process, the vertex-based Operational-Rate-Distortion (ORD) optimal 

shape coding framework has been developed using parametric B-splines [8] and [9], which has been further extended 

in [10]. While these techniques provide rate-distortion (RD) optimisation flexibility, they as evidenced in Section 4, 

are also computationally very expensive due to using an exhaustive shortest-path search method in a directed-

acyclic-graph containing a large number of vertices.  

One recurring feature in all the aforementioned algorithms is that the CP may not of necessity reside on the 

shape contour, a consequence of which is an increase in the descriptor length. As the CP describe a shape, their 

efficient encoding will considerably aid in reducing the descriptor length and thereby the resulting communications 

cost. While SDCB [3] adopts a parametric approach to CP encoding, the techniques delineated in ACAF, SDCC and 

ASLM, conspicuously do not comment upon their respective CP encoding strategy. The parametric descriptor used 

in SDCB generates four CP for each segment and specifically comprises: i) the absolute coordinates of the first and 

fourth CP, ii) the directional angle and magnitude distance of the second CP from the first CP, and iii) the directional 

angle and magnitude distance of the third CP from the fourth CP. Both the angle and distance parameters are 

encoded using floating point notation which renders this approach unsuitable for low-bit rate video applications such 

as, video streaming over the Internet and mobile video transmission for hand-held devices, where innate bandwidth 

limitations demand highly efficient bit minimisation techniques. 

This paper presents a novel Bezier Curve-based Generic Shape Encoder† (BCGSE) that reduces both the 

distortion and shape descriptor length by applying an efficient CP generation strategy incorporating shape 

information, concomitant with an improved vertex coding scheme. Unlike [1], [2] and [4], CP generation takes 

cognisance of the cornerity of a contour in segmenting a shape boundary, with localised information about the 

curvature of the segment being employed to obtain the CP. In the ensuing coding phase, an innovative extension to 

the Object-Adaptive Vertex Encoding (OAVE) technique [13] is proposed. The original OAVE encodes a set of 

vertices by adapting the representation to the dynamic range of the relative locations of the vertices before utilising 
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an octant-based representation for each individual vertex. The new enhancement E-OAVE, entails exploiting the 

inherent cyclic relationship between consecutive CP to further improve the coding efficiency of OAVE, with the 

corollary of combining the new CP generation scheme with better bit-rate coding being superior RD performance. In 

addition, to adaptively accommodate bit-rate constraints for BCGSE, a nonlinear optimisation has been utilised to 

sustain admissible bit-rates. The performance of the BCGSE framework has been extensively tested and analysed on 

a variety of different object shapes, with both quantitative and qualitative results consistently confirming its 

superiority compared with existing shape descriptor methods.  

The remainder of this paper is organised as follows: Section 2 provides a short overview of Bezier curve 

theory, while Section 3 presents the new BCGSE shape descriptor framework including the new CP generation and 

efficient vertex coding strategies. Experimental results are analysed in Section 4 to endorse the improved RD 

performance of the BCGSE model, while some general conclusions are provided in Section 5. 

2. The Classical Bezier Curves 

The Bernstein form of an thn  order BC with a CP set { }njjjj vvvV ,1,0, ,,, K=  is defined by:  
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weight of subdivision which determines the number of points on the BC, and subscript j  represents the thj  curve 

segment within the series of CBC that defines the shape. 

The attraction of BC being a member of a family of parametric curves, is that even with a few CP at the 

encoder, an arbitrary number of curve points can be generated at the decoder by controlling the steps in t , with the 

greater the number of CP on a curve leading to a smoother reconstruction. This unique parametric curve set includes 

both Hermite curves and splines, with BC chosen as the shape descriptor because it is computationally efficient and 

straightforward to calculate and unlike B-splines, no coordination is required at the segment end-points. Another 

cogent reason for choosing BC curves is they are affine invariant [14], so can be effectively used in searching any 

affine transformed shape such as for example, in multimedia retrieval applications. In this paper, cubic BC are used 



to define each shape segment, as lower order curves such as quadratic BC are less smooth. Whilst higher degree 

curves are preferable for shape approximation, they require more CP to be calculated and as a consequence the curve 

generation overhead is computationally greater. Moreover, encoding large numbers of CP inevitably mandates a 

higher bit-rate. The functional form of the cubic BC is represented as: 
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3. Shape Encoding Strategy 

The BCGSE framework comprises two constituent components, namely the calculation of the CP for each segment, 

and secondly an efficient CP encoding strategy based on a new extension to the OAVE algorithm [13]. A set of 

strategies have also been proposed to accommodate the stringent bit-rate limits. These will now be respectively 

considered. 

 Determining the Control Points  

In the first step of CP determination, the starting point of the contour needs to be determined, with in this paper, the 

highest curvature point being selected as this point. There are two main reasons for this choice: i) it is highly 

probable the highest curvature point will eventually be a segment end [15], and ii) such a starting point affords the 

desirable characteristic of being affine invariant, which is not always the case in other popular approaches, such as 

the first point on a raster-scan basis (from left to right, top to bottom). 

The next step in the CP generation involves sub-dividing a shape into segments at its corner points, where 

the number of segments may be either defined a priori or dynamically. The cornerity of a boundary point is 

characterised by the maximum arc-chord deflection at that point, so any point possessing a local cornerity maximum 

is in fact a corner [16]. Different approaches for detecting the corner points of a shape has been analysed and 

compared in [17], with the generic conclusion that the Beus-Tiu algorithm [18] provides the best perceptual results, 

and as a consequence this technique is employed in the new BCGSE shape descriptor framework. CP are selected 

from a set of points obtained from the boundary points and curvature-related shape information concerning the 

boundary, with the concept of significant and supplementary points being introduced so contour portions with more 

rapidly changing shape features like sharp edges and corners, are given greater priority over flatter portions. 

Significant points are actually the least number of shape points that can generate the original shape without any 



distortion, i.e., the boundary points are significant points where there is a change in shape direction. This crucially 

means that shape information is integrated into the CP generation process and that consecutive significant points will 

not necessarily be separated by 1 pel as is the case with shape points, so the larger the distance between consecutive 

significant points, the greater their influence upon the shape approximation. In these circumstances, a shape 

descriptor based solely on significant points can produce a higher distortion because influential significant points 

may be excluded from being CP. To reduce the likelihood of losing such influential significant points as CP, 

supplementary points are inserted equidistantly between the significant points.  

 
If the combination of significant and supplementary points is collectively referred to as candidate boundary 

points (CBP) in CP calculations, then a higher number of supplementary points infers the CBP tend towards the 

original shape points, while if there are insufficient supplementary points some significant points may not be 

adequately represented. To balance these extrema, the average distance between consecutive significant points over 

the entire shape is used to govern the judicious insertion of supplementary points. This procedure is mathematically 

formalised as follows: 

Let the shape segments be represented as { }1,1,0,
1
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modulus operator, so the set iS  forms an enclosed contour. If the significant points of the thi  segment are denoted 

by iSig  then { } iSigiii
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( )kiki sigsigd ,1, ,−  denotes the Euclidean distance between two consecutive significant points 1, −kisig and kisig , in the 

thi segment, the average distance between consecutive significant points over the entire shape is 
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SigNavg sigsigdd . If ( ) avgkiki dsigsigd >− ,1, , , then supplementary points are now inserted 

between 1, −kisig and kisig , , with the first (sp1) being placed a distance avgd  from 1, −kisig , and provided 

( ) avgki dsigspd >,1, , a further supplementary point is placed a distance avgd  from 1sp . This process is repeated until 

( ) avgkil dsigspd ≤,, , where lsp is the last supplementary point. Now let the CBP to be used to calculate the CP for 



each segment be defined as:- { }1,1,0,
1
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determined by equal sampling, which as will be shown in the next section, reduces the overall bit-rate requirement:  
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It is therefore only necessary to encode those particular CP from which the approximated shape can be decoded, 

and in order to achieve better efficiency, these CP are normally differentially encoded. 

 

 Control Point Encoding 

 
For encoding purposes, an Enhanced Object-Adaptive Vertex Encoding (E-OAVE) method is proposed that both 

differentially encodes the CP and utilises the inherent equidistance between the consecutive CP obtained from (3). 

The main reason for choosing OAVE is that apart from efficiently exploiting the coordinate information, it crucially 

enables the inherent regularity in the CP distances to be seamlessly embedded, thereby facilitating further bit-rate 

savings. OAVE comprises two major component blocks: i) object-level relative location dynamic range adaptation 

and ii) vertex-based encoding. Observing the equidistance between the consecutive CP, OAVE is enhanced in the 

first block by taking advantage of the fact that since the CP are approximately equidistance, the dynamic range will 

be lower. The overall bit-rate is then reduced by the second component block. The complete E-OAVE algorithm will 

now be delineated. If { }110 ,,, −= LcccC L  is the ordered set of vertices to be encoded, then the various steps involved 

in the new enhanced object-level relative location dynamic range adaptation process are given in Algorithm 1. 

 

 

 

 

 

 

 

 

 



Table 1: Relative-location dynamic ranges and their indication symbols 

Dynamic Range Indicator Relative-location dynamic range 
0 -1≤x,y≤1 
1 -3≤x,y≤3 
2 -7≤x,y≤7 
3 -15≤x,y≤15 
4 -31≤x,y≤31 
5 -63≤x,y≤63 
6 -127≤x,y≤127 
7 -255≤x,y≤255 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Since the CP are sampled at equal distances in (3), the deviation of the xiR ,  components with respect to minX (and 

also yiR , with respect to minY ) are not very high, so both maxxΔ and maxyΔ in Step 3 will be small, as will the 

ensuing bit requirement. If conversely the deviations between consecutive CP are high, the coding will incur at most 

6 extra bits (for an additional pair of dynamic range indicators) compared with the original OAVE algorithm. It 

needs to be highlighted however, that given the CP calculation scheme in (3), pragmatically the likelihood of this 

occurrence is extremely low (almost zero).  

 

Algorithm 1: Object-level relative location dynamic range adaptation. 

 

1. Calculate the relative address R  of vertices ( ) ( ) 11,,, ,1,,1,,, −≤≤−−== −− LiccccRRR yiyixixiyixii . 

2. Determine { }xiLi
RX ,11min min

−≤≤
=  and { }yiLi

RY ,11min min
−≤≤

= , where min is the minimum and ⋅  is the 

absolute value.  

3. Obtain { } { }min,max maxmax XRxx xii −=Δ=Δ  and { } { }min,max maxmax YRyy yii −=Δ=Δ

4. Select two indicators xind  and yind  from Table 1, which correspond to the smallest dynamic range 
that includes maxxΔ and maxyΔ . Also two indicators xind1  and yind1  corresponding to minX and minY . 

5. Encode indicators xind , yind , xind1  and yind1 using 3-bit fixed length code (FLC). 



The next stage in the BCGSE model is vertex coding, where with the exception of the first CP ( 0c ), whose absolute 

address is directly encoded, all other CP are differentially encoded in accordance with Algorithm 2. 

 

 

Figure 1: Octants in the Cartesian coordinates 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

To appreciate the overall coding efficiency achieved by the new E-OAVE algorithm, consider the following 

example. Let ( ) ( ) ( ) ( ) ( ){ }37,62,45,45,52,62,60,80,51,60=C , so ( ) ( ) ( ) ( ){ }8,17,7,17,8,18,9,20 −−−−−−=R . This means 

17min =X  and 7min =Y , so 41 =xind  and 21 =yind . Also { }0,0,1,3=Δx  and { }1,0,1,2=Δy  from Step 3 of 

Algorithm 1. Hence 3max =Δx  and 2max =Δy , with 1=xind  and 1=yind . As all initial parameters must be coded, 

Algorithm 2: Encoding the relative address iR  for each vertex. 

1. Determine the octant number of iR  according to Figure 1. 

2. Encode each octant number using a 3-bit FLC. 

3. Determine the major component from the octant number and encode its corresponding ixΔ  or 

iyΔ values respectively using 1+xind  or 1+yind  bits depending upon the coordinate.  

4. For the minor component, encode ixΔ  or iyΔ , respectively using 
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5. Add up all required bits, totalR . 



to encode 1R , E-OAVE requires 3 bits for the octant number, and 2 bits each for 1xΔ and 1yΔ  giving a total of 7 bits. 

In contrast, for the original OAVE technique [13]: 20max =X  and 9max =Y , so 4=xind  and 3=yind , thus to 

encode 1R  incurs 3 bits for the octant, 5 bits for the major component and a further 4 bits for the minor component, 

i.e., a total of 14 bits. This represents a 50% saving for every CP, though it needs to be emphasised that setting the 

initial parameters in OAVE incurs only 6 bits (for xind , yind ), while it takes 12 bits for E-OAVE (for xind , yind , 

xind1 and yind1 ) and in the worst case, a further 14 bits to encode minX and minY , so the overhead for parameter 

initialisation can be up to a maximum of 26 bits. A pragmatic interpretation of this impost is that provided the 

number of CP is greater than four, E-OAVE will guarantee a lower bit-rate requirement, since four CP merely 

translates to a single cubic BC segment.  

The main conclusion from the above analysis is that whenever E-OAVE is applied in preference to OAVE, 

increasing the number of curve segments will always lead to more efficient coding. The key difference between the 

OAVE and E-OAVE approaches is best visualised in the symbolic example in Figure 2. While in the original OAVE, 

the window-of-interest to encode the next CP is bounded by maxX and maxY , in E-OAVE, the area bounded by 

minX and minY is ignored because the next CP cannot lie with this region, so the overall window size is reduced and 

coding efficiency improved. 

 
 (a) Original OAVE      (b) Enhanced OAVE 
 

Figure 2: Illustration of the difference between the original OAVE and E-OAVE techniques  

As will be evinced in Section 4, this new encoding strategy provides notably superior results compared with 

the dynamic fixed length coding (DFLC) strategy in [11] and [12] because DFLC only utilises the periodicity in the 



CP intervals. In contrast, E-OAVE exploits both the coordinate level information from the octant basis and object 

level information from the dynamic range indicators, conjointly with the CP distance regularity. In certain CP coding 

scenarios, the resulting bit-rate may exceed the admissible bit-rate whereupon it is important to take remedial action 

to maintain the permissible bit-rate. The next section presents a nonlinear optimisation solution for determining the 

number of segments able to be accommodated for a prescribed bit-rate.  

 

Nonlinear optimisation technique to accommodate admissible bit-rates 

Without loss of generality, the overall bit-rate requirement totalR  is a non-decreasing function of N, since as N 

increases, so does the number of CPs, with the corollary that in such situations, totalR  will increase. Since the octant 

number together with the major and minor components of each CP has to be encoded, for an admissible bit-rate 

constraint maxR , pragmatically N cannot be made arbitrarily large. Conversely, a smaller N implies a less efficient 

utilisation of the available bit-rate and the propensity of large distortion, so an optimum value of N must be 

determined. The relationship between N and the bit-rate requirement is not of necessity linear, because for larger N, 

the distance between consecutive CP is smaller. Consequently, while the CP number linearly increases with N, the 

corresponding bit-rate requirement will not be linear, which precludes N  being determined by a linear search 

method. A nonlinear optimization strategy is therefore proposed, with the problem formulated as follows:  

( )
integers.positiveofsettheiswhere,
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ZZN
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NNN
total                    (4) 

The solution to (4) is the optimal value of N for BCGSE, which can be obtained by various search techniques 

including, the bisection method [19], convex hull search [20] and Bezier search [20]. For simplicity, the bisection 

method is adopted in this framework.  

 



 
Figure 3: Example showing the bisection method for determining optimal N while maintaining maxR . 

 
Figure 3 illustrates the principle behind the bisection method to obtain the optimal N , i.e., maximum N ′ , for an 

admissible bit-rate maxR . Two initial values of N ′ are chosen such that 1N  results in totalR being lower 

than maxR whilst 2N  gives an totalR  greater than maxR . By exploiting the non-decreasing property of totalR , the 

optimal value of N must then lie between 1N  and 2N . The bisection interval thus becomes 2
21 NN

mN += , with totalR  

being recalculated so if ( ) maxRNR mtotal ≥ then mNN =2 , otherwise mNN =1 . Repeating this procedure generates 

ever tighter bounds on the optimal N, so if at some point 21 NN ≥ , then 2N is the maximum value of N ′ , i.e., the 

optimal N.  

The choice of the two initial values of N ′ controls both the convergence and computational cost of 

determining the optimal N, with the important constraint ( ) ( ) ( )2max1 NRRNRNR totaltotaltotal ≤≤≤  always being 

upheld. Ideally the initial values of 1N and 2N will be 1 and∞ respectively, though maxR  imposes an inherent upper 

and lower bound upon 2N , with at least 5 bits being required to encode a CP: 3 bits for the octant number, and 1 bit 

each for the major and minor components. Furthermore, as each additional cubic curve segment requires 3 CP, if the 

initial parameters are coded by r′  bits, the maximum value of 2N will be ⎥⎦
⎥

⎢⎣
⎢=⎥⎦

⎥
⎢⎣
⎢ ′−
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flooring operator. With regard to 1N , a maximum of 19 bits is mandated to encode any CP, comprising 3 bits for the 

octant number, and 8 bits each for the major and minor components. Therefore, if the maxR is meant to be fully 

utilised, the minimum 1N  value will be ⎥⎦
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1
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N , the optimal value of N  



can be determined in two iterations of the bisection method, so highlighting the computational efficiency of the 

BCGSE non-linear optimisation technique in automatically adapting to bit-rate constraints. 

 
 Decoding shape information 

 
From a decoder perspective, since the differential and parametric representation of the encoded shape information 

and its periodicity are dynamically determined, and by implication also the delimiter of each parameter, the decoder 

will be able to correctly parse these parameters from the encoded bit stream to achieve shape reconstruction. 

 
 Computational complexity analysis 

 
The three constituent components for the total computational time for these algorithms are: the division of the 

boundary contour into segments, CP calculation for each segment and CP encoding. As the new BCGSE model 

applies a similar type of cornerity detection to that used in [1], [2] and [4], the first phase always takes the same 

computational time. For CP calculation, BCGSE, [1] and [4] take ( )maxSO , where maxS  is the maximum number 

of boundary points for a segment, while the SDCC algorithm [2] requires ( )maxSrO ⋅ , where r  is the number of 

iterations necessary to ensure convergence and also involves the computationally intensive process of calculating 

both a chord-length and the Bernstein function for each value of t . SDCB [3] conversely, is computationally 

efficient because it simply divides the shape into segments and generates the CP based on the number of boundary 

points though since the segment division is made arbitrarily without any perceptual consideration, large distortions 

can ensue as will be witnessed in the next section. The computational expenditure of the nonlinear optimisation 

solution for determining segment numbers in the BCGSE framework increases commensurately with the number of 

bisection iterations, with the overhead incurred to calculate the optimal N taking ( )⎡ ⎤122log NN −  iterations, where 

⎡ ⎤  is the ceiling operator. Given the proposed initial values of 1N and 2N , only two iterations are required to obtain 

the optimal value of N . 

 

Apart from these BC-based shape coding techniques, for completeness the experimental results of BCGSE will 

be compared with the vertex-based ORD optimal shape coding framework [8], [9] in the next section, so it is worth 



highlighting the overall computational complexity of vertex-based algorithms is in fact ( )3
BNO , where BN  is the 

total number of contour points on a shape.   

4. Results and Analysis 
 
The widely-adopted [20] shape distortion measurement metrics Dmax and Dms are used for the peak and Mean-Square 

(MS) distortions respectively. These are formally expressed as: 
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where ( )iji vsd ,,′  is the minimum Euclidean distance of jis ,  for the thj  shape point of the thi  segment, from the 

corresponding BC approximation iv , and M  is the number of contour points, with maxD and msD both being 

measured by the accurate distortion measurement technique in [21]. The performance of BCGSE has been 

rigorously tested upon a number of popular object shapes used extensively in the literature [1], [3] and [4]. In 

addition, the MPEG-4 nD metric was also used to validate the new BCGSE model provided superior performance to 

existing techniques for any accepted metric. nD represents shape distortion by the ratio of the number of erroneous 

pixels in the approximating shape to the total number of pixels in the original shape [8]. It is formally defined as:  

 
shape original in the pixels ofnumber 

shape edapproximat in themismatched pixels ofnumber 
=nD     (7) 

and is normally defined in percentile terms. 

 

A series of experiments were performed upon the various test shapes. The subjective results are presented in 

Figure 4, while the corresponding numerical distortion and bit-rate results are summarised in Tables 2 and 3 

respectively. Figure 4(a) shows a comparison of the decoded shape using SDCB and the BCGSE algorithm applied 

upon the Lip object [4], which is characterised by repetitious vertices and loops with 5 segments. It is visually 

apparent the BCGSE shape approximation is very close to the original, while SDCB generates a structurally very 

different shape. This is numerically confirmed by the corresponding distortion results in Table 2 which reveal SDCB 



produced a Dmax, Dms and nD of 10.2 pel, 5.4 pel2 and 2.55% respectively, in contrast to only 1.45 pel, 0.89 pel2 and 

0.61% for BCGSE, so endorsing the underlying strategy of considering both cornerity and loops of a shape. Table 2 

also corroborates that BCGSE consistently produced the lowest distortion of all the methods analysed (including 

those which considered curvature information when sub-dividing the shape into segments), so vindicating the 

integration of shape information within the CP generation process. 
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Figure 4: Experimental results for various selected tests shapes: a) Lip; b)-d) Fish; and e)-f) Arabic characters   



 

Table 2: Distortion values for various shape representations 

Shape → Fish [3] Arabic character [1]  Lip [4] 
Algorithm↓ Dmax 

(pel) 
Dms 
(pel2) 

nD  (%) Dmax 
(pel) 

Dms 
(pel2) 

nD  (%) Dmax 
(pel) 

Dms 
(pel2) 

nD (%) 

BCGSE 3.0 2.7 0.85 1.12 0.80 0.61 1.45 0.89 0.61 
SDCB 6.0 4.3 1.81 2.1 1.35 0.95 10.2 5.4 2.55 
ACAF 4.0 3.2 1.46 1.3 0.95 0.65 1.65 1.05 0.65 
SDCC 3.9 3.46 1.45 1.35 1.2 0.95 1.7 1.2 0.71 
ASLM 6.0 6.55 1.84 1.4 1.4 0.66 1.8 1.5 0.73 

 
 

The next series of experiments were performed upon the Fish shape [3] which is characterised by having 

some sharp as well as more gradual contour portions. The comparative results for SDCB, ACAF, ASLM and SDCC 

for 7 segments are presented in Figures 4(b)-(d) and Table 2. BCGSE once again produced the lowest peak, MS and 

nD distortion values of 3.0 pel, 2.7 pel2 and 0.85% respectively, outperforming all other BC-based shape descriptors, 

with a similar observation being made for the Arabic character [1] shape in Figures 4(e)-(f). 

  

Table 3a: Bit-rate requirements in shape representation where N is the number of segments. The values in the 

parentheses indicate the generated peak distortion (Dmax) in pel.  

Shape Algorithm N = 5 N = 6 N = 7 N =8 
Fish [3] BCGSE  126  (3.85)   166  (3.0) 194  (3.0) 234  (2.5) 
 SDCB [3] 244  (6.0) 292  (6.0) 340  (5.0) 388  (4.0) 
 DFLC [11], [12] 193  (3.85)  230  (3.0) 267  (3.0) 304  (2.5) 
 OAVE* 195  (3.85) 228  (3.0) 267  (3.0) 280  (2.5) 
Lip [4] BCGSE 123  (1.45) 159  (1.42) 191  (1.0) 215  (1.0) 
 SDCB [3] 244  (10.2) 292  (9.5) 340  (8.0) 388  (7.0) 
 DFLC [11], [12] 193  (1.5) 230  (1.42) 267  (1.0) 304  (1.0) 
 OAVE* 170  (1.5) 190  (1.42) 217  (1.0) 235  (1.0) 
* CP encoded using the original OAVE technique [13]. 
  
 
 
 
 
 
 
 
 
 
 



Table 3b: Average bit-rate requirements in shape representation where N is the number of segments. The values in 

the parentheses indicate the generated peak distortion (Dmax) in pel. 

 
Shape Algorithm N = 5 N =10 N =15 N =20 
MissAmerica BCGSE 205 (8.0) 355 (5.0) 525 (2.0) 515 (1.0) 
(qcif) SDCB [3] 480 (10) 940 (6.0) 1140 (2.4) 1920 (1.0) 
 DFLC [11], [12] 302 (8.0) 401 (5.0) 555 (2.0) 550 (1.0) 
 OAVE* 242 (8.0) 375 (5.0) 530 (2.0) 520 (1.0) 
Akiyo(qcif) BCGSE 200 (8.0) 352 (5.0) 520 (2.0) 512 (1.0) 
 SDCB [3] 480 (10) 940 (6.0) 1140 (2.4) 1920 (1.0) 
 DFLC [11], [12] 300 (8.0) 400 (5.0) 550 (2.0) 547 (1.0) 
 OAVE* 241 (8.0) 370 (5.0) 527 (2.0) 518 (1.0) 
Stefan (sif) BCGSE 265 (10.0) 435 (8.0) 540 (4.0) 585 (2.0) 
 SDCB [3] 480 (12) 960 (10.0) 1140 (6.0) 1920 (3.0) 
 DFLC [11], [12] 355 (10.0) 510 (8.0) 610 (4.0) 650 (2.0) 
 OAVE* 280 (10.0) 458 (8.0) 585 (4.0) 605 (2.0) 
* CP encoded using the original OAVE technique [13]. qcif (176×144 pels ) and sif (352×240 pels ) are the spatial 
resolutions of a frame.  
 
 

To evaluate the impact of the E-OAVE strategy for CP encoding on the shape descriptor length, an 

investigation was undertaken analysing the bit-rate requirement for different techniques for various segment 

numbers, N . For an equitable comparison, it was assumed that the absolute coordinate values used in each algorithm 

required one byte of memory, though as mentioned in Section 1, both the direction and magnitude components in the 

SDCB algorithm are usually specified as floating point numbers, and so in practice these would mandate a parameter 

storage overhead of at least 4 bytes within the IEEE Standard 754 floating point numbering standard. Table 3a 

evinces that for the Fish object with 7 segments, the BCGSE descriptor length was 194 bits compared with 267 bits 

for the original OAVE CP encoding technique, a 28% bit rate improvement. This is directly attributable to the coding 

performance of E-OAVE in exploiting the causal regularity in CP distances, with analogous performance 

improvements observed for differing N values, as well as for the Lip object. Interestingly for the Fish shape, the 

DFLC techniques [11] and [12] also required 267 bits compared with the 340 bits for parametric coding [3], to 

corroborate the rationale behind E-OAVE in achieving superior bit rates in comparison to existing CP encoding 

methods. It is especially noteworthy in Table 3a, that while BCGSE, DFLC [11], [12] and the original OAVE [13] 

algorithm all encoded exactly the same CP set, thereby generating the same distortion and N  values for each shape, 

BCGSE always incurred the lowest bit-rate. In contrast, SDCB [3] produced a different CP set and by implication, 

different distortion and bit-rate values. Table 3b also presents results for the popular standard test shape sequences 



Miss America, Akiyo and Stefan. These results also exhibit the same trend that BCGSE always provided superior 

results compared to the other techniques.  

 

To provide a comparative analysis of the computational complexities, the overall CPU times required for 

CP generation of the various algorithms were determined. Each algorithm was implemented in Matlab 6.1 (The 

Mathworks Inc.) and run on a 2.8GHz Pentium-4 processor, with 512MB RAM under Windows XP. As all existing 

algorithms did not have an explicit CP coding strategy, only the CPU times incurred in the CP generation phase were 

compared. The results in Table 4 reveal that BCGSE required less time than both the ASAF and SDCC techniques, 

so that for example, the overall CPU time requirements for the Arabic character were 7.9, 9.01 and 9.03 seconds 

respectively. The higher ASAF time is due to every boundary point in a curve segment involving a computationally 

expensive chord-length parameterisation and CP calculation, while for SDCC the trial-and-error method employed 

for CP generation involves iteratively computing the distortion for all vertices in the segment together with their 

tangents. In contrast, BCGSE firstly reduces the number of vertices by determining the significant points and then 

using this smaller vertex set instead of the larger set of boundary points. Interestingly Table 4 shows that both SDCB 

and ASLM were computationally faster than BCGSE, though it is important to stress that ASLM employs only a 

quadratic BC which necessitates the calculation of just one intermediate CP compared with BCGSE, requires two 

points, since it uses a cubic order BC [7]. The principal drawback in using lower order curves is that they produce 

higher distortions as evidenced by the corresponding results in Table 2. SDCB in fact, only processes the index 

number of the vertices on the boundary and so does not consider shape information at all which inevitably leads to 

higher distortion values, particularly when the shape contour exhibits sharp variations such as in the Lip object and 

Arabic character. 

 

Table 4: Required CPU time (in seconds) for various algorithms to generate the CP for different shapes. 

Shape → 
Algorithm↓ 

Fish [3] Arabic character [1] Lip [4] 

BCGSE                   3.01                     7.01                  2.32 
SDCB                   1.72                     4.01                  1.62 
ACAF                   4.02                     9.01                  3.05 
SDCC                   3.99                      9.03                  3.12 
ASLM*                   2.51                      6.05                  2.25  
*ASLM uses quadratic BC while all other algorithms use cubic BC 
 



For completeness a further set of experiments were conducted comparing the proposed BCGSE model with the 

classical vertex-based ORD optimal shape coding framework [9], [10] using B-splines. Figures 5(a) and (b) 

respectively plot the computational-time (for coding only) vs. distortion and bit-rate vs. distortion (RD) results upon 

the Fish shape.  

 
  (a) Distortion vs coding time    (b) Distortion vs bit-rate 

Figure 5: Comparative performance of the new BCGSE model and the vertex-based ORD optimal shape coding 

framework for the Fish shape  

 

Figure 5(a) reveals that while the coding time for BCGSE remains approximately constant for increasing 

admissible distortion, confirming the complexity analysis in Section 3, the vertex-based optimal ORD framework 

incurs significantly higher computational and power overheads at larger distortions due to the exhaustive search 

method used to locate the minimum bit-rate path within the admissible distortion bound from a large-weighted 

directed-acyclic-graph. This huge discrepancy in coding performance more than offsets the bit-rate savings evident 

in Figure 5(b), of the slightly better overall RD performance of the ORD framework. 

 

Table 5: Adaptive admissible bit-rate results: The optimal number of segments N obtained at different prescribed bit 

rates for various shape sequences. The values in parentheses represent the respective utilised bit-rates. 

 
Admissible bit-rate maxR (bits) Shape 

230 440 
MissAmerica(qcif) N=5 (205) N=13 (438) 
Akiyo(qcif) N=6 (228) N=13 (435) 
Stefan (sif) N=4 (229) N=10 (435) 



Finally, a series of experiments were conducted to appraise the performance of the nonlinear optimisation 

technique for adaptive bit-rate constraint, with the corresponding results summarised in Table 5 for the test shape 

sequences used earlier in Table 3b. These reveal that with an admissible bit-rate maxR = 230 bits for MissAmerica, a 

maximum of 5 segments are required with 205 bits being utilised, while for 440 bits, 13 segments is the optimal 

number which correspondingly used 438 bits. These results are notably congruent with the findings in summarised 

Table 3b. Similar findings are observed for the other sequences to corroborate the capability of the BCGSE paradigm 

to sustain an admissible bit rate by automatically adapting to any bit-rate constraints.  

 
5. Conclusion 

 
While Bezier curves have been applied in many different domains and applications including object shape 

description, a critical aspect in their performance is the appropriate selection of the segments and control points (CP) 

This paper has presented a generic shape encoder using Bezier curves (BCGSE) algorithm which provides an 

innovative strategy for CP calculation along with sub-dividing a shape into segments by considering domain specific 

shape information and a new efficient CP coding strategy called Enhanced Object-Adaptive Vertex Encoding. It has 

also developed a nonlinear optimisation strategy to enable the encoder to adapt to admissible bit-rate constraints. 

Both perceptual and numerical results have conclusively proven the improved performance in terms of both 

minimum distortion and bit-rate requirements of the new BCGSE model in comparison with other existing shape 

descriptor techniques.  
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