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ABSTRACT The effects of UV synchrotron radiation on deoxyribonucleic acid 

(DNA) cast films have been systematically investigated by vacuum ultraviolet and 

infrared spectrophotometry as a function of irradiation time. Cast DNA films 

exposed at 140 nm (8.85 eV) for different irradiations times, revealed consistent 

changes in their VUV spectra which indicate a decrease of  thymine groups and an 

increase of π  π* transition spectral signature associated with the C=O group of 

the open sugar chain. This result was corroborated by a decrease in C-O stretching 

vibration at 1061 cm-1 observed in the infrared spectra. Both these results are 

consistent with the creation of single strand breaks in the deoxyribose component 

of DNA molecule and a decrease in the phosphate groups. It was also shown that 

UV radiation is effective in damaging the thymine groups involved in Hoogsteen 

base pairing with adenine. The analysis of the infrared data suggests that the usual 

spectroscopic fingerprints of DNA denaturation are not necessarily a reliable 

measure of DNA damage. 

 

Keywords: DNA, Cast film, Ultraviolet radiation, Radiation damage, 

Deoxydeoxyribose, Hoogsteen base pairing. 
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INTRODUCTION 

Radiation induced damage in biomolecules is currently a hot topic in molecular 

physics since research has shown that irradiation with particle/photon energies 

below the ionizing potential can induce damage in deoxyribonucleic acid (DNA)[1]. 

However, how such radiation damage is induced at molecular level still not well 

understood [2]. When ionizing radiation interacts with matter it produces, in very 

short times (femtoseconds), a large number of ions, radicals, excited neutrals and 

ballistic secondary electrons with initial kinetic energies below 100 eV [3,4], which 

can subsequently cause both physical and chemical modification in the biological 

media. Furthermore it has recently been shown that secondary electrons with 

energies between 4 to 6 eV can induce strand break formation in double-stranded 

supercoiled DNA [5]. Major experimental and theoretical studies have sought to 

determine the interaction mechanisms leading to such low energy and damage at 

the molecular level and dissociative electron attachment is now believed to be 

dominant mechanism. Complementary studies on effect radiation damage in DNA 

plasmid have been performed using 7-150 eV synchrotron radiation [6] and results 

have revealed that DNA single-strand (SSB) and double-strand (DSB) breaks occur 

at all these measured energies, for both dry and solution plasmid DNA, with tissue 

damage being induced in the presence of water molecules which is more 

representative of the situation in  real cells [7], as OH radicals are released to 

undertake chemical rather than direct physical attack on the DNA. It should be 

remarked here that a large number of studies about free radical chemistry of DNA 

have been performed [8,9 and references therein], and these studies are 

fundamental to understand the reaction processes which occur when the DNA 

molecule is irradiated in presence or not of water molecules. 

A new approach is needed in which biological samples are studied in an 

environment that mimics the cell. This new approach involves the production of 

functional biomimetic membranes at planar interfaces. It is necessary to keep the 

membrane in, as far as possible, a natural aqueous environment and, for the sake 
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of quantitative characterization, it is desirable to have it at a planar solid interface. 

A methodology to accomplish this is to assemble, from a liquid/solid interface, 

biological molecules such as lipids, DNA, proteins and enzymes onto solid 

substrates covered with a soft cushion of adsorbed polyelectrolytes having a high 

water content [10,11]. A simple and versatile method for producing these 

architectures is the sequential build up of layers of functional materials by the 

layer-by-layer (LBL) technique [12,13]. This technique, initially applied to the 

production of polyelectrolyte thin films, has also been found to be suitable for the 

production of functionalized biomolecular architectures [14,15,16,17,18] and is 

therefore a relevant methodology for  producing biological mimics to address 

radiation damage studies. However, it is fundamental to characterize the radiation 

degradation of the biological macromolecules in vacuum. In this paper, the effect of 

UV radiation [140 nm] on condensed phase DNA cast films in vacuum is reported. 

Analysis by both UV and IR spectroscopies allows obtain information about the 

effect of radiation damage on DNA’s constituent molecules. The results indicate that 

the main damage induced is the rupture of deoxyribose C-O-C bonds leading to the 

creation of C=O bonds and fragmentation of phosphate groups with damage to the 

thymine molecules which are involved in Hoogsteen base pairing.  

It should be noted that the conditions of DNA as a dry film are far from those of 

DNA in a living cell, the radiation damage in vacuum conditions being less effective 

than in wet real conditions where the presence of water molecules is significant and 

the interaction of water photolysis/radiolysis products with the DNA molecules takes 

place. However, the characterization of the UV radiation effect (140 nm) on DNA 

molecules in vacuum as performed in this work is of importance for comparison of 

the effect of UV radiation on DNA molecules surrounded by water molecules to infer 

its real contribution for the DNA damage. Actually (data not reported in this article) 

the amount of water molecules surrounding the DNA molecules is being controlled 

[19] taking into account the achievements of Lourenço et al [10,11] obtained with 
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LbL films of common polyelectrolytes prepared from different salted aqueous 

solutions, and producing DNA LbL films.   

 

Experimental 

Cast films were prepared from deoxyribonucleic acid sodium salt from calf 

thymus (DNA), obtained from Aldrich. DNA was dissolved in ultra-pure water to a 

concentration of 0.5 mg/mL. The solution was deposited onto calcium fluoride 

(CaF2) substrates and dried for 2 hours in vacuum desiccators. The cast DNA films 

were irradiated for different periods and characterized, after each exposure, using 

synchrotron radiation at station 3.1 at the Daresbury Synchrotron Facility, UK. The 

mean light intensity impinging the sample at 140 nm was of the order of 8.5x10-4 

W/m2. Infrared spectra of the samples were measured using a Fourier transform 

infrared spectrophotometer Nicolet - model 530. 

 

Results and Discussion 

1. Effect of VUV radiation on DNA electronic transitions 

The absorbance spectrum of a DNA cast film prepared from aqueous solution 

deposited onto a CaF2 substrate is shown in figure 1. Although some evidence for 

fine structure could seen in the spectrum, two main bands, one at about 260 nm 

and the other at about 190-200 nm can be observed. The 260 nm band is the well 

known DNA absorption band generally attributed to the DNA bases [20]. The band 

centred at about 190-200 nm may be attributed to the adenine peaks at 207 nm 

(5.90eV) and at 179 nm (6.80 eV) and to thymine base peaks at 208 nm (5.86 eV) 

and 173.5 nm (7.04 eV) [20]. In order to obtain more information about the peak 

structure, the spectrum was deconvoluted into a set of Gaussians with the features 

listed in Table 1. The values displayed in this table correspond to the average of 

peak positions and widths at half heights calculated using four different spectra. 

The peak centred at 119.8 nm (10.4 eV) is due to direct ionization of nucleobases 
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[21]. The peak at 161.8 nm (7.66 eV) arises from strong thymine absorption as 

determined by Shlukla and Leszczynsky [22]. The peaks at 177.4 nm (6.99 eV), 

188.3 nm (6.59 eV) and 201.5 nm (6.15 eV) are due to the strong transitions 

located at 6.28 (41 A’), 6.38 (61 A’) and 6.81 (81 A’) calculated by Borin et al [23] 

for purine N(7)H and N(9)H. The peak 209.9nm (5.91 eV) may be due to n  π* 

guanine transition and a π  π* transition in thymine [22] and the peak at 263.4 

(4.708 eV) is generally assigned to all bases, see for example the recent work of So 

and Alavi [24], with assignments of vertical excitation energies displayed in [25]. In 

addition, the DNA molecule spectra should have contributions of deoxyribose and 

phosphate groups as will be discussed later. 

The absorbance spectra obtained before and after different irradiation time periods 

of DNA cast films with synchrotron radiation are shown in figure 2.  The films were 

irradiated at 140 nm which is close to the first ionization potential of several DNA 

constituents of about 9 eV [26]. It should be noted that the apparent increase of 

absorbance with irradiation time is due to an increase in the baseline absorption. 

Such changes in the baseline upon irradiation might be indicative of fragmentation. 

Baseline corrected DNA VUV spectra, in the 170 to 230 nm wavelength region, 

plotted for irradiation times are shown in Figure 3. From these curves one can 

observe a slight increase in absorbance intensities and change in the behaviour of 

the absorbance curves after irradiation of the DNA samples which is indicating that 

some transitions are being promoted. 

The DNA spectra for different irradiation times were deconvoluted into Gaussians 

with the same characteristics as the unirradiated samples (listed in Table 1). The 

peak areas of each Gaussian were plotted versus the irradiation time as shown in 

figure 4 a), b) and c). These peak areas were found to decrease with irradiation 

time for the 162 nm and 263 nm peaks, indicating a decrease of thymine groups. 

However, one cannot assume that other DNA bases groups are not being affected. 

An increase of 188 nm and 202 nm peaks areas was also observed which indicates 

a modification in the DNA molecule. Recently, Nielsen et al. [27] using VUV circular 
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dichroism measurements on aqueous sugar solutions suggested the presence of a 

weak band at 188 nm associated with the π  π∗ transition of the C=O 

chromophore in the sugar open-chain. Therefore the increase of absorbance 

observed at 188 nm can be ascribed to an increase in the C=O groups as a result of 

formation of sugar open-chains.  

Finally, it should be remarked here that after one hour of radiation exposure no 

further changes are observed in the spectra, which means that under the present 

experimental conditions irradiation of DNA films with 140 nm light of flux of 8.5x10-

4 W/m2 is sufficient to induce DNA damage in 10-15 minutes. 

 

2. Effect of VUV radiation on the vibrational spectra 

2.1. DNA band assignments  

As the duration of the scan of a VUV spectrum took about 15 to 20 minutes, the 

measurement of VUV spectra can clearly induce changes in the DNA. For this 

reason, the effect of the UV radiation on DNA films was further investigated by FTIR 

spectroscopy. The spectra in the 1800-900 cm-1 range of a DNA film before and 

after 80 minutes of irradiation at 140 nm are shown in figure 5. Three main regions 

can be observed in these spectra namely, at 1800-1500 cm-1, 1500-1250 cm-1 and 

1250-900 cm-1. These regions are composed by a set of absorbance peaks 

components that can be associated with DNA molecular vibrations according the 

literature [28,29,30], as follows: a) DNA bases (1800-1500 cm-1) - This range is 

associated with the DNA bases and contains 6 peaks centred at 1711, 1693, 1651, 

1605, 1581 and 1531 cm-1; b) Base-sugar (1500-1250 cm-1) - This region 

corresponds to the IR absorption in the bases vibrations and base vibrations 

influenced by the sugar component. In this region, 8 peaks were found at 1485, 

1446, 1414, 1390, 1366, 1297, 1280 and 1241 cm-1 ; and  c) Backbone (1250-900 

cm-1) - This region is associated with the phosphate backbone region and contains 
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seven peaks centred at 1210, 1183, 1097, 1061, 1020, 961 and 927 cm-1. The 

assignments of all these peaks are displayed in Table 2.  

Several changes in the IR spectra have seen observed after irradiation. In order to 

better analyze the infrared spectra changes, spectra baselines were removed and 

the peaks which did not change as a result of exposure to UV radiation were 

identified. From this analysis, the peak area at 961 cm-1 wavenumber, which is 

associated with C-C stretch of DNA backbone, was found not to change under UV 

radiation, so that this peak was used to normalize the obtained data, dividing the 

other peaks areas by the area of this peak, avoiding the possibility that the small 

changes due to the measurement of the infrared spectra in different regions of the 

sample are affecting the observed peak areas decrease or increase. 

 

In order to quantify the changes induced by UV radiation the spectra were fitted 

with Gaussian components after baseline removal. The peak characteristics namely, 

peak position and peak width, were calculated as free fitting parameters for each 

spectrum. Mean values for the peak positions and widths were then calculated from 

all fitted values and are displayed in Table 2. These mean values were then used in 

new fittings and the peak areas calculated. The calculated peak areas are 

essentially proportional to the number of oscillators which lead a particular 

absorbance peak. These calculations allow us to determine peak area ratios relative 

to the 961 cm-1 peak area, which is associated with the backbone frequency region, 

as a function of irradiation time. In Table 2 is also displayed the general behaviour 

with the irradiation time, designed by increase, decrease or constant, of each peak 

area relative to that under the 961 cm-1 peak. 

 

2.2. Damage in DNA sugar related components 

Since the VUV spectra results suggested that the UV radiation opens the 

deoxyribose ring, the related sugar components were investigated. In figure 6, the 

calculated area ratios of the furanose vibration (1020 cm-1), of the C-O stretching 
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vibration of nucleic acid sugar (1061 cm-1) and of the PO2
- stretching of backbone 

(1097 cm-1) relative to bonds associated with the DNA backbone (961 cm-1) are 

plotted as a function of irradiation time. This figure reveals that vibrations 

associated with the furanose are independent of the irradiation time, while those 

associated with C-O stretching of nucleic acid sugar (1061 cm-1) and PO2
- stretching 

vibrations are seen to decrease with the irradiation time. Such a decrease in the C-

O bond stretching vibration of deoxyribose during irradiation has also been 

observed by Tang and Guo [31] in characterizing the effect of UVA and UVB 

irradiation on aqueous solutions of DNA calf thymus using Raman spectroscopy 

analysis. Therefore it can be concluded that 140 nm radiation is sufficient to open 

the sugar ring and to break the DNA phosphate groups. Although both C-O and PO2
- 

stretching vibrations decrease with irradiation time the ratio of the peak areas of 

1097 cm-1 and 1061 cm-1 peaks is also seen to decrease with the irradiation time 

which indicates that the effect of radiation is more dramatic in the PO2
- groups.  

 

Taking into account these results the ratios of the vibrations associated with the 

deoxyribose group were plotted as a function of irradiation time, figure 7. The 

graph shows the normalized peak area ratios for C-O stretching vibration of nucleic 

acid sugar (1061 cm-1), PO2
- stretching of backbone (1097 cm-1), antisymmetric 

PO2
- stretch in A DNA form (1241 cm-1)  and CN3H bend of deoxyribose thymine 

(1280 cm-1) relative to the CC stretch in the DNA skeleton (961 cm-1).  All of these 

ratios decrease with irradiation time but the radiation effect on the sugar chain is 

weaker than CN3H bend of deoxyribose thymine (1280 cm-1). The ratio for C-O 

stretching vibration of nucleic acid sugar (1061 cm-1) decreases by 10%, while the 

intensity of the CN3H bending mode of deoxyribose thymine (1281 cm-1) decreases 

by some 40%. This result shows that the effect of UV radiation is located essentially 

in the deoxyribose thymine groups. In addition, both PO2
- stretching of backbone 

(1097 cm-1) and antisymmetric PO2
- stretch in A-form DNA (1241 cm-1) decrease 

similarly, confirming the consistency of this method of analysis.   
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The normalized peak area ratio of the CH3 symmetric stretch with deformation of 

deoxyribose thymine (1390 cm-1) relative to vibrations associated with DNA 

skeleton (961 cm-1) also decreases with irradiation time, as is shown in figure 8, 

where this peak area ratio is plotted together with the normalized ratio of the CN3H 

bend of deoxyribose thymine (1280 cm-1) peak area relatively to the peak area 

associated to DNA skeletal vibrations (961 cm-1). Although, the ratio at 1390 cm-1 

seems to decrease to smaller values, it can be observed that both ratios decrease 

in a similar way, within the error bars. As both these vibrations are related with 

deoxyribose thymine vibrations these similar decrease are consistent. For 

comparison with the effect of UV radiation in cytidines and guanosines, the 

normalized peak area ratio of the vibrations associated with cytidine and guanosine 

in anti-conformation (1366 cm-1) and the vibrations associated to DNA skeletal (961 

cm-1) is also observed to decrease with irradiation time, as is shown in figure 9, 

where this peak area ratio is plotted together with the normalized peak area ratio of 

the CH3 symmetric deformation of deoxyribose thymine (1390 cm-1), relative to the 

vibrations associated to DNA skeleton. From this plot one can conclude that the UV 

radiation effect is more severe in the deoxyribose thymines than in the cytidines 

and guanines. 

Related with the deoxyribose a similar decrease in the area ratios of 1414 cm-1 and 

1446 cm-1 peaks, respectively, associated with C3’-endo deoxyribose in A and Z 

forms helices, and with adenine in A, B and Z forms,  can be observed in figure 10. 

In this figure was also plotted the peak area ratio of the 1280cm-1 which is 

associated C5=C6 vibration of cytidine and to CN3H bend of deoxyribose thymine 

for comparison. From this comparison, one can see that the decrease in the 1280 

cm-1 feature is slightly more accentuated indicating that deoxyribose associated to 

thymines are more affected by the radiation. It should remarked here that DNA 

molecules are more easily attacked by ozone than are RNA molecules [32,33], 

suggesting that thymine groups are the DNA components more easily undrgoing 

damage, which corroborates these conclusions. 
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2.3. Damage in thymine groups 

The above described results suggest that the infrared region associated with the 

thymine groups should be further explored. Moreover, it is known that two adjacent 

thymine groups when submitted to UV A and B radiation tend to dimerise. In fact, 

the cyclobutane pyrimidine dimer is the most abundant lesion caused by ultraviolet 

radiation and consists of a reaction of the carbon-carbon double bonds of two 

proximal pyrimidine bases to form a cyclobutane ring. This reaction has been 

recently investigated by femtosecond time–resolved infrared spectroscopy [34] and 

it was revealed that in DNA samples irradiated at 266 nm, the intensity of infrared 

bands due to double-band stretch associated with the two carbonyl groups and the 

C5=C6, double bond (1632 and 1664  and 1693 cm-1) decreases after several 

minutes of irradiation. On the other hand, the intensity of some peaks in the range 

of 1300 to 1500 cm-1 is seen to increase with the UV exposure. In the present 

work, related with the thymine there are three peaks respectively associated with 

CN3H bend of deoxyribose thymine (1280 cm-1), CH3 symmetric vibration of 

deoxyribose thymine (1390 cm-1) and a peak at 1701 cm-1, not listed in table 2, 

which is the superposition of two peaks, one associated with C2=O2 stretching of 

thymine in single or double-stranded (1693 cm-1) and other associated to  C2=O2 

stretching of thymines involved in reverse Hoogsteen third strand binding and/or to 

C6=O6 stretching of guanines involved in Hoogsteen third strand binding (1711 cm-

1). The area of the 1701 cm-1 peak was calculated for comparison of the decay of 

the C2=O2 bond in all thymines. Figure 11 shows the plot of the normalized areas 

ratios of the peaks at 1280 cm-1, 1390 cm-1 and 1711 cm-1 relative to the area of 

the 961 cm-1 peak. The peaks associated with both CN3H bend of deoxyribose 

thymine and CH3 symmetric deformation of deoxyribose thymine decrease by 40% 

and both showing a similar behaviour with irradiation time, whilst peaks due to 

C=O stretching of thymine decrease only by 10%. 
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Changes observed in the thymine group may be seen in the 1675 to 1750 cm-1 

region, where two Gaussian components were found, taking into account that the 

C2=O2 strength of thymine single stranded or double stranded is associated to 

1693 cm-1 vibrations and the C2=O2 stretching of thymines involved in reverse 

Hoogsteen third strand binding is present as a vibration peak at 1711 cm-1.  In 

figure 12, the normalized 1693 cm-1 and 1711 cm-1 peak ratios relative to 961 cm-1 

are plotted. The area ratio considering only a peak at 1701cm-1 in this region was 

also plotted for comparison. From the plot, it can be seen that the UV radiation 

does not affect the peak at 1693 cm-1 associated with C2=O2 strength of thymine, 

while the C2=O2 stretching of thymines involved in reverse Hoogsteen third strand 

binding and/or to C6=O6 stretching of guanines involved in Hoogsteen third strand 

binding [1711 cm-1] is affected. Moreover the decrease of the C=O peak is followed 

by an increase in the intensity of the 1210 cm-1 peak at the same rate of decrease 

in the 1711 cm-1 peak, which can be seen in figure 13. However, here it should be 

remembered that the peak at 1210 cm-1 can be assigned to both antisymmetric 

PO2
- stretch in B DNA form and to a normal C-O bond. Since an increase in the B-

DNA form is not expected to occur, one can infer that the C=O bone of thymine is 

being replaced by C-O, which can be accounted by the different spatial distribution 

of the adenine and thymine and the pairing between them. From the theoretical 

point of view Cubero et al [35] calculate average hydrogen-bond energies of -13.3 

and -12.1 kcal/mol for Hoogsteen and Watson-Crick pairings, respectively, values 

which are in accordance with the ones  calculated by Monajjemi and Chahkandi 

[36]. In addition, these authors also calculated the dipole moment for both Watson-

Crick and Hoogsteen adenine thymine hydrogen bonds and achieved values of 

about 2 and 8 Debyes, respectively. Similar values for hydrogen bonds can be also 

found in [37]. Moreover, Kryachko and Sabin [38] investigated the variety of facets 

of the hydrogen-bond pattern of the Watson-Crick adenine. thymine (A.T) base pair 

of DNA obtaining the transition state of adenine.thymine which governs the 

conversion of the Watson.Crick pair of adenine.thymine into the Hoogsteen one and 
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discussed the energetical and geometrical features of this conversion. In fact, these 

authors reported the transition state of adenine.thymine between the Watson-Crick 

and Hoogsteen base pairs of adenine.thymine, where the pairs are disposed nearly 

perpendicular to each other, being the barrier height, taken relatively to the WC 

pair comprise a value of 6.5 kcal/mol at the Hartree-Fock computational level and 

5.4 kcal/mol at the B3LYP one.  Taking into account the described literature, our 

results show that the presence of Hoogsteen pairings, highly polarisable, 

contributes for the degradation by UV and the Hoogsteen pairings are not being 

converted in Watson-Crick pairing as should be suggested by the theory. 

 

2.4. DNA denaturation 

Finally, in order to confirm that irradiation leads to DNA denaturation, the ratios of 

the intensities at 1690 cm-1 and 1652 cm-1 were evaluated. This ratio has been 

shown to be representative of denaturation (Miyamoto et al [39]). In fact, these 

authors in investigating the DNA hybridization and denaturation in aqueous 

solutions using infrared spectroscopy concluded that the ratio of absorbance of the 

C=O stretching peak at 1690 cm-1 to the absorbance peak at 1660 cm-1 provides a 

metric for DNA hybridization and denaturation. In DNA cast films the band at 1693 

cm-1 can be assigned to the C6=O6 stretch of base paired guanines plus C2=O2 

bond stretching vibration of thymines, while the 1651 cm-1 band is assigned to 

C2=O2 of cytosines plus C4=O4 stretching vibrations of  thymines [40 and 

references therein]. However, when the intensity ratios at these wavenumbers are 

plotted as shown in figure 14, as a function of the irradiation time only a slight 

denaturation can be inferred, which is in contrast with the data discussed above. 

However, changes in DNA molecular conformation have been observed. It have be 

seen that vibrations associated with the antisymmetric  PO2
- stretch in A form 

decrease, while there is an increase in the antisymmetric PO2
- stretch in B DNA 

form (1210 cm-1). As discussed before this increase can be related to an increase in 

the C-O bond. These results allow conclude that the ratio proposed by Miyamoto el 
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al is not necessarily a reliable indication of DNA damage or rather the method is 

only sensitive to one type of DNA damage. This conclusion is also corroborated by 

the work of Cataldo [32] which demonstrated that DNA is also remarkably damaged 

by ozone as revealed by the FTIR spectra of DNA samples submitted to ozone 

stream which change significantly in whole 700 to 1800 cm-1 wavenumber region in 

comparison with spectra of samples without ozone treatment. 

 

CONCLUSIONS 

Vacuum ultraviolet and infrared spectroscopies showed that vacuum synchrotron 

radiation at 140 nm (8.85 eV) induces damage in calf thymus DNA molecules. 

Although, only small changes in the VUV spectra were revealed during UV 

irradiation, spectral deconvolution, allowed us to conclude that the contribution of 

transitions, associated with the open sugar chain, tend to increase in magnitude 

during irradiation. At the same time, a decrease in the peaks associated with the 

DNA bases has been observed. Although such effects could be inferred from 

measured VUV spectra, this technique is not sensitive enough to characterize DNA 

damage at a molecular level. Infrared spectra of the samples allowed us to assign 

observed infrared absorbance peaks to particular DNA molecular vibrations. 

Analysis of changes in the infrared spectra after irradiation generally, revealed that 

UV radiation leads to a decrease in the magnitude of the absorbance peaks. A 

decrease is observed in the C-O stretch of the furanose in backbone, in the PO2
- 

groups, in the thymine, cytosine and adenine groups. These changes occur at 

different rates indicating that several damage processes are involved. UV radiation 

was shown to affect the thymines involved in reverse Hoogsteen third strand 

binding which is consistent with the observed decrease C2=O2 stretching of 

thymines involved in reverse Hoogsteen third strand binding, while the C2=O2 

stretching vibration of thymine in single or double-stranded remain unchanged. An 

increase in the anti-symmetric PO2
- stretch in B form was also observed which has 

been related to an increase in the number of C-O bonds. It has been shown that 
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the spectroscopic fingerprints suggested by Miyamoto et al [39] as characteristic of 

DNA denaturation are not necessarily a reliable measure of DNA damage and other 

spectroscopic signatures may be/should be used. Comparison of the obtained 

results with what is known about free-radical induced damage [8, 9 and references 

therein] is being done. This study will be fundamental to understand the reactions 

occurring when the DNA molecules are irradiated. To advance in this study it is 

fundamental control the amount of water molecules surrounding the DNA molecules 

which is being done using the LbL technique to produce water containing DNA films 

and characterize the effect of radiation on them.  
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TABLE CAPTIONS 

Table 1 – Characteristics of peaks observed in DNA cast films by VUV. 

 

Table  2 – Characteristic infrared absorptions in DNA cast films. The Peak Area 

Ratio Tendency (PART) indicates the increase or decrease with irradiation time of 

each peak area relatively to the 961 cm-1 peak area. 
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Table 1  

Peak Position 

(nm) 

Peak Position 

(eV) 

Peak Width 

(nm) 
Assignment 

119.8±1.1 10.4±0.1 42.5±1.4 Direct ionization of nucleobases 

161.8±0.8 7.66±0.04 25.5±1.4 Thymine 

177.4±0.5 6.99±0.02 12.2±1.0 Purine N(7)H and N(9)H 

188.3±0.8 6.59±0.03 17.9±2.1 Purine N(7)H and N(9)H 

201.5±1.6 6.15±0.05 11.5±1.6 Purine N(7)H and N(9)H 

209.9±0.6 5.91±0.02 21.8±0.6 
n π* guanine 

π π* thymine 

263.4±0.08 4.708±0.002 42.0±0.2 All bases 

 

Gomes et al 
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Table 2  

Wavenumber 
(cm-1) 

Peak 
Width 
(cm-1) 

Literature 
Wavenumber 
(cm-1) 

Assignment 
 
PART 

Base frequency region 

1711 ± 1 23±1 
1715 
1712 

C6=O6 stretching of 
guanines involved in 
Hoogsteen third 
strand binding and/or 
C2=O2 stretching of 
thymines involved in 
reverse Hoogsteen 
third strand binding 
[28] 

decrease 

1693 ± 1 28±2 1698 - 1691 

C2=O2 strength of 
thymine single 
stranded or double 
stranded [28] 

constant 

1651 ± 1 50.8±0.2 1655 - 1657 

C2=O2 strength of 
cytosine single 
stranded or double 
stranded [28] 

constant 

1605± 1 22.0±0.2 1601 
C=N ring vibration of 
guanine 

decrease 

1581± 1 33.2±0.5 
1590 - 1575 
1585 

C=N ring vibration of 
Guanine single 
stranded or double 
stranded [28] 
Ring vibration of 
guanine and adenine 
[29] 

decrease 

1531± 1 19.0± 0.9 
1527 - 1520 
1530 

In-plane vibration of 
cytosine single 
stranded or double 
stranded [28,29] 

constant 

Base-sugar frequency region 

1485± 1 29.4± 0.5 1495 - 1476 

Ring vibration of 
Adenine and Guanine 
[28] 
N7C8H bend of 
Adenine/Guanine [28] 

constant 

1446± 1 21.9± 0.5 
1457 - 1453 
1438 - 1434 

Adenine A/B forms 
[28] 
Adenine Z form [28] 

decrease 

1414± 1 27± 2 1413 - 1408 

C3’-endo deoxyribose 
in A form helices [28] 
C3’-endo deoxyribose 
in Z form helices [28] 

decrease 

1390± 1 23± 2 1389 - 1374 
Calc: CH3 Symmetric 
deformation of 
deoxyribose thymine 

decrease 
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[28] 

1366± 1 21.7± 0.7 1381 - 1369 

Cytidine and 
guanosine in 
anticonformation 
[28,29] 

decrease 

1297± 1 11.9± 0.1 1297 – 1285 
C4-NH2 strength of 
cytosine [28], [29] 

decrease 

1280± 1 23.3± 0.6 
1281 
1275 

C5=C6 vibration of 
cytidine [28] CN3H 
bend of deoxyribose 
thymine [28] 

 
decrease 

1241± 1 37.9± 0.3 1245 - 1235 Antisymmetric  PO2
- 

stretch in A-form [28] 
decrease 

Backbone frequency region 

1210± 1 21.2± 0.1 1225 - 1220 Antisymmetric  PO2
- 

stretch in B-form [28] 
increase 

1183± 1 20.9± 0.2  
A form marker – 
Sugar phosphate 
backbone 

decrease 

1097± 1 36.7± 0.6 1090 - 1085 
Symmetric PO2

- 
stretching of 
Backbone [28] 

decrease 

1061± 1 31.3± 0.7 1069 - 1044 
CO stretch of the 
furanose in backbone 
[28] 

decrease 

1020± 1 33.7± 0.4 1020 - 1010 
Furanose  vibrations 
[28] 

constant 

961± 1 20.9± 0.2 970 - 950 
CC stretch of the 
backbone [28] 

---- 

927± 1 25.6± 0.5 930 - 924 Z-form [28] constant 
 

Gomes et al 
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FIGURE CAPTIONS 

Figure 1 – The vacuum ultraviolet absorbance spectrum of a DNA cast sample. The 

solid lines correspond to spectrum peak structure obtained by fitting of VUV 

spectrum with a set of Gaussians. 

 

Figure 2 – Absorbance spectra of a DNA cast sample for different irradiation time 

periods using 140 nm wavelength radiation.  

 

Figure 3 - DNA VUV spectra, after correction for baselines, for different irradiation 

times in the 170 to 230 nm range. 

 

Figure 4 – Peak area versus the irradiation time for a DNA cast film. Peak centred 

at: a) 162 nm; b) 188 nm and 202 nm and c) 263 nm. 

 

Figure 5 – Infrared absorbance spectra of a DNA cast sample before and after 

irradiation with 140 nm UV light for 80 minutes. 

 

Figure 6 – Ratios of the infrared peak areas at 1020 cm-1 (furanose  vibrations), 

1061 cm-1 (CO stretch of the furanose in backbone) and 1097 cm-1 (symmetric PO2
- 

stretching of backbone) relative to the peak area of the 961 cm-1 feature. The peak 

area was calculated from infrared peaks obtained from spectra of DNA cast sample 

irradiated for different periods of time using 140 nm synchrotron radiation. The 

solid lines are guidelines. 

 

Figure 7 – Normalized infrared peak area ratios at 1061 cm-1(CO stretch of the 

furanose in backbone), 1097 cm-1 (symmetric PO2
- stretching of Backbone), 1241 

cm-1 (antisymmetric  PO2
- stretch in A-form) and 1280 cm-1 (C5=C6 vibration of 

cytidine and CN3H bend of deoxyribose thymine) relative to peak area at 961 cm-1 
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of a DNA cast sample irradiated for different periods of time with synchrotron 

radiation at 140 nm. The solid lines are guidelines. 

 

Figure 8 – Normalized infrared peak area ratios at   1280 cm-1 (C5=C6 vibration of 

cytidine and CN3H bend of deoxyribose thymine), 1097 cm-1 (symmetric PO2
- 

stretching of backbone) and 1241 cm-1 (antisymmetric PO2
- stretch in A form) 

relative to peak area at 961 cm-1 of a DNA cast sample irradiated for different 

periods of time with synchrotron radiation at 140 nm. The solid lines are guidelines. 

 

Figure 9 - Normalized  infrared peak area ratios at 1366 cm-1 (cytidine and 

guanosine in anticonformation) and 1390 cm-1 (CH3 Symmetric deformation of 

deoxyribose thymine) relative to peak area at 961 cm-1 of a DNA cast sample 

irradiated for different periods of time with synchrotron radiation at 140 nm. The 

solid lines are guidelines. 

 

Figure 10 - Normalized infrared peak area ratios at 1280 cm-1(C5=C6 vibration of 

cytidine and CN3H bend of deoxyribose thymine), 1414 cm-1 (C3’-endo deoxyribose 

in A-form helices and C3’-endo deoxyribose in Z form helices) and 1446 cm-1 

(adenine A, B and Z forms) relative to peak area at 961 cm-1 of a DNA cast sample 

irradiated for different periods of time with synchrotron radiation at 140 nm. The 

solid lines are guidelines. 

 

Figure 11 - Normalized infrared peak area ratios at 1280 cm-1(C5=C6 vibration of 

cytidine and CN3H bend of deoxyribose thymine), 1390 cm-1 (CH3 Symmetric 

deformation of deoxyribose thymine) and 1701 cm-1 (C2=O2 strength of thymine 

single stranded or double stranded and C6=O6 stretching of guanines involved in 

Hoogsteen third strand binding and/or C2=O2 stretching of thymines involved in 

reverse Hoogsteen third strand binding) relative to peak area at 961 cm-1 of a DNA 
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cast sample irradiated for different periods of time with synchrotron radiation at 

140 nm. The solid lines are guidelines. 

 

Figure 12 - Normalized infrared peak area ratios at 1693 cm-1 (C2=O2 strength of 

thymine single stranded or double stranded), 1711 cm-1 (C6=O6 stretching of 

guanines involved in Hoogsteen third strand binding and/or C2=O2 stretching of 

thymines involved in reverse Hoogsteen third strand binding) and 1701 cm-1 

(C2=O2 strength of thymine single stranded or double stranded and C6=O6 

stretching of guanines involved in Hoogsteen third strand binding and/or C2=O2 

stretching of thymines involved in reverse Hoogsteen third strand binding) relative 

to peak area at 961 cm-1 of a DNA cast sample irradiated for different periods of 

time with synchrotron radiation at 140 nm. The solid lines are guidelines. 

 

Figure 13 - Normalized infrared peak area ratios at 1210 cm-1 (antisymmetric  PO2
- 

stretch in B form) and 1711 cm-1 (C6=O6 stretching of guanines involved in 

Hoogsteen third strand binding and/or C2=O2 stretching of thymines involved in 

reverse Hoogsteen third strand binding) relative to peak area at 961 cm-1, of DNA 

cast sample irradiated for different periods of time with synchrotron radiation at 

140 nm. The solid lines are guidelines. 

 

Figure 14 - Infrared ratio of absorbance intensity at 1690 cm-1 relative to 

absorbance intensity at 1952 cm-1 for different periods of time with synchrotron 

radiation at 140 nm. The solid line corresponds to data fitting with a straight line. 
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Figure 1 – Paulo J. Gomes et al 
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Figure 2 – Paulo J. Gomes et al 
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Figure 3 - Paulo J. Gomes et al 
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Figure 4 – Paulo J. Gomes et al 
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Figure 5 – Paulo J. Gomes et al 
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Figure 6 – Paulo J. Gomes et al 
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Figure 7 –  Paulo J. Gomes et al 
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Figure 8 – Paulo J. Gomes et al 
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Figure 9 - Paulo J. Gomes et al 
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Figure 10 - Paulo J. Gomes et al 
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Figure 11 - Paulo J. Gomes et al 
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Figure 12 - Paulo J. Gomes et al 
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Figure 13 - Paulo J. Gomes et al 
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Figure 14 - Paulo J. Gomes et al 


