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The currently accepted gold standard  tuberculosis (TB) detection method for 

veterinary applications is that of culturing from a tissue sample post mortem. The test 

is accurate, but growing Mycobacterium bovis is difficult and the process can take up 

to 12 weeks to return a diagnosis. In this paper we evaluate a much faster screening 

approach based on serum headspace analysis using selected ion flow tube mass 

spectrometry (SIFT-MS). SIFT-MS is a rapid, quantitative gas analysis technique, 

with sample analysis times of as little as a few seconds. Headspace from above serum 

samples from wild badgers, captured as part of a randomised trial, was analysed. 

Multivariate classification algorithms were then employed to extract a simple TB 

diagnosis from the complex multivariate response provided by the SIFT-MS 

instrument. This is the first time that such multivariate analysis has been applied to 

SIFT-MS data. An accuracy of TB discrimination of approximately 88% true positive 

was achieved which shows promise, but the corresponding false positive rate of 38% 

indicates that there is more work to do before this approach could replace the culture 

test. Recommendations for future work that could increase the performance are 

therefore proposed. 

 

1 Introduction  

As well as being a major health problem in the human population,1 tuberculosis (TB) 

is also a problem in agriculture, as highlighted by the media in the UK with the 

publication of the Krebs report (1997)2 and the Independent Scientific Group (ISG) on 

Cattle TB report (2007).3 The bovine TB situation is exacerbated in the UK and 

Ireland by a reservoir of Mycobacterium bovis infection in badgers (Meles meles). 

One of the problems identified is the need for a rapid detection method to decrease the 

time between test and treatment in humans and to decrease the time cattle that are 

quarantined waiting for diagnosis. The ISG was commissioned by the UK government 

to look into the impact of badger culling on the prevalence and transmission of 



tuberculosis in cattle. As part of this, a large number of samples were collected from 

culled badgers, providing the basis for evaluating the novel diagnostic method 

described in this paper. 

Historically (and long since abandoned as a diagnostic technique), tuberculosis 

was known for a characteristic smell on the breath of the infected. This smell must be 

associated either with the production of specific marker  volatiles by the bacteria or 

an increase in the levels of particular volatiles produced by the host in response to the 

infection. This has led researchers to investigate the use of gas analysis techniques for 

rapid TB detection. 

1.1 Choice of sample  

TB is generally found in the lungs of the host, be it human or animal, and therefore 

the gold standard  technique for detection of the disease is a culture test from lung 

tissues obtained post mortem.4 Sputum or tracheal aspirate samples from infected 

individuals can contain high levels of the bacteria, but only when the host respiratory 

tract is infected, and are either difficult or impossible to obtain from animals, and 

from children. As volatile organic compounds (VOCs) are known to be emitted in 

breath this would be the next biologically preferred sample, but the samples are 

difficult to obtain, store and transport safely. As the lungs provide a large interface 

between the body and the atmosphere, many VOCs found in breath can also be found 

in blood serum samples.5 Such samples are relatively easy to obtain, store and 

distribute safely and hence are the sample of choice for this study. In addition, 

previous work has shown that electronic nose technology has been able to 

discriminate between the serum of cattle infected with M. bovis and uninfected 

control animals.6  

1.2 SIFT-MS  

Selected ion flow tube mass spectrometry (SIFT-MS) was originally developed to 

study ion-neutral reactions at thermal interaction energies before being adapted to 

perform volatile gas analysis.7 More recently it was further developed for life science 

applications.8 The technique relies on trace gases reacting with precursor ions (H3O
+, 

NO+ and O2
+) generated in a microwave discharge through moist air. The precursor 

ions are selected using a quadrupole mass filter and then injected into a helium carrier 

gas which then passes down a flow tube. The sample of headspace gas to be analysed 

is introduced into the flow tube by means of a heated capillary at a known flow rate, 

and the trace gas components rapidly react with the precursor ions to generate product 

ions. These are then detected downstream. The SIFT-MS instrument may be operated 

in one of two modes: the first is the full scan mode where full spectra are obtained 

over a range of values of mass to charge ratio (m/z) – this is the mode used in this 

study. The alternative, which is good for quantitative analysis of individual 

compounds, may be carried out by rapidly switching the detector between pre-

selected ions; the ratio of product ions to precursor ions enables the quantification of 

the analyte of interest.8 The concentration of compounds may be readily determined 

through these data and knowledge of the reaction rate coefficient between precursor 

and product ion. However, due to the relatively small user community, public 

databases of these reaction coefficients of specific VOCs are only available for a 

small number of compounds compared to the database of more than 200 000 GC-MS 

signatures contained in the NIST database (www.nist.gov). Therefore, alternative data 

analysis approaches are required. Some of the benefits of SIFT-MS over GC-MS are 

rapid analysis time, lower mass range and the relative simplicity of the spectrum 



returned. However, complex biological samples still yield highly multivariate 

responses which are difficult to analyse without computational assistance. 

Previous studies involving SIFT-MS analysis of human or animal samples utilised 

prior knowledge about the spectra and compounds present.9 Usually, markers are 

known and the effects of a trial are determined by the change in a small number of 

selected m/z peaks. The problem investigating diseases using volatile analysis is well 

known and two-fold. Firstly, biological samples contain hundreds of volatiles that are 

naturally occurring and have a naturally high variance. Finding the two or three 

reliable markers can be difficult and requires much manual work. Secondly, it is not 

guaranteed that these markers exist. The characteristic smell of the disease may be 

from the combination of ten or more individual compounds, each with an associated 

m/z peak, each of which, as a single entity, is not suitable as a marker. Indeed, they 

may all be present naturally, but in different relative concentrations. 

Chemometrics techniques such as principal components analysis (PCA) and 

Partial Least Squares Discriminant Analysis (PLSDA10) have been applied in similar 

situations to data from other sources such as electronic nose11 and GC-MS.12 These are 

the approaches applied here. 

2 Methodology  

2.1 Sample collection and measurement  

The samples were all collected from the Defra funded Randomised Badger Culling 

Trial managed by the ISG on Cattle TB.3 Wild badgers from different regions across 

the UK, where TB has been repeatedly found in cattle, were cage trapped. The serum 

samples for this study were obtained from a subset of these badgers during trapping 

operations ending in 2005 that were first anaesthetised, then blood samples taken 

before the animals were killed by lethal injection. Samples from an extensive range of 

tissues were removed post mortem and plated for diagnosis of M. bovis infection 

status. These blood samples have previously been used to evaluate the potential for 

gamma interferon as a diagnostic tool for TB in badgers.13 Individual blood samples 

were processed to produce sera and frozen for analysis at a later date. 

The 245 sera samples from the above trial were shipped to Cranfield University 

where they were thawed. 700 µL of sample was pipetted into a sample bag made from 

Nalophan NA tubing (Kalle, UK) with diameter 65 mm and length 31 cm. 700 mL of 

zero grade (hydrocarbon-free) air (BOC) was added and the sample bags incubated at 

40 °C. Two-thirds (467 mL) of the headspace was used for other studies and the 

remaining third (233 mL) analysed using SIFT-MS. Because the serum samples are 

aqueous, and incubated at 40 °C, the water vapour pressure was inherently high 

(about 7% water). 

The SIFT-MS analysis was performed using 10 s scans per precursor which was 

repeated ten times across the three precursor ions (total analysis time of 5 min). Full 

scan mode was employed, over a mass to charge ratio of 10–109 (the limit of the 

SIFT-MS instrument used in this study at that time). The SIFT-MS instrument used 

was a Mk2 model from PDZ Europa (UK). The sample was incubated at 40 °C for 10 

min prior to and during connection to the SIFT-MS inlet capillary. 

Once all the spectra were recorded and saved, the raw data were converted into a 

standard spreadsheet format (CSV) and then analysed in Matlab R2008b (Mathworks, 

USA), utilising PLS_Toolbox 3.5 (Eigenvector Research). 

2.2 Data preparation and pre-processing  



As the precursors are carrier ions added to the sample, they need to be removed from 

the dataset as they are clearly unrelated to the infection status of the sample. This is 

performed by zeroing the count for that precursor's ions across all samples. The ions 

removed are: m/z of 19, 20, 21, 30, 32, 37, 38, 39, 55, 56, 57, 73, 74, 75, 91. These 

ions comprise the 19 precursor plus isotopologues at m/z 20 and 21, plus water 

clusters (due to the aqueous nature of biological samples) and their isotopologues at 

37, 38 and 39; 55, 56, 57; 74, 75 and 76 and 91. Very small amounts of 30 and 32 

(NO+ and O2
+) are also present in the H3O

+ spectrum, so are also excluded. Based on 

similar reasoning, 19, 30, 32, 37, 48, 50, 55, 57, 66, 73, 91, are removed from the NO+ 

precursor channel and 19, 30, 32, 33, 34, 37, 50, 55, 56, 57, 73, from the O2
+ channel. 

After removal of these precursors, univariate analysis is possible by investigating the 

spectra by hand. Fig. 1 shows three spectra (one for each precursor) from the analysis 

of a serum sample from a wild badger classified as infected by the culture test and 

three spectra from the analysis of serum from an animal classified as uninfected by 

the culture test. 

 

 



 

 

Fig. 1 Spectra using all three precursor ions (H3O
+, NO+ 

and O2
+) for the headspace above two serum samples 

(one from a badger later classified as tuberculosis 

negative, and one from a badger classified as 

tuberculosis positive using the culture test). The m/z 

values linked to the precursors have been zeroed (see 

text for explanation). 

 



 

 

After removal of the peaks caused by the precursors, the three spectra from each 

sample are concatenated into a single vector of length 300 and all the samples 

combined into a matrix, X. Hence, vector positions 1–100 correspond to the H3O
+ 

spectra from m/z 10 to m/z 109, vector positions 101–200 correspond to the NO+ 

spectra from m/z 10 to m/z 109 and the last 100 vector positions correspond to the O2
+ 

spectra from m/z 10 to m/z 109. This dataset is then used for all subsequent 

multivariate analysis. 

The dataset contained 194 samples that were culture negative and 51 samples that 

were culture positive (245 samples in total). It should be noted that although culture is 

a highly respected diagnostic tool, it is not 100% accurate13 and a small number of the 

negative tuberculosis classified badgers may have had an undiagnosed low level 

infection. 

Heatmaps (plotting the intensities of each element of the matrix as a colour) were 

then used to verify that the data had been correctly imported and combined. The effect 

of data scaling was also investigated, with the methods considered being mean 

centring (eqn (1)), auto scaling (eqn (2)), range scaling (eqn (3)) and taking logs (eqn 

(4)).  

xij = xij − j  
  

 
(1) 

 
  

 

(2) 

 
  

 

(3) 

xij = log10(xij + 1)  
  

 
(4) 

2.3 Data analysis  

Having pre-processed and checked the data, the first analysis method employed was 

PCA. This is a common data exploration method14 which extracts and displays the 

characteristics that caused the greatest variance in the dataset. It breaks the data into 

eigenvectors and eigenvalues. The two matrices are then re-arranged and become 

scores – which indicate the relationships between the samples – and loadings, which 

reveal how much each measured variable contributes to the scores. The components 

required are selected and the remaining information ends up as a discarded error 

matrix. The scores matrix contains dimensions of decreasing variance content that can 

be plotted against each other to produce the figures. 

Next, PLSDA10 was used to build classification models using the tuberculosis 

status of the samples. PLSDA is a supervised method, so information about the 

parameter of interest (in this case TB infection status) is required to train the 

algorithm to determine which parts of the acquired spectra capture the maximum 

difference between the class states. PLSDA first separates the data into two groups, 

one with negatives (or class 1) and the other with positives (class 2). It then continues 



in a similar fashion to PCA, in that eigenvectors and eigenvalues are obtained. 

However, with PLSDA the difference between the variance of the two groups (the co-

variance), is maximised. Theoretically, the information returned should contain any 

information that could be caused by the property under investigation. 

It is known that PLSDA models can over-estimate the accuracy of classification if 

not properly validated.15 Indeed, given sufficient data, any training algorithm should 

be able to correctly classify all the samples used to build the model. To cope with this 

problem, the model was optimised using a Leave One Out (LOO) method. In this 

method, a sample is classified against a model built using the rest of the samples. This 

process is then repeated with each sample until all the samples have been classified. 

Information about the number of true positive and true negative identifications was 

also extracted. 

An important question in studies of this type is how many samples are required to 

build a classification model of suitable diagnostic power.16 This is important to 

minimise both the number of samples collected and the number of analyses required. 

To answer this question, a random selection of 50 samples was taken and leave one 

out cross-validation performed. The number of correctly classified samples was 

extracted and stored. The sample size was then increased by one (and randomly re-

sampled) and the process repeated until all but one sample had been included. The 

whole process was then bootstrapped (repeated ensuring that different sets of random 

samples were used) 50 times to achieve a statistical distribution at each point. 

3 Results and discussion  

The raw spectra for any single positive sample and any single negative sample show a 

large number of similarities and a large number of differences. Comparing two 

positive or two negative spectra also shows a number of similarities and differences. 

The problem is therefore to track down reliable diagnostic differences between the 

groups of spectra. Clearly, separating any differences between the 194 negative 

spectra and the 51 positive spectra without using multivariate techniques would be 

both time consuming and subject to potential error. 

The PCA scores plot derived from the experimental data after the data have been 

pretreated using mean centring (eqn (1)) is shown in Fig. 2. Although the figure does 

not show any discrimination between infected and uninfected, there does appear to be 

some structure. Analysis of the PCA loadings (the weight given to each m/z peak) 

shows that the structure seen is caused by acetone (PC1) and ethanol (PC2). The main 

ions implicated are 77 for acetone using H3O
+, m/z 77 is the ion resulting from 

acetone·H+·H2O, i.e. one water cluster, which arises because of the high water vapour 

pressure in the samples. The water cluster of the isomer, propanal, will also produce 

ions at the same m/z; however, other work with GC-MS (data not shown) indicates 

that it is likely to be largely, if not exclusively, due to acetone. A peak at m/z 88 was 

also found with NO+, indicating acetone. Similarly, m/z 83 is the main ion generated 

for ethanol, which corresponds to ethanol·H+·2H2O, also using H2O
+. These two 

compounds are associated with diet – ethanol is a natural product of decay in 

anaerobic conditions and acetone is a naturally occurring systemic compound that 

varies widely in concentration, depending on diet, blood sugar and individual 

metabolism.9 This implies that the natural difference between the animals is larger 

than the difference caused by TB. This doesn't mean that there is not information in 

the data pertaining to TB, just that it does not cause the majority (65%) of the 

variance captured by the first two principal components. However, investigating PCA 



components of lower variance did not reveal clear disease-related discrimination 

either. 

 

 

 

 

Fig. 2 The PCA scores plot does not 

appear to show any discrimination 

between TB (×) and control samples (·). 

The data were pretreated using mean 

centring. Investigating the loadings shows 

that the information on the plot relates to 

the concentrations of m/z 77 and m/z 83, 

which are likely to be caused by acetone 

(PC1 positive direction) and ethanol (PC2 

positive direction) respectively. This 

information is unlikely to be related to TB 

but to another influence such as diet. 

 

 

 

PLSDA has the potential to distinguish between samples that could not be 

separated using PCA because it maximises the co-variance between the acquired data 

and the sample classifications (control versus TB). This gives the possibility of 

distinguishing between samples. In Fig. 3, an estimate of this ability has been 

produced (  line). More important is the result produced using the leave one out 

algorithm (— line) in which models are built using all but one sample and then the 

sample is classified. The number of correctly classified positives (  line) and 

correctly classified negatives (  line) is also shown as a percentage. The leave one 

out validation on the complete dataset shows that an overall accuracy of 67% can be 

achieved with 88% correctly classified positives and 62% correctly classified 

negatives using the currently available dataset. Analysing the loadings of the PLSDA 

analysis is more complicated than analysing the loadings of PCA. The discrimination 

seen is the result of seven latent variables and these all need to be analysed to find 

which m/z are the most likely to be responsible for the discrimination. Values of 18, 

36, 54 (ammonia), 51 (methanol), 77, 95 (acetone), 83 (ethanol), 93 (toluene from the 



anaesthetic) on H3O
+; 18, 45 (ethanol), 88 (acetone), 92 (toluene) 63 (unknown) on 

NO+; 17, 43, 45, 58 (acetone), 75, 77, 92 (toluene), 109 (unknown) on O2
+ are the m/z 

that have a high impact on the discrimination. These compounds are responsible for a 

high proportion of the co-variance used during classification, yet the list is in no way 

complete. One implication is that the differences between the TB positive and TB 

negative samples may be subtle and not due to just one or two biomarkers. 

 

 

 

 

Fig. 3 PLSDA model ( ) and leave one 

out optimisation curves, correctly 

classified (—), true positives ( ) and 

true negatives ( ) for the first 25 latent 

variables (LVs) included. The accuracy of 

the PLSDA models ( ) shows the number 

of samples correctly classified as a 

percentage. It is well known that this over-

estimates the accuracy of the model and 

therefore the leave one out results are 

more informative. The total percentage of 

samples correctly classified by the leave 

one out algorithm is then broken down 

into the percentage of true positives and 

true negatives. The optimal number of 

latent variables is five and this returns an 

accuracy (as estimated by LOO) of 67%, 

with 88% true positive and 62% true 

negative. 

 

 

 

Analysing the PLSDA results for the three precursors separately was also 

performed with less successful results (results not shown). 

The relationship between the accuracy of the PLSDA LOO performance and the 

size of the training dataset is shown in Fig. 4. It can be see that the maximum 



accuracy of the PLSDA has yet to be reached, although the average improvement in 

accuracy reduces as the number of samples increases, suggesting that provision of 

additional samples might not substantially improve diagnostic performance. It can 

also be seen that in this specific example a minimum number of samples required to 

produce a repeatable model is 150. Below this, the accuracy of the model (65%) is 

stable but the errors associated are very large and increase with fewer samples. It 

appears that using more than 250 samples is unlikely to substantially increase the 

accuracy of diagnosis. 

 

 

 

 

Fig. 4 The mean and standard deviation of 

PLSDA LOO corrected classified results 

over a range of dataset sample sizes using 

64 bootstraps. Error bars indicate one 

standard deviation, capturing 66% of the 

models produced. 

 

 

 

Finally, models were built using randomly selected samples and then tested using 

the samples remaining, to ensure complete independence in the testing of the model. 

Models were created using 80% (196 samples), 90% (220) and 95% (232) of the total 

number of samples. The accuracy was determined to be 72% (± 25%), 64% (± 31%) 

and 76% (± 21%) respectively, with the error being one standard deviation as 

calculated from 200 bootstraps. 

4 Conclusions  

It has been shown that by linking SIFT-MS analysis with chemometrics techniques 

we have made some progress towards a new method of disease detection provided 

that the dataset sizes are large enough to enable training of statistical models. PLSDA 

accuracy estimated using a leave one out (LOO) algorithm was 67%, with 88% true 



positives and 62% true negatives. A dataset size of 150–250 samples was required for 

the samples under investigation. 

This work has demonstrated for the first time a way of analysing large SIFT-MS 

datasets without trying to analyse individual compounds in individual spectra. 

Although the approach proposed is much faster than a traditional culture test, the 

accuracy achieved makes it unsuitable as a replacement for the culture test. The 

gamma interferon test is the most accurate test for TB in the live badger and achieved 

a 93.6% true negative and 80.9% true positive rate using the same subset of animals.13 

It is encouraging that the headspace analysis method detected even more badgers with 

culture-confirmed TB but at the expense of more apparent false positive results. 

However, the sensitivity of the gamma interferon test could also be increased by 

changing the test positive cut-off point if a higher false positive rate was accepted. It 

is believed that the overall accuracy achieved with the SIFT-MS method was limited 

due to the sample set being subject to large quantities of unknown variables. Factors 

such as sex, age, diet, location, general health of animal and anaesthetic injection 

would have all had an impact on the volatiles within the samples, although some of 

the samples classified as false positive may actually represent badgers with TB 

undiagnosed by culture. The anaesthetic (a cocktail of ketamine and medetomidine), 

in particular, appeared to lead to very high levels of toluene in the blood (seen as 

peaks at m/z 93 in H3O
+ spectrum and 92 in NO+ and O2

+ spectra). 

In terms of further work we recommend looking at a better controlled group of 

animals as this would introduce the possibility of looking for a group of markers 

specific to TB. Once these have been identified, it should be easier to remove from 

the data variance caused by factors other than tuberculosis. In addition, new 

developments in SIFT-MS instruments mean that better sensitivity and mass ranges 

are now available. Such an instrument would be able to analyse more compounds and 

thus would most likely enable better discrimination. 

Acknowledgements  

This paper forms part of project SE3221 which was funded by the UK's Department 

for Environment, Food and Rural Affairs and the authors gratefully acknowledge 

DEFRA's funding. 

References  

1  P. Onyebujoh and G. A. W. Rook, Nature Reviews Microbiology, 2004, 2, 930–

932 [Links]. 

2  J. R. Krebs, Bovine Tuberculosis in Cattle and Badgers, Ministry of Agriculture, 

Fisheries and Food, 1997. 

3  F. J. Bourne, Bovine TB: The Scientific Evidence, Independent Scientific Group 

on Cattle TB, Defra, 2007. 

4  R. de la Rua-Domenech, A. T. Goodchild, H. M. Vordermeier, R. G. Hewinson, 

K. H. Christiansen and R. S. Clifton-Hadley, Research in Veterinary Science, 

2006, 81, 190–210. 

5  M. Phillips, Analytical Biochemistry, 1997, 247, 272–278 [Links]. 

6  R. Fend, R. Geddes, S. Lesellier, H. M. Vordermeier, L. A. L. Corner, E. 

Gormley, E. Costello, R. G. Hewinson, D. J. Marlin, A. C. Woodman and M. A. 



Chambers, Journal of Clinical Microbiology, 2005, 43, 1745–1751 [Links]. 

7  D. Smith and N. G. Adams, Advances in Atomic and Molecular Physics, 1987, 24, 

49. 

8  D. Smith and P. Spanel, Mass Spectrometry Reviews, 2005, 24, 661–700 [Links]. 

9  C. Turner, P. Spanel and D. Smith, Physiological Measurement, 2006, 27, 321–

337 [Links]. 

10  M. Barker and W. Rayens, Journal of Chemometrics, 2003, 17, 166–173. 

11  S. M. Scott, D. James and Z. Ali, Microchimica Acta, 2006, 156, 183–207 

[Links]. 

12  P. Jonsson, H. Stenlund, T. Moritz, J. Trygg, M. Sjostrom, E. R. Verheij, J. 

Lindberg, I. Schuppe-Koistinen and H. Antti, Metabolomics, 2006, 2, 135–143 

[Links]. 

13  D. Dalley, D. Dave, S. Lesellier, S. Palmer, T. Crawshaw, R. G. Hewinson and M. 

Chambers, Tuberculosis, 2008, 88, 235–243 [Links]. 

14  M. Otto, Chemometrics: statistics and computer application in analytical 

chemistry, WILEY-VCH, Weinheim, 1999. 

15  J. A. Westerhuis, H. C. J. Hoefsloot, S. Smit, D. J. Vis, A. K. Smilde, E. J. J. 

Velzen, J. P. M. Duijnhoven and F. A. Dorsten, Metabolomics, 2008, 4, 81–89 

[Links]. 

16  R. G. Brereton, Trends in Analytical Chemistry, 2006, 25, 1103–1111 [Links]. 

 

This journal is © The Royal Society of Chemistry 2009 

 


