
Open Research Online
The Open University’s repository of research publications
and other research outputs

Graph-centric tools for understanding the evolution
and relationships of software structures
Conference or Workshop Item
How to cite:

Yu, Yijun and Wermelinger, Michel (2008). Graph-centric tools for understanding the evolution and relationships of
software structures. In: 2008 15th Working Conference on Reverse Engineering, p. 329.

For guidance on citations see FAQs.

c© 2008 IEEE

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1109/WCRE.2008.13

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82911406?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1109/WCRE.2008.13
http://oro.open.ac.uk/policies.html


Graph-Centric Tools for Understanding the Evolution and Relationships of
Software Structures

Yijun Yu Michel Wermelinger
Computing Department & Centre for Research in Computing

The Open University, UK

Abstract

We present a suite of small tools, implemented as a
pipeline of text file manipulating scripts, that, on one hand,
measure the evolution of any software structure that can be
represented as a directed graph of software elements and re-
lations and, on the other hand, visualise any three attributes
of any set of software artefacts that can be related to the el-
ements shown in the graph. We illustrate the applicability
of the tool with our work on the evolution of the Eclipse ar-
chitecture and the relation between bugs and components.

1. Introduction

Due to their generic and flexible nature, graph-based rep-
resentations have been very popular in the reverse engineer-
ing literature and tools in order to represent software ele-
ments (e.g. functions) and their relations (e.g. calls between
functions). In our own work we use graphs to represent the
architecture of Eclipse: nodes represent plugins and arcs
represent either a compile-time or a run-time dependency.

To support our research for understanding the evolution
and relationship of software structures, we developed a suite
of small tools that first extract the necessary data, then com-
pute the necessary metrics (e.g., size, fan in/out), and fi-
nally visualise the results. However, we have taken care
to make the suite relatively independent of our particular
needs, in order to be useful to other researchers in a vari-
ety of contexts. Therefore, instead of developing the suite
as a standalone application or as an extension for a particu-
lar IDE, we have adopted a simple pipeline architecture of
scripts that manipulate text files. This makes it easier for
researchers to interface their own tools with ours and to re-
place part of the pipeline in order to better suit their needs.

The overall architecture of our tool suite is shown in Fig-
ure 1 as a set of processes that convert input data files on
the left into the output data files on the right. Among the
processes, fact extractors obtain factual relations from ar-
tifacts of a single release of the software system and store

the relations in Rigi Standard Format (RSF) files. Using
customised Crocopat scripts (*.rml), fact mergers combine
facts about selected individual releases into a single fact
base by expanding every relation tuple with an attribute of
the release id. Metric calculators compute from the fact
base a number of metrics, such as growth, volatility, etc.
The reporters present the metrics and the architecture in a
number of ways, including various visualisations. Finally,
the bug analysers extract, merge, calculate and present the
bug reports on top of architectural graphs.

Our tools can be downloaded from http://computing-
research.open.ac.uk/sead/archev, including sample projects
and datasets. The demo will emphasize the tool suite’s ar-
chitecture and what relations are described in each RSF file,
so that the audience can understand how to adapt our tools
to their needs.

2 Examples

We have reported the utility of these tools using Eclipse
as a case study: in [1] we analysed how the architecture
evolved, e.g. if architectural changes are confined to major
releases, while in [2] we checked whether certain design
principles apply over the life-time of Eclipse’s architecture,
e.g. if cohesion among components increased.

We extract one architectural graph per release (from 1.0
till 3.3.1.1), using Eclipse’s XML metadata files about its
plugins. This is sufficient for our purposes, besides being
much ore efficient than parsing source code.

In Eclipse, a module can be a single plugin or a com-
ponent (group of plugins). The architecture is defined as
a graph of compile-time or run-time dependencies between
modules. Since any graph is represented by a binary ad-
jacency relation in a RSF file, we wrote a simple converter
to show a static graph in a tool like graphviz. However, we
can also make use of animated graphs to show the evolution
of the architectures throughout releases, using graph explo-
ration systems such as Guess and CCVisu.

We also wish to see how bugs are related to components,
e.g. which components have more critical bugs, and how



Fact Extractor

Release V1

Release V2

Release Vn

.

.

.

.

.

.

Architectural Evolution 

Fact Base (RSF)

Crocopat

metr ics.rml

bash

awk

XSLT

Architectural Evolution 

Metrics Base (RSF)

Module Dependency 

Graph V1 (RSF)

Module Dependency 

Graph V2 (RSF)

Module Dependency 

Graph Vn (RSF)

Crocopat

merge.rml

Crocopat

calc.rml
Derived Metrics 

(Spreadsheets)

Grep

Awk
Metrics (CSV)

Chart Visualisations

Version x Date (RSF)

Temporal Ordering 

(Sort.awk)

Ordered Branches (branch.txt) 

NEXT relation (RSF)

Branch versions

Bugzilla XML exports

Project development

resource document

bug attr ibutes

extract ion

bash

awk

XSLT

Bug attr ibutes: 

BugID, Status, Priority, Severity,

Component, Version (RSF)

Contains relation between

Component and Plugin (RSF)

Attributes selection 

and normalisation 

per component

Architectural Graphs

per Release on Modules (e.g. 

Plugin, Feature, Component)

Graph visualisation depicted

with customized shapes

for component attr ibutes

Bitmaps per component module

ordered by pixel values 

or ordered by attr ibutes

graphviz

Guess

CCVisu

GnuPlot

OpenOffice

Excel

JChart

PROCESS

DATA (FORMAT)

FACTS (RSF)

LEGEND

Examples

Figure 1. Overview of our toolset

bugs are reported and resolved, e.g. if severe bugs are re-
ported first and if bugs are resolved by priority. Towards
that end, we developed a compact visualisation to represent
the hundreds of bugs reported for a component: within the
corresponding component node in the graph, each bug is
represented by a pixel while the hue, saturation and bright-
ness (HSB) of the pixel represent bug attributes like status,
priority and severity. Our scripts allow for any kind of ele-
ment (in our case, bugs) to be associated to a graph’s nodes,
and for any element attribute to be represented by any of the
three HSB dimensions.

In Figure 2 we chose an assignment that highlights
the most important bugs, by using a red hue for new
and reopened bugs, full saturation for highest priority and
full brightness for highest severity. The figure shows
the compile-time architecture of Eclipse components, and
within each component, bugs are ordered by status, from
unconfirmed bugs in red to re-opened bugs in pink. The
majority of darker and less saturated colours indicates that
most bugs have low severity and priority, respectively.
Moreover, the size of each bitmap immediately shows
which components had more bugs reported. A full-size fig-
ure can be found on http://mcs.open.ac.uk/yy66/wcre08.

References

[1] M. Wermelinger and Y. Yu. Analyzing the evolution of eclipse
plugins. In Proc. 5th Working Conf. on Mining Software
Repositories, pages 133–136. ACM, 2008.

Figure 2. Annotating the Eclipse architecture
graph with bugs reports

[2] M. Wermelinger, Y. Yu, and A. Lozano. Design principles in
architectual evolution: A case study. In Proc. 24th Int’l Conf.
on Software Maintenance. IEEE, 2008. To appear.


