
Open Research Online
The Open University’s repository of research publications
and other research outputs

A problem-oriented theory of pattern-oriented analysis
and design
Conference or Workshop Item
How to cite:

Overton, Jerry; Hall, Jon G. and Rapanotti, Lucia (2009). A problem-oriented theory of pattern-oriented analysis and
design. In: ComputationWorld 2009, 15-20 Nov 2009, Athens/Glyfada, Greece.

For guidance on citations see FAQs.

c© 2009 IEEE

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1109/ComputationWorld.2009.57

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82912036?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1109/ComputationWorld.2009.57
http://oro.open.ac.uk/policies.html


A Problem-Oriented Theory of Pattern-Oriented Analysis and Design

Jerry Overton1 Jon G. Hall2 Lucia Rapanotti3
1 Computer Sciences Corporation, joverton@csc.com

2 The Open University, j.g.hall@open.ac.uk
3 The Open University, l.rapanotti@open.ac.uk

Abstract

The overall goal of this work is to provide problem-

oriented support for Pattern-Oriented Analysis and

Design (POAD) so that (i) we may construct a better

understanding of the relationship of POAD to other

software development approaches and (ii) we can

extend the reach of problem-orientation to design pat-

terns. This paper extends our previous contributions

to show how both high-level and detailed design phases

can be given a problem-oriented encoding.

Keywords: POAD, Problem Oriented Engineering,

design patterns, software requirements, validation.

1 Introduction

The work described in this paper is intended to make
two unique contributions. First, it introduces a frame-
work for relating practical tools for software design,
such as Pattern-Oriented Analysis and Design (POAD,
[1]) and automated testing, together by codifying them
within a problem-oriented meta-design framework in
terms of which their interrelation can be seen and rea-
soned about. Second, it makes a practical theory of de-
sign available within the software practitioner’s toolset
by introducing a systematic and rigourous approach
that can be used in combination with existing software
development methods, instead of attempting to replace
them.

In [2], we began a problem-oriented encoding of
POAD in Problem Oriented Engineering (POE, [3]),
showing how design refinement can take the form of
refactoring existing software through design patterns.
In this paper, we extend our codification of POAD in
POE to: (i) consider in more detail the nature of the
validation of a solution in POAD and its relation to
the testing of requirements; and (ii) include high-level

design ([1]), in addition to design refinement.

This paper proposes a formal model of building soft-
ware systems using software design patterns. The
model is applicable to problems where the require-
ments can be expressed in simple conjunctive form
and where suitable patterns exist that can be inter-
preted as instructions for satisfying the problem’s qual-
ity requirements (also known as non-functional require-
ments) through the suggestion of an architecture.

Our approach differs in a number of ways from pat-
tern formalisation approaches, such as those presented
in [4]. Instead of addressing the application of patterns
to source code either as resusable software components
(for instance, [5], [6]) or aspects ([7]), we focus our de-
scription on software system design.

1.1 The Portal Problem

We use the following example for illustration
throughout; the example is representative of the class
of development problems the first author, an experi-
enced software engineer with specific pattern expertise,
encounters within his organisation. The problem con-
cerns the design of a corporate customer portal system
for a bank. The system is required to satisfy the fol-
lowing requirements and will operate within a context
including system end-users and content designers:

• Portal Function: the system should secure, dis-
play, and allow the creation of content;

• Modifiable: the system should be easily main-
tained and updated;

• Composable: the system should integrate various
commercial off-the-shelf (COTS) components;

• Centralized Security: the system should secure
content using a single, centralized function;

• Decentralized Content Creation: the system
should allow content to be created concurrently
by different developers;

i



• Uniform Presentation: the system should present
all content with a uniform look-and-feel.

Given our encoding of POAD in POE, our task in
this paper will be to design a solution to this problem
that exercises that encoding.

1.2 Paper Structure

The paper has the following structure. In Section
2, we describe, briefly, the type of software patterns
we consider in our work, as well as POAD and POE,
the two approaches we combine. Section 3 presents
our codification of POAD into POE, while Section 4
applies it to our example. We offer a discussion and
some conclusion in Section 5.

2 Background

After an introduction to design patterns and POAD,
we give a (necessarily) brief introduction to the part
of Problem Oriented Engineering that underpins our
theory.

2.1 Software Design Patterns

A design pattern is a template for solving a com-
monly occurring software design problem. Typically,
a design pattern will be recognised only after software
engineering knowledge in a particular area has reached
the stage of maturity where software developers no
longer need to solve the problem from scratch [8].

A design pattern is said to be well-documented when
it consists of [9] a Problem that describes a particular
problem treated by the pattern; a Context that char-
acterises the situations in which the problem occurs;
Forces that list the quality requirements of an accept-
able solution; a Solution that describes alternatives for
solving the Problem; and Consequences that explain
the characteristics and trade-offs of each solution al-
ternative. We restrict ourselves to well-documented
patterns in this paper.

2.2 Pattern-Oriented Analysis and Design

POAD [1] is a pattern-oriented framework that al-
lows designers to reuse software design experience and
provides the scope for the reuse both of designed arte-
facts, such as existing components, and for extant jus-
tifications of fitness-for-purpose. POAD is pattern ori-

ented in the sense of [10], i.e., POAD considers design
patterns as basic building blocks for the design of soft-
ware.

POAD sees development as consisting of 3 phases
[1]. First, in analysis, patterns are selected from a
domain-specific library. Next, in high-level design, pat-
terns are composed to produce a high-level design rep-
resentation, such as a package and/or class diagram.
Last, in design refinement, the high-level design repre-
sentation is refined to be more detailed.

Let us consider an application of POAD to the por-
tal problem of Section 1.1. In analysis, the problem’s
requirements, in combination with the first author’s
knowledge of the domain and his pattern engineering
experience, allows us to determine, in the POAD anal-

ysis phase, the patterns to be used: they are (from
[9]) Layers, Container, Inteceptor, Shared Repository,
Template View and (from [11]) Private Workspace.

In the high-level design phase, we compose the iden-
tified patterns and existing software components into
a high-level design. Consider the system as Layers for
security, the portal’s content, and its display. Within
each layer, use Containers to host the relevant por-
tal system’s components: in the security container,
place an Inteceptor that blocks any unauthorised event;
make the content container a Shared Repository for
all content and have it accessed by both the presenta-
tion container and content development container; put
Template Views of selected content in the presentation
container and make the content development container
a Private Workspace where content is created. From
this analysis, a Unified Modeling Language (UML) di-
agram, such as that shown in Figure 1, would be con-
structed as a record of the high-level system design.

Figure 1. Sketch, in UML, of the Partial Portal

Problem Solution



Our high-level design is no more than a sketch, al-
beit a sketch that relates the known functionalities and
qualities of the system; it has grown to the completed
version of the figure through the incremental consider-
ation of those features and qualities. The incremental
nature of its development is already accepted in the
literature and is not a characteristic of our approach;
see, for instance, [10]. We note that detailed justifi-
cations of the choices, and of their ramifications for
the target system, are yet to be made. With the de-
sign experience available to us, the choices we made
during analysis and high-level design feel right. Our
confidence in them will be detailed and justified to our
and/or the stake holders’ satisfaction during detailed
design.

2.3 Problem-Oriented Engineering

Problem Oriented Engineering is a general frame-
work for engineering design, a generalisation of the
Problem Oriented Software Engineering (POSE, [3])
framework for software engineering. It has a princi-
pled basis, with the notion of (design) problem at its
centre: a design problem requiring a designed solution.
POE prescribes no particular method for development
(although heuristics are offered for risk, resource and
communications management in [3]). Rather, the in-
tent of POE, and part of the motivation of this paper, is
to encompass existing method and methodology within
the framework.

2.3.1 Problems and Problem Transformations

In POE, a problem has 3 elements: a real-world en-
vironment, W ; a requirement, R; and a (to-be-found)
solution, S . We write W ,S � R to indicate that we
wish to find a solution S that in the context of W

satisfies R.
What is known of a problem’s elements are captured

in that element’s description; descriptions can be writ-
ten in any appropriate language from formal to natural
language including, for our codification, the UML. The
Portal Problem of Section 1.1 is captured in POE as:
Bank Community ,Portal System � Portal Requirement

where:

• Bank Community is the intended community of
users and content developers of the system to be
designed (the problem’s context);

• Portal System is the solution to be designed; and

• Portal Requirement is the conjunction of require-
ments to be satisfied, that is Portal Function ∧
. . . ∧Uniform Presentation (from Section 1.1)

Engineering design under POE proceeds in a step-
wise manner with the application of problem transfor-
mations, examples of which appear below. Formally,
problem transformations conform to the following rule
form: a conclusion problem P(: W ,S � R), premise

problems Pi(: Wi ,Si � Ri), i = 1, ...,n, (n ≥ 0) and
justification J combine in a rule named N to give trans-

formation step
P1 . . . Pn [N]

��J��
P

which means that S is a

solution of W ,S � R whenever S1, ...,Sn are solutions
of W1,S1 � R1, ...,Wn ,Sn � Rn and justification J is
validated by all relevant stake-holders. J collects the
evidence of adequacy of the transformation step. Es-
sentially, through this rule, problems are transformed
into others that may be easier to solve1 until only prob-
lems with a known fit-for-purpose solution are left. Our
task in this paper is to encode POAD as transforma-
tions that comply with this rule.

An initial problem, such as the Portal Problem
above, forms the root of a development tree with prob-
lem transformations applied to extend the tree upwards
towards its leaves. A problem is solved if the develop-
ment tree is complete and fully justified to the satis-
faction of all stake-holders.

Steps can be of arbitrary size in POE, large-steps
being composed of smaller ones; indeed whole sub-
development trees can be folded together into a single
step. In the general POE setting, then, the goal of
problem-solving is to find transformations, arguments
and evidence of adequacy that arrive at a solution. In
this paper, our goal is more specific: through POE
we wish to encode a POAD-style development that al-
lows us to solve problems like the Portal Problem. To
do this we will define large-step transformations that
allow a high-level design to be produced in an incre-
mental fashion and then detail each large step as a
sequence of small steps so that an adequacy argument
attributable to POAD is produced.

Two more features of POE are needed for us to
complete the technical basis of our encoding: in POE,
an AStruct (short for Architectural Structure) is used
to introduce an architecture into the solution. An
AStruct , AS [g ](c1, ..., cn) has name AS , and combines
a known structure, the glue g (of arbitrary complex-
ity), together with the ci which are elements of the
solution yet to be designed. The solution is modi-
fied through the solution interpretation transformation
SolInt2 which requires the architecture to be justified
as adequate:

W ,AS [g ](c1, ..., cn) � R [SolInt]
��Explain and justify the use of
AS [g](c1, ..., cn)��W ,S � R

1Or that lead to others that are easier to solve.
2There is a requirements interpretation step, ReqInt, too.



Finally, once an AStruct has been applied, the So-

lution Expansion transformation SolExp expands the
problem context with the glue whilst simultaneously
refocussing on the problems to find the cj that remain
to be designed. The requirement and context of the
original problem are propagated to all sub-problems.
In this paper, n is either 1 or 2, in which case SolInt
is either

W , g , c1 � R
[Sol-
Exp]

W ,S :AS [g ](c1) � R
or

W , g , c2, c1 � R

W , g , c1, c2 � R [Sol-
Exp]

W ,S :AS [g ](c1, c2) � R

Given POE’s notation agnosticism, we can see Fig-
ure 1 as an AStruct in which the glue is captured in
the overall class diagram, and the components are the
packages whose design remains to be detailed.

3 Codifying POAD in POE

In this section we present our approach to codifying
POAD within POE. In particular, Section 3.1 briefly
recalls our previous work [2] towards such an encoding,
while Section 3.2 builds on these foundations to provide
the novel contribution of this paper.

3.1 From patterns to pattern problems

In [2] we encoded the application of a POAD pat-
tern as a sequence of POE transformations. This was
achieved through the following observation. Although
POAD is motivated by practice while POE is moti-
vated by theory, there is a good mapping in their view
of context, requirement and solution. This led us to
the codification of the components of a design pattern
(recall Section 2.1) in POE as summarised in the fol-
lowing table:

Name Pattern

Context context description, W
Forces quality requirement, Q

Problem problem matching
PPattern : W,S � R ∧Q

Solution PA1[g1](c1), PA2[g2](c2, c�
2), etc

Cons. characteristics of each PA

In detail, we associate with a well-documented pat-
tern a POE problem template PPattern : W,S � R∧Q
in which the pattern Context matches the problem
Context and the pattern Forces are captured by a qual-
ity requirement Q separate from any functional re-
quirement R. Also, the pattern Solution is captured by
a collection of AStructs, i.e., the solution architectures

W , g , c � R
[SolExp]

W ,PA[g ](c) � R
[ReqInt]
��Q-Test��

W ,PA[g ](c) � R ∧Q
[SolInt]
��Solution assessed against Con-
sequences, PA chosen��W ,S � R ∧Q

Figure 2. Application of a well-documented

pattern to a problem W ,S � R ∧ Q that

matches its problem template PPattern

suggested by the pattern application3, while the pat-
tern Consequences are used to guide our choice of which
of the solution architecture are most appropriate based
on the various trade-offs the PAi address, their contri-
bution to functional requirements (i.e., which contri-
bution PAi makes to R), etc.

Following on from [2], after pattern choice, we re-
duce the problem of meeting R ∧Q to that of demon-
strating that the solution will satisfy a validation con-
dition, here called a Quality Assurance (or Q-)Test
4 as illustrated in Figure 2. The application of the
Pattern to a problem-matching PPattern suggests the
architecture, encoded as the AStruct PA[g ](c), and as-
sessed against the pattern’s Consequences. Introducing
the architecture through Solution Interpretation trans-
forms the problem with justification recorded as the
engineering expertise encoded in the pattern and the
consequences of its application. Further application of
the design pattern justifies a requirement interpretation

([3]) that removes Q . This is a valid transformation as
long as the Q-Test demonstrates the AStruct ’s satis-
faction of the quality requirement in a way adequate
for all stake holders. We complete the transformation
with the SolExp shown that allows the focus to move
to the component c that remains to be found.

3.2 Full pattern encoding

In this section, we extend our POAD codification
of [2] in two ways. First, we add to the condification
the clear distinction between high-level design, where
the details of context and solution are not known and
transformations are not fully justified, and design re-
finement, where the transformations’ justifications are
made adequate as are the details of context and solu-
tion. Second, we recognise that, in addition to satisfy-
ing quality requirements, a pattern can contribute to
the satisfaction of functional requirements. This leads

3This may be described, perhaps, as UML class diagrams,

such as that of Figure 1.
4Generalised from the stress test in [2].



us to consider the more general pattern of application
we discuss below.

We know from [12] that the definition of a quality
requirement can be made operational by using concrete

quality attribute scenarios to characterize the require-
ment. These scenarios, specific to both the quality re-
quirement they describe and the context to which they
apply, map an understanding of a quality requirement
onto specific system stimuli and observable behaviour.
The Q-Test we have introduced simply verifies a con-
crete quality attribute scenario under this scheme.

Given that a problem might have many require-
ments and qualities, and an arbitrarily complex con-
text, we generalise the form described in Figure 2 as
follows5:

W , g , c �R
�
1 ∧ R2 ∧Q2 ∧ · · · ∧Qn

[SolExp]
W ,PA[g ](c) �R

�
1 ∧ R2 ∧Q2 ∧ · · · ∧Qn [ReqInt]

��Q-Test��

W ,PA[g ](c) �R1 ∧ R2 ∧Q1 ∧ · · · ∧Qn [SolInt]
��Template matched,
Solution assessed,
PA chosen��W ,S �R1 ∧ R2 ∧Q1 ∧ · · · ∧Qn

Within the context W , Q-Test invokes R1 as stimu-
lus to PA and checks for a response that represents an
operationalized form of Q1. The satisfaction of Q-Test

sufficiently demonstrates that PA satisfies Q1, with the
solution contributing functionality to R1 leaving R1�.
Assuming that suitable design patterns exist, under re-
peated application of this general transformation, we
can discharge all quality requirements.

In POE it is possible to create big steps from small
ones, and to apply a step without having completed its
justification on the understanding that, subsequently,
we will complete that justification. Without the choice
of Q-Test being made (and a test strategy should, in
general, be chosen with reference to the external stake-
holders) we can forge the big step that is Figure 2,
thus:

W , g , c � R�
1 ∧ R2 ∧Q2 ∧ · · · ∧Qn [SolInt]

��Application
of Pattern P��W ,S � R1 ∧ R2 ∧Q1 ∧ · · · ∧Qn

on the understanding that justification for the pattern
and the definition and justification of the Q-Test will
be provided later. This apply-and-justify-later idea de-
limits high-level design from detailed design.

Given this big step, we can consider using it to
solve problems knowing that, after a candidate design
is found, we can go back and justify it through ex-
panding the step, applying the pattern definitions and
completing all Q-Tests. The justification will be refined

5For brevity, only the case of a single component c to be

designed is considered.

Centralized
Security
Problem

[SolInt]
��Inte-

ceptor��Composable
ProblemA

Decentralized
Content
Creation
Problem

[SolInt]
��Private

Work-

space��Publisher
Problem

Uniform
Presentation
Problem

[SolInt]
��Template

View��Subscriber
Problem [SolInt]

��Publish-

Subsribe��Composable
ProblemB [SolInt]

��Containers��Modifiable
Problem [SolInt]

��Layers��Portal
Problem

Figure 3. Pattern-Oriented Solution to the Por-

tal Problem, using the general POE transfor-

mation.

through this reconsideration of the high-level design to
a justification that either adequately discharges the de-
sign through the collection of Q-Tests collected, or fails
to discharge. For the latter, another high-level design
might be sought or, if none such exists, the acceptance
that no design can be made (at least based on our ini-
tial choice of pattern language).

4 Solving the Portal Problem

We now turn to the application of our codification
of POAD in POE by addressing the Portal Problem of
Section 1.1.

We will assume that the pattern language defined in
Section 3 consists of well-documented patterns. Here,
for example, is the Inteceptor pattern:

Name Inteceptor

Context any software environment whose be-
havior derives from a network ser-
vice connected by a common, message-
based infrastructure [9].

Forces Centralized Security

Problem a problem in which ...
Solution IntArch[SecurityInteceptor ](Services)
Cons. characteristics of IntArch

By allowing a software engineer and POAD expert
free reign, we may apply the big step transformation of
the previous section to arrive at the high-level design
candidate shown in Figure 3.

The high-level design indicates which patterns were
applied and in which order, but provides no justifi-
cation for the choices, nor which Q-Tests will satisfy
external stake holders. Expanding the big step trans-
formation allows us to fill in these justification compo-
nents in the following way. For brevity’s sake, we focus



on the Inteceptor pattern’s application to Figure 3’s
Composable ProblemA.

The details are:

Centralized Security Problem :
Bank Community

�,SecurityInteceptor ,
PortalServices � Security Function

�
[SolExp]

Bank Community
�,

IntArch[SecurityInteceptor ](PortalServices)
� Security Function

� [ReqInt]
��Security
Test��Bank Community

�,
IntArch[SecurityInteceptor ](PortalServices)
� Security Function ∧ Centralized Security ∧ . . . [SolInt]

��Inte-
ceptor��Composable ProblemA : Bank Community

�,S
� Security Function ∧ Centralized Security ∧ . . .

in which the Q-Test Security Test should be chosen so
as to relate a stimulus to IntArch of both authorized
and unauthorized operations and checks for an appro-
priate response.

5 Discussion and Conclusions

Our presented solution to the Portal Problem is
pattern-oriented in that it was solved using the compo-
sition of design patterns. It is problem-oriented in that
it was constructed as a (software) problem and solved
using problem transformations. This synthesis of ap-
proaches is interesting for a number of reasons. First,
we have presented a codification of the steps of build-
ing a software system with patterns in POE, without
stepping outside of the pattern language or the sys-
tem in which they are applied (always accepting that
a problem-oriented encoding may be unfamiliar to the
reader). In an extended presentation we could, we con-
jecture, express the AStructs in any appropriate nota-
tion, including as fully detailed UML diagrams—POE
is accepting of various notations. Second, our theory
is complementary to other approaches that address the
application of patterns to source code as reusable soft-
ware components [6], [5] or aspects [7]. Third, our
supporting theory is a formal approach, but we have
evidence from other work that other software devel-
opment approaches combine with it. Our developing
expression of POAD within POE holds promise that
we will be able better to understand the relationship
of POAD to other approaches; more than this, how-
ever, we have some evidence that engineering design
approaches map to POE understanding how POAD fits
within, say, socio-technical engineering.

Acknowledgements

We would like to thank our colleagues in the Com-
puting Department at The Open University for their
continuing support, especially Yijun Yu, for his insight-
ful reading and comments on this paper.

References

[1] S. M. Yacoub and H. H. Ammar. Pattern-Oriented

Analysis and Design: Composing Patterns to Design

Software Systems. Addison-Wesley Professional, 2004.

[2] Jerry Overton, Jon G. Hall, Lucia Rapanotti, and Yi-
jun Yu. Towards a problem oriented engineering theory
of pattern-oriented analysis and design. In Proceedings

of 3rd IEEE International Workshop on Quality Ori-

ented Reuse of Software (QUORS), 2009.

[3] Jon G. Hall, Lucia Rapanotti, and Michael Jackson.
Problem-oriented software engineering: solving the
package router control problem. IEEE Trans. Software

Eng., 2008. doi:10.1109/TSE.2007.70769.

[4] T. Taibi and O. Now. Design Patterns Formalization

Techniques. IGI Pub., 2007.

[5] B. Meyer and K. Arnout. Componentization: The
visitor example. COMPUTER-IEEE COMPUTER

SOCIETY-, 39(7):23, 2006.

[6] K. Arnout and B. Meyer. Pattern componentization:
The factory example. Innovations in Systems and Soft-

ware Engineering, 2(2):65–79, 2006.

[7] J. Hannemann and G. Kiczales. Design pattern imple-
mentation in java and aspectj. ACM SIGPLAN No-

tices, 37(11):161–173, 2002.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns. elements of reusable object-oriented
software. Addison-Wesley Professional Computing Se-

ries, Reading, Mass.: Addison-Wesley,| c1995, 1995.

[9] F. Buschmann, K. Henney, and D. Schmidt. Pattern-

Oriented Software Architecture: A Pattern Language

for Distributed Computing (Wiley Software Patterns

Series), volume 4. John Wiley & Sons, 2007.

[10] D. J. Ram, KN Raman, and KN Guruprasad. A pat-
tern oriented technique for software design. ACM SIG-

SOFT Software Engineering Notes, 22(4):70, 1997.

[11] S. P. Berczuk and B. Appleton. Software Configuration

Management Patterns: Effective Teamwork, Practical

Integration. Addison-Wesley Professional, 2003.

[12] L. Bass, P. Clements, and R. Kazman. Software Ar-

chitecture in Practice. Addison-Wesley Professional,
2003.


