
Open Research Online
The Open University’s repository of research publications
and other research outputs

Some problems of professional end user developers
Conference or Workshop Item
How to cite:

Segal, Judith (2007). Some problems of professional end user developers. In: Visual Languages and Human-
Centric Computing (Cox, Philip and Hosking, John eds.), IEEE Computer Society/Conference Publishing Services,
Los Alamitos, Ca, USA„ pp. 111–118.

For guidance on citations see FAQs.

c© [not recorded]

Version: [not recorded]

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1109/VLHCC.2007.17

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82910881?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://dx.doi.org/doi:10.1109/VLHCC.2007.17
http://oro.open.ac.uk/policies.html

Some Problems of Professional End User Developers

Judith Segal
The Department of Computing

The Open University
Milton Keynes MK7 6AA

UK
j.a.segal@open.ac.uk

Abstract

By the term ‘professional end user developers’ we

mean people such as research scientists who work in
highly technical, knowledge-rich domains and who
develop software in order to further their professional
goals. In common with other end user developers,
professional end user developers do not describe
themselves as software engineers and have no formal
training in software engineering. They differ from most
other end user developers, however, in that learning
programming languages rarely presents them with any
problem. In this paper, drawing on data from field
studies of different groups of professional end users,
we examine the problems that such people face in
meeting the demands of software development given
the culture in which they work and their normal
development practice. Understanding these problems
is an essential prerequisite to developing tools,
techniques etcetera to support professional end user
development.

1. Introduction

By the term ‘professional end user developers’ we
mean people such as research scientists or financial
mathematicians who work in highly technical
knowledge-rich domains and who develop software to
further their own professional goals. Like other end
user developers, they do not think of themselves as
software developers but as physicists, mathematicians,
biologists, etcetera, and have had no formal training in
software engineering (though some may have attended
courses on particular programming languages). Unlike
many other end user developers, they tend to have few
problems with learning a general purpose

programming language such as Java. But there is a
distinction between knowing how to implement
programming constructs in a particular language, and
using that knowledge to code a particular piece of
software in order to address a particular domain
problem. And in any case, software development
involves more than just coding a piece of software
which appears to solve the problem at hand.
Depending on the context in which the software is
going to be used, issues such as code
comprehensibility, software robustness and
performance become important.

In this paper, we take it as axiomatic that an
essential prerequisite to producing tools, technologies
and methods for supporting such developers, is to
analyse how they work and the nature of the problems
that they face in developing their software. This view
is consistent with other studies such as [1], which
examined the development practices of software
engineers with a view to constructing tools to support
these practices, and [2], which did the same for
computational scientists.

We have conducted field studies with financial
mathematicians [3] and with planetary and space
scientists, [4], [5], and are currently conducting a study
with biologists.

The clichéd view of end user development is that it
involves an individual developing a piece of rather
inconsequential software for his/her own use.
However, our studies reveal a variety of contexts of
professional end user development including:
• constructing models in order to advise clients;
• developing code both for the developer’s own use

and for the use of colleagues in the local
community of practice;

• working with software engineers in order to
develop a component library, and

• working with software engineers in order to
develop laboratory infrastructure software.

Another context of professional end user
development, that of high end computational software,
is examined in [2]. This work differs from ours not
only in context but also in that it does not consider the
culture within which professional end user developers
work. There are some similarities and also some
differences between the problems and practices
discussed in [2] and those revealed by our studies, as
we shall see.

In section 2 below, we briefly describe the context
of our field studies, and in section 3, discuss both the
culture within which professional end user developers
construct their software and their normal development
practices. In section 4, we discuss the problems which
face professional end user developers and the software
engineers which whom they may collaborate.
Although we do not claim that these problems are
unique to professional end user developers, we argue
that they are exacerbated by the culture in which they
work. We conclude the paper in section 5 with a
summary and discussion.

2. The field studies

Here we will briefly describe our field studies,
which we summarise in Table 1. One characteristic
shared by all the studies is the amount of specialized
domain knowledge required to develop the software.
Another is that all the professional end user developers
are highly educated in their domain (most have PhDs),
and have no formal training in software engineering.
A third is that, in building software in order to deepen
understanding of partly-understood domains, as is the
case with the first three field studies below concerning
market economics and planetary and space science, it
can be very difficult to ascertain whether or not the
software is correct. In the case of unexpected output, it
is not clear to the user whether this signifies that
his/her domain model is incorrect or incomplete, or
whether there is some error in the software, see also
[2].

Data was collected primarily by means of semi-
structured interviews which were audio-taped and
transcribed, backed-up by emails and phone
conversations and any relevant documentation. In the
latest ongoing study, that of the biologists, 2.4, we
have introduced a more ethnographic observational
element. In the mature studies, 2.1 – 2.3, analysis was
done by iterative inductive coding of the tape
transcripts and other texts. Our interpretation of the
data was negotiated and agreed with the participants, as
advocated in, for example, [6].

2.1 The financial mathematicians

This study focused on a commercial consultancy
where the professional end user developers were
mathematicians on the lower rungs of their career
ladder working through a series of professional
examinations. Their task was to use an internally
developed package together with Excel and VBA to
develop financial models. These models were then
used by more senior people in the organization, the
consultants, in order to advise clients. The situation
being modeled was full of uncertainty, for example, as
to how the market would move. Following an
embarrassing failure of one of these models to
accommodate a cosmetic change required by a client (a
simple change of format for the output), the CEO of
the organization wished to proceduralise the
development and testing of models by means of a
manual.

The consequences of software failure were
potentially high. Not only were the organisation’s
reputation and any potential repeat business at risk, but
it was also theoretically possible for an aggrieved
client to sue the consultancy to the point of bankruptcy.

 Further details are available in [3].

2.2 The planetary scientists

In this case, the professional end user developers
were either doctoral students or post doctoral
researchers working within a research laboratory, and a
typical development task was to write software to drive
some instrument (for example, a spectroscope) and to
analyse the output data.

The culture within the laboratory was broadly
collaborative. Scientists with a particular facility for
software development were recognised informally as
software gurus. These people were called upon to help
their colleagues either with advice or by developing the
colleague’s software for them. Given the similarity of
the instruments, there was the potential to share code,
though this potential was not fully realized, as we shall
discuss in section 4 below. These phenomena, of the
informal recognition of software gurus and of code
being initially constructed for individual use but then
becoming a shared artifact, are not uncommon in the
context of end user software development, see, for
example, [7].

Table 1. A summary of our field studies

Study Purpose of
software
development

Customers Social context
of
development

Consequences
of software
failure

Study specific
features/issues

Financial
Mathematicians

To produce
financial models
in order to
advise clients.

Consultants in
the same
organisation.

A group of
developers
working
individually on
independent
tasks; much
collaborative
help.

Could be
disastrous to the
organisation:
financial loss; loss
of reputation; at
worst could lead
to being sued to
the point of
bankruptcy.

A manual was
implemented with
the intention of
institutionalising
software
development
procedures and
testing, and of
sharing
knowledge.

Planetary
scientists

To drive
scientific
instruments and
analyse the
output data.

The
developers
themselves or
close
colleagues.

As financial
mathematicians

If undetected,
could corrupt the
science to the
detriment of the
scientific
community

Creating/sharing
knowledge of
software
development.

Space scientists To provide a
library of
components to
enable space
scientists to
drive
instruments

Space
scientists

Professional
software
engineers
working at a
remote location
from the space
scientists.

Large financial
loss and loss of
reputation for the
research
organisation;
potential
corruption of
science to the
detriment of the
research
community

The switch of
roles from being a
professional end
user developer to
being a customer
in the context of a
waterfall-like
development.

Biologists To provide
laboratory
infrastructure
software.

The wider
community of
biologists.

An
interdisciplinary
and distributed
team of biologists
and professional
software
developers.

At worst,
loss/corruption of
scientific data.

Begun in June
2006 and ongoing.

If the software failed in such a way that the failure

was not apparent but resulted in data being output
which was not true to the science, then this could affect
the whole scientific community.

Further details are available in [5].

2.3 The space scientists

This situation is somewhat different from those
described above. The space scientists, like the
planetary scientists described in 2.2, had experience of
developing their own software to drive experimental

instruments, but instruments for use in space are more
complex and have to comply with more constraints
than those in the laboratory. In this situation, the space
scientists enlisted the help of professional software
engineers who supplied them with a library of
components which the scientists could compose so as
to drive the instrument when it reached its destination
in space. The whole enterprise is very risky. For
example, the physical context in which the instrument
is to be deployed (radiation levels, temperature
etcetera) is not known with any certainty, and so the
odds on the instrument surviving in this alien
environment are likewise not known.

The development process by which the component
library was constructed adhered to a waterfall-type
staged development as advocated by the European
Space Agency for small (in their terms) software
projects. The role of the space scientists was that of
customers expected to supply requirements upfront and
to carry out extensive user testing. They found both
these expectations difficult to meet. Supplying
requirements upfront ran counter to their previous
experience of developing their own software in the
laboratory, see 3.2 below, and extensive user testing
did not happen, for reasons discussed in 4.3.

Although the scientists in this study were no longer
acting as professional end user developers, we feel that
the study has its place in this paper, because the
provision of a library of components is often mooted as
a means by which software engineers might support
professional end user developers, see, for example [8]
and [9]. This study made it clear that the provision of
such a library is not without problems, as we shall
discuss briefly in section 4.

Further details are available in [4].

2.4 The biologists.

We shall not have much to say about this as our
field study has just begun, but its inclusion in this
paper is useful in illustrating the variety of contexts in
which professional end user developers work.

The challenge here is for an inter-disciplinary team
of biologists and software engineers to develop some
laboratory infrastructure software (which we will
abbreviate to LIS) to meet the needs of a variety of
laboratories within the UK (and possibly beyond).
Some of the biologists involved have considerable
experience in developing, or modifying, software for
their own laboratories. The challenges facing the
development of the LIS are somewhat different from
those facing the development of software for one’s
own laboratory, however. The LIS must both be broad
enough to reflect the wide variety of working practices
and yet flexible enough to appear to users at a
particular laboratory as being specific for that
laboratory. It also has to be of production quality in
terms of robustness (there will be nobody in the
individual laboratories to fix it should it break) and in
terms of performance.

Having briefly described each field study, we will

now discuss the culture within which the participants
develop software and the means by which the software
is developed.

 3. The culture and development practices
of professional end user developers

We begin by considering the culture within which
professional end users develop software.

3.1 The culture of professional end user
development

Despite the potential consequences of software

failure as discussed above and in Table 1, the dominant
characteristic of the culture within which professional
end user developers work is that software development
is regarded as being a very secondary activity to their
main work.

This is illustrated by the following quotes taken
verbatim from interview transcripts:

‘[Developing software] is a secondary thing to

being a scientist… it's just a tool. … just part of your
skills base. The trouble is…it is seen as so secondary
…' [planetary scientist, emphasizing the word 'so'].

‘[the ability to develop software] is just a tool that
you… pull out of the metaphorical cupboard when you
need it’ [space scientist]

The implications of this perception of software

development as a secondary activity are far-reaching.
One such is that the effort and knowledge required to
develop software both tend to be under-estimated. The
following quotes are from a planetary scientist and the
line manager of the developers at the financial
institution.

'I think the attitude towards computing .. [is] it's

something you do in your spare time. I don't think
people have any idea how long it actually takes to sit
down and write a program. I think we quite happily
imagine that you just … spin it off in half an hour over
your lunch time.' [planetary scientist]

‘everybody in theory knows how to do [software

development]…. It’s assumed that everybody knows
what to do’ [line manager in the financial institution]

 ‘There is a knowledge management capturing

exercise [which] goes on but that’s more for
intellectual capital rather than technique… what we
don’t try and capture, as far as I’m aware… is what we
learnt about [software development] that we could pass
on to everybody’ [line manager]

The use of language in this last quote, where

domain knowledge is ‘intellectual capital’ and software

development knowledge is ‘technique’, reveals, we
think, a distinct value differential.

In addition to the quotes above, a planetary scientist
told us that developing software to drive an instrument
was not considered to be ‘real work’, whereas building
the hardware of the instrument definitely was.

The perception of software development within
professional end user organizations as a secondary
activity and the lack of recognition of the skills and
knowledge required to develop software, leads to a
situation in which possession of such skills and
knowledge is not formally recognized by the
organisation’s rewards or appointments structure. For
example, in the space scientists’ team, a man was
appointed to a post entitled ‘project programmer’ with
the brief of developing ground software. This man had
no software development experience and no software
engineering knowledge beyond a coding course at
University. He made it clear that he saw the job as a
means of gaining a toe-hold into space science rather
than as a means of developing a career as a software
developer.

Having considered the culture within which
professional end user developers produce software, we
now look at their development practices.

3.2 Development practices

The salient characteristic of professional end user
development practice is its iterative quality. These
iterations are not simply a matter of using trial-and-
error to hack the code, but rather seem to reflect a
growing understanding of the requirements as the code
evolves. The following quote, typical of many, is from
[4]:

‘Generally what tends to happen with me is, I do a

first attempt …start writing programs, start using it,
realize it’s not quite what I wanted, and then have a
second attempt’ [planetary scientist]

A space scientist contrasts the scientists’ need for

emergent requirements with what he perceives as the
software engineer’s need for an upfront requirements
specification (again, this quote is from [4]):

‘.. on the science side, we’re not good enough at

defining the specifications. But I suppose we have
more of a view… that you write it and then test it and
then improve it a little bit having looked at the output
and so on. Whereas the software developer would
rather write it and then view the thing as more or less
finished. But it’s really only the start of the
development process once the software is running in

conjunction with the experiment… ‘[space scientist,
our emphasis].

This reliance on iterative development to enhance

the scientist’s understanding of the problem and to
reveal new or modified requirements has been seen
elsewhere. For example, the computational scientists
described in [2] exhibited the same iterative and
evolutionary behaviour.

Another characteristic of professional end user
development practice in our studies is the lack of any
disciplined testing procedure. This may be explained,
in part at least, by the fact that when a scientist is
developing software for his/her own use, and it
becomes apparent to him/her that the software is
incorrect at some level, then he/she can just amend it as
needed.

4. Some problems facing professional end
user developers

The first problem we consider arises from the
culture within which professional end users work, as
described in section 3.1 above. It concerns how
professional end users acquire software development
knowledge within a culture where it is assumed both to
be trivial and part of everybody’s armoury of tools. As
we discussed in the introduction, the developers in our
studies had little difficulty in learning how to
implement programming constructs in a programming
language (Java, LabView or Visual Basic in these
studies): they used manuals or internet tutorials or
memories of University coding courses. However
there is a big gap between learning these basics and
using the programming language to implement a
software solution to a specific domain problem. Where
the professional end user developer finds the
knowledge to bridge that gap is the issue which we will
address in 4.1 and 4.2, focusing on artifacts such as
code and documentation in 4.1 and on the community
of practice in 4.2. In 4.3, we shall discuss a problem
associated with the normal development practices of
professional end user developers (section 3.2). This is
the problem of testing.

4.1 The problems of sharing knowledge
through code and documents

One implication of professional end user
developers’ perception of software as discussed above,
is that they are loath to expend effort on aspects of
software development which do not immediately
appear to improve the supporting of domain tasks.
This makes difficult the sharing of software

development knowledge through artifacts such as code
and documents, as we shall now discuss.

We consider firstly the sharing of knowledge
through code (code reuse). The literature tells us that
the formal institution of a reuse program in software
engineering organizations is very difficult. A study of
such organizations in [10] found that the successful
introduction of a reuse program is dependent on major
changes in organizational culture so as to embrace
reuse, together with significant changes in work
practices and roles. If a formal reuse program is
difficult to implement for professional software
engineers, then it must presumably be far more
difficult to implement within the context of
professional end user computing, where software
development is seen as very much a secondary activity.
We saw only one attempt at formal code reuse in our
studies. The CEO of the financial mathematicians (see
2.1 above) intended the on-line manual not only to lay
down development and testing procedures but also to
act as a repository for code fragments which could be
reused, possibly with some customization. As
described in [3], this intention was not met. The costs
in time of identifying a code fragment suitable for
reuse, testing its robustness and modifying it so that it
could be easily customized for new situations, were
perceived as being too great.

As to informal code sharing, given the similarity in
their instruments, it was theoretically possible for
planetary scientists to share each other’s code, perhaps
with some degree of modification. Such informal
sharing is facilitated by the code being easy to modify,
and hence comprehensible. However, code
comprehensibility does not appear to be a significant
issue for professional end user developers. The
expectation was that only the developer could
understand his/her own code, and even for the
developer, this understanding became very difficult
over time, as attested by the following quote:

[space scientist] 'we would hope to use [the

software] later on … [on] different projects. So we
keep everything.. But.. if there is another problem
[which] comes along… we try and start from scratch
rather than trying to pull out [the saved software].
Because …. I would have forgotten what I'd done on
that program’.

[investigator] 'You couldn't even remember for
yourself?' [as the originator of the software]

[space scientist] 'that's right'
[investigator] 'So another person wouldn't?'
[space scientist] 'No no chance. Not a chance'

This lack of awareness of the potential importance

of code comprehensibility is mirrored by the

community of developers in the financial consultancy.
The CEO described how developers would strive to
produce the tersest possible code to fit a given
situation. He would then ask them to rewrite this code
so that comprehensibility was favoured over terseness.

Another artifact by which knowledge might be
shared is documentation. Professional end user
developers did not voluntarily produce documentation,
apart from the occasional user guide, in either our
studies or those reported in [2]. The space scientists,
encouraged to provide and archive project documents
by the European Space Agency, were skeptical about
the use of such documents as knowledge artifacts:

'[there are a lot of documents available but] going
through them and exactly understanding them
would be far more difficult than getting the guy
who did it and asking him to go through it' [space
scientist (not the same person as quoted above)]

This quote illustrates the general perception that the
community of practice (those people loosely working
together in close proximity and undertaking similar
tasks) is more effective in sharing knowledge than
documents. The following quote illustrates the
importance of this community in facilitating code
sharing:.

'I would expect anyone who wanted to use them

[his routines] to get in touch with me .. rather than
fumble around in the dark without help… [otherwise]
it might take a fellow post-doc several weeks to sort it
all out'. [space scientist who kept a repository of his
own code]

We now turn our attention to a consideration of the

problems of relying on a community of practice for the
sharing of knowledge.

4.2 The problems of sharing and creating

knowledge through the community of
practice

The importance of a community of practice in

creating and sharing knowledge is widely recognized
in the literature, see, for example [11]. Certainly, the
professional end users themselves appreciated this.
Both the financial mathematicians and the planetary
scientists described how, if they came across a
problem, their first port of call would always be a
colleague whom they knew had done similar coding
before. The mathematicians described moving desks
so as to facilitate such sharing. The two quotes above
illustrate the space scientists’ recognition of the
importance of the community of practice.

There are problems with relying on a community of
practice for knowledge creation and sharing, however.
The problem where a community of practice does not
exist in that there is only one end user developer at a
location, though not unusual in end user development,
did not hold in our mature field studies (of the financial
mathematicians and the planetary and space sciences).
Consistent with the fact that the reputation of
professional end users in their organizations does not
depend on the exclusivity of their knowledge of, and
skill in, software development, we saw no problems
associated with a reluctance to either ask for or share
knowledge, cf. [12]. What was problematic was the
inherent instability of the community. Professional
end user developers in our mature field studies did not
intend developing software for the rest of their careers.
In the financial institution, when the students passed all
their professional exams, they became consultants and
instructed their students, in turn, to develop software
for them. In the case of the planetary and space
scientists, the people doing the software development
were almost invariably either doing their PhDs or on
short-term research contracts. Their goal was to
become established enough in their domain so as to
obtain a permanent post and, again, instruct their
students or research fellows to develop their software.
In both cases, as the mathematicians and scientists
ascended their career ladder, they took their software
development knowledge with them and, in any case, it
fell out of date through lack of use.

Of course, this unstable community of practice is
not unique to professional end user developers.
Software engineers also frequently work on short term
contracts. However, software engineers can draw on a
wider network of practice to create and share software
development knowledge. They can read magazines,
attend practitioner meetings, read and publish blogs,
subscribe to internet newsgroups etcetera; they are not
dependent on a collocated community of practice. For
professional end user developers, however, consistent
with a culture in which the value of software is not
fully recognized, this wider network of development
practice does not exist: the magazines, newsgroups
etcetera to which they subscribe, are focused on their
domain. The collocated community of development
practice is thus more important, we argue, to
professional end user developers than to professional
software engineers.

4.3 The problems of testing

We saw in section 2 that the consequences of
software failure in our studies could be dire (and, in
fact, this situation is not uncommon in end user
development, see, for example, [13]). Given this, we

were surprised to see that testing did not seem to be
taken very seriously. This was partly due to pressures
of time. In the financial consultancy, following the
software failure described in 2.1, the main aim of the
CEO in developing the manual was to institutionalize a
disciplined testing regime. This wasn’t wholly
successful. In the context of a busy consultancy,
testing often fell victim to time pressures. In these
cases, the decision was taken, consciously or
unconsciously, that it was riskier to alienate the client
by not delivering on time than by delivering a model
which had not been fully tested. In any case, given the
uncertainty of the domain, as described in 2.1, it was
impossible to verify the model completely.

The problem of time pressure is clearly not unique
to professional end user developers, but we shall now
argue that it is exacerbated by their method of
requirements gathering. We saw in 3.2 that a
cornerstone of normal professional end user
development practice is the emergence of requirements
and deepening of understanding of the problem domain
through iterative and evolutionary development. One
problem with this is knowing when to stop.

‘.. being like a bunch of scientists, we [thought] we

could change everything up until the last minute…[the
software engineers] were just saying “Sort the
requirements out now! Do it now! You haven’t got
time!”’[Space scientist, quoted in [4]]

This is consistent with the observations of the

computational scientists in [2] who refer to scientific
simulation programs as being under constant
evolutionary development, rather than having separate
phases of development and maintenance. This ‘not
knowing when to stop’ is especially problematical in
developments where there is a definite delivery date
(for example, of the instrument to a satellite which is
going to be launched on a particular date come what
may). Later parts of the development process – such as
testing – get squeezed.

There are several further points to be made about
testing. Firstly, not taking testing seriously is
consistent with a development culture in which the
value of software is not fully recognized. Secondly,
we note that our findings differ from those of [2] who
observed that regression testing was regularly carried
out by the computational scientists as they evolved
their software. Thirdly, as we mentioned in the
introduction to section 2 above, system testing is
inherently difficult in poorly understood domains.
Finally, the problem of testing being squeezed out by
time pressures might (theoretically, at least) be solved
in part by test-driven development. The project leader
of the biologists is currently trying to promote test

driven development within his team. It remains to be
seen whether this will be successful.

5. Summary and discussion

In this paper, we have demonstrated that the
context of professional end user development is not the
clichéd one of the inexperienced user of formal
languages developing some inconsequential software
for his/her own use over an hour or two of spare time.
Rather, the professional end user developer has no fear
of formal languages and develops complex software
which has an important role to play in furthering
his/her professional goals and which can incur grave
consequences in the event of failure. Unfortunately,
the skills, knowledge and effort required to develop
this software, its value and the risks associated with it,
do not seem to be recognized by the organizations
within which professional end user developers work.
We discussed two fundamental characteristics of
professional end user development: the reliance on
iterative, evolutionary development in order to evolve
an understanding of the requirements and the problem
domain, and the difficulty of carrying out system
testing when the correct outputs are not known. We
noted problems with sharing software development
knowledge and with testing. Although neither of these
problems are unique to professional end user
developers as opposed to career software developers,
both might be exacerbated by the lack of value
afforded software development in the professional end
user development culture.

As discussed in the introduction to this paper, the
purpose of these field studies is to determine the tools,
techniques and methods that will best support
professional end user development. Based on our
findings, we advise that professional end user
developers need support in sharing software
development knowledge and in testing. Any
supporting tools must acknowledge both the reliance
on iterative development and the perception of
software development as being very much a secondary
activity. The implication of this latter is that any tools,
techniques or methods designed specifically to support
professional end user developers that require major
changes in roles or in work practices, are doomed to
failure. Rather, to have any chance of success, they
must fit as seamlessly as possible into the current
pattern of software development.

6. References

[1] Singer, J., Lethbridge, T., Vinson, N. and Anquetil, N.
(1997) An examination of software engineering work
practices, in Centre for Advanced Studies Conference
(CASCON), Toronto, Ontario, 1 - 15.
[2] Carver, J.C., Hochstein, L.M., Kendall R.P., Nakamura,
T., Zelkowitz, M.V., Basili, V. R., Post, D. E. 2006
‘Observations about software development for high end
computing’ CT Watch Quarterly, November, 2006,
pp 33-38.
[3] Segal J., 2001, ‘Organisational Learning and Software
Process Improvement: A Case Study’, in Advances in
Learning Software Organizations, K-D Althoff, R.L.
Feldmann, W. Muller (Eds.), Lecture Notes in Computer
Science, Vol. 2176, Springer, 68-82.
[4] Segal J., 2005, ‘When software engineers met research
scientists: a case study’, Empirical Software Engineering, 10,
517-536.
[5] Segal, J. (2004) .Professional end users and software
development knowledge. Technical Report 2004/25,
Department of Computing, The Open University, UK,
http://computing-reports.open.ac.uk.
[6] Seaman, C. 1999. Methods in empirical studies of
software engineering. IEEE Transactions on Software
Engineering 25(4): 557-572.
[7] Nardi, B.A. A Small Matter of Programming:
Perspectives on End User Computing. MIT Press, 1993.
[8] McBride, N., Wood-Harper, A.T., 2002. Towards user-
oriented control of end user computing in large
organizations. Journal of End user Computing, 14(1), 33-44.
[9] Morch, A.I., Stevens, G., Won, M., Klann, M., Dittrich,
Y., Wulf, V. 2004. Component-based technologies for end
user development. CommACM, 47(9), 59-62
[10] Morisio, M., Ezran, M., Tully, C. 2002. 'Success and
failure factors in software reuse. IEEE Transactions on
Software Engineering, 28(4), 340-357
[11] Brown, J.S., Duguid, P., 2000. The Social Life of
Information. Harvard Business School Press.
[12] Pipek, V., Hinrichs, J., Wulf, V., 2002. Sharing
expertise: challenges for technical support. In Ackerman,
M., Pipek, V., Wulf, V. (eds). Beyond Knowledge
Management: Sharing Expertise. MIT Press, Cambridge MA
[13] Panko, R., 1998. What we know about spreadsheet
errors. Journal of End User Computing. 10(2), 15-21.

