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Abstract 13 

Water-table heights due to steady surface accretion in drained two-layered soil regions 14 

overlying an inverted V -shaped impermeable bed are obtained using both the Dupuit-15 

Forchheimer approximate analysis with flow assumed parallel to the bed and also from 16 

numerical solutions of Laplace’s equation for the head distribution. For illustration, water-17 

table profiles obtained by the two procedures are compared for surface accretion draining to 18 

ditches in a typical two-layered ballast foundation for a railway track where a very permeable 19 

ballast material overlies a less permeable sub-grade on top of an inverted V-shaped 20 

impermeable bed that slopes away both sides from a central line to drainage ditches. These 21 

results are found to be in good agreement except very near the drainage ditches where the 22 

Laplace numerical solution takes into consideration a surface of seepage that is ignored in the 23 

Dupuit-Forchheimer analysis.  The Dupuit-Forchheimer analysis is also in good agreement 24 
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with results of a laboratory model experiment. It is concluded that the approximate Dupuit-25 

Forchheimer analysis can be used with confidence in these situations.  It is used to investigate 26 

the effect on the water-table elevation caused by the reduction of hydraulic conductivity of 27 

the porous materials due to clogging. 28 

 29 

Keywords: Drainage, Layered soils, Sloping bed, Dupuit-Forchheimer analysis, Laplace 30 

numerical solutions, Railway ballast beds 31 

 32 

1.  Introduction 33 

 34 

Water flow due to surface accretion to drains in two-layered porous bodies overlying an 35 

undulating impermeable base is a problem occurring both in agricultural lands and 36 

engineering structures.  In ridge and furrow drained lands a permeable structured surface soil 37 

overlies less permeable soil that lies above an impermeable base that rises and falls, with the 38 

furrows acting as drainage ditches for rainfall infiltrating through the soils. Similarly, ballast 39 

beds, that provide a foundation for railway tracks, often consist of a layer of very permeable 40 

material overlying a layer of finer less permeable material laid on top of an impermeable sub-41 

grade whose surface slopes away from a peak midway between drainage channels. 42 

   The Dupuit-Forchheimer approximation is conventionally used in investigations of the 43 

two-dimensional groundwater problem presented by flow to transverse drains due to steady 44 

accretion on the surface of lands overlying a moderately sloping impermeable bed, either 45 

assuming horizontal flow (Werner, 1957; Schmid and Luthin, 1964; Yates et al., 1985) or 46 

more realistically assuming flow parallel to the sloping bed (Wooding and Chapman, 1966; 47 

Childs, 1971; Towner, 1975; Lesaffre, 1987; Chapman, 1980).   Towner (1975) showed that 48 

the Hele-Shaw viscous flow analogue results of Guitjens and Luthin (1965) agreed with 49 
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Dupuit-Forchheimer calculations for even large slopes when the flow was assumed parallel to 50 

the bed although the agreement was poor when the flow was assumed horizontal.  51 

These studies all considered transverse drains on a continually rising sloping bed.  For 52 

steady-state drainage of lands overlying an impermeable bed that rises to a peak midway 53 

between uniformly spaced parallel drainage ditches, the water-table height midway between 54 

drains is a maximum.   The Dupuit-Forchheimer analysis is then simpler than that for the 55 

problem of interception of rainfall over sloping lands by parallel ditch drains along the 56 

contours where the location of the maximum water-table height is part of the solution.   As 57 

shown by Towner (1975) for drains along contours and by Youngs and Rushton (2009) for 58 

the present drainage situation for a uniform soil, there is little difference in the results 59 

assuming horizontal flow and those assuming flow parallel to the sloping bed when the slope 60 

is less than 10%.  However, the difference becomes significant for larger slopes when the 61 

Dupuit-Forchheimer analysis assuming horizontal flow gives poor agreement with numerical 62 

computations of the water-table profile solutions based on Laplace’s equation describing the 63 

head, while the analysis assuming flow parallel to the slope gives good agreement.  64 

In all these studies the soil over the sloping bed was assumed to be uniform. For soils 65 

whose hydraulic conductivity varies with height, Guirinsky’s (1946) extension of the Dupuit-66 

Forchheimer analysis can be used for soils overlying a horizontal impermeable base, while 67 

Youngs’ (1965, 1966) seepage analysis, founded on Charny’s (1951) work on flow through 68 

earth dams, gives an exact formulation of the problem of groundwater flow in layered soils, 69 

leading to estimates of bounds for the water-table profiles.  This exact analysis was extended 70 

to groundwater flow in layered sloping lands (Youngs, 1971), but does not provide solutions 71 

for the water-table profiles.  72 

In this paper the drainage of a two-layered soil region overlying an inverted V-shaped 73 

impermeable bed has been addressed analytically by assuming Dupuit-Forchheimer 74 

conditions with flow parallel to the bed and with the water table drawn down to the water 75 

level in ditch drains.  We assume the impermeable bed slopes away at a uniform angle from a 76 
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peak midway between the ditches. We compare and discuss our results with those obtained 77 

from numerical solutions of Laplace’s equation for the head assuming boundary conditions 78 

that include the existence of a seepage face at the drainage outfall.  Comparisons are also 79 

made between the Dupuit-Forchheimer calculations of the water-table profile and the 80 

laboratory model results for steady surface accretion on drained railway ballast foundations 81 

published by the Department of Civil and Environmental Engineering, University of 82 

Massachusetts, Amherst, USA (Heyns, 2000).  We also demonstrate the use of the Dupuit-83 

Forchheimer analysis by examining the effect on the water-table elevation due to clogging of 84 

the ballast.   85 

 86 

2. The physical problem 87 

 88 

We consider the two-dimensional flow region through a cross section of the two-layered 89 

soil that is sketched in Fig.1.  The soil overlies an impermeable bed that slopes downwards at 90 

an angle    to the horizontal from a central plane at x = 0.  The soil consists of a lower layer of 91 

depth t with hydraulic conductivity K0 overlain by a more permeable layer of conductivity K1. 92 

There is uniform steady accretion q over the surface which drains at x = ± D to a head HD. 93 

The accretion maintains the water table at a height H(x) above the floor at position x over the 94 

area.  Above the outfall water level HD at x = D a seepage surface exists to a height hf. 95 

The location of the water table in the two layers varies depending on the slope of the bed, 96 

the accretion rate, the ratio of the hydraulic conductivities and the outfall head.   When the 97 

outfall head is below the boundary of the two soil regions, for small values of q, q < q1, the 98 

water table is wholly contained in the lower soil layer of conductivity K0.  This situation is 99 

shown in Fig. 2a for a sufficiently small value of q < q1  (Case 1) that does not allow the 100 

water table to rise above the impermeable sloping base at the centre x = 0.  If q1  < q < q1 101 

(Case 2) the water table is above the base at x = 0 and the situation becomes that shown in 102 
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Fig. 2b.  For a range of values of q, q1 < q < q2 (Case 3), the water table is in the more 103 

permeable soil region with conductivity K1 over a section x1 < x < x2 of the region but is in the 104 

lower soil region near the centre and near the drainage ditch (Fig.2c). Again, the water table 105 

might drop to the impermeable base at x = 0 when the water table configuration in the lower 106 

layer in the central region becomes similar to that of Fig. 2a.  For large values of q, q > q2 107 

(Case 4a), the water table can be in the lower layer in a region near the outfall but in the 108 

upper layer over the rest of the region near the centre. This is shown in Fig. 2d.  However, the 109 

height of the seepage surface hf can be above the boundary between the two layers (Case 4b).  110 

In this case the water table lies wholly in the upper soil layer as shown in Fig.2e.  When the 111 

outfall ditch level is above the boundary between the two layers (Case 5), for smaller values 112 

of q and larger slopes, the water table could drop into the lower ballast layer as shown in Fig. 113 

2f, but for large values of q and smaller slopes the water table is wholly in the upper layer. 114 

Conditions giving rise to these situations can occur with ridge and furrow lands and also with 115 

railway ballast foundations with a very permeable ballast overlying a less permeable sub-116 

ballast.  When significant rainfall occurs, the water table rises progressively through the 117 

lower layer into the very permeable layer above as shown in Cases 1, 2 ,3 and possibly 4(a) 118 

and/or 4(b); when the rainfall stops the water table falls progressively through the situations 119 

described by these conditions.  Case 5 occurs when there is drainage surcharge and the water 120 

head builds up in the drainage channel. 121 

   The flow in each soil layer can be obtained by solving Laplace’s equation 02 =∇ h  for 122 

the hydraulic head h at (x,z) in the groundwater region. The boundary conditions of the 123 

problem are shown in Fig.3a. These are that there is no flow through the base of the lower 124 

layer and through the plane of symmetry at x = 0 and there is continuity of flow and 125 

hydraulic head between layers with the vertical flux, assumed equal to the accretion rate q, 126 

through the water table where h = z = H.  Thus we assume that flow is vertical in the 127 

unsaturated soil above the water table where it is refracted on entry. It was argued by Childs 128 

(1945) that this was a reasonable assumption for uniform soils in considering water-table 129 
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heights in drained lands, but Kacimov (2003) has demonstrated that with soils overlying a V-130 

shaped impermeable bed, the flow diverges from the vertical in the unsaturated region, 131 

leading to non-uniform flux through the water table. However, for small angles of slope such 132 

divergence may be assumed to be small.  At x = D water drains out of the soil into the ditch 133 

where there is a surface of seepage, so that h = HD, 0 < z < HD, and h = z, HD < z < hf , where 134 

HD is the ditch-water level and  hf is the height of the top of the seepage face.  Analytical 135 

solutions of Laplace’s equation with these boundary conditions have not been possible so that 136 

numerical methods of solution are needed.  137 

 138 

3.  Dupuit-Forchheimer solutions 139 

 140 

The boundary conditions to be applied with the approximate Dupuit-Forchheimer analysis 141 

to obtain the water–table profiles in the two-layered drainage situation shown in Fig.1 when 142 

flow is assumed parallel to the impermeable base, are shown in Fig.3b. The water-table 143 

height is a maximum at the centre of the soil region at x = 0. With a uniform accretion rate q, 144 

assumed to be the vertical flux through the water table, the flow per unit width down the 145 

slope is qx, discharging qD into the ditch.     However, as discussed by Youngs and Rushton 146 

(2009) the assumption of flow parallel to the slope requires the ditch face to be normal to the 147 

sloping bed and the inclusion of fictitious flow regions upslope from the central plane and 148 

another overhanging the ditch as shown in Fig.3b.  When    is small, as in the examples given 149 

later in this paper, the overhang becomes unimportant, increasing the total inflow by less than 150 

0.5 % for a 5% slope. 151 

 152 

3.1:  Water table in upper layer 153 

 154 
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   When the water table is in the upper soil layer, the flow per unit width assumed parallel 155 

to the sloping bed is  156 

 157 

{ }
s
HxDtHKtKqx

d
d)cos()]tan()([10 αα−−−+−=      (1) 158 

 159 

where s is the coordinate measured down-slope with s = 0 corresponding to the water-table 160 

height at x = 0 and s = sD (a function of the slope of the bed, accretion rate and hydraulic 161 

conductivities of the layers) at x = D (see Fig.3b), so that  162 

 163 
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 165 

giving 166 

 167 
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x
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x
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 169 

as deduced by  Childs (1971) and Youngs and Rushton (2009). 170 

 171 

Thus, in terms of the horizontal coordinate x 172 

 173 

{ }
x
HqxxDtHKtKqx

d
d)tan()]tan()([10 αα −−−−+−=      (3) 174 

 175 

An analytical solution of eq,(3) is obtained using the substitution 176 

 177 

xxKqtKKDHw /)]tan()/1()1()tan([ 110 αα −+−−−=     (4) 178 
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 179 

Equation (3) then becomes 180 

 181 
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 183 

so that after integration, x as a function of w is given by 184 
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where the lower integration limit of w is wi at x = x(wi).  Noting that 188 
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  191 

we can write the solution of eq.(6) in the form  192 

 193 

)}](f)(f{exp[)()( ii wwwxwx −−=         (8) 194 

 195 

with a =1, b = - (1 - q/K1)tan( ) and c = q/K1 in f(v) of eq.(7).  In eq.(8) wi is obtained from 196 

eq.(4) for the given value of H  at x(wi). With eq.(8) giving the coordinate x as a function of 197 

w, the water-table height H at a given x is obtained from eq.(4) so that 198 

 199 

)tan()()1()1()tan()( 110 αα wxKqtKKDwwxH −−−++=     (9) 200 

 201 
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3.2:  Water table in lower layer 202 

 203 

   When the water table is located in the lower layer, the flow q is given by (Youngs and 204 

Rushton, 2009) 205 

 206 

{ }
x
HqxxDHKqx

d
d)tan()]tan()([0 αα −−−−=      (10) 207 

 208 

With u defined by 209 

 210 

xxKqDHu /)]tan()/1()tan([ 0 αα −+−=      (11) 211 

 212 
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 214 

so that 215 

 216 
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 218 

with a =1, b = - (1 - q/K0)tan( ) and c = q/K0 in f(v) of eq.(7).  The lower limit of integration 219 

ui in eq.(13) is obtained from eq.(11) for the known value of H at x(ui).  With eq.(13) giving  220 

x as a function of u, the water-table height H at a given x is then found from eq.(11) as 221 

 222 

)tan()()1()tan()( 0 αα uxKqDuuxH −−+=      (14) 223 

 224 
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    The Dupuit-Forchheimer analysis of the drainage problem assumes the water-table height 225 

is drawn down to the ditch-water level.  Thus at the ditch from eqs.(11) and (4) 226 

 227 

tHHDx
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q
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 231 

At the positions x1 and x2 where the water table crosses over from one layer to the other, u = 232 

t/x –q/K0 tan( ) and w = K0t/K1x – q/K1 tan( ).  The water-table profile is obtained by finding x 233 

as a function of u from eq.(13) when the water table is in the lower layer or as a function of w 234 

from eq.(8) when it is in the upper layer; H at a given x is obtained from eq.(14) or eq.(9), 235 

using the appropriate value of ui or wi in eq(13) or (8).  Values of u and w where the water 236 

table crosses the interface between layers are found by trial and error, hence determining x1 237 

and x2.  The calculation of the water-table profile in a practical example is given in Table 1. 238 

 239 

3.3:  Application to individual cases 240 

 241 

   Case 1: Water table wholly in lower layer, HD < t at x = D, H =D tan( ) at x = 0.  Fig.2a 242 

sketches this situation. The water table lies wholly in the lower layer with the accretion rate q 243 

< q1′ insufficient to raise the water table to meet the boundary between the two layers at any 244 

distance from the outfall.  The situation is thus that discussed by Youngs and Rushton (2009). 245 

Also the accretion rate in this case is insufficient to raise the water table above the 246 

impermeable base at the centre. x(u) is calculated from eq.(13) with ui given by eq.(15)    , , 247 

and the water-table height H found from eq.(14).  In this case the parameter u is finite at x = 0 248 

and is found by trial and error.  The limiting value of q/K0 below which the water table meets 249 
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the impermeable bed at x = 0 is (tan )2/4 (Youngs and Rushton, 2009).  It is to be noted that 250 

the water table meeting the impermeable bed at x = 0 results from the assumption of the 251 

uniform surface accretion travelling to meet the water table without diverging from the 252 

vertical.  If the divergence (as would be the case at large slope angles) were taken into 253 

consideration, then the water table would meet the impermeable bed at some distance down 254 

slope. 255 

 256 

   Case 2: Water table wholly in lower layer, HD < t at x = D, H > D tan( ) at x = 0. Fig.2b 257 

illustrates this case when the accretion rate q1′ < q < q1 is sufficient to raise the water table 258 

above the impermeable floor at the centre but insufficient for the water table to penetrate into 259 

the upper layer. Again this corresponds to the situation considered in Youngs and Rushton 260 

(2009).  The calculations proceed in the same way as for Case 1, but in this case q/K0 > 261 

(tan )2/4 at x = 0 and u →   as x → 0.  262 

 263 

   Case 3: Water table in lower layer x < x1 and x > x2, in upper layer x1 < x < x2, HD < t at 264 

x = D.  This is the situation sketched in Fig.2c.  The accretion rate q1 < q < q2 is such that the 265 

water table is in the lower layer in the vicinity of the central area but crosses into the upper 266 

layer at x = x1 before descending into the lower layer at x = x2 to drain at x = D to an outfall 267 

at height HD < t. The range of values of accretion rate q1 < q < q2 when this occurs is 268 

determined by the hydraulic conductivities of the two layers, the thickness t of the lower layer 269 

and the slope of the bed. In the region x2 < x < D, H is obtained from eq.(14) as for Case 1  270 

with ui given by eq.(15) and x(u) calculated from eq.(13) with the calculation proceeding until 271 

u = t/x2 -  q/K0 tan( ).  For x2 > x > x1 the water table height H is given by eq.(9) with wi = 272 

K0t/K1x2 - q/K1 tan( )  and x(w) given by eq.(8), the calculation proceeding until w =  K0t/K1x1 273 

- q/K1 tan( ).   Between x1 > x > 0 the water table is obtained from eqs.(13) and (14) with ui = 274 
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t/x1 - q/K0  tan( ).  q1, the lower value of q, is when H – D tan( ) → t as x2 → 0.  q2, the upper 275 

value, is when H – D tan( ) → t as x1 → 0. 276 

 277 

   Case 4: Water table in lower layer x > x2, in upper layer x < x2, HD < t at x = D.  This 278 

situation, sketched in Fig.2d for the case of a seepage surface with hf < t and in Fig.2e for a 279 

seepage surface with hf > t, occurs when the accretion rate is increased beyond q2. The 280 

procedure for the Dupuit-Forchheimer calculation of the water table is the same as for Case 3 281 

except only the first two calculations are performed. Since the seepage surface at the outfall is 282 

neglected in the Dupuit-Forchheimer calculations and the water table in the soil is assumed to 283 

be drawn down to the ditch water level, Case 4b shown in Fig.2e would give the same result 284 

as for Case 4a shown in Fig.2d with the water table wrongly calculated to cross into the lower 285 

layer. 286 

 287 

   Case 5: Outfall above layer boundary.  With the water level at the outfall above the 288 

boundary between the two layers, the water table can penetrate into the lower layer for small 289 

accretion rates and large slopes, as illustrated in Fig.2f.  The calculation of the water-table 290 

profile then follows the last two parts of the procedure given for Case 3 with wi  given by 291 

eq.(16).  For large accretion rates and small slopes the water table is located always in the 292 

upper layer when the outfall is above the boundary between layers and is calculated from 293 

eq.(9). 294 

           295 

4. Numerical solutions of Laplace’s equation 296 
 297 

The reliability of the application of the Dupuit-Forchheimer analysis can be checked by 298 

obtaining numerical solutions of Laplace’s equation with the physical boundary conditions 299 

given in Fig.3a.  Both the water-table profile and the height of the seepage surface are 300 

unknown and emerge as part of the solution in the numerical investigation.  301 
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   Numerical solutions for specific problems can be obtained using the finite difference 302 

approximation method (Rushton and Redshaw, 1979).  Due to the unknown location of the 303 

water table and hence the top of the seepage face, an iterative technique is required with a 304 

series of trial solutions for the water-table location.  When the water table is entirely in the 305 

lower layer, Cases 1 and 2 (Figs.2a and 2b), or entirely in the upper layer, Case 4b (Fig.2e), a 306 

systematic series of trial solutions leads to the water-table elevations and the height of the top 307 

of the seepage face, hf.  However, when the water table crosses the interface between the two 308 

regions, many trials are required before a satisfactory approximation is obtained for the 309 

crossover points and the water-table elevation.  For most problems, a regular rectangular 310 

finite difference mesh is used.  On the other hand, for Case 4(a) the steep fall in the water 311 

table from the interface towards the downstream boundary, requires closer vertical grid lines 312 

towards the downstream face.  Due to the sudden change in the hydraulic gradients at the 313 

interface between the two layers, solutions were obtained for a ratio of the hydraulic 314 

conductivities in the upper and lower layers of K1/K0 = 10.  For larger values of K1/K0, it is 315 

difficult to obtain reliable finite difference solutions.   For all the numerical solutions, results 316 

are presented for the water table profile, the equipotentials and the height of the seepage face 317 

hf.   318 

 319 

5. Dupuit-Forchheimer calculations and Laplace numerical results 320 

 321 

The Dupuit-Forchheimer calculations of the water-table profiles for different cases that can 322 

arise for drainage of a two-layered permeable region overlying an inverted V-shaped 323 

impermeable bed are compared with Laplace numerical solutions for the particular example 324 

presented by the drainage of ballast foundations beneath railway tracks. The results are given 325 

in Figs 4-9.  In these we considered a typical railway ballast geometry with a half-width D = 326 

2.25 m of depth t = 0.125 m; the slope of the base above the horizontal is   = tan-1 0.05. The 327 
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upper layer is assumed to have a hydraulic conductivity K1 = 10 K0.   (Note that in these 328 

figures the vertical coordinate is five times that of the horizontal.)  In most cases, there is 329 

good agreement between water-table elevations deduced from the two approaches except in 330 

the vicinity of the drainage ditch where the Dupuit-Forchheimer analysis ignores the 331 

existence of a seepage face which is included in the Laplace solution.  For Case 4(b) shown 332 

in Fig.8 the downstream water level is at the base of the aquifer so that the water table, 333 

according to the Dupuit-Forchheimer approximation, falls to this level.  However, in the 334 

Laplace solution the seepage face is found to be above the interface.  Consequently there is a 335 

significant difference between the water-table elevations for large x near the drainage ditch.  336 

Due to the discrete mesh used in the numerical solution of the Laplace equation, the accuracy 337 

of the water-table elevation is about   0.005 m. When the outfall is above the boundary of the 338 

two layers, the seepage surface in the more permeable layer included in the Laplace solution 339 

is a small distance above the interface; when the outfall level is below the interface it is a 340 

prominent feature. The equipotentials obtained are very nearly normal to the impermeable 341 

base except near the outfall ditch and midway between ditches.   342 

   The area over which the upper layer contains the water table when the accretion rate 343 

becomes large depends on the slope of the bed, the hydraulic conductivities of the two layers, 344 

the elevation of the downstream water level and the accretion rate.  Fig.10 plots the values of 345 

x1 and x2, the distances at which the water table crosses the boundary between layers (see Fig. 346 

1), against the ratio of the accretion rate to the hydraulic conductivity of the lower layer when 347 

the ditch-water level is zero for the examples given in Figs 4 to 8.  It is seen that x1, the cross-348 

over distance nearest to the watershed, occurs over a limited range 0.0069   q/K0   0.016.  The 349 

horizontal line on Fig. 10 refers to q/K0 = 0.01 for which x1 = 0.317 m and x2 = 1.75 m as in 350 

the example shown in Fig. 6.  For Cases 1 and 2, q/K0 < 0.0069; consequently the water table 351 

is always below the interface.  For Case 4(a) shown in Fig. 7 with q/K0 = 0.02, x2 = 2.05 m, 352 
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but there is no value for x1 because the water table does not fall below the interface towards 353 

the watershed.   354 

 355 

6. Dupuit-Forchheimer results and laboratory experiments 356 

 357 

Heyns (2000) reported an extensive study of the drainage of railway ballast using a tilting 358 

tank containing a sub-ballast overlain by a ballast; water was sprayed from nozzles to 359 

simulate rainfall. His main interest was in non-steady state conditions, especially the 360 

recession of the water table after the rainfall ceased. However, the simulated rainfall 361 

continued for a sufficient time for a steady-state to be reached.  362 

 In Fig.11 we compare one of his steady-state results with our Dupuit-Forchheimer 363 

calculations; water-table heights deduced from five piezometers are shown in the figure by 364 

the symbol +.  Due to the experimental technique, in which the piezometers are connected to 365 

the base of the tank, the accuracy of the estimates of water table elevation is unlikely to be 366 

better than 0.005 m.  A two-layered railway ballast bed was modelled with a lower less 367 

permeable layer of porous material having a hydraulic conductivity equal to 65 md-1 (K0) to a 368 

depth t =  0.14 m overlain by a very permeable material of conductivity 3250 md-1 (K1).  In 369 

the experiments water was sprayed on to the surface for three hours at a rate 2.7 md-1.  370 

Outflows occurred from both the upper and lower layers at a distance 1.88 m from the mid-371 

plane; this is assumed to be the value of D used in the calculations.  Two Dupuit-Forchheimer 372 

calculations are included on the figure.  The full line corresponds to HD = 0.0 with the water 373 

table in the lower layer in the region midway between drains, crossing into the upper layer 374 

before entering again the lower layer (Case 3 of Section 3); for the broken line HD = 0.14 m 375 

where the water table does not enter again the lower layer (Case 5), chosen to represent 376 

conditions actually observed in the experiment of outflow both from the upper and lower 377 

layers at this downstream boundary.   It is seen that good agreement is obtained between the 378 

experimental and Dupuit-Forchheimer estimates.  379 
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Table 1 contains some results of calculations that give the Dupuit-Forchheimer plots in 380 

Fig.11, following the procedure given for Case 3 in Section 3.  These calculations were 381 

performed using computer algebra with the mathematical package Mathcad (Mathsoft Inc., 382 

201 Broadway, Cambridge, Mass., U.S.A.) 383 

   Parsons (1990) discusses the reduction of hydraulic conductivity of the ballast [upper 384 

layer] due to clogging of pores. From experiments using a falling head permeameter, Parsons 385 

found that the hydraulic conductivity for moderately clean ballast is typically one tenth of the 386 

value for clean ballast; for moderately fouled ballast the hydraulic conductivity is about one-387 

twenty fifth of the value for clean ballast.  In Fig.12 we also show the calculated water-table 388 

profiles when K0 and K1 are reduced to 0.1 and 0.04 of their original values to represent 389 

clogging.  With the hydraulic conductivities at 0.1 of the original values, the maximum 390 

water- table elevation is 0.24 m above the base (0.1 m above the interface).  For moderately 391 

fouled ballast, with hydraulic conductivities set at 0.04 of the original values, the maximum 392 

water-table elevation is 0.34 m above the base (0.2 m above the interface).  This means that 393 

the water table approaches the bottom of the track sub-structure a condition that needs to be 394 

avoided.  For hydraulic conductivities 1% of their original values, the maximum water table 395 

elevation is 0.61 m above the impermeable base.   396 

 397 

7. Discussion and conclusion 398 

 399 

This paper has particular relevance to the problem of drainage of the ballast beneath 400 

railway tracks that, if not attended to, risks the water table reaching the level of the sleepers 401 

when severe operational speed restrictions have to be imposed due to reduced strength of the 402 

track foundations.  The problem considered here also occurs in agricultural ridge and furrow 403 

drainage where the water table is controlled to provide suitable conditions for root 404 

development and livestock grazing.  In these situations there is an underlying impermeable 405 

undulating base, overlain by a permeable surface layer on top of a less permeable layer.  We 406 
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have used the Dupuit-Forchheimer analysis to consider the steady-state drainage of two-407 

layered soil regions overlying an inverted V-shaped impermeable bed that approximates the 408 

situation.  Our results have been compared with numerical solutions of Laplace’s equation for 409 

the head distribution and also the results of laboratory model experiments of the drainage of a 410 

railway ballast foundation. 411 

These steady-state results provide a theoretical background for more general time-variant 412 

studies of the problem (Rushton and Ghataora, 2009).  Cases 1 to 4 discussed here can occur 413 

with the drainage of the railway ballast where a very permeable ballast overlies sub-ballast 414 

with a hydraulic conductivity at least an order of magnitude less.  Case 5 is relevant to the 415 

situation when there is surcharge in the drain and a low accretion rate. 416 

The upper layer clearly plays a major role in preventing the water table rising to the surface 417 

when the accretion rate is large.  Our results show that the high conductivity of the surface 418 

layer insures the water table to follow close to the boundary between the layers when the 419 

accretion rate is sufficient for the water table to rise above the less permeable layer. 420 

The agreement obtained between the Dupuit-Forchheimer results and the Laplace 421 

numerical calculations of the water-table profile in drained two-layered soils overlying a 422 

sloping bed gives confidence in using the approximate analysis in these situations.  This is 423 

important since two-dimensional numerical computations involving a water table crossing 424 

between layers are time consuming and particularly difficult when there is a large difference 425 

in conductivity in the two layers, while Dupuit-Forchheimer calculations are easily performed 426 

with computer algebra.  Further confirmation of the efficacy of the application of the Dupuit-427 

Forchheimer is given with the agreement between the calculations of the water-table profile 428 

and the experimental results of Heyns (2000) laboratory experiment of a two-layered railway 429 

track ballast foundation.  Application of the Dupuit-Forchheimer analysis shows the effect on 430 

the water-table heights in such situations due to the fouling of the ballast and sub-ballast with 431 

the consequent reduction in hydraulic conductivities. 432 

 433 



ACCEPTED MANUSCRIPT 
- 18 - 

 18

Notation 434 

 435 

D = drainage ditch half-spacing (L); 436 

H = water-table elevation (L); 437 

H0 = water-table elevation at watershed (L); 438 

HD = ditch-water level (L); 439 

h = hydraulic head (potential) (L); 440 

K0 = hydraulic conductivity of lower layer (LT-1); 441 

K1 = hydraulic conductivity of upper layer (LT-1); 442 

q = accretion rate (LT-1); 443 

q1 = limiting accretion rate for the water table to be wholly in the lower layer (LT-1); 444 

q1′ = limiting accretion rate for the water table to meet the impermeable bed at the watershed 445 

and be wholly contained in the lower layer (LT-1); 446 

q2 = limiting accretion rate for the water table to be in the upper layer over a section of the 447 

region but in the lower layer near the watershed (LT-1); 448 

s = coordinate along sloping bed (L) 449 

sD = value of s at x = D (L); 450 

t = thickness of lower layer (L); 451 

u,w  = parameters used in calculating the water–table profile when the water table is located 452 

below and above the boundary between layers, respectively;  453 

ui,wi = lower integration limits of u,w; 454 

x = horizontal coordinate (L); 455 

x1,x2 = coordinates where the water table crosses the boundary between the layers (L); 456 

z = vertical coordinate (L); 457 

  = slope angle. 458 

 459 
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Legend to Figures 507 

 508 

Fig. 1.  Drainage to ditches in two-layered soil regions overlying an inverted V-shaped 509 

impermeable base. 510 

 511 

Fig. 2.  The water-table profiles in a drained two-layered soil overlying an inverted V-shaped 512 

impermeable base for the different cases discussed in the text. 513 

 514 

Fig.3. (a) The boundary conditions of the two-dimensional physical problem; (b) the flow 515 

conditions assumed in the Dupuit-Forchheimer analysis. 516 

 517 

Fig. 4.  Calculated water-table profiles for Case 1 sketched in Fig.2a. 518 

 519 

Fig. 5.  Calculated water-table profiles for Case 2 sketched in Fig.2b. 520 

 521 

Fig. 6.  Calculated water-table profiles for Case 3 sketched in Fig.2c. 522 

 523 

Fig. 7.  Calculated water-table profiles for Case 4a sketched in Fig.2d. 524 

 525 

Fig. 8.  Calculated water-table profiles for Case 4b sketched in Fig.2e. 526 

 527 

Fig. 9.  Calculated water-table profiles for Case 5 sketched in Fig.2f. 528 

 529 
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Fig. 10.  Locations x1 and x2 where the water table crosses the interface as a function of the 530 

accretion rate q.  531 

 532 

Fig. 11.  Steady-state water-table profiles calculated by the Dupuit-Forchheimer analysis 533 

compared with Heyns’ (2000) laboratory experiment: (K1 = 3250 md-1; K0 = 65 md-1; q = 2.7 534 

md-1). 535 

 536 

Fig. 12.  Effect of clogging of ballast on water-table elevations. 537 

 538 

Table 539 

 540 

Table 1. Calculation of the steady-state water-table profile shown in Fig.11 for zero ditch-541 

water level and for a ditch-water level at the top of the sub-ballast. 542 
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Table 1. Calculation of water-table profiles shown in Fig. 11.


   u    w       x (m)     H (m)

eq.(8) or (13)] eq.(9) or (14)


HD = 0
- 0.00208 1.880 (D) 0
0 1.880 0.0039
0.002 1.880 0.0077
0.005 1.879 0.0133
0.01 1.878 0.0228
0.02 1.871 0.0418
0.04 1.844 0.0794
0.06 1.800 0.1157
0.07797 0.001559 1.749 (x2) 0.1466

0.005 1.734 0.1532
0.01 1.645 0.1655
0.015 1.440 0.1809
0.02 1.111 0.1979
0.025 0.7328 0.2130
0.03 0.4308 0.2227
0.035 0.2509 0.2275
0.04 0.1592 0.2297
0.05 0.07615 0.2313

2.99780 0.059956 0.04669 (x1) 0.2317
5 0.02784 0.2319
10 0.01386 0.2320
100 0.001380 0.2321
1000 0.0001380 0.2321


HD = 0.14 m
0.001442 1.880 (x2,D) 0.14
0.01 1.776 0.1603
0.015 1.555 0.1768
0.02 1.200 0.1953
0.025 0.7909 0.2115
0.03 0.4650 0.2220
0.035 0.2708 0.2272
0.04 0.1683 0.2296
0.06 0.05028 0.2318

3.16237 0.063250 0.04424 (x1) 0.2319
5 0.02786 0.2320
10 0.01387 0.2321
100 0.001381 0.2322
1000 0.0001381 0.2322

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