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and analysis

A. Steuwera! and P. J. Withers
Materials Science Centre, University of Manchester, Grosvenor Street, Manchester M1 7HS,
United Kingdom

J. R. Santisteban and L. Edwards
Department of Materials Engineering, Open University, Milton Keynes MK7 1AA, United Kingdom

sReceived 19 August 2004; accepted 10 December 2004; published online 22 March 2005d

The total scattering cross section of polycrystalline materials in the thermal neutron region contains
valuable information about the scattering processes that neutrons undergo as they pass through the
sample. In particular, it displays characteristic discontinuities or Bragg edges of selected families of
lattice planes. We have developed a pixelated time-of-flight transmission detector able to record
these features and in this paper we examine the potential for quantitative phase analysis and
crystalline phase imaging through the examination of a simple two-phase test object. Two strategies
for evaluation of the absolute phase volumesspath lengthsd are examined. The first approach is
based on the evaluation of the Bragg edge amplitude using basic profile information. The second
approach focuses on the information content of certain regions of the spectrum using a Rietveld-type
fit after first identifying the phases via the characteristic edges. The phase distribution is determined
and the coarse chemical species radiographic image reconstructed. The accuracy of this method is
assessed. ©2005 American Institute of Physics. fDOI: 10.1063/1.1861144g

I. INTRODUCTION

Using a transmission detector one can measure the
change in intensity brought about by the insertion of the
sample in the beam.1 In principle, the transmission spectrum
contains information about all the different scattering and
reaction processes that have occurred in the sample. The
spectrum, or rather the total scattering cross section, displays
an intricate pattern in the thermal regime where coherent
elastic scattering dominates for many materials.2,3 As an es-
sentially energy dispersive technique, the framework of
time-of-flight4 provides the possibility of investigating the
spectra conveniently and directly as a function of neutron
wavelength. There has been a long history of measuring fun-
damental properties by neutron transmission, but except for
radiography, transmission techniques have never really found
their way into mainstream application. The scope of trans-
mission techniques are inherently limited to features defined
by the detector resolution and sample sizes defined by the
scattering properties and path lengthsthicknessd of the
sample or constituent phase. The intensity of neutron beams
and the efficiency and spatial resolution of new detectors5 at
spallation sources have led to a reappraisal of transmission
techniques opening up the possibility of basic crystalline
phase imagingsradiographyd, and thereby implicitly tomog-
raphy. Transmission measurements have already been used
successfully to monitor phase transformations and relative
phase volume fractions in metals6–9 but usually complemen-
tary methods have been relied upon for the calibration of
phase volume fractions. A combination of both imaging and
diffraction with a pixelated time-of-flightsTOFd transmission

detector would allow time and spatially resolved monitoring
of phase transitions, with the possibility of fast quantitative
phase analysis.

In this paper, we outline a framework for extracting
phase information quantitatively, and show how TOF neu-
tron transmission can be used to undertake spectroscopic ra-
diography. We analyze certain features of the transmission
spectrum in the thermal region of 0.5–5.5 Å, based on a
semiempirical approach. We determine the phase volume
fraction of a simple two-phase test object containing iron and
copper via a twofold approach. First, using the amplitude of
the Bragg edges as the basic measure of phase volume, and
secondly based on a whole-pattern, Rietveld-type refinement
approach.10 Additionally we present the results of applying a
phase filtering technique to the data to obtain phase contrast
images. A few preliminary results of the material presented
in this paper have already been presented to the European
Conference on Neutron Scattering in Montpelliers2003d, and
have been published in Ref. 11.

II. THEORETICAL BACKGROUND

For a sufficiently polycrystalline materialsthat is for a
material which contains many randomly oriented grainsd
placed in a neutron beam there will always be a subset of
suitably aligned grains that diffract these neutrons of a given
wavelength into the appropriate scattering cone at an angle
2u. The resulting reduction in transmission intensityI trsld to
the incident intensityI insld is given by the general relation

I trsld = I insldexps− Ncwstotsldd, s1d

wherel is the neutron wavelength,Nc the number of atoms
per unit volume, andstot is the atomic total scattering cross
section.1 The quantityTw=exps−Ncwstotd is also known as
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the transmission factor and describes the probability that a
neutron will be transmitted a distancew. The total cross sec-
tion is obtained from the measured spectra by inverting Eq.
s1d. Practically, it is often more convenient to use the so-
called macroscopic cross sections, e.g.,ocohsldw
=Ncwscohsld, which describe the bulk properties of the ma-
terial. The macroscopic cross sections can be defined aso
=Ncs=NArs /A=s /v0, where NA=0.602231024 is
Avogadro’s number,r the density of the material,A its
atomic weight, andv0 the volume of the unit cell.12,13Similar
to linear attenuation constants in conventional x-ray diffrac-
tion, they are quoted in units of cm−1. Optionally, one can
include a scale factors=r /r8 which takes into account the
difference between actual and theoretical density of the
specimen, e.g., for powders. At short path lengths both the
scattering and attenuation processes suffer from low signal.
With increasing path length the coherent scattering becomes
more significantsdepending on the scattering lengthd because
the number of scattering centers increases drastically. How-
ever, further increases in path length also gives rise to con-
siderable attenuation and eventually the coherent scattering
fingerprint becomes suppressed by the overall loss of signal
due to subsequent attenuation.

The many different contributions to the total scattering
cross section have been discussed and derived in great detail
elsewhere.2,14–16

Other scattering effects, such as small angle scattering,
extinction, and second order, multiple-scattering events are
not insignificant for the current experimental set-up and
sample geometry, but a comprehensive discussion is beyond
the scope of this paper. In the following, we review only the
basic factors affecting the transmitted intensity for a simple
iron–copper test object in order to examine the feasibility
of crystalline phase imaging and quantitative analysisssee
Fig. 1d.

A. The coherent elastic scattering

Quantitative phase analysis methods often use the inten-
sity of a Bragg peak as a measure of the amount of material
of a particular phase in the specimen. Coherent elastic or
Bragg scattering, which is the cause for these peaks, is de-
scribed by the Bragg equation and can be formulated for the

transmission geometry. In TOF, for a givenhkl-reflection the
scattering angle approaches 2u=180° with increasing wave-
length until a fraction of the incident neutrons is completely
backscattered towards the source. At this point the diffracting
lattice planes are aligned so that their plane normal is parallel
to the beam. For longer wavelengths, Bragg diffraction from
this particular set of lattice plane spacings can no longer
occur. This is accompanied by a sudden increasesa Bragg
edged in the transmitted intensity, and equivalently a drop in
the scattering cross section. As a result, the position of each
Bragg edge corresponds to a particular lattice spacing char-
acteristic of the crystal structure of the sample, as indicated
in Fig. 2. In the framework of TOF one obtains for Bragg’s
equation in transmission

l = 2d =
h

mnL
t, s2d

whereL is the length of the flight path,mn the neutron mass,
h is Planck’s constant, andt the time elapsed before the
neutron is detected. Hence, for a particularhkl reflection
with d-spacing dhkl, the Bragg edge position can be ex-
pressed without loss of generality in a TOF equivalent asthkl.
A Bragg edge in the total cross section is formed when one
family of lattice planes ceases to contribute to the scattering,
as described by Eq.s2d. For the lowest possible reflection,
this is commonly known as the Bragg cut-off. As a result, the
coherent elastic scattering cross section contains important
information about the crystalline state of the sample. In the
thermal regime for a texture-free polycrystalline solid it is
given by

scoh
el sld =

l3

2v0 sinu
o
hkl

MhkluFhklu2DhklHs2dhkl − ld, s3d

whereDhkl is the usual Debye–Waller factor andFhkl is the
structure factor of the unit cell for thehkl-reflection.1 For the
sake of simplicity later, we have chosen to separate the
Debye–Waller factor and the structure factor, which to the
degree of accuracy aimed at in this paper should be permis-
sible. Also, by using a multiplicity factorMhkl the sum in Eq.

FIG. 1. A schematic of the experimental set-up and the test object. The test
object was placed in front of the pixelated transmission detector. Two im-
ages have been recorded, in between which the sample was translated hori-
zontally by half the pixel spacings1.25 mmd perpendicular to the beam.

FIG. 2. The transmission spectrumstotal scattering cross sectiond for each
of the eight columns for the first sample position. Only the central four
columns exhibit Cu edges, accompanied by a strong increase in the absorp-
tion rate.
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s3d is over all symmetry related reflectionshkl. The Heavi-
side step-functionH ensures that the the Bragg constraint
2dùl is fulfilled, and provides the basic theoretical edge
profile. Each Bragg edge amplitude only depends on the co-
herent elastic scattering of one familyhkl of lattice planes
which suddenly ceases to scatter neutrons from the beam, as
the other cross sections are slowly varying functions over the
small wavelength range of a Bragg edge.17 In practice, a
particular edge, say att0 has a finite width and a distinct
profile as a function oft= t− t0. Typically, it can be
refined18,19 using a normalized integral of a Gaussian
Gst ,sGd convoluted with a cut-off decaying exponential
fEst ,ad=exps−atd ,tù0;Est ,ad=0,t,0g to give it the char-
acteristic asymmetry20,21 arising from the pulsed nature of
the way neutrons are produced,

Bst,sG,ad =E
−`

t

Gst,t0,sGd ^ Est,t0,addt. s4d

Therefore each Bragg edge has a characteristic set of profile
parameterssamplitude, width, and positiond analogous to a
conventional Bragg peak. This opens up the possibility of
applying the whole-pattern decomposition techniques of con-
ventional powder diffraction22,23 in order to extract informa-
tion from the spectrum. In the case of relative phase volume
fraction determination, given a suitable implementation of
the profile around the edge, each observed Bragg edge pro-
file contributionbci, where the subscripti indicates theith
data point in the profile, can be expressed in a similar fashion
to Eq. s3d in Ref. 24 as

bci = SMhkluFhklu2DhklBi s5d

with a scale factorS=sNcl
3/4v0dw. This scale factor is re-

fined during the fitting of the Bragg edge, and proportional to
the phasesvolumed path lengthw. Considering the finite area
AD of each detector pixel, this determines the total mass
s<ADwNArd of the phase along the beam path. The concept
of a phase volume is therefore equivalent to that of a phase
path lengthfor the transmission geometry. The generaliza-
tion to a multiphase systemsand powdersd is straightforward.
The relative phase path lengthswi are then given bywi

=Si /o jSj. In the case of absolute phase volume fraction de-
termination, using basic assumptions about the crystallo-
graphic structure of the phases from the observed patterns,
the theoretical Bragg edge amplitudeDhkl=socoh

el wdhkl of a
particular Bragg edgehkl in the normalized spectrum can be
used to estimate the amount of that particular phase.

Practically, this can be achieved by fitting a step-function
discontinuity in the vicinity of the Bragg edge instead of the
asymmetric Bragg edge profileBst ,sG,ad described above
sequivalent to having no instrumental or sample broadeningd.
The measured edge amplitudesas cross sectiond amplitude
Dhkl is given by the particularhkl-term contributing to
ocoh

el sld only. Therefore one can estimate the absolute path
lengthw from Eq. s3d for a bcc material as

w =
An3/2Dhkl

4b2DhklMhklNAr
= C 3

n3/2Dhkl

DhklMhkl
, s6d

wheren2=h2+k2+ l2 is the index of the reflection,A is the
atomic number of the single-phase element, and because for
a bcc crystal, the structure factor reduces touFhklu2=s2bd2 if
the sum h+k+ l is an even number and zero otherwise.
fEqually, for fcc materials, this readsuFhklu2=s4bd2, for h,k, l
all even or all odd.g Since for each spectrum the path length
and scattering properties of the sample are constant, the di-
mensionless quantityfhkl=n3/2Dhkl/DhklMhkl has to yield the
same numeric value for all edges, and is proportional to the
path length of the underlying phases. The quantityC
=A/4b2NAr in Eq. s6d carries the unit length, and defines the
proportionality between observed Bragg edge amplitude and
phase volumespath lengthd. It is here that more specific as-
sumptions about the nature of the phases have to be made.
For oursalmostd pure Fe and Cu test object,C has the values
CFe=3.27 cm andCCu=4.96 cm, respectively. If many Bragg
edges are fitted separately to evaluate the path length Eq.s6d
extends tow=psscNcd−1kfhkll, wheresc=4pb2 andk¯l can
be the normal arithmetic mean. It is always possible, of
course to add further constraints which reflect the crystallo-
graphic nature of the phase to the fitting of Bragg edge am-
plitude. It is worth mentioning here that unlike absorption
ssee Sec. II Cd the coherent scattering cross section, strictly
speaking the sum of all scattering amplitudes in the unit cell
sc=4puorbrpru2, should not be greatly affected by the pres-
ence of small amounts of impurities or alloying elements in
the sample. Unlike many stainless steels, the ferritic steel
used here contains only small amounts of other elements,
e.g., typically between 0.6% – 1% of manganese, and less
than 1% carbon. It is of course straightforward to write down
sc if the alloy composition is known.

B. Single-phonon thermal diffuse scattering

It is a common procedure to separate the thermal diffuse
scatteringsTDSd of phonon excitations into single-phonon
and multiple-phonon scattering cross sections, where the lat-
ter is only significant forE@kBT, and can for the present
case be neglected.25 In the regime beyond the Bragg cut-off
the neutrons scatter inelastically mainly through the annihi-
lation of phonons.26 Following Freund,25 the scattering cross
section for single-phonon scatteringssph can be expressed as

ssph=
3sbat

A
SkBuD

E
D1/2HRsxd x ø 6

3.3x−7/2 x ù 6
J , s7d

whereuD is the Debye temperature,x=uD /T, andsbat is the
sum of the bound coherent and incoherent scattering cross
sections. The functionRsxd is given by

Rsxd = o
m=0

`
Bmxm−1

fm ! sm+ 5/2dg
, s8d

whereBm are the Bernoulli numbers. Evaluating the sum up
to m=22, we calculated the single-phonon TDS cross sec-
tions at room temperature for Fe and Cu asssph

Fe sld=4.01
310−25 cm2 Å−1l and ssph

Cusld=2.31310−25 cm2
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Å−1l for wavelengthsl larger than given by the Bragg cut-
off.

C. Absorption

True absorptionscaptured follows with few exceptions
the so-called 1/vn law,1 wherevn is the velocity of the neu-
tron, or expressed as a function of wavelength

sabssld = bl, s9d

whereb is a material dependent constant. Since the neutron
velocity is inversely proportional to the neutron wavelength,
materials appear “harder” to penetrate at long wavelengths
than at small wavelengths. As indicated above, the propor-
tionality becomes apparent at wavelengths after the Bragg
cut-off of the lowest reflection, Eq.s2d, where the absorption
term dominates the total cross section, see Fig. 2. The ab-
sorption cross section for pure Fe and Cu taken from Ref. 1
are given bysabs

Fe sld=1.296Ã10−24 cm2 Å−1l ,sabs
Cusld=2.04

310−24 cm2 Å−1l. Comparing the magnitude of the absorp-
tion cross section with the single-phonon TDS cross section
of the previous section one finds that the latter contributes
roughly 10% to the linear cross section in the region beyond
the Bragg cut-off, see also Ref. 26. The absorption cross
section is determined by the predominant material in the
beam. But low levels of impurities of strongly neutron ab-
sorbing materials such as boron or cadmium can have a pro-
found influence. A simple estimate shows thatsa fairly typi-
cal amount ofd 1% of Mn ssabs

Mn=13Ã10−24 cm2 at 1.08 Åd in
Fe changes the absorption slope by as much as 5%.

III. THE EXPERIMENT

In this section we describe the essential features of the
experimental set-up, i.e., the geometry of the test object and
the experimental configuration on ENGIN beam line at ISIS,
RAL sUKd, where this work was undertaken.

A. The test object

For the purpose of obtaining a set of trial spectral radio-
graphs, a simple test object was constructed. It consisted of a
solid copper cylinder of 1 cm diameter and 2.5 cm height
shrink-fitted into a hollow ferritic ironssteeld cylinder of the
same height but of 2.5 cm outer diameter with a small inter-
ference fit at the inner diameter. The shrink-fitting was
achieved by cooling the copper cylinder in liquid nitrogen
whilst heating the hollow iron cylinder on a hot-plate. The
temperature difference and extent of misfit were sufficient to
allow an easy shrink-fitting of the copper cylinder into the
bore. A schematic of the sample is shown in Fig. 1.

B. Experimental set-up and data preprocessing

The radiography experiment was carried out on the
PEARL/ENGIN beamline at the ISIS pulsed neutron spalla-
tion source of the Rutherford Appleton Laboratory in the
UK. The flight path from source to detector on this beam line
is approximatelyL=15.6 m, and provides a spectral range of
neutron wavelengths of around 0.5 – 5 Å.Assuming a lattice
parameter of arounda0=2.865 Å for the ferritic steel, a con-

version constant ofh/mnL=2.56310−4 Å/ ms was calculated
fsee Eq.s2d in sec. II Ag for the transformation from TOF to
neutron wavelength. The absolute value of this constant is of
no relevance for the purpose of the following analysis. If
applied to an unknown specimen, the positionsin terms of
flight pathd and calibration of the detector should of course
be undertaken independently. A multiple-edge refinement19

of the copper lattice parameter then yields a lattice parameter
of 28100µs in TOF which corresponds to 3.596 Å, and is in
reasonable agreement with the literature values. Pivotal to
the approach has been the development of a TOF-sensitive
pixelated detector.27 The detector comprises a 10310 detec-
tor pixel array on a 2.532.5 mm2 pitch, with AD=2
32 mm2 exposure area per pixel and 0.5 mm thick shielding
between each pixel. Due to limitations in the data acquisition
hardware, only eight of the ten detector columns were opera-
tional during the experiment. Apart from a thin aluminum
window over the end of the evacuated beam guides, the de-
tector has an unrestricted view of the moderator. The effect
of the aluminum shielding along the beam guidesssmall
Bragg edgesd was automatically accounted for during the ex-
traction of the cross section from Eq.s1d using spectra col-
lected without the test object in placesopen beamd. The
sample was placed upright approximately 3 cm in front of
the center of the eight columns, with its axis vertical and
perpendicular to the direction of the incoming beam, as
shown in Fig. 1. The sample to incident slit distance was
approximately 400 mm.

The divergence of the beam is approximately 1/150 rad
both horizontally and vertically. The time of exposure
scounting timed was 45.9µAh in terms of the proton current
per hour at ISIS which is equivalent to approximately 1000 s
counting time. The sample was then moved by half the de-
tector spacings1.25 mmd and measured again in order to
improve the lateral spatial resolution. Additionally the unfil-
teredsopend beam was measured for approximately the same
time of exposure. The geometry of the test object means that
all the pixels in each column could be added together to
reduce count times, and unless otherwise stated, the ten spec-
tra of each column have been added together and the cross
sections were extracted using Eq.s1d. Each column or pixel
has been given a weight proportional to its contribution to
the total open beam, in order to account for spatial variations
in the incident flux. The raw data has been corrected for the
dead-time of the detector oft=16310−9 s, using the relation
NDt=nDt / s1−nDttd, wherenDt is the number of raw counts
for the binning TOF channelDt and henceNDt is the number
of true counts. The small differences in counting times be-
tween the two sample positions and the open beam has been
corrected for in the preprocessing of the data.

C. The raw experimental spectra

The eight normalized spectra collected for the first
sample position are shown in Fig. 2. As expected only the
central four columns clearly exhibit Cu Bragg edges.

This is also accompanied by a proportional increase in
the absorption rate partly because of the increased path
length through the sample and partly because of the larger
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absorption cross section of Cu over Fe. At times of flight
greater than<16000ms no Bragg scattering is possible so
that only true absorption and a small amount of incoherent
scattering contribute significantly to the cross section. From
the spectra one can conclude that the sample was indeed
centered between column 4 and 5. On the basis of the sample
dimensions the geometrical estimate of the average total path
lengths for the first and last four columns are approximately:
col. 1 and col. 8=17.8 mm, col. 2 and col. 7=21.6 mm, col.
3 and col. 6=23.8 mm, col. 4 and col. 5=24.9 mm.

IV. ANALYSIS

Here we shall examine the extent to which geometrical
and compositional information about the test object can be
extracted from the transmission spectra. To reiterate, since
the detector position is fixed and calibrated, the relation be-
tween TOF and neutron wavelength is known. Therefore, the
two phases can be unambiguously identified as one phase
having the bcc structure with a lattice parameter of around
2.865 Å and one phase having the fcc structure with a lattice
parameter of around 3.59 Å. These two phases can be iden-
tified as ironsFed and coppersCud, the latter showing a sig-
nificant amount of texture as apparent in the shape of the Cu
edges in the spectra of the central columns in Fig. 2. The
quantitative analysis of the respective path lengthsphase vol-
ume fractiond as a function of the spatial position is now
undertaken following two approaches, first from the mea-
sured amplitude of the Bragg edges directly, and second from
a whole-pattern refinement approach restricted to a certain
region of the spectrum.

A. Fitting the Bragg edges

After preprocessing and normalizing the data in the way
described above, we analyze the Bragg edges separately in
the different spectra. Following the procedures outlined in
Sec. II, Fig. 3 shows the measured edge amplitudeDhkl, the
calculated Debye–Waller factorDhkl, as well as the crystal-
lographic parametersn3/2,Mhkl for the lowest seven Bragg
edges of the iron spectrum collected on pixel column 1 for
the second position of the sample. As expected, the estimated

value of fhkl=0.46 is approximately equal for all seven
edges, and gives an estimate of the absolute path length
wFe=15.1 mm for iron.sAt this location, there are no copper
Bragg edges in the spectrum.d In Fig. 4 the absolute path
lengths are shown as estimated from an average over the
lowest seven Bragg edge for the Fe phase, and from the
Fe-211 Bragg edge alone, as well as estimated from the Cu-
111 edge. The estimated path lengths are also compared with
the “real” path length calculated from the cylinder geometry.

The average over the seven lowest Bragg edges of Fe
gives almost identical results to that determined from the
Fe-211 Bragg edge only. These inferred path lengths com-
pare reasonably with the geometrical results quoted.

Quantitatively, the inferred absolute path lengths fall
short of the geometrical values by approximately 30%. The
fact that each measurement point in Fig. 4 shows a similar
discrepancy indicates a systematic rather than experimental
error sin this case for both phasesd. This indicates that the
basic model for the Bragg edge amplitude requires some cor-
rection.

Qualitatively, as shown in Fig. 5 the derived relative path
lengths agree very well with the expected profile and sym-
metry.

FIG. 3. The quantityfhkl=n3/2Dhkl/DhklMhkl, which is proportional to the
path length. This has been evaluated for the lowest seven Bragg edges for
the iron spectrum of the first pixel column in the detector at position 2.

FIG. 4. The absolute path length for Fe and Cu inferred fromfhkl using the
average of the lowest seven Fe Bragg edgesssquaresd, the strongest and very
clear Bragg edge Fe-211scirclesd and Cu-111strianglesd. These are com-
pared with the geometric path lengthsslinesd.

FIG. 5. The estimated relative phase volume fractions for Fe and Cu esti-
mated in terms of the quantityfhkl usingwi =Si /oSi.
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Both relative and absolute path lengths indicate a larger
diameter of the Cu core than was used. This has been attrib-
uted to the divergence of the beam and possible scattering of
neutrons into neighboring pixels and suggests the use of sec-
ondary collimators or Soller slits between sample and detec-
tor.

Having calculated the absorption and TDS cross section
in Sec. II C, the measured Bragg edge amplitudesequivalent
to the amount of material of a phase along the beam pathd
can be used to calculate the slope in the absorption tail of the
spectrum and compare it to experimental values. Fitting a
linear equation to the absorption tailsin the region of the
spectrum beyond the lowest reflectionlù4.2 Å, the results
for our two phase-system are compared in Fig. 6.

For convenience, we quote here the factorNcsFed
=0.08489Ã1024 cm−3 and NcsCud=0.084662Ã1024 cm−3,
which can be set equal to 0.0847Ã1024 cm−3 for both mate-
rials in this contextsand to our accuracyd. The calculated
slopes are within reasonable agreement with the measured
slopes, and follow the trend observed in Fig. 4. On average,
the calculated slopes agree to roughly 89% with the experi-
mentally determined slopes. This suggests that a correction
to either the estimate from the Bragg edge amplitude or to
the predicted slope should be undertaken for full consistency.

B. Restricted Rietveld fitting

Given the knowledge of the scattering contributions to
the total cross section, it is possible to undertake a whole-
pattern fitting in the sense of a Rietveld-type fit using the
basic properties of the phases one has identified in the spec-
trum, including the theoretical cross sections described
above. Using the implementation contained within the soft-
ware routines CRIPOsRef. 16d for the thermal region, which
contains the basic coherent and incoherent, elastic and in-
elastic scattering cross sections, we fitted the measured spec-
trum restricted to the short and long wavelength region of the
spectra. Since the total cross section for the region towards
the lowest reflections is highly complex and fitting requires a
correct model description of inelastic scattering, as well
micro-structural properties such as texture, etc., this region

was excluded from the fitting procedure. As a result, this
approach does not involve a direct estimation of the phase
volume fraction through the amplitude of the Bragg edge,
and therefore represents an independent, complementary ap-
proach to that in Sec. IV A. However, the restricted fit still
contains a significant contribution from the coherent elastic
scattering cross section in the short wavelength limit. Texture
effects become negligible in the short wavelength region
and, of course, do not occur beyond the Bragg cutoff wave-
length region. Furthermore, the approximation to the inelas-
tic scattering in the short wavelength region becomes in-
creasingly better.28,16 An example of such a fit is shown in
Fig. 7. As is evident from Fig. 7, the profile of the Cu-111
and Cu-220 Bragg edges are strongly affected by texture,
which would make an accurate whole-pattern fit without a
proper model very difficult.

Using the restricted Rietveld fitting approach, the trans-
missionsdiffractiond pattern is calculated by adding the total
scattering cross sections of iron and copper, and subsequent
varying of the respective path lengths. By allowing the re-
spective number of scattering centers along the beam path to
vary, one can estimated the absolute path length of each
phase.

Figure 8 shows the absolute path length estimated from
such a restricted Rietveld fit to the measured spectra. Again,
qualitatively, the estimated path lengths follow the expected
profile given the sample geometry, and a graph of the relative
path length similar to that of Fig. 5 has been omitted for sake
of brevity.

Unlike the individual Bragg edge analysis of Sec. IV A
the copper path length is slightly overestimated. This can be
in part explained by the fact that the fitting routine does not
consider impurities and normal noise. Since Cu has a larger
incoherent scattering cross section, any background noise
snot included in the modeld is more likely to be attributed as
Cu. However, quantitatively the path length again underesti-
mates the total actual thickness. The ratio between estimated
and measured total absolute path lengths is fairly constant at
approximately 87s1d%, as shown by the closed symbols in
Fig. 8. While most of our analysis has focused on data

FIG. 6. The slopessabsorption plus single-phonon contributiond calculated
using the path lengths estimated from the Bragg edges Fe-211 and Cu-111
compared with the fitted values from the region beyond the Bragg cut-off.

FIG. 7. An example of the experimental datascol. 4, position 1d fitted with
a theoretical spectrum, highlighting approximately the restricted area of the
fit. Note the effect of strong texture in the Cu Bragg edges, e.g., Cu-220
compared to Fe-211.

074903-6 Steuwer et al. J. Appl. Phys. 97, 074903 ~2005!



summed over all the pixels in each column of our pixelated
detector to get a good estimate of the Bragg edge amplitude,
the signals recorded by each pixel are sufficient for pixel-by-
pixel imaging using the restricted Rietveld analysis ap-
proach. The results from the fit are shown in Fig. 9. As
expected, the variation across the sample is almost identical
for all 10 rows. The estimated path lengths calculated using
the pixel-by-pixel analysis are of course similar to that of the
column-averaged spectrasapproximately 93% of the true
valued. The total path length in Fig. 9sbottomd is faithful to
the cylindrical shape of the test object.

V. CRYSTALLINE PHASE IMAGING

The analysis of the previous sections leads naturally to
the concept of radiography. Radiography, or tomography, in-
volves the study of the spatial variation of the absorption or
attenuationsi.e.; transmission factord of radiation. For pulsed
neutron transmission, the energy-selective discrimination of
the attenuation comes naturally, and “radiographs” can in
principle be evaluated for every wavelengthsenergyd in the
spectrum. In a related approach,29 calculated the minimum
detectable mass based on a change in the macroscopic cross
section for different neutron wavelengthssenergiesd. By
comparing the relative intensitiesstotal scattering cross sec-
tiond just before and after a Bragg edge associated with a
particularsinferredd phase, one can introduce the concept of
“phase filters,” e.g., for Fe-200 atl=4.05±0.05 Å. If the
associated phase is present along a particular beam path, then
there will be a noticeable difference in the total cross section
due to the presence of a Bragg edge provided that the it is not
suppressed by, e.g., texture or has a very small structure fac-
tor etc. If not, then this difference will be negligible.

This is demonstrated in Fig. 10. In this case, the 10
316 spectrasfor both sample positionsd have been analyzed
pixel-by-pixel to obtain the radiographs shown. The gray-
level is proportional to the relative difference in the value of
the total scattering cross section in the immediate vicinity of
a Bragg edge. Applying no filter is essentially equivalent to
the averagessummedd cross section. Of course, these filters
only apply to scrystallined phases which have a significant

contribution to the coherent elastic scattering cross section,
i.e., where the Bragg edge amplitude is larger than the back-
ground noise. The extension to a tomographic analysis is
straightforward.

FIG. 8. The thickness of the sample estimated by fitting a theoretical profile
to the measured data in the short and long wavelengthsbeyond the cut-offd
limit. Also shown is the ratio of estimated and calculated path length as
percentsright scaled.

FIG. 9. The estimated path length for each pixel by applying the restricted
Rietveld fit, for Fe stopd, Cu smiddled, and the combined path length
sbottomd.
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VI. DISCUSSION AND CONCLUSIONS

We have presented the basic framework and demon-
strated the applicability of the pulsed neutron transmission
method towards phase determination and simple crystalline
phase imaging by analyzing the transmission spectra of a
simple two-phase Fe–Cu system. Inferred absolute path
lengths from estimates by fitting the Bragg edges alone sys-
tematically underestimateds70%d the calculated geometric
values. The origin of the underestimation is most likely to be
the limited fitting range in the vicinity of the lowest Bragg
edges which is strongly dependent on microstructural prop-
erties, texture, extinction, etc. The inferred absolute path
lengths have been improved using a restricted-region
Rietveld-type profile fitting approach. The method has been
able to detect absolute path lengths in a very basic two-phase
test object with an accuracy of approximately 90% for the
majority phase Fe, but slightly worse for the Cu phase, but
which has allowed pixel-by-pixel analysis to be performed.
Considering that the test object was constructed using con-
ventional engineering materials with impurities and texture,
this value is quite promising. It is believed that by using
more comprehensive analysis methods, involving more and
better models for the cross sections, this value can still be
improved. On the other hand, relative path lengths have
shown to be in very good agreement with expectations, as
was to be expected from previous applications of the trans-
mission technique to monitor phase transformations. The
counting time of around 15 min per sample position is fairly
good by neutron diffraction standards, and has been suffi-
cient to have basic pixel-by-pixel phase analysis of the 80
live detector pixels, which opens up the possibility of using
this method in a tomographic mode, with reasonable data
collection times where many such spectroscopic images have
to be collected. The use of software filters in the data analy-
sis has been successfully employed to render radiographs of
the individual phases, demonstrating the capability of the
technique for energy-resolved radiography.

ACKNOWLEDGMENTS

The authors wish to acknowledge the financial support
from the EPSRC on Grant Nos. GR/L62801 and GR/
L62498, P. LedgardsOUd for preparing the samples, and
M.R. Daymond and J. Quinta da Fonseca for help and sup-
port during the experiment. P.J. Withers acknowledges sup-
port of Royal Society-Wolfson Merit Award. We would like
to thank J.R. Granada for making the software code CRIPO
available to us. Also, the FaME38 project at the ESRF-ILL,
Grenoble, is gratefully acknowledged for its hospitality.

1G. Bacon,Neutron Diffraction, 3rd ed.sClarendon, Oxford, 1975d.
2E. Fermi, W. J. Sturm, and R. G. Sachs, Phys. Rev.71, 589 s1947d.
3R. G. Johnson and C. D. Bowman, AIP Conf. Proc.89, 53 s1982d.
4C. G. Windsor,Pulsed Neutron ScatteringsWiley, London, 1985d.
5N. Sakamoto, Y. Kiyanagi, S. Sato, H. Sagehashi, M. Furusaka, J. Suzuki,
K. Littrell, C. Loong, A. Gorin, I. Manuilovet al., J. Appl. Crystallogr.
36, 820 s2003d.

6K. Meggers, H. G. Priesmeyer, W. G. Trela, and M. Dahms, Mater. Sci.
Eng., A 188, 301 s1994d.

7M. A. M. Bourke, J. G. Maldonado, D. Masters, K. Meggers, and H. G.
Priesmeyer, Mater. Sci. Eng., A221, 1 s1996d.

8S. Vogel, E. Ustundag, J. C. Hanan, V. W. Yuan, and M. A. M. Bourke,
Mater. Sci. Eng., A333, 1 s2002d.

9J. R. Santisteban, L. Edwards, M. E. Fitzpatrick, A. Steuwer, and P. J.
Withers, Appl. Phys. A: Mater. Sci. Process.A75, 1 s2002d.

10H. M. Rietveld, J. Appl. Crystallogr.2, 65 s1969d.
11A. Steuwer, J. R. Santisteban, P. J. Withers, and L. Edwards, Physica B

350, 159 s2004d.
12C. G. Windsor and M. Hutchings,Methods of Experimental PhysicssAca-

demic, New York, 1987d, Vol. 23 C.
13K. H. Beckurtz and K. Wirtzs1964d.
14O. Halpern, M. Hamermesh, and M. H. Johnsen, Phys. Rev.59, 981

s1941d.
15W. Marshall and S. W. Lovesey,Theory of Thermal Neutron Scattering

sOxford University Press, Oxford, 1971d.
16J. R. Granada, Z. Naturforsch. Teil A39a, 1160s1984d.
17P. Hiismäki, J. Appl. Crystallogr.22, 79 s1989d.
18F. Kropff, J. R. Granada, and R. E. Mayer, Nucl. Instrum. Methods Phys.

Res. 198, 515 s1982d.
19A. Steuwer, J. R. Santisteban, P. J. Withers, L. Edwards, M. E. Fitzpatrick,

M. R. Daymond, M. W. Johnson, G. Bruno, and D. Wang, Phys. Status
Solidi A 185, 221 s2001d.

20J. D. Jorgenson, D. H. Johnson, M. Mueller, S. W. Peterson, T. G. Worl-
ton, and R. B. Von Dreele, inProceedings of the Conference on Diffrac-
tion Profile Analysis, Cracow 14–15 August 1978, pp. 20–22s1978d.

21R. B. Von Dreele, J. D. Jorgensen, and C. G. Windsor, J. Appl. Crystallogr.
15, 581 s1982d.

22G. S. Pawley, J. Appl. Crystallogr.14, 357 s1981d.
23D. Louër, Acta Crystallogr., Sect. A: Found. Crystallogr.54, 922 s1998d.
24R. J. Hill and C. J. Howard, J. Appl. Crystallogr.20, 467 s1987d.
25A. K. Freund, Nucl. Instrum. Methods Phys. Res.213, 495 s1983d.
26G. Squires, Proc. R. Soc. London, Ser. A212, 192 s1952d.
27J. R. Santisteban, L. Edwards, M. E. Fitzpatrick, A. Steuwer, P. J. Withers,

M. R. Daymond, M. W. Johnson, N. Rhodes, and E. Schooneveld, Nucl.
Instrum. Methods Phys. Res. A481, 765 s2002d.

28K. Binder, Phys. Status Solidi41, 767 s1970d.
29Z. Tabatabaian and N. Spyrou, Nucl. Instrum. Methods Phys. Res. A424,

252 s1999d.
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