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List of abbreviations 

 

LTP- long-term potentiation 

LTD- long-term depression 

CPP-  (3-[(R)-2-Carboxypiperazin-4-yl]-propyl-1-phosphonic acid). 

NMDA - N-methyl-D-aspartate 

PSDs - postsynaptic densities  

DG dentate gyrus 

MML- middle of the molecular layer (of dentate gyrus) 

MPP – medial perforant path 

LPP -  lateral perforant path 

HFS - high-frequency stimulation  
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Abstract 

 

Long-term morphological synaptic changes associated with homosynaptic long-term 

potentiation (LTP) and heterosynaptic long-term depression (LTD) in vivo, in awake adult 

rats were analysed using three dimensional (3-D) reconstructions of electron microscope 

images of ultrathin serial sections from the molecular layer of the dentate gyrus. For the first 

time in morphological studies, the specificity of the effects of LTP and LTD on both spine 

and synapse ultrastructure was determined using an NMDA receptor antagonist CPP (3-

[(R)-2-Carboxypiperazin-4-yl]-propyl-1-phosphonic acid). 

There were no differences in synaptic density 24h after LTP or LTD induction, and CPP 

alone had no effect on synaptic density. LTP increased significantly the proportion of 

mushroom spines, whereas LTD increased the proportion of thin spines, and both LTP and 

LTD decreased stubby spine number. Both LTP and LTD increased significantly spine head 

evaginations (spinules) into synaptic boutons and CPP blocked these changes. Synaptic 

boutons were smaller after LTD, indicating a pre-synaptic effect. Interestingly, CPP alone 

decreased bouton and mushroom spine volumes, as well as PSD volume of mushroom 

spines. 

These data show similarities, but also some clear differences, between the effects of LTP 

and LTD on spine and synaptic morphology. Although CPP blocks both LTP and LTD, and 

impairs most morphological changes in spines and synapses, CPP alone was shown to exert 

effects on aspects of spine and synaptic structure. 

 

 

 

 

Key Words: 3-D synaptic ultrastructure, hippocampus, long-term potentiation and 

depression  
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Long-term potentiation (LTP) and its counterpart long-term depression (LTD) are utilized 

widely as models of synaptic plasticity (Staubli and Lynch, 1987; Abraham et al., 1994; 

Doyère et al., 1997; Abraham, 2003; Malenka and Bear, 2004) that may be implicated in 

processes related to learning and memory storage (Doyère et al., 1993; Kemp and Manahan-

Vaughan, 2007). Morphological studies have mainly focused on LTP within time ranges 

under 6h, few have characterized changes after one day. Moreover, the question of whether 

these LTP or LTD related long-term changes would be blocked by N-methyl-D-aspartate 

(NMDA) receptor antagonism has not yet been addressed. 

Most morphological studies characterising morphological changes after LTD have been 

mainly in slices. A quantitative 2-dimensional ultrastructural study in vivo looked at 

morphological correlates of heterosynaptic LTD in dentate gyrus of the awake rat (Mezey et 

al., 2004) and showed that LTD was not simply the converse of LTP. A non input-specific 

increase was found in unperforated axospinous synapses 24h after both LTP and LTD while 

the major effect of LTD alone was an input-specific increase in axodendritic synapse 

density. The ideal way to examine morphological changes would be using combined 2-

photon microscopy to visualise spines followed by electron microscopy to study the 

presynaptic boutons. Using such a technique in mouse organotypic hippocampal slice 

cultures, Becker et al. (2008) showed that structural plasticity following LTD is a feature 

that is not specific to dendritic spines, and presynaptic structural changes appeared to play a 

more important role than spine changes given that the gain or loss of contacts was frequently 

due to bouton changes. Bastrikova et al. (2008) used slices of rat hippocampus cultured on 

multielectrode arrays to demonstrate that LTD induction results in complete separation of 

the presynaptic bouton from the dendritic spine but no loss of spines. Spine formation 

following LTP was demonstrated using confocal microscopy by Engert and Bonhoeffer 

(1999) and De Roo et al. (2008) have shown that learning-related patterns of activity that 

induce long-term potentiation act as a selection mechanism for the stabilization and 

localization of spines. The relationship between LTP and LTD was examined by Zhou et al. 

(2004) who applied two-photon time-lapse imaging of dendritic spines in hippocampal slices 

from neonatal rats to show that the induction of homosynaptic LTD by low-frequency 

stimulation is associated with shrinkage of spines which was reversed by subsequent high-

frequency stimulation that induces LTP. De Roo et al. (2008), in a confocal imaging study 

with organotypic slices, demonstrated that spine enlargement and spine stabilization 

following LTP were both NMDA receptor and protein synthesis-dependent. 

However, two-photon microscopy cannot at present be applied in vivo to the hippocampus 
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from awake animals, and therefore precludes the observation of long-term changes 

associated with LTP or LTD in vivo. Furthermore, resolution limitations mean that it is 

difficult to determine fine details of changes in the pre-synaptic component of synapses, or 

the post-synaptic density (PSD). The present study therefore aimed to assess the long-term 

3D morphological correlates of synaptic plasticity, 24 hours after induction of LTP and 

heterosynaptic LTD in middle molecular layer of the dentate gyrus of adult awake rats. The 

question of whether the effects of LTP and LTD on both spine and synapse ultrastructure 

changes are specific to potentiation or depression per se, and therefore also prevented by 

blockade of NMDA, was determined by use of the NMDA competitive receptor antagonist, 

CPP (3-[(R)-2-Carboxypiperazin-4-yl]-propyl-1-phosphonic acid). 

 

Materials and Methods 

 

Animals Eighteen adult male Sprague-Dawley rats (Iffa Credo, France), ~8-10 weeks old 

and weighing 300- 350 g at the time of surgery, were used as subjects. They were housed 

individually with food and water ad libitum in a temperature-controlled room and on a 12-h 

light/dark cycle. All animal experimental procedures were carried out at Neurobiologie de 

l'Apprentissage, de la Mémoire et de la Communication, CNRS-Université Paris-Sud, in 

accordance with guidelines of the EU, CNRS, and the French Agricultural and Forestry 

Ministry (decree 87848; licence no. A91429). Animals were anaesthetized with sodium 

pentobarbitone (60 mg/kg i.p.) and prepared for chronic recording as described previously 

(Doyère et al., 1997; Mezey et al., 2004). Two 65-µm nichrome recording wires extending 

1.5 mm from a stainless steel microtube were implanted in the hilus of the left dentate gyrus 

(AP 4.2 mm; L 2.5 mm from Bregma) and two concentric bipolar electrodes ipsilaterally to 

activate the lateral perforant path (AP 8.2 mm, L 4.8/5.2 mm from Bregma), and the medial 

perforant path (AP 7.8 mm, L 4.2 mm from Bregma). The depths of the recording and 

stimulating electrodes were adjusted to maximize the slope of the positive-going field 

excitatory postsynaptic potential (EPSP) evoked by stimulation of the pathway. The 

microtube served as a reference and a cortical silver ball served as a ground. All electrodes 

were connected to multichannel miniature sockets, fixed to the skull with dental acrylic. 

Rats received a daily injection of antibiotic (Terramycin, 20 mg/kg, i.p.) for 5 days and were 

allowed to recover from surgery in their home cages for at least 10 days. 
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Induction of long-term potentiation/long-term depression Experimental procedures were 

similar to those previously reported (Mezey et al., 2004). In short, after 3 days of habituation 

to the recording chamber (30 min each day) during which input/output curves and classical 

summation and convergence tests were performed, animals were submitted to a three-day 

experimental design: For baseline, field potentials were evoked alternately on the two 

pathways at 15s intervals for 20 min using test stimuli (80 µs) to evoke EPSP slopes of 

approximately half its maximum. On the day of LTP/LTD induction, after the baseline was 

taken, tetanic stimulation was delivered, and recordings were resumed for 30 min after the 

last tetanus. Tests were again taken 24h later, followed immediately by sacrifice of the 

animals. Hippocampal EEG was continuously monitored during recording sessions to ensure 

the lack of electrically-induced after discharges. 

Experimental Groups 

There were six animal groups for this ultrastructural study with all tissue taken from the 

middle of the molecular layer (MML) of the dentate gyrus (DG). 

LTP group: LTP in middle molecular layer of DG - A strong tetanization protocol (ten series 

of seven 400-Hz trains, 1 s intertrain interval, 1 min between each series) was applied to 

the medial perforant path at test intensity. 

LTP blocked by CPP group: Blockade of LTP by NMDA antagonist - Rats received an 

injection (10 mg/kg, i.p.) of the NMDA-receptor antagonist CPP (Tocris Cookson Ltd) 3 

h before tetanization of the medial perforant path.  

 LTD group: LTD in middle molecular layer of DG – The tetanization protocol (above) was 

applied to the lateral perforant path. 

LTD blocked by CPP group: LTD was blocked by CPP in the same way as in the LTP 

blocked by CPP group. 

Control group with CPP (to test effect of CPP alone): Rats (n=3) received an injection (10 

mg/kg, i.p.) of CPP as above but received no stimulation. 

Control group: Rats (n=3) were either implanted, but received no stimulation (n=1), or 

received only single test stimulations over 4 days (n=2). 

 

Perfusion fixation and microscopy Immediately after the last test stimulation or 28h after 

CPP injection in the control group, rats were anaesthetized with sodium pentobarbital (0.1 

ml/100 g body weight) and perfused trans-cardially with 50 ml of 3.8% acrolein (TAAB, 

UK) in a solution of 2% paraformaldehyde and 0.1M phosphate buffer (PB), pH 7.4, 

followed by 250 ml of 2% paraformaldehyde. Brains were removed from the cranium and 
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cut into 4–5-mm coronal slabs of tissue containing the entire rostrocaudal extent of the 

hippocampus. The region containing the recording electrode was easily identified by the 

electrode tract markings. This tissue was further fixed for 30 min in 2% paraformaldehyde 

and then sectioned at 40–50 m on a vibrating microtome (VT1000; Leica, Milton Keynes, 

UK). Four of these slices were taken from each animal 1-2 mm on either side of the 

electrode tract in the tetanized hemisphere. The tissue was osmicated in 2% osmium 

tetroxide and transferred to the Open University (Milton Keynes, UK). Further processing 

and embedding protocols were essentially similar to those reported previously (Stewart et 

al., 2005a, 2005b). Tissue was dehydrated in graded aqueous solutions of ethanol from 40 to 

96% (each for 10 min) and then 100% acetone (three changes, each for 10 min). Specimens 

were inltrated with a mixture of 50% epoxy resin and 50% pure acetone for 30 min at room 

temperature. Each slice was placed on an Aclar lm and covered with a capsule containing 

pure epoxy resin (Epon 812  Araldite M epoxy resins) for 1 h at 60 °C and polymerized 

overnight at 80 °C. 

Slices in blocks were then coded and all further analyses were carried out with the 

investigator blind to the experimental status of the tissue. The embedded slices on the block 

surface were trimmed with a glass knife along the entire surface of the hippocampal slice 

and m thick sections cut. A trapezoid area was prepared with a glass knife, with one side 

of 200–250 m in length, which included the DG and a portion of hilus. This procedure is 

illustrated in Popov et al. (2004, 2005). Serial sections of grey  white colour (60–70 nm) 

were cut with a Diatome diamond knife and allowed to form a ribbon on the surface of a 

water  ethanol solution (2–5% ethanol in water) in the knife bath and collected using 

Pioloform-coated slot copper grids. Sections were counterstained with saturated ethanolic 

uranyl acetate, followed by lead citrate, and were then placed in a rotating grid holder to 

allow uniform orientation of sections on adjacent grids in the electron microscope. 

 

Stereology of synapses Synapses in the MML is very largely those with an asymmetric 

synaptic junction and spherical type vesicles (i.e. Gray type I and presumed excitatory). 

Stereological estimates of synapse density in the MML of the DG were made 80–100 m 

from the proximal edge of the granule cell body layer, the regions analysed being subject, as 

described above, to LTP or LTD induction by tetanization of the medial or lateral perforant 

path (MPP or LPP), respectively. Stereological analysis was performed as described 

previously (Harris, 1994; Fiala et al., 1998; Sorra and Harris, 1998, Popov et al., 2004), with 
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tissue volumes of approximately 500–800 m3. The synaptic number was counted within 

these areas irrespective of the presence of components such as large dendrites and non-spiny 

dendrites of interneurons, in order to avoid bias in the data obtained. Synaptic densities were 

expressed as number of synapses (identied via postsynaptic densities (PSDs) and the 

presence of at least two presynaptic vesicles) per 100 m3 of tissue.  

 

Density and proportion of different categories of spines and synapses Spines were 

categorised according to Peters and Kaiserman-Abramof (1970) and Harris et al. (1992), a 

process which is in agreement with an analysis of a histological preparation of Cajal’s 

material by Garca-Lopez et al. (2006) and we have used this categorisation previously, 

(Popov et al., 2004). We thus distinguished 3 spine categories as shown in the 3-D 

reconstruction of a short segment of dendrite in Fig.1A, taken from over 100 serial ultrathin 

sections, 8 of which are shown in Fig. 1B with individual elements of types of spines 

labelled. A schematic of the spine categories is shown in Fig. 1C and can be compared with 

the reconstructions in Fig. 1A. The categories are thin- where the height is usually several 

times in excess of the width; stubby- where the spine protrudes only slightly from the 

dendritic shaft; mushroom- where the spine head is large and considerably in excess of the 

spine neck diameter, Shaft synapses are a fourth category where the synapse contacts 

directly the dendritic shaft (Figure 1A - C). 

 

Digital reconstructive analysis Electron micrographs at x6000 magnication were obtained 

in a JEOL 1010 electron microscope from the MML at a distance of 80–100 m from the 

layer of neuronal cell bodies. Up to 100 serial sections per series were photographed to 

reconstruct individual apical dendritic segments and their thin and mushroom spines and 

presynaptic boutons. A minimum of 25 thin and 25 mushroom spines, and 25 presynaptic 

boutons, were reconstructed per series obtained for each animal. As with the selection of 

animals, all series were also coded and analysed blind as to treatment condition, and all 

spines were chosen randomly. Identified cross-sectioned myelinated axons, mitochondria 

and dendrites spanning each section provided duciary references for initial alignment of 

serial sections. Section thickness was determined using the approach of Fiala and Harris 

(2001) and was normally 60–70 nm (grey  white colour). Digitally scanned electron 

microscopy negatives with a resolution of 1200 dpi were aligned as JPEG images (software 

available from http://synapses.bu.edu). Alignments were made with full-eld images. When 
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section alignment had been finalised, the contours of individual dendritic spines, PSDs, 

axons, and mitochondria were traced digitally, and volumes, areas and total numbers of 

structures were computed. 3D reconstructions were exported to 3D-Studio-Max 8 software 

for rendering and subsequent rotation to display the optimal views of the reconstructed 

structures. Selected image files were finally imported into Adobe Photoshop CS2®, 

optimised for contrast and brightness, and montaged to produce illustrative figures for 

publication. 

 

Statistical analyses For analyses of 3D measurements ANOVA tests were used to examine 

differences between specific animal groups followed by post-hoc comparisons, where 

required, using the Tukey’s unequal N honest significant differences tests (implemented 

through Origin Pro 7.5). Formal statistical significance was taken where P < 0.05. Data are 

presented as mean ± SEM (n=3 animals per group).  

 

Results  

Induction of homosynaptic LTP and heterosynaptic LTD 

There were four experimental groups (see Fig. 2) and two control groups for this study with 

all tissue taken from the middle of the molecular layer (MML) of the dentate gyrus (DG) for 

3D reconstruction and morphological analysis: 

(1) Animals for which the HFS protocol was applied to the medial perforant path to induce 

LTP at the level of the DG middle molecular layer (selected rats n=3) showed an 

immediate increase in both EPSP and population spike amplitude, an increase which 

remained 24h later, immediately before the sacrifice (Fig. 2A,B). Significant LTP of the 

EPSP slope was observed both 30 min (t(2)=4.63; P<0.05) and 24h after tetanization 

(t(2)=9.50; P<0.05). 

(2) Animals for which LTP induction was blocked by the injection (10 mg/kg, i.p.) of the 

NMDA-receptor antagonist CPP 3 hours before HFS of the medial perforant path 

(selected rats n=3) showed a complete blockade of LTP for both EPSP and spike 

components (Fig. 2A,B). No significant change from baseline was observed 30 min after 

tetanisation (t (2)=-0.41; ns) or 24h later (t (2)=2.34; ns) 

(3) Animals for which heterosynaptic LTD was induced in MML of DG by applying the 

tetanization protocol to the lateral perforant path (selected rats n=3) showed a significant 

LTD of EPSP slope, both 30 min (t (2)=-4.38; P<0.05) and 24h (t (2)=-7.17; P<0.05) 

after the tetanization (Fig. 2C,D). 
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(4) Animals for which heterosynaptic LTD was blocked by the injection (10 mg/kg, i.p.) of the 

NMDA-receptor antagonist CPP 3 hours before HFS of the lateral perforant path (selected rats 

n=3) showed a complete blockade of LTD for both EPSP and spike components (Fig. 2C,D), 

confirming NMDA-dependence of heterosynaptic LTD (Christie and Abraham, 1992; Kosub 

et al., 2005). 

 

(5) Control group with CPP: Rats (n=3) received an injection (10 mg/kg, i.p.) of CPP as 

above but received no stimulation. 

(6) Controls rats (n=3) for which no HFS was applied. No changes in EPSP were recorded. 

 

Synapse density Two electron micrographs (from a series of 100) containing identified 

synapses and spines are shown in Fig. 3 (a, b). Reconstructions of 100 serial sections of the 

synapse shown in (a) and (b), and presented in Fig. 3c. This example is of a synaptic contact 

on a mushroom spine and 2 spinules from this mushroom spine arise from discontinuities in 

the PSD on the spine head and evaginate into the pre-synaptic bouton.  Fig. (3d,e) are 2 

serial electron micrographs from a thin spine in which 2 spinules project into an axon, and 

these are seen clearly in the 3-D reconstruction in Fig. 3(e). Spinules from thin spine heads 

are less frequent than on mushroom spines (see below).   Mean synapse density per 100 m3 

was 298±12 in control (there was no significant difference in synapse density between 

controls with and without CPP), 287±4 in LTP, 286±14 in LTD, 304±11 in CPP-LTP treated 

rats and 291±5 in CPP-LTD rats. There were no significant differences in these synapse 

density values between the 6 groups after either in vivo induction of LTP or LTD in awake 

rats, or in rats where LTP or LTD was blocked by CPP. These data show clearly that neither 

LTP nor LTD affects synapse density in vivo, at least at the 24h time point after their 

induction. 
 

Synapse/spine types A schematic diagram showing features typical of spine synapses in the 

MML was presented in Fig. 1. The 3 axo-spinous categories examined were: mushroom, 

thin, stubby, plus an additional category (shaft) where synapses make contact directly on the 

dendritic shaft (axo-dendritic). Approximately 250 synaptic contacts on spines/shaft were 

analysed per animal for these measurement, and the proportions of each of the 4 categories  

from this number are presented in Fig. 4A. There was a large and statistically significant 

increase in the proportion of mushroom spines (~50%) in the MML after LTP induction 

compared to control and LTD induction (F1, 8 =7.4, p<0.05) an effect which was blocked by 
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CPP. There was a small but significant increase following LTD in the proportion of thin 

spines (~8% compared to control), which was blocked by CPP. No change in the proportion 

of thin spines was observed after LTP treatment. When the change in proportion of thin 

spines after LTD was compared to that after LTP the difference was highly significant (F1,8 

=12.74, p<0.02). Both LTP and LTD decreased significantly the proportion of stubby spines 

(Fig. 4A) (LTP vs. control F1, 8 =13.12, p<0.005); LTD vs. control F1,8 =7.51, p< 0.03);  CPP 

blocked these changes. There were no changes in spine proportions from application of CPP 

alone. There were no significant changes in the proportions of shaft (axo-dendritic) synapses 

in any of the 4 experimental groups. 

 

Spinules Spinules are suggested to play a role in exchange of material at synaptic junctions 

and may also affect the electrical coupling of the pre/post-synaptic structures. In light of 

these hypotheses we asked whether spinules are differentially present following LTP or LTD 

and this was assessed quantitatively. In Fig. 4B, it can be seen that the number of spinules 

per spine increased significantly on mushroom spines in the MML from 0.2 per spine in 

control to 1.4 after induction of LTP (F1,8 = 106, p<0.001), and 0.98 after LTD (F1,8 = 58.8, 

p<0.001); these increases were completely blocked by CPP. Increases of similar scale and 

significance in spinule number on thin spines were found after both LTP (F1,8 = 16.3, 

p<0.001) and LTD (F1,8 = 15.99, p<0.001 (from 0.09 per spine in control, to ~0.4 per spine 

after LTP or LTD)) and these too were blocked by CPP (Fig. 4B).  CPP alone had no effect 

on spinule number of thin or mushroom spines. 

 

Volume of mushroom and thin spines; volume of PSDs. Since the spines and PSDs were 

reconstructed from serial sections their volume could be calculated simply from 

measurement of the area of spine (or PSD) times the number of sections in which the 

structure occurred.  From each animal the volume of 25 mushroom and 25 thin spines was 

measured from the 3-D reconstructions.  The mean volume of mushroom and thin spines 

(~0.27 m3) did not change significantly after LTP or LTD (Fig. 5A,B). There was a 

significant reduction in volume to 0.22 m3 for mushroom spines when induction of LTP 

was preceded with CPP treatment (F1,8= 8.9 p<0.04), and CPP also reduced the volume of 

mushroom spines when given to control animals (F1,8=17.8, p<0.01).  The volume of thin 

spines was not significantly affected by CPP alone, or when CPP treatment preceded LTP or 

LTD.  
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The volume of the PSDs of mushroom or thin spines was not significantly affected by LTP 

or LTD (Fig. 5C,D). However, CPP on its own caused a significant reduction in the volume 

of the PSDs on mushroom spines (Fig.5C, F1,8=46.67, p<0.002). Mushroom spine PSD 

volume was ~20% lower when LTP was preceded by CPP treatment (Fig. 5C), as it was 

when CPP preceded LTD treatment but these reductions at p<0.06 were just below the 

significance criterion (Fig. 5C).  

Presynaptic bouton volume (Fig. 6A, B). In order to determine whether LTP and LTD 

exerted an effect on presynaptic morphology, the volume of presynaptic boutons within a 

given area was determined by reconstruction of every presynaptic varicosity (presynaptic 

bouton) contacting mushroom spines to determine their volume, and the area of the 

apposition zone was also determined. An example of a reconstructed presynaptic bouton 

contacting  2  mushroom spines is shown in Figure 6A.  Data for volume changes are shown 

in Figure 6B. Although the volume of presynaptic boutons was unaffected by LTP, it 

decreased significantly from ~0.6 m3 in the control group to ~0.35 m3 in both CPP  (F1,8 = 

14.3, p<0.02) and LTP plus CPP group (F1,8 = 49.4, p<0.002), LTD alone caused a 

significant reduction in volume of the presynaptic bouton (F1,8 = 11.2, p<0.03)  

 

The key findings of these experiments are summarized in table 1. They show that although 

most of the significant LTP- and LTD-induced changes were prevented by CPP; CPP alone 

applied to untetanised tissue also produced some long-lasting morphological changes in 

spines and synapses. 

 

Discussion 

 

In the search for correlates of the long-term stable state of plasticity, this study has examined 

morphological changes in dendritic spines and synapses in the middle molecular layer 

(MML) of the dentate gyrus of conscious adult rats 24h after LTP induction, and for the first 

time in ultrastructural studies, their specificity was examined when blocked by an NMDA 

receptor antagonist, CPP, or when compared with heterosynaptic LTD. These data are 

discussed in terms of the specificity of the various changes. 

 

LTP-specific changes blocked by the NMDA antagonist CPP Changes in proportions of the 

different spine types after LTP – i.e. the increases in mushroom spines and the decrease in 
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stubby spines, were blocked by CPP. Similarly, the increase in number of spinules was 

blocked by CPP. All these changes blocked by CPP are most likely those induced by the 

physiological stimulation that leads to NMDA-dependent LTP. Therefore this dendritic 

spine remodelling, similar to that observed previously at earlier times post LTP (Kirov and 

Harris, 1999; Toni et al., 1999, 2001; Yuste and Bonhoeffer, 2001; Popov et al., 2004; 

Stewart et al., 2005b), can be considered as reflecting post-synaptic correlates of LTP. In 

addition, the present study demonstrates that these changes are present 24h after stimulation, 

and may therefore constitute correlates of a long-term maintenance phase of LTP. We 

cannot rule out the possibility that the dosage of CPP, although electrophysiologically 

potent, was insufficient to block all the changes associated with LTP, nor can we totally 

exclude a non-plasticity effect due to the tetanus, present in LTP and CPP groups but not the 

controls.  

LTD-specific changes Correlates of LTD were also observed in the present study. As in our 

earlier 2-dimensional analyses (Mezey et al., 2004), morphologically the ultrastructural 

changes following heterosynaptic LTD are not simply a mirror of LTP. In contrast to LTP, 

LTD was accompanied by a specific increase in the number of thin spines and a decrease in 

the number of stubby spines. More importantly, there was a net decrease in bouton volume 

contacting mushroom spines. This latter result clearly shows a presynaptic correlate of 

heterosynaptic LTD in the dentate gyrus, which is supported by the 2-photon organotypic 

slice studies of Becker et al. (2008) from CA1 of mouse hippocampus where homosynaptic 

LTD induction increased the turnover of presynaptic boutons. Our findings are also 

interesting to consider in view of the study of Wang et al. (2007) on LTD in acute 

hippocampal slices of rat pups. Spine size was monitored and synaptic responses recorded 

simultaneously using combined two-photon time-lapse imaging with patch-clamp recording. 

They showed that spine shrinkage and LTD could occur independently of each other. 

Moreover they demonstrated that changes in spine size are unrelated to trafficking of AMPA 

receptors (AMPARs). There are, however, significant differences between our study and that 

of Wang et al. (2007); the latter was done in acute slices of very young rats, used 

homosynaptic LTD and was carried out at 2-photon level and did not therefore examine 

detailed ultrastructure in 3D. Whether or not homosynaptic and heterosynaptic LTD may 

differ in terms of their consequences at the morphological level remains to be clarified. 

However, it is pertinent to note the recent suggestion that ‘heterosynaptic’ LTD may require 

homosynaptic activity, and therefore be of ‘homosynaptic’ nature (Abraham et al., 2007), 

which would also be supported by the convergence of our data with Becker et al. (2008). 
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Correlates of LTP and LTD in spines and synapses Both LTP and LTD are hypothesized to 

participate in learning and memory processes (Doyère et al., 1993; Kemp and Manahan-

Vaughan, 2007). It is therefore important to characterise carefully the changes observed after 

LTP and LTD, to allow the recognition of any of these changes that may occur after learning 

in a natural situation. There were no changes in synapse density after LTP or LTD in the 

MML 24h after initial stimulation, but we cannot rule out the possibility that such changes 

occur at earlier time points as part of a synaptic remodelling process and are not apparent at 

24h post LTP induction. However, our data are in agreement with those from a number of 

previous studies (e.g see review by Geinisman, 2000), which showed that induction and 

maintenance phases of LTP are not associated with significant changes in the total number 

of synapses per postsynaptic neuron. Here, the most notable change in spine types involved 

an increase in the proportion of mushroom spines after LTP coupled with a decrease in 

stubby spines, while the proportion of thin spines remained stable. Large spines of the 

mushroom type, which invariably contain a spine apparatus, are believed to be the more 

stable type of spine and increase in number with age, and have therefore been termed 

“learning spines” by Bourne and Harris (2007), whereas thin spines are not stable in number 

(Holtmat et al., 2005). Large spines possess an abundance of smooth endoplasmic reticulum 

and polyribosomes (Spacek and Harris, 1997; Ostroff et al., 2002), which provide the 

synthetic machinery necessary for structural changes. Spines also contain a multitude of 

molecular components (Bourne and Harris, 2008) which may be influenced by experiential 

factors. De Roo et al. (2008) demonstrated in organotypic hippocampal slices that spine 

enlargement and stabilization following LTP were both NMDA and protein synthesis–

dependent, which enables synaptic remodelling. The effect of stimulation on large spines 

most probably involves a sequence of intracellular biochemical events that includes changes 

in protein synthesis machinery and in cytoskeletal spine structure due to actin 

polymerization (Matus, 2000). This leads to an increase in spine size coupled to increased 

expression and insertion of AMPAR into the PSDs at the spine head (Ganeshina, 2004a, 

2004b), which in turn would produce larger postsynaptic currents and hence participate in 

the expression of LTP (Matus, 2005). We have previously shown increases in the proportion 

of mushroom spines after chemical potentiation in CA1 in slices (Stewart et al., 2005a), after 

LTP induction in the dentate gyrus in anaesthetised rats (Popov et al., 2004), and after 

treatment of ageing rats with a neural cell adhesion molecule (NCAM) mimetic (Popov et 

al., 2008). Here, we show that this increase in mushroom spines in the hippocampus is 
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observable after LTP in awake adult rats, and is maintained for at least 24h, suggesting this 

is a correlate of the long-term maintenance of LTP. The present study also shows that, at a 

similar time in the same animals, there were no changes in thin spine proportions after LTP, 

but a decrease in stubby spines. In fact, the categories of spines we used most likely 

represent a continuum where stubby spines become thin and then become thick (mushroom) 

following neural activation, and vice versa when activity/down-regulation occurs. Therefore, 

we suggest that the changes observed after LTP most likely result from an effective 

equilibrium process, due to the transformation of the thin spines to mushroom in response to 

LTP, while the stubby types transform into the thin category. Following the same logic, in 

LTD the stubby spines would decrease in number as they form thin spines. 

 

Correlates of LTP and LTD in changes in spinule number Spinule number increased after 

LTP. Spinules, which are double-membrane structures (as found by Spacek and Harris, 

2004), were observed to emerge from both mushroom and thin spine heads, and penetrate 

for considerable distances into the presynaptic terminals. Spacek and Harris (2004) noted 

that spinules engulfed by astrocytic processes support the growing evidence that 

perisynaptic glia interact directly with synapses at least on thin spines. The observation of 

spinules emerging from thin spines contrasts that of a recent study by Nicholson and 

Geinisman (2009), which found that neither spinules nor spine apparati were found in 

typical non perforated synapses, which we take to be the equivalent of the thin spines we 

observed. While we agree that spine apparati are never present in thin spines we do 

consistently find spinules on thin spines in our study, albeit at lower levels than in 

mushroom spines. However, there are some differences between the two studies, while we 

examined dentate middle molecular layer, that of Nicholson and Geinisman (2009) 

examined CA1 synapses in non-tetanised tissue.  

Toni et al. (2001) showed that 30 min after LTP induction in hippocampal organotypic slice 

cultures from neonatal rats, there was an increase in segmented synapses and an increase in 

large spinules associated with PSD. Tao-Cheng et al., (2009) demonstrated that while 

spinules in hippocampal slice cultures were virtually absent in control slices, numerous 

spinules appeared at both excitatory and inhibitory synapses after treatment with 

depolarisation induced by high K, and to a lesser extent following NMDA treatment. The 

authors suggested that rapid turnover of synaptic spinules represents an aspect of membrane 

retrieval during synaptic activity. Earlier studies had also suggested that spinules were 

involved in remodelling the postsynaptic membrane, as indicated by their transient increase 
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shortly after LTP induction (Applegate and Landfield, 1988; Schuster et al., 1990; 

Geinisman et al., 1993; Toni et al., 1999), though here they were present 24h after initial 

tetanisation. The function of the spinules is unclear, but may be related to growth and 

remodelling of synaptic membranes or an increased motility of spines (Matus, 2000). Spacek 

and Harris (2004) considered several possibilities for the role of spinules. Most relevant to 

the present study is the possibility that trans-endocytosis of spinules removes excess pre- 

and postsynaptic membrane after activation resulting in transient or segmented synapses on 

mushroom spines. Spinules could also serve to affect the electro-morphological geometry of 

the pre- and postsynaptic elements to strategically affect their electrical coupling and 

performance. Nevertheless the clear evidence from stimulation in the present study – 

whether LTP or LTD inducing, suggests that remodelling of the postsynaptic membrane 

occurs with long-term plasticity, which is supported by the fact that CPP completely blocks 

the increases in spinules. 

 

Changes induced by CPP The present data highlight for the first time the long-term effect of 

a single i.p. injection of an NMDA antagonist CPP, on synapse and spine ultrastructure in 

the hippocampus. Indeed, CPP not only blocked most of the LTP and LTD related changes, 

but also whether acting in combination with tetanisation, or alone, induced other changes. 

These are an overall decrease in spine volume for mushroom but not thin types, as well as a 

decrease in the volume of presynaptic boutons contacting mushroom spines, and a decrease 

in the volume of PSD on mushroom spines.  The latter result suggests that the NMDA 

antagonist alone possibly induces some receptor removal since it can induce this effect even 

without any tetanisation. Increases in the size of the spine head or PSD have been suggested 

to be due to the intensive processes correlated with AMPA receptor insertion and receptor 

recycling (Ganeshina et al. 2004a, 2004b; Nicholson et al. 2004, 2006). However, the 

absence of such changes here and the fact that CPP actually caused a decrease in PSD 

volume suggests that any process of receptor insertion either has not occurred or occurs 

outside the timeframe of the experiments in our study, or indeed, as with the change in spine 

volume, reflects the fact that CPP actually removes receptors. It seems reasonable to suggest 

that changes associated with CPP are not necessarily restricted to the dentate gyrus and that 

they may be the basis for the durable behavioural effects that NMDA antagonists have been 

reported to produce when injected acutely (Manahan-Vaughan et al., 2008). 
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In summary, our data show that there are a number of clear similarities, but also some 

distinct differences, between the effects of LTP and LTD on spine and synaptic morphology 

in vivo in awake animals. Furthermore, when CPP blocks LTP and LTD, it impairs most, of 

the ultrastructural changes. We suggest that these changes in synapse and spine structure are 

therefore a morphological correlate, a de facto memory, of neurophysiological activity 

linked to LTP and LTD. How these modifications compare with those induced in natural 

conditions during memory formation is a question to be addressed in further studies. 
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TABLE 1. Summary of the major morphological changes in synapses and dendritic spines in the 

middle molecular of the dentate gyrus 24h after induction of LTP or LTD in awake adult rats, in 

comparison to untetanised but implanted controls. Synapse density and spine proportions were 

determined from hippocampal tissue volumes of each animal of between 500-800 m3. All analyses 

of spinules numbers and spine volumes were made from 3 -D reconstructions of ultrathin serial 

sections viewed in an electron microscope from 25 of each spine type, and from 25 boutons on 

mushroom spines, from each of 3 animals per treatment groups. The effect of blockade of LTP and 

LTD by CPP is also reported. Effects recorded as increased or decreased are significant at p<0.05. 

  

STRUCTURAL 
PARAMETER 

LTP CPP (effect on 
change in LTP) 

LTD CPP (effect on 
change in LTD) 

CPP alone 
 
 

Synapse 
Density 

No change No change No change No change No change 

Spine Number:          
   (i) Mushroom Increase  Blocked No change No change No change 
   (ii) Thin No change No change Increase Blocked No change 
   (i) Stubby Decrease  Blocked Decrease Blocked No change 
           
Spine volume:           
   (i) Mushroom No change  Decrease No change No change Decrease 
   (ii) Thin No change No change            No change No change            No change 
                   
PSD volume           
   (i) Mushroom No change  No change No change No change Decrease 
   (ii) Thin No change No change No change No change No change 
                         
Spinule number          
  (i) Mushroom Increase  Blocked Increase Blocked No change 

  (ii) Thin Increase Blocked Increase Blocked No change 
           
Bouton volume 
(mushroom 
spine)  

No change Decreased Decreased Decreased Decreased 
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 Figure legends 

 

 Fig. 1A.   Categories of dendritic spines and synapses. (A) 3-D reconstruction of a short 

segment of dendrite with three spine categories distinguished (mushroom, thin, and stubby), 

and another category – synapses directly on the shaft, shaft synapses. This reconstruction 

was taken from over 100 serial ultrathin sections, 8 of which are shown in electron 

micrographs in B (a-h) with individual elements of types of spines and synapses labelled –

mushroom spine (a and b); thin spine(c and d); stubby spine (e and f) and shaft synapses (g 

and h). Abbreviations: (PSD - post synaptic density, sp - spine, den – dendrite; MVB- 

mutlivesicular body.  A schematic of the spine categories is shown in C and can be 

compared with the reconstructions in A. These categories, as we discuss in the text, most 

likely represent a continuum where stubby spines become thin and then become thick 

(mushroom) following neural activation, and vice versa when activity/down-regulation 

occurs. The categories we show are: thin - where the height is usually several times in 

excess of the width; stubby- where the spine protrudes only slightly from the dendritic shaft; 

mushroom- where the spine head is large and considerably in excess of the spine neck 

diameter, shaft synapses are a fourth category where the synapse contacts directly the 

dendritic shaft (A and C). Scale bar = 1 m3 (A); 1 m (B)  

 

 

 Fig.2. Long-term potentiation (LTP) and long-term depression (LTD) in the middle 

molecular layer of the dentate gyrus induced by high-frequency stimulation (HFS, 

arrowhead) of the medial (LTP) or lateral (LTD) perforant paths and blockade by a single 

i.p. injection of CPP (10 mg/kg, arrow) 3 hours before the tetanization. A minimum of 3 

animals were used in each of the groups 

A, group mean (± SEM) percent change in two parameters (EPSP slope and spike 

amplitude) measured on the field potentials during the tests taken before and after HFS on 

the medial perforant path. Inset (top), examples of field potentials recorded during baseline 

and 24h after HFS in animals from LTP (left) and CPP groups (right); scale = 2mV, 2msec. 

B, averaged change in EPSP slope 30 min and 24h after HFS. As expected, significant 

potentiation was observed at both time points only for the LTP group. *, P<0.05. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 26

C, group mean (± SEM) percent change in two parameters (EPSP slope and spike amplitude) 

measured on the field potentials during the tests taken before and after HFS on the lateral 

perforant path. Inset (top), examples of field potentials recorded during baseline and 24h 

after HFS in animals from LTD (left) and CPP groups (right); scale = 2mV, 2msec. 

D, averaged change in EPSP slope 30 min and 24h after HFS. As expected, significant 

depression was observed at both time points only for the LTD group. *, P<0.05 

 

 Fig. 3 (A,B) Spinules on mushroom and thin spines.  Two electron micrographs (from a 

series of 100) containing identified synapses and spines. Reconstructions of 100 serial 

sections of the synapse shown in (A) and (B), and presented in (C). This synaptic contact is 

on a mushroom spine and 2 spinules from the spine arise as discontinuities in the PSD on the 

spine head and evaginate into the pre-synaptic bouton. (D, E) 2 serial electron micrographs 

through a thin spine from which 2 spinules project into an axon, as shown in the 3-D 

reconstruction in (F). Spinules from thin spine heads are less frequent than on mushroom 

spines (see below); abbreviations: sp- spine, PSD postsynaptic density.  

 

 Fig. 4.A   Proportions of each of the categories of synapse on spines after LTP, LTD or CPP 

treatment.  The percentages of each spine type were determined from tissue volumes of up to 

800 m3 in each of 3 animals, in each of the 6 conditions. There is a significant increase in 

the proportion of mushroom spines (* p<0.05), and a decrease in stubby spines  (# p<0.005) 

in the LTP group, while LTD causes an increase in thin spines (** p<0.02), and a decrease 

in stubby spines (# p<0.03). Both effects are prevented when CPP treatment precedes LTP 

or LTD induction.  

B. The mean number of spinules per spine increases significantly on mushroom spines in the 

middle molecular layer from 0.2 per spine in control, to 1.4 after induction of LTP 

(*p<0.001), and 0.98 after induction of LTD (* p<0.001). In thin spines the number of 

spinules is smaller per spine (control -0.05) but the increase following LTP or LTD is of 

similar proportions to mushroom spines (# p<0.001). The increases after LTP and LTD were 

completely blocked by the NMDA antagonist CPP; while CPP alone had no effect on the 

proportions of the different classes of spines. Data on bars represent standard errors. 
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 Fig. 5. (A-D) Volume of mushroom and thin spines and volume of PSDs.  A minimum of 

25 thin mushroom spines, were reconstructed in 3-D per series for each of 3 animals, in each 

of the 6 conditions to determine volumes.  

(A, B) The mean volume of mushroom and thin spines did not change significantly after 

LTP, but there was a significant reduction in mushroom spine volume when induction of 

LTP was preceded with CPP treatment (*p<0.04), as there was when rats (n=3 per group) 

were treated with CPP alone (**p<0.01).  

(C) The volume of the PSDs of mushroom spines was unaffected by LTP but decreased 

significantly (* p<0.002) in CPP treated rats. When CPP treatment preceded LTP or LTD 

treatment there was no significant change in PSD  

(D). The volume of the PSDs of thin spines was not significantly affected by either LTP, 

LTD or CPP treatment. Contr: Control 

  

 Fig. 6A (Left): an example of a reconstructed presynaptic bouton contacting 2 mushroom 

spines (sp). Spinules protrude from each spine through the PSD  (post synaptic density); 

Figure 6 A (Right) shows the presynaptic bouton alone with spines and PSD removed. 

Bouton volume was calculated from the area measurements of the 2-D sections which were 

used for the 3D reconstruction, scale bar = 1 m. Figure 6B: data for volume changes of 

presynaptic boutons, a minimum of 25 boutons on mushroom spines were reconstructed in 

3-D per series from each of 3 animals, in each of the 6 conditions.  The volume of 

presynaptic boutons was unaffected by LTP but decreases significantly from ~0.6 m3 in the 

control group to ~0.34 m3 in the CPP group and was similarly reduced in the LTD group.  

CPP alone also decreased bouton volume. *values of p between both control and LTP, and 

the other groups (contr +CPP, LTP+CPP, LTD and LTD+CPP)   are <0.05; Contr: Control. 
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