
Open Research Online
The Open University’s repository of research publications
and other research outputs

Evaluating the relation between changeability decay
and the characteristics of clones and methods
Conference or Workshop Item
How to cite:

Lozano Rodriguez, Angela; Wermelinger, Michel and Nuseibeh, Bashar (2008). Evaluating the relation between
changeability decay and the characteristics of clones and methods. In: 4th International ERCIM Workshop on Software
Evolution and Evolvability, 15-16 Sep 2008, L’Aquila, Italy, IEEE, pp. 100–109.

For guidance on citations see FAQs.

c© 2008 IEEE

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1109/ASEW.2008.4686327

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82911408?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1109/ASEW.2008.4686327
http://oro.open.ac.uk/policies.html

Evaluating the relation between changeability decay and the characteristics of
clones and methods

Angela Lozano, Michel Wermelinger, Bashar Nuseibeh
Computing Department and Centre for Research in Computing

The Open University, UK

Abstract

In this paper we propose a methodology to evaluate
if there is a relation between two code characteristics.
The methodology is based on relative risk, an
epidemiology formula used to analyze the effect of
toxic agents in developing diseases. We present a
metaphor in which the disease is changeability decay,
measured at method level, and the toxic agent is a
source code characteristic considered harmful.
However, the formula assesses the strength of the
relation between any toxic agent and any disease.

We apply the methodology to explore cloning as a
toxic agent that increases the risk of changeability
decay. Cloning is a good agent to analyze given that
although there is some evidence of maintainability
issues caused by clones, we do not know which clones
are harmful, or to what extent. We compare cloning
with other possible 'toxic agents', like having high
complexity or having high fan-in. We also use the
technique to evaluate which clone characteristics (like
clone size) may indicate harmful clones, by testing
such characteristics as toxic agents. We found that
cloning is one of the method characteristics that affects
the least changeability decay, and that none of the
clone characteristics analyzed are related with
changeability decay.

1. Introduction

We present a metaphor to analyze the effect of
source code characteristics, where the effect of a
source code characteristic is equivalent to a disease,
and the source code characteristic is the toxic agent
that promotes the appearance of the disease. The goal
is to analyze the strength of the relation between
source code characteristics that are considered as bad
implementation practices, and changeability decay (i.e.
difficulty to change). However, the metaphor is also
used to explore if there is any relation between source
code characteristics (like being cloned and being a

large or complex method), as well as to explore which
clone characteristics are related with changeability
decay. We propose cloning as a first characteristic to
explore, given that empirical results have not been
conclusive about its harmfulness.

Source code clones are the result of ‘copy-paste’
programming [1]. A clone is a source code fragment
that is (nearly) identical to another fragment of code
[2]. These similar fragments form a clone family (also
called clone class [2]).

The effects of cloning are not yet fully known.
Clones are believed to be harmful for several reasons
[3]: clones need consistent changes, clones increase the
source code size and creates hidden relations among
fragments of source code, clones may indicate lack of
abstraction, and finally clones may produce bugs when
there are inconsistent changes or when there is
inconsistent renaming of variables in the clone.
However, some researchers have argued that there are
circumstances in which clones do not have a harmful
effect [1, 4]. In fact, we have shown, in a previous
paper, that not all clones are harmful [5]. However, we
do not know yet to what extent clones are harmful, or
how to distinguish harmful from harmless clones.

Cloning is considered harmful, among other
reasons, because of the need of changing all clones of
a family in the same way, whenever any of them
requires a change [3]. Such collective changes are
called consistent changes [6], and inconsistent changes
are believed to introduce bugs. There have been
several attempts to measure the amount of consistent
changes [6-9]. However, knowing that just 50% of the
changes of cloned code are consistently replicated to
the clone family [9] does not allow us to see to what
extent clones are harmful. There can be other factors
affecting the interpretation of this fact: for instance, if
cloned methods change less than not cloned methods,
then consistent changes may become less relevant.
Although there is evidence that inconsistent changes
introduce bugs [8], the study did not analyze all

inconsistent changes, so there is no indication of the
rate of bugs due to inconsistent changes. Another
example of the relation between clones and bugs, are
the bugs generated whenever the pre/post conditions of
the cloned fragments are not valid where the clone is
pasted [10], but again that study fails to show to what
extent cloning can be linked to bugs.

Nevertheless, none of these results help us, on one
hand, to assess to what extent cloning is more harmful
than other source code characteristics, e.g. overly high
cyclomatic complexity, and on the other hand to
identify characteristics that are related to the impact of
the clone. Tackling these two issues will help us
understanding the consequences of being cloned, and
automatically point out among a large code base which
clones are potentially harmful. Comparing cloning
with other source code issues is also important because
to be able to prioritize maintenance it is necessary to
know which source code issues are the most harmful.

To measure the impact of cloning and other source
code issues, we have chosen changeability decay,
because changeability is a key factor of
maintainability, the longest and most expensive phase
in the software cycle, and therefore it increases the
efforts for keeping the application in use.
Changeability comprises the attributes of software that
affect the effort needed for modifications, and
changeability decay occurs when software
characteristics hinder change. Changeability decay has
been also defined as the increase of effort to implement
and propagate a change [11]. Clones can affect
changeability by increasing the propagation effort
(consistent changes), and the number of changes (bug
fixes).

In this paper, we propose a methodology to explore
the existence of relations between source code
characteristics, and the strength of such relations. We
believe that correlation and regression may not show
relations that are affected by many other factors. For
instance, the attempt to correlate co-change and
cloning at file level with different types of regression
was unsuccessful [12]. Our method aims to be a
lightweight approach to indicate relations, not
causality.

The rest of the paper is organized as follows:
section 2 describes the methodology proposed, section
3 explains the measurements we took and the relations
we analyzed in order to understand better the effects of
cloning, section 4 briefly describes the data gathering
process, section 5 describes the results and the threats
to validity, section 6 points to related work, and
section 7 presents some concluding remarks.

2. Methodology

We propose to use a metric used in epidemiological
cohort studies to assess whether a toxic agent would
increase the risk that a person develops a disease [13],
for instance to check if smoking increases the chances
of developing lung cancer or not. The metric indicates
how many times it is more likely to develop the disease
if a person is exposed to the toxic agent. The metric is
called relative risk (RR), and is defined as:

)(

)(

dcd

baa
Disease ToxicAgent

RR
+

+
=

where a is the number of people that are sick and were
exposed to the toxic agent, b is the number of people
that are not sick but were exposed to the toxic agent, c
is the number of people that are not sick and were not
exposed to the toxic agent, and d is the number of
people that are sick and were not exposed to the toxic
agent. Having a relative risk higher than 1 means that
the toxic agent increases the risk of developing the
disease, while a relative risk lower than 1 means that
the toxic agent decreases the risk of developing the
disease. To avoid false positives, it is recommended to
consider only relative risks higher than 2, and lower
than 0.5 [14]. A relative risk higher than 3 indicates a
strong association.

We chose relative risk because it is useful in cases
where there is no control on the exposure to other toxic
agents. That means that the formula indicates that there
is a relation between the toxic agent and the
development of the disease but also that there could be
other toxic agents of greater risk to develop the
disease. Given that cloning has been claimed to be
harmful for maintenance, cloning could be considered
as the toxic agent that increases the risk of developing
changeability decay, which could be considered as a
disease because it restricts the chances of the software
system to ‘survive’.

We propose to use relative risk to explore the
strength of the relation between two characteristics: the
agent (A) and the disease (D). Although relative risk is
used for boolean characteristics (either the disease is
manifest or not, and there has been exposure to the
agent or not), we have adapted it to characteristics with
numerical metrics by transforming the numerical
metric into a boolean condition: to have or not a high
(or low) value for that metric. We first define an agent
to be high if its value is over the 75 percentile of the
values of that agent in the application, and the agent is
said to be low if its value is below the 25 percentile.
Then we define a disease to be manifest if its value is

over the 75 percentile of the values of that
characteristic in the application. Next, we compute the
relative risk for four cases: RRHA_D, RRHA_!D, RRLA_D,
RRLA_!D, where HA means high value in characteristic
A, LA means low value in characteristic A, D means
the disease occurs, and !D means it does not. One can
then check that characteristic A is related to
characteristic D if:

Case 0: one characteristic grows when the other
one shrinks, and vice versa i.e., RRHA_D and
RRLA_!D are lower than one, and RRHA_!D and
RRLA_D are greater than one.
Case 1: both characteristics grow or shrink i.e.,
RRHA_D and RRLA_!D are greater than one, and
RRHA_!D and RRLA_D are lower than one.

For instance, suppose that characteristic A is activity of
white globules, and characteristic D is temperature. We
would like to know if having fever (high temperature)
is a good indicator of having an infection (high globule
activity). Consider the following data set for 230 cases,
of which 54 have fever, 59 have the top 25% white
globule activity, and 63 have the bottom 25%:

 LA HA
D 4 17 33

!D 59 91 26

 ! LA

 !HA

With the above data, we have:
RRHA_D = (HA_D/ HA) / (!HA_D / !HA)

= (33 / 59) / (21 / 171) = 4.5
RRLA_!D = (LA_!D / LA) / (!LA_!D / !LA)

= (59 / 63) / (117 / 167) = 1.3
RRLA_D = (LA_D / HA) / (!LA_D / !HA)

= (26 / 59) / (150 / 171) = 0.5
RRHA_!D = (HA_!D/ LA) / (!HA_!D / !LA)

= (4 / 63) / (50 / 167) = 0.2

Given that RRHA_D is greater than one, it means that
when the temperature is high the risk of having high
white globule activity is greater than when the
temperature is not high; in fact, the risk of having high
white globule activity is four times greater. Similarly,
due to RRLA_!D being greater than one, whenever the
temperature is low the likelihood of having low white
globule activity is more than twice, than when the
temperature is not low. RRHA_!D and RRLA_D are lower
than one, indicating that when the temperature is high
it is unlikely that the activity of the white globules is

low, and that when the temperature is low it is unlikely
to observe high activity of white globules. Therefore,
having this example corresponds to the case 1
explained above, and we can say that the temperature
is a good indicator of the white globule activity,
because the temperature value follows the white
globule activity.

Notice that it is necessary to check all the four
possibilities of relative risk in order to claim that one
characteristic is related to the other one. If the data set
does not allow concluding either case 1 (direct
relation) or case 0 (inverse relation), it means that
characteristic A (agent) cannot predict characteristic D
(disease).

Notice also that the value of relative risk gives an
estimate of how much the risk of having the
characteristic D increases. In order to keep this
characteristic of relative risk, we propose to average
the relative risks that are greater than one, only if case
0 or case 1 occurs. For example the relative value of
the example shown previously would be 2.95
([4.5+1.3]/2)

For our study on cloning and maintainability, the
agent will be some characteristic of the methods or the
clones within the methods, and the disease will be
some characteristic that captures changeability decay.
We will also relate the boolean characteristic of being
cloned or not (A) with characteristics of the method
(D). In the following section we explain in detail the
chosen characteristics, how they were measured, and
the rationale to explore such relations.

3. Experiment

In previous work [5] we found that methods cloned
have different changeability decay measurements than
methods not cloned, and that there are cloned methods
that present a severe decay. However it is not clear
whether removing clones should be a priority in
maintenance, why having clones at method level may
decrease the method’s changeability, nor how to
distinguish harmful clones from harmless ones.
Therefore, this experiment aims to address three
research questions.

(1) To what extent is cloning harmful compared
to other source code characteristics also
perceived as harmful?

(2) Are clones related with large or complex
methods?

(3) What clone characteristics are related with
changeability decay?

These relations are analyzed with the relative risk
formula in order to assess if a characteristic is strongly

related to another characteristic. To address questions
(1) and (2) we need method characteristics, explained
in subsection 3.1. To address question (3) we need
clone characteristics, explained in subsection 3.2.
Questions (1) and (3) also require changeability decay
to be characterized, as explained in subsection 3.3.

3.1. Method characteristics

For question (1) we compare the effect of a method
being cloned, complex, large, and instable on the
changeability decay measurements. For question (2)
we check if being cloned is related to the size or
complexity of a method.

The methods are characterized using metrics. A
snapshot in the history of the application permits to
extract the metrics of the methods that are part of the
code base in that commit. However, a single snapshot
is not enough to get metrics for all methods.
Therefore, several snapshots are needed in order to
cover all methods at least once. For our case studies, 3
to 4 snapshots were enough to cover all methods.
Whenever a method had several values for a single
characteristic these were averaged.

3.1.1. Being cloned. This is a boolean characteristic
to say if the method has had a cloned fragment at any
point in its lifetime or not.

3.1.2. Size. This characteristic is measured in lines
of code (LOC).

3.1.3. Complexity. This characteristic is measured
in two ways: using cyclomatic complexity which is the
number of branches in the method; and counting the
largest depth of block in the method (block depth).

3.1.4. Instability. The measurement of instability is
defined as the fan-out divided by the sum of the fan-in
and the fan-out of the method, i.e. an extrapolation of
the instability measurement proposed by Robert Martin
[15]. The fan-out could indicate if the method is too
sensitive to changes in other methods or not, given that
if depends on too many methods any change on them
could affect it. The fan-in could indicate to what extent
changing the protocol of a method affects the rest of
the application.

3.2. Characteristics of clones

We want to know if the duration and size of clones, the
number of hidden relations due to clones, or the
distance between clones of the same clone family can
be related to the effect of clones on changeability
decay. However, since decay will be measured for
methods (see next subsection), the clone characteristics
will be also measured on the methods that contain

clones, and, except for the duration metric, averaged
over all commit transactions during which the method
had clones.

3.2.1. Percentage of lifetime cloned. We analyze
this characteristic to validate the intuitive argument
that the longer a method is cloned, the worse is its
changeability decay, because it has to maintain the
hidden clone relations for longer. The characteristic is
calculated as the percentage of commits in which the
method had a clone over the number of commits in
which the method was part of the code-base of the
application.

3.2.2. Clone size. This characteristic helps to check
to what extent it is true that cloning decreases
changeability due to the loss of understandability that
code bloating generates. This characteristic is defined
as the average number of tokens of the largest clone
inside a method, while the method was cloned.

3.2.3. Number of methods cloned with. We take
into account this characteristic because given that
clones require consistent changes, a higher number of
cloning relations may decrease changeability. This
characteristic is defined as the average number of
methods with which the method shares a clone during
the time while the method has a clone.

3.2.4. Distance to clones. This characteristic helps
to assess to what extent the difficulty of finding the
hidden relations due to cloning increases the number of
changes required until all clones in a family are
consistent again, and thereby increases changeability
decay. We take the average number of directories for
all clone families to which the method belongs. For
instance, if the method belongs to two clone families
of 2 clones each, and the other member of the first
family is in the same file (distance = 0), and the other
member of the second family is in the same directory
but in a different file (distance = 1), then the method’s
distance to the other methods it is cloned with is 0.5.

3.3. Changeability decay measurements

The changeability decay measurements are used to
address questions 1 and 3, where changeability decay
is a disease that might be related to several source code
characteristics as well as to several clone
characteristics. Knowing which source code
characteristics have more impact in changeability
could help to prioritize maintenance tasks, while
identifying which clone characteristics are linked to
changeability decay could help to locate harmful
clones.

Changeability decay is the increase of effort
required to implement changes to the system. Ideally
changes should be limited in quantity and in scope.
The measurements presented aim to cover from
different viewpoints these two aspects. To measure the
quantity, we use amount of changes required (number)
and periodicity of the changes (frequency). To assess
the scope of changes, we define ripple effect
(impact), modularity of the changes (span), and
extension of the changes (depth). A higher measure
indicates that either the method changed more or the
propagation of its changes is more complex, hence the
higher the measure the higher the decay.

period in the commits of No.
number

alive methods of No.
 with modified methods of No. m

.Avg

It may seem pointless to have similar measurements
for the same aspect, like frequency and number of
changes. However, we have shown in previous
analyses [16] that, although the number of changes
seem to increase with clones, the likelihood (number of
changes to a method divided by the number of
changes) is not strongly affected by clones [5]. This
happens because likelihood is a ratio measurement,
and when a method is cloned both numerator and
denominator increase. Therefore, although likelihood
indicates that cloning has little effect on changeability,
when looking at the number of changes one can
confirm that such indication can be misleading.

For each method, the measurements are calculated
for up to three periods: the lifetime of the method,
when the method has clones, and when the method
does not have clones. If a method never had clones,
then the not cloned period coincides with its lifetime
period, while its cloned period is empty. If a method
always had a clone, its cloned period coincides with its
lifetime period, while its not cloned period is empty.
The measurements for the whole lifetime are used
when addressing question (1), which requires
comparison with method characteristics that are
independent of cloning. The measurements for the
period when cloned are used to address question (2),
which is explicitly about cloning. Finally, the
difference of the measurements between the cloned
and not cloned periods are used to address question
(3), to see whether changeability decay is different in
the presence of cloning.

Table 1 summarizes the set of changeability
measurements for a method m in a period, where a
period is a set of commit transactions.

Table 1. Changeability decay measurements
Number= No. of commits in which m changed during

the period

Frequency=

Impact=

Span= Avg.. of packages modified

Depth= Avg. (weight * distance)
weight: No. changed methods in m’s class

/ No. of methods changed
distance: No. of packages away from m’s

class to the closest package ancestor of the
set of classes changed

In order to illustrate the changeability decay
measurements, calculated on some method getValue
during some period P, imagine the following situation.
The application is composed of 100 methods
throughout P. The period P is composed of 10
commits, which changed 2, 4, 3, 5, 2, 3, 1, 6, 2, 3
methods respectively. The method getValue was
modified in the third and seventh commits. The first,
third, seventh and ninth commit modified methods in
classes a.b.c.d.Class1 and a.b.c.e.Class2.
Suppose that in the third commit changed one method
(getValue) of the class a.b.c.d.Class1, and two
methods of the class a.b.c.e.Class2.

3.3.1. Number. This measurement represents the
number of changes the method requires. The number
of changes of getValue is 2.

3.3.2. Frequency. This measurement shows how
often the method requires changes. The frequency of
changing getValue is 0.2, because it changed in two
of the 10 commits that form the period.

3.3.3. Impact. This measurement represents the
ripple effect or the average quantity of methods that
require changes whenever the method changes. In the
example, getValue was modified twice during the
period: the third commit affected 3/100 = 3% of the
application’s methods, and the seventh commit
affected 1% of the methods. The impact of getValue
is hence (0.03 + 0.01) / 2 = 2%. This metric is a
modification of the one presented in [17], and we
provide more details in [5].

3.3.4. Span. This measurement expresses to what
extent the changes are confined within a module or
not. The span of the changes that affected getValue is
2 given that both the third and seventh commits
affected two packages (a.b.c.d and a.b.c.e).

3.3.5. Depth. The depth measures the dispersion of
the changes across different packages. If the distance
between the methods changed is high, finding all the
methods that the change requires may take longer.
However if most of the methods changed are in a
single class (weight) the distance should not affect
significantly the effort of performing the change.

The distance can be computed as the number of
tokens that are not included in the common prefix of
the set of classes modified. The distance of the class
a.b.c.d.Class1 to the rest of the classes modified is
2 because the classes only share the prefix “a.b.c”
but “d” and “Class1” are not in the shared package
prefix. The weight of the class a.b.c.d.Class1, i.e.
its share in the overall changes, is 1/3 because just one
of the three methods changed in the commit belonged
to that class. Therefore, the depth of the third commit
is 6/3 = 2*1/3 + 2*2/3. The depth for getValue would
be the average of the depths of the third and seventh
commits.

4. Experiment set-up

We have already detailed our data collection
approach in previous papers [5, 18]. This section only
provides a brief summary.

The measurements presented in the previous
sections are computed over a database that stores for
each commit transaction the methods that were part of
the application after each commit, and if they were
modified or cloned by that commit transaction.

To populate the database, we wrote a tool to mine
CVS repositories. In CVS there is no concept of
atomic transactions and hence they have to be
reconstructed from other information in the repository:
to identify the commit transactions we use temporal
proximity, same author and same commit message.

Given that the methods are moved across classes
and packages, renamed, and change their parameters,
we clean the data by performing origin analysis, i.e. by
checking if a method identified as new is in fact a
renamed/moved version of a previously existing
method.

The cloning information is obtained by applying an
automatic clone detection tool, CCFinder, after each
commit transaction. CCFinder finds clones by string
matching, and clones have to be at least 30 consecutive
tokens long. CCFinder reports the pairs of token
sequences cloned. Our tool translates this information
into pairs of methods that shared a clone.

Table 2 presents the open source projects analyzed.
GanttProject is a scheduling application with facilities
for resource management. JEdit is a text editor that can

be configured as an IDE through its plug-in
architecture. FreeCol is game in which players have to
conquer and colonize new worlds.

Table 2. Case studies

Pr
oj

ec
t

K
L

O
C

co
m

m
its

St
ar

t
m

on
th

-
en

d
m

on
th

m
et

ho
ds

m
et

ho
ds

cl

on
ed

m

et
ho

ds

cl
on

ed

so
m

et
im

es

ganttProj. 44 2701 May 03-
Dec 06 11805 136 80

jEdit 92 1381 Sep 01-
Jul 06 7392 346 159

freecol 54 1087 Apr 04-
Mar 07 3901 310 159

5. Results

Regarding the questions analyzed with the
proposed methodology, we found that:
1. There are several source code characteristics

that increase the quantity of changes, like being:
cloned, large, complex or instable. However,
these characteristics also reduce the scope of
changes, which means that these characteristics
produce more isolated modifications. Besides,
we could also find that there are source code
characteristics that have a higher impact on
changeability decay than cloning, e.g. the
length, fan-out and complexity of the method.

2. No relation was found between being cloned
and the size or the complexity of the method.

3. From the cloning characteristics analyzed, the
only one related with changeability decay is the
percentage of the method’s lifetime that was
cloned.

The rest of the section presents these results in
detail.

Tables 3 and 5 present the relations between the
method and clone characteristics (rows) and the
changeability decay characteristics (columns). If the
row measurement is directly related to the column
measurement (i.e. case 1), the corresponding cell has
the number 1. If the row measurement is inversely
related to the column measurement (i.e. case 0) the cell
shows the number 0. If there is no conclusive relation
between the row and column measurement, the
corresponding cell has a minus character. Each cell has
one number or minus sign per case study, always in the
same order: first freecol (f), then jedit (j), and finally
ganttProject (g). Whenever the characteristics behave
in the same way for all case studies, the cell is

shadowed: it is light when there is a direct relation and
dark when there is an inverse relation.

Tables 4 and 6 present the average relative risk
among the 3 case studies for the characteristics that
were found to be good predictors. The values help to
assess which characteristics predict better which
maintainability behaviors. Those relative risk values
that should be considered (i.e. are greater than 2) are
emphasized in bold.

5.1. Relation between method’s characteristics
and changeability decay

As Table 3 shows in the light gray columns,
quantity measurements (number, frequency) follow
most of the characteristics (except instability and fan-
in). However, another scope measurement (impact)
shrinks when the characteristics grow, as the column in
dark gray shows. This would mean that cloned, large,
complex, or instable methods tend to increase the need
of changing the method. But, such changes are
performed in isolation.

Fan in is directly related with impact (scope) and
number (quantity). That would mean that having a
high fan-in would increase the changeability decay,
which is counter intuitive given that a high fan-in
shows reuse. Nevertheless, table 4 shows that the
relation of fan-in with impact and number of changes
is rather accidental, given that its relative risk is very
close to 1. Therefore, although a high fan-in does not
increase the changeability measurements, it does not
decrease them either.

Table 3. Relation between method’s

characteristics and changeability
measurements (question 1)

Nm. Frq. Imp. Sp. Dep.
f j g f j g f j g f j g f j g

Being cloned 111 111 000 011 011
LOC 111 111 000 0-1 111
Cyc. complex. 111 111 000 0-0 -11
Block depth 111 111 000 011 001
Instability 11- 111 000 110 110
Fan-in 111 00- 111 00- 00-
Fan-out 111 111 000 011 111

According to the values in table 4, the

characteristics that affect changeability, from the most
related to the least related, are the lines of code, the
fan-out, the block depth, the cyclomatic complexity
and being cloned.

The number of lines of code (LOC) increases with
the quantity of changes. Notice that LOC is the only

characteristic inversely related to the impact (2.0): that
means that the longer a method is, the more likely it is
to be changed in isolation.

A high fan-out, block depth, or cyclomatic
complexity increases the chance of having high
quantity of changes. However, contrary to expected,
the relation with quantity measurements is stronger for
the lines of code (LOC) and the fan-out, than for
cyclomatic complexity.

Being cloned is directly related to the quantity of
changes. Being cloned is in third place on the
characteristics directly related to the number of
changes (2.36). That means that although being cloned
increases the chance of having a higher number of
changes, that chance is higher when the method has
high fan-out or when it is large.

The instability does not seem to have any relation
with the changeability measurements.

Table 4. Relative Risk average for each
method characteristic on changeability

measurements
 Nm. Frq. Imp. Sp. Dep.
Being cloned 2.3 1.7 1.3
LOC 2.5 2.9 2.0 1.2
C. complex. 2.1 2.2 1.6
Block depth 2.0 2.0 1.8
Instability 1.6 1.6
Fan-in 1.1 1.1
Fan-out 2.5 2.8 1.7 1.2

Summarizing, methods that are large, complex or

in charge of many responsibilities are more likely to
cause more changes to the application. Although being
cloned increases the number of changes, the length,
fan-out and complexity of the method influence more
the quantity of changes.

5.2. Relation between cloning and method’s
size and complexity

For none of the case studies the relative risks of
being cloned versus the size and complexity of the
method complied with cases 0 or 1. Therefore, being
cloned is not related with the size or the complexity of
a method. Given that there is no point in showing a
table full of ‘-’ characters, there is no table to present
these results.

5.3. Relation between cloning characteristics
and changeability decay

The analysis of cloning characteristics intends to
explore alternative ways to identify harmful clones.
The results are shown in tables 5 and 6. The upper part
of these tables show relative risks between the clone
characteristics of the methods sometimes cloned, and
the increase on changeability decay measurements
when cloned (i.e. the difference of the measurements
when cloned and when not cloned). The lower part of
these tables show the relative risks between the clone
characteristics of the methods that were cloned at least
during one commit, and the changeability decay
measurements in the period when they were cloned.

Table 5. Relation between cloning

characteristics
Nm. Frq. Imp. Sp. Dep.
f j g f j g f j g f j g f j g

Lifetime cloned 111 000 001 0-1 111
Cloned with -11 00- 10- 00- -11
Clone size --1 110 -1- 1-1 ---
Distance 101 0-0 0-1 0-1 111

Lifetime cloned 110 000 001 10- 1--
Cloned with 011 000 100 000 00-
Clone size 011 -0- -01 --- 11-
Distance -0- --0 000 111 1-1

Table 6. Relative Risk average for cloning
characteristics in changeability

measurements
 Nm. Frq. Imp. Sp. Dep.
Lifetime
cloned 2.2 3.9 1.5
Distance 1.2

Lifetime
cloned 2.9
Cloned with 1.4 1.2
Distance 1.4 1.6

The upper part of each table shows that there is a

direct relation between the lifetime and the number of
changes which is rather obvious: the longer a method
is cloned, the higher is the chance of having an
increased number of changes when cloned.

The results regarding frequency are more
interesting. It seems that the longer a method is cloned,
the smaller is its frequency of change compared with
the period not cloned. That is coherent with previous

results [16] that indicate that the number of changes
can be misleading.

The lower part of each table confirms that the
longer a method is cloned the lower it is its frequency
of change.

Summarizing, from the cloning characteristics
analyzed, the only one that is related with
changeability measurements is the percentage of the
method’s lifetime that was cloned. However, this result
cannot be used to distinguish potentially harmful from
harmless clones a priori, i.e. when they are introduced
in the application.

5.4. Identification of clones harmful to
changeability

Given the previous result, we decided to mix
method characteristics and cloning characteristics in
order to explore ways to detect harmful cloning
situations. We chose the method characteristics that
had the strongest direct or inverse relation to
changeability measurements (complexity, LOC, fan-
out), and combined them with the cloning
characteristics that can be calculated a priori (cloned
with, clone size, distance). Only the combination of
distance and fan-out led to the same type of relation
(namely case 1) in the three case studies. However, the
relative risk was 1.44, and could hence be a false
positive. Again, there is no table to present these
relative risks given the lack of results.

6. Threats to validity

One threat of the methodology is the choice of
thresholds. Even if the sample has only large values or
only low values, there will be always low and high
percentiles. Therefore, threshold values could differ
across case studies. However, this problem is
addressed by taking into account only those results in
which all case studies showed the same behavior. If the
behavior of the case studies differs it is possible to
choose the same thresholds for all case studies to
reflect large and small values for a characteristic, this
analysis will be covered in future work.

Another issue is that the structural metrics are
calculated based on the static source code. That means
that metrics like fan-in may be miscalculated due to
missing late binding information. Such lack of
accuracy may have influenced the results.

The approach to assess changeability decay also
poses problems for the interpretation of the results.

Given that the changeability decay is described by
several measurements, it is not clear what the overall
effect is.

Another issue is that the interpretation of the
measurements is linked to the assumption that the
changes analyzed represent sets of methods that are
related in accomplishing a feature. In order to discard
such assumption, we eliminated those changes that
seem to be restructurings and affected most of the
methods of the application. However, other types of
atypical changes, for instance committing by time
intervals instead of committing when finishing a
change, may also affect this assumption, and therefore
the interpretation of the measurements.

Finally, although taking into account those
situations in which all case studies had the same type
of relation (i.e. all case 1 or all case 0) makes the result
stronger, the methodology becomes weaker as the
results depend on the amount of case studies used.

7. Related work

Besides the work mentioned in the introduction

about cloning, there also have been several attempts to
measure changeability decay. This paper aims to find
structural predictors of as many dimensions as possible
of changeability decay, in contrast to previous work
that proposed and evaluated changeability decay
measurements. Bianchi et al. [19] present an empirical
experiment in which the degradation of the
architecture in assessed in terms of entropy, which is
the increase of disorder in the traceability links of a
software system. They found that that the connectivity
and complexity inside and across components
increased with changes. Eick et al. [20] defined several
ways to know if a change is more difficult than what it
should be and called it decay. They found that the
modularity decreases, the number of files touched
increases, new changes introduce bugs, and time to
perform changes increases, indicating changeability
decay. Arisholm et al. [11] compared change and
structural measurements using regression models to
assess which one determined changeability decay
better. They found that change measurements capture
changeability decay dimensions that structural
measurements cannot capture.

There are also some studies aiming to analyze the
impact of source code characteristics. However, none
of them tried to compare the impact of diverse source
code characteristics. Ratiu et al. found that god classes
do not always have bad impact given that some of
them are stable (do not change) and others of them are
volatile (have a reduced lifetime) [21].

Finally, Ueda et al. define clone metrics similar to
ours [22]. For instance, the length of the clone class is
similar to the clone size, and the clone radius is similar
to the distance to clones. The length of the clone class
is the number of consecutive tokens shared by all the
clone fragments that belong to the same clone family,
while the clone radius is the maximum number of
directories to the nearest common ancestor of the files
that share the same clone. However, neither the clone
length nor the clone radius are applicable at method
level.

8. Conclusions

We proposed measurements to assess changeability
decay, in addition to those proposed previously. We
have proposed a novel perspective on the analysis of
source code characteristics by using a biological
metaphor that likens source code characteristics issues
to toxic agents, and changeability decay to a disease.
The methodology assesses the strength of the relation
between two source code characteristics. Using this
methodology we have shown that for all case studies:
- Cloning is not strongly related with the complexity

or size of a method.
- The percentage of lifetime cloned does not increase

the changeability decay measurements; in fact it
seems to decrease some of them (frequency).

- Although being cloned increases the risk of having
changeability decay, there are other characteristics of
a method that have a greater impact on changeability
decay. This could mean that managing cloning
should not be the first priority in maintainability.
This could also mean that cloning is just another
symptom of some implementation ‘disease’.

- Of those clone characteristics analyzed, none of them
can be used to a priori identify those clones harmful
to changeability.

The method proved to be lightweight and useful form
to evaluate if a characteristic is a good predictor of
another characteristic.

9. References

 [1] M. Kim, L. Bergman, T. Lau, and D. Notkin, "An

ethnographic study of copy and paste programming
practices in OOPL," in Proc. of the Int'l Symp. on
Empirical Software Engineering, 2004, pp. 83-92.

[2] T. Kamiya, S. Kusumoto, and K. Inoue, "CCFinder: a
multilinguistic token-based code clone detection system for
large scale source code," IEEE Trans. Softw. Eng., vol. 28,
pp. 654-670, 2002.

[3] S. Ducasse, M. Rieger, and S. Demeyer, "A Language
Independent Approach for Detecting Duplicated Code," in

Proc. Int'l Conf. on Software Maintenance, 1999, pp. 109-
118.

[4] C. Kapser and M. Godfrey, "'Cloning considered
harmful' considered harmful," in Proc. of the Working
Conf. on Reverse Engineering, 2006, pp. 19-28.

[5] A. Lozano and M. Wermelinger, "Assessing the effect of
clones on changeability" to appear in Proc. Int'l Conf. on
Software Maintenance, 2008.

[6] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, "An
empirical study of code clone genealogies," in Proc. of the
European Softw. Eng. Conf. and symp. on Foundations of
Softw. Eng. (ESEC-FSE): ACM Press, 2005, pp. 187-196.

[7] B. Lague, D. Proulx, J. Mayrand, E. M. Merlo, and J.
Hudepohl, "Assessing the Benefits of Incorporating
Function Clone Detection in a Development Process," in
Proc. of the Int'l Conf. on Software Maintenance, 1997, pp.
314-321.

[8] L. Aversano, L. Cerulo, and M. D. Penta, "How Clones
are Maintained: An Empirical Study," in Proc. of the
European Conf. on Software Maintenance and
Reengineering, 2007, pp. 81-90.

[9] J. Krinke, "A Study of Consistent and Inconsistent
Changes to Code Clones," in Proc. of the Working Conf.
on Reverse Engineering, 2007, pp. 170-178.

[10] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler,
"An empirical study of operating systems errors," in
Proceedings of the eighteenth ACM symposium on
Operating systems principles. Banff, Alberta, Canada:
ACM, 2001, pp. 73-88.

[11] E. Arisholm and D. I. K. Sjoberg, "Towards a
framework for empirical assessment of changeability
decay," J. Syst. Softw., vol. 53, pp. 3-14, 2000.

[12] R. Geiger, B. Fluri, H. C. Gall, and M. Pinzger,
"Relation of Code Clones and Change Couplings," in Proc.
of the Int'l Conf. of Fundamental Approaches to Software
Engineering, 2006, pp. 411-425.

[13] M. Green, M. Freedman, and L. Gordis, "Reference
Guide on Epidemiology," in Reference Manual on
Scientific Evidence, 2 ed: Federal Judicial Center:
Washington, DC, 2000, pp. 638.

[14] G. Taubes and C. Mann, "Epidemiology faces its
limits," in Science, 1995, pp. 164-169.

[15] R. C. Martin, "Stability," in The C++ Report, 1996.
[16] A. Lozano, M. Wermelinger, and B. Nuseibeh,

"Evaluating the harmfulness of cloning: a change based
experiment," in Proc. of the int'l workshop on Mining
Software Repositories: IEEE Computer Society, 2007, pp.
18-21.

[17] T. B. V. Belle, "Modularity and the Evolution of
Software Evolvability," The University of New Mexico,
2004.

[18] A. Lozano, M. Wermelinger, and B. Nuseibeh,
"Assessing the impact of bad smells using historical
information," in In Proc. of the Int'l Workshop On
Principles of Software Evolution: IEEE Computer Society,
2007, pp. 31 - 34.

[19] A. Bianchi, D. Caivano, F. Lanubile, and G. Visaggio,
"Evaluating software degradation through entropy," in
Proc. of the int'l symp. on Software Metrics (METRICS):
IEEE Computer Society, 2001, pp. 210-219.

[20] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and
A. Mockus, "Does Code Decay? Assessing the Evidence
from Change Management Data," IEEE Trans. Softw. Eng.,
vol. 27, pp. 1-12, 2001.

[21] D. Ratiu, S. Ducasse, T. Girba, and R. Marinescu,
"Using History Information to Improve Design Flaws
Detection," in Proc. of the European Conf. on Software
Maintenance and Reengineering, 2004, pp. 223-232.

[22] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue,
"Gemini: maintenance support environment based on code
clone analysis," presented at Proc. Int'l Symp. on Software
Metrics, 2002.

	1. Introduction
	2. Methodology
	3. Experiment
	3.1. Method characteristics
	3.2. Characteristics of clones
	3.3. Changeability decay measurements

	4. Experiment set-up
	5. Results
	5.1. Relation between method’s characteristics and changeability decay
	5.2. Relation between cloning and method’s size and complexity
	5.3. Relation between cloning characteristics and changeability decay
	5.4. Identification of clones harmful to changeability

	6. Threats to validity
	7. Related work
	8. Conclusions
	9. References

