
Open Research Online
The Open University’s repository of research publications
and other research outputs

A cognitive dimensions analysis of interaction design
for algorithmic composition software
Conference or Workshop Item
How to cite:

Bellingham, Matt; Holland, Simon and Mulholland, Paul (2014). A cognitive dimensions analysis of interaction
design for algorithmic composition software. In: Proceedings of Psychology of Programming Interest Group Annual
Conference 2014 (du Boulay, Benedict and Good, Judith eds.), 25-27 Jun 2014, Brighton, University of Sussex, pp.
135–140.

For guidance on citations see FAQs.

c© 2014 The Authors

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://users.sussex.ac.uk/ bend/ppig2014/PPIGproceedings.pdf

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82910878?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://users.sussex.ac.uk/~bend/ppig2014/PPIGproceedings.pdf
http://oro.open.ac.uk/policies.html

PPIG, University of Sussex, 2014 www.ppig.org

A cognitive dimensions analysis of interaction design for algorithmic
composition software

Matt Bellingham

Department of Music and Music

Technology
Faculty of Arts

University of Wolverhampton
matt.bellingham@wlv.ac.uk

Simon Holland

Music Computing Lab
Centre for Research In

Computing
The Open University

simon.holland@open.ac.uk

Paul Mulholland

Knowledge Media Institute
Centre for Research in

Computing
The Open University

p.mulholland@open.ac.uk

Keywords: POP-I.C. end-user applications, POP-II.B. design, POP-III.C. cognitive dimensions, POP-IV.B. user
interfaces, POP-V.A. theories of design, POP-VI.F. exploratory

Abstract

This paper presents an analysis, using cognitive dimensions (Green & Blackwell, 1998), of a
representative selection of user interfaces for algorithmic composition software. Cognitive dimensions
are design principles for notations, user interfaces and programming language design, or from another
viewpoint ‘discussion tools’ for designers (Green & Blackwell, 1998). For the purposes of this report,
algorithmic composition software is software which generates music using computer algorithms,
where the algorithms may be controlled by end users (who may variously be considered as composers
or performers). For example, the algorithms may be created by the end user, or the user may provide
data or parameter settings to pre-existing algorithms. Other kinds of end-user manipulation are also
possible. A wide variety of algorithmic composition software is considered, including visual
programming languages, text-oriented programming languages, and software which requires or allows
data entry by the user. The paper considers a representative, rather than comprehensive, selection of
software. The analysis also draws, where appropriate, on related discussion tools drawn from
Crampton Smith (Moggridge, 2006), Cooper et al. (2007) and Rogers et al. (2011). Finally, the paper
reflects on the compositional representation of time as a critical dimension of composition software
that is not satisfactorily addressed by cognitive dimensions, or any of the other discussion tools.

1 Introduction

The paper considers all fourteen cognitive dimensions in turn, using each dimension to illuminate
design issues in a wide variety of user interfaces for algorithmic composition. Finally, issues in
interaction design for algorithmic composition that are arguably not well addressed by cognitive
dimensions, such as the compositional representation of time, are considered.

2 Viscosity

Viscosity is a measurement of the software’s resistance to change, or how easily the user can change a
patch once it has been written. Repetition viscosity is caused when the software requires several
actions to achieve a single goal. Knock-on viscosity is created when a change is made and the software
requires further remedial action to restore the desired operation (Green & Blackwell, 1998).
Visual patching languages such as Max (Cycling ’74, 20141) and Pure Data (Puckette, 2014) can
become highly viscous. Connections are made with virtual patch cables, and when there are multiple

1 Cycling ’74 is the name of the company that produces Max.

 2

PPIG, University of Sussex, 2014 www.ppig.org

connections the patch can become difficult to read and work with (sometimes referred to as
‘spaghetti’).
For detailed images from a wide variety of algorithmic composition software illustrating all issues
touched on in this paper, see Bellingham et al. (2014), of which this paper is an abbreviated version
The use of subpatches can ameliorate some viscosity issues. Subpatches allow the programmer to
create objects with inlets and outlets which can abstract and simplify a patch at a given level.
Subpatches can also be used to easily copy material, further reducing repetition viscosity. Abstracted
connections (‘send’ and ‘return’ objects, for example) allow for non-visual connections with an
increase in search cost (see hidden dependancies).
The structure of a piece of music, depending on the genre, can be a crucial element of the
composition. If the genre requires a strongly structured piece there will be a conceptual structure
(ABA, for example). An interface which matches the user’s conceptual structure will reduce both
repetition and knock-on viscosity. Cooper et al. (2007) suggest three separate models for the
perception of software; the implementation model of the software (how it works), the user’s mental
model (how the user imagines the software to work) and the representational model of the software
(what the software shows the user). Repetition viscosity could be significantly reduced by better
matching the mental model to the representational or implementation models. For example, if the
implementation model made use of repeating sections the user could apply a change to the section and
it would play back correctly both times. If the representational model showed repeating sections (as
visual blocks, for example) and then relayed the changed material to all relevant repeats in the
implementation layer, the user would input the desired changes once and they would be propagated
out to the playback system (see Provisionality).
Some text-oriented programming languages such as Csound (Vercoe, 2014) and SuperCollider
(McCartney, 2014) allow the user to create elements that can be easily reused and redefined. Such
polymorphism (either ad hoc or parametric depending on context) can reduce repetition viscosity as
changes in the variable’s parameters will cascade to all instances. The ‘rules’ implemented in Noatikl
(Intermorphic, 2012) allow for a reduced viscosity via cascading changes in a similar way. Knock-on
viscosity can be created by introducing wide-ranging changes in this way.
There are links between viscosity and another of the dimensions, premature commitment. Premature
commitment refers to situations in which the user has to make a decision before they have access to
all relevant information. A piece of software with high viscosity makes it hard to amend work once it
has been started. It is reasonable to assume that many compositions start with sketches that develop;
high viscosity, such as is found in visual patching software, makes such development difficult.
Viscosity in software is not necessarily a negative attribute. Highly viscous software can present a
user with a single, stable, well defined use-case. An example of this is Wolfram Tones (Wolfram
Research Labs, 2011) which presents the user with a limited control set as a ‘black box’ (Rosenberg,
1982). Another example is Improviser for Audiocubes (Percussa, 2012), in which the complexity of
the performance is generated by the physical layout of the Audiocubes (Percussa, 2013). As a result,
keeping the sequencing interface simple avoids over-complicating the composition and performance
processes. This simplicity, however, increases the viscosity and arguably limits compositional
opportunity.
Live coding (editing code while it generates sound) requires software with a low viscosity. Elements
need to be individually controllable with an efficient syntax, low repetition viscosity and minimal
knock-on viscosity. Impromptu (Sorensen, 2010) is a Lisp-based environment which allows for the
real-time creation and control of objects. Usine (Sens, 2013) has a GUI which allows for mouse and
keyboard control, with a graphical signal flow based on a modular synthesis concept.

3 Abstraction

An abstraction presents the user with a representation which is closely aligned with the semantic
meaning of the entity. The implementation of the entity is hidden, or abstracted. The abstraction
barrier (Green & Blackwell, 1998) describes the number of abstractions the user must master before

 3

PPIG, University of Sussex, 2014 www.ppig.org

using the software. Graphical languages typically have a lower abstraction barrier than text-based
languages. Green and Blackwell describe three classes of software; abstraction-hungry systems which
require user-defined abstractions, abstraction-tolerant systems which permit them, and abstraction-
hating systems which do not allow them (1998).
Many of the text-oriented languages used in the space (such as Impromptu (Sorensen, 2010) and
SuperCollider (McCartney, 2014)) are abstraction-hungry. They frequently also have a high
abstraction barrier as they require the user to learn the syntax and abstractions used. An example of
abstraction-tolerant software is the Algorithmic Composition Toolbox by Paul Berg (2012), which
presents objects to the user and allows the creation of new abstractions. The software makes use of
musical metaphors (such as a rudimentary piano roll) for some elements. The user defines objects
such as sections, shapes, masks and note structures which the program’s ‘generators’ use to create
new material. A selection of software in the field do not require the user to interact with the method of
generation; these are abstraction-hating systems. Robert Walker’s Fractal Tune Smithy (2011) and
Jonathan Middleton’s Musical Algorithms (2004) both require musical input which is then acted on
using algorithms which are both hidden from, and inaccessible to, the user.
Abstractions can be used to make software more effectively match the user’s mental model (Cooper et
al., 2007). Multiple steps can be combined to make the software conform to the user’s expectations.
Such abstractions can make use of a metaphor such as the hardware controls of a tape machine. The
processes involved in saving the play state, halting and saving sound generation and effects
processing, and then reloading the state to allow the track to continue need to be abstracted to
reinforce the metaphor. The metaphor imposes some of the characteristics of a tape machine: the tape
is in motion, stopped, and then resumes playback from the same place when set into motion.
There are several music metaphors used in the software in the field which require the user to be
conversant in music theory. Harmony Improvisator (Synleor, 2013) requires input in the form of
scales, chords and inversions. Noatikl (Intermorphic, 2012) uses abstractions to create what it refers to
as ‘Rule Objects’ (‘Scale Rule’, ‘Harmony Rule’, ‘Next Note Rule’ and ‘Rhythm Rule’) to control
how the software generates patterns. The Algorithmic Composition Toolbox (Berg, 2012) makes
reference to note patterns and structures. Roger Dannenberg has explained how manuscript is rich in
abstractions (1993); software which uses elements of manuscript is building abstractions on top of
abstractions.
Abstraction has a link to visibility, another of the cognitive dimensions. A high level of abstraction
can result in low visibility. An effective design would be for the software to have a low abstraction
barrier but be abstraction-tolerant. Such a design would allow new users to work with the language
without writing new abstractions, while more advanced users could write abstractions when
appropriate.

4 Hidden Dependencies

Hidden dependancies occur when important links between entities are not fully visible. There is a
search cost which reflects the effort required to locate the dependancy (Green & Blackwell, 1998).
There are two types of links made in the software under consideration; one-way and symmetric. One-
way links send data, whereas symmetric links can both send and receive information. One-way links,
such as a send object in Pure Data or a variable in SuperCollider, do not reflect changes made
elsewhere in the system. The patch-cable metaphor used in visual programming languages makes one-
way dependancies explicit and reduces the potential for hidden dependancies. Visual audio
programming systems typically use a patch cable metaphor and, as the majority of physical patching
utilises a unidirectional (i.e. audio send or return) rather than bidirectional (i.e. MIDI, USB)
connection, software such as Max and Pure Data retains a one-way connectivity metaphor. Visual
patching systems allow users to see links at the potential expense of increased premature commitment.
Both graphical and text-oriented languages can make use of variables and hidden sends and returns. If
users are required to check dependancies before they make changes to the software the search cost is
increased. This in turn can lead to higher error rates (via knock-on viscosity). Abstractions can impose

 4

PPIG, University of Sussex, 2014 www.ppig.org

additional hidden dependancies; users may not be able to see how changes will affect other elements
in the patch.

5 Premature Commitment

Premature commitment refers to constraints on the order of operation, which leads to the user making
a decision before all relevant information is available. Enforced lookahead describes how the user is
forced to decide on implementation detail before they would otherwise be ready to (Green &
Blackwell, 1998).
While experienced users can leverage their understanding of a piece of software to minimise
premature commitment, less experienced users may have to rewrite a patch as it develops. Alan
Cooper refers to ‘survivors’ (Cooper, 2004); those who manage to use software but find the process of
composition is made more difficult by the limitations of the tool. He describes the cognitive
dissonance caused by tension between the user’s mental model and the implementation and/or
representational models (Cooper et al., 2007). The software can dictate the way the composer writes.
Most software in the algorithmic space allow links to be made only between pre-existing entities. In
these cases the user is unable to say ‘I don’t know what is going here’, which can be a useful option
when composing. One possible solution to this problem would be to decouple the design of the
patch/composition from the actualisation. This could take the form of a graphical sketching tool which
would allow the user to test the structure and basic design of the patch.

Image 1 - Potential layout for structure-aware composition software

There is a link between premature commitment and the viscosity of the programme; if viscosity is low
then the user can redesign their patch with relative ease. Graphical systems such as Noatikl show the
order of actions using a signal flow analogy which offers an easy way to reorder, thereby reducing
viscosity.
Green & Petre (1996) introduce two subsets of premature commitment; commitment to layout and
commitment to connections. Graphical systems such as Max encourage users to start with one element
and then expand the patch. This forces the user to commit to the layout, and as the patch grows in
complexity the viscosity of the software can limit subsequent changes. Graphical systems suggest a
commitment to connections as significant planning is needed to design a flexible patch. A simple
patch using a patch-cable analogy can be easily readable, but increased complexity can lead to a
visually congested patch which is hard to maintain. This leads to higher viscosity.

6 Secondary notation

Secondary notation refers to extra information conveyed to the user in means other than the formal
syntax (Green & Blackwell, 1998). Examples of secondary notation are in the collection of controls in
Mixtikl (Intermorphic, 2013) and in the design of the Cylob Music System. Information conveyed by
placement is known as escape from formalism (Green & Blackwell, 1998). The spacial placement of
the controls adds to the information available, making the device easier to learn. Both Max and Pure
Data allow for graphical elements (such as colour, fonts and canvas objects) to be added to patches.

 5

PPIG, University of Sussex, 2014 www.ppig.org

Another example of secondary notation is code indentation; Green refers to this as redundant
recoding (1998). Indentation helps to improve legibility and comprehension when reading and writing
code. Indentation is used in all of the text-oriented languages under review. Object-oriented languages
(such as SuperCollider) and XML-based syntax (such as that used in SoundHelix by Thomas Schürger
(2012)) make significant use of the placement and context of commands for both the readability and
functionality of the code. Adding comments to code is another example of secondary notation, and all
of the musical programming languages under consideration allow for commenting.
There is a link between secondary notation and viscosity. If a patch’s structure is changed the
secondary notation (such as the placement of controls) can also be affected. The design of the patch
therefore needs to include the required secondary notation which will lead to a higher viscosity due to
the lack of flexibility in future changes.

7 Visibility

Visibility is the ability to view components easily. Juxtaposability is the ability to view two
components simultaneously; this can be useful when comparing two elements (Green & Blackwell,
1998). There is a balance to be struck in composition software between having too much information
and not having enough to complete a given task. Key parameters must be made visibility without
introducing clutter to the design.
The user needs to be informed of their current position in the control tree. Software such as Mixtikl
shows the current position by having a main view and using windows to access specific elements.
Animation and placement denote the layer of the interface that is currently open. Pure Data allows
users to create subpatches that open in successive layers on the screen; the user can use the ‘Window’
menu to view the open windows and to move to a specific place but the interface lacks a clear
‘breadcrumb’-like structure (Adkisson, 2005).
Form-based data entry, as used in software such as Tune Smithy and the Algorithmic Composition
Toolbox, allows the user to review multiple parameters simultaneously. Such designs do not allow the
user to see older entries as they are replaced, which has a negative impact on the juxtaposability of the
software. The user is asked to remember the old settings, increasing the work required of the user
(Cooper et al., 2007).
Data flow visibility is variable in the software under consideration. Graphical languages such as Max
and Pure Data can exhibit excellent data visibility within single patches, although the use of send and
receive objects can impact on this. Noatikl and Mixtikl show data flow very clearly. Visibility in text-
oriented systems is lower and the user may have to wireframe the patch separately before creating the
code.

8 Closeness of mapping

Mapping refers to the correlation between the interface and the actual tasks being performed by the
software. A close mapping (Green & Blackwell, 1998) is modelled on the implementation model
(Cooper et al., 2007). In this case the software directly represents the way the software works, rather
than abstracting this information. An example of this is Pure Data (Puckette, 2014). Some operations
require the user to understand processes which are normally abstracted; for example, if a user is to
play an audio file they need to create a line~ object to play each sample of the audio file in the
required time. Pure Data also contains a large number of abstractions which represent a more distant
mapping.
A distant mapping (Green & Blackwell, 1998) presents a significantly different representation model
(Cooper et al., 2007), potentially requiring the use of new concepts. Distant mapping allows the
interface to better match the user’s mental model (Cooper et al., 2007). An interesting example of this
is Maestro Genesis (Szerlip & Hoover, 2012), which uses the metaphor of animal breeding to allow
the user to control the characteristics of ‘generations’ of music. The software abstracts the generation
algorithms behind a ‘DNA’ button with an icon of a DNA double helix; the user can select from the
resulting ‘generations’.

 6

PPIG, University of Sussex, 2014 www.ppig.org

Image 2 - Sample playback in Pure Data, displaying a close mapping between the interface and the

task being performed by the software

9 Consistency

Consistency refers to the way in which similar semantics are used in the user interface design (Green
& Blackwell, 1998). If an interface is consistent it can positively affect the learnability of the
software. The consistency of the user interface design affects usability more than learnability; once a
user has learned the interface consistency is less important.
An example of a consistent design is Mixikl. The design language leverages both hardware
synthesisers (the use of photorealistic rotary potentiometers and faders) and patching (patch cables
which ‘droop’ as physical cables do). Fractal Tune Smithy makes use of a less consistent design
language. The design makes use of notation, piano roll, hardware-style controls, text-based data entry
and window and card metaphors. The software is, as a result, highly capable of a wide variety of tasks
but potentially at the expense of usability.
There can also be consistency issues when software does not use standard operating system dialogue
boxes. An example is SuperCollider’s save dialogue, in which the ‘Save’ button is moved from the far
right (the OS standard) to the far left. This is a clear example of poor consistency which could lead to
unintended user error.

10 Diffuseness

Diffuseness measures the verbosity of language used in the software (Green & Blackwell, 1998).
Shorter names and descriptions can reduce the memory work required of the user (Cooper et al.,
2007). Examples of the use of short names can be seen in graphical programming languages such as
Strasheela by Torsten Anders (2012) and Andrew Sorensen’s Impromptu (2010). Inappropriate
terseness can conversely lead to user error as there might be too little information for the user. As an
example, an Impromptu patch can exhibit a high degree of diffuseness and can therefore be difficult to
read. Diffuseness can be increased by making both variable names and comments more verbose.

11 Error-Proneness

The error-proneness of the system relates to whether the notation used invites mistakes (Green &
Blackwell, 1998). The text-oriented systems under review exhibit poor discriminability due to easily
confused syntax, which invites error (Blackwell & Green, 2003). Such issues can be ameliorated by
the syntax checking seen in the Post windows of SuperCollider and Pure Data, in which errors are

 7

PPIG, University of Sussex, 2014 www.ppig.org

outlined in a limited way. A more thorough error-checking system would be a significant
improvement in the software’s usability. SuperCollider 3.6 introduced an IDE (Integrated
Development Environment) based design, including autocompletion of class and method names. Such
a system significantly reduces errors introduced by mistyping.

12 Hard mental operations

Hard mental operations are those that place a high demand on the user’s cognitive resources (Green &
Blackwell, 1998); Cooper et al. (2007) also refer to the negative impact of requiring the user to
undertake significant cognitive work.
Working in a code-based environment requires the internalisation of signal flow and the logical
development of patterns. ChucK (Wang & Cook, 2013) is an interesting hybrid in this respect. Data
can be ‘chucked’ from one object to another using the => symbol, the use of which imitates a patch
cable. The other text-oriented languages reviewed do not make direct use of graphical or spatial
interconnectivity. In this way ChucK makes limited use of Crampton Smith’s second dimension of
IxD; visual representation (Moggridge, 2006).

Image 3 - An example of the => patching syntax in ChucK (Wang & Cook, 2013)

Software using the patching metaphor (graphic systems such as Noatikl (Intermorphic, 2012) or visual
programming languages like Max (Cycling ’74, 2014)) allow the visualisation of elements such as
signal flow and boolean logic. Externalising the connections between elements reduces the cognitive
work required of the user.

13 Progressive evaluation

Progressive evaluation allows the user to access the current state of their work at any time (Green &
Blackwell, 1998). Such evaluation is important in music software as it allows for iterative
development, an important compositional technique (Collins, 2005).
Two examples of software with minimal progressive evaluation options are both web-based. Musical
Algorithms (Middleton, 2004) and Wolfram Tones (Wolfram Research Labs, 2011) require the user to
upload and download data to a ‘black box’ with little control of the process. They are effectively
offline, non-realtime processes which do not offer feedback before the final product is created.
Code-based systems such as Csound require a patch to be completed before the code can be evaluated
and run. The use of variables allows for iterative progression without significant refactoring of the
code; this leads to an approximation of progressive evaluation (a change - test - evaluate cycle).

14 Provisionality

Provisionality refers to the degree of commitment the user must make to their actions (Green &
Blackwell, 1998). It allows users to make imprecise, indicative selections before making definite

 8

PPIG, University of Sussex, 2014 www.ppig.org

choices. Provisionality reduces premature commitment as it allows a composer to create sketches
before allowing for specific details.
Some of the software under review allows the software to make selections within a given range.
SuperCollider makes use of .coin and .choose messages for this reason; .coin, for example, represents
a virtual toss of a coin. Other software, such as Max, can make use of pseudo-random numbers in
parameters; this allows the composer to issue a command such as ‘use a value between x and y’. Such
selections can increase provisionality in the system, although more complex variations require
significant planning which negates the benefits of being able to create a basic wireframe. DAW
software such as Logic Pro (Apple Inc., 2013) makes use of audio and MIDI loops to facilitate
provisionality in composition and arrangement. Users are able to create sketches using loops,
replacing them later in the process. Some of the software under review allows the user to create music
following basic harmonic or rhythmic parameters. Noatikl has preset objects which can be used to
create sequences, and Impro-Visor’s preset algorithms allow for quick musical sketches based on a
chord progression (Keller, 2012).
One possible design would allow the user to specify the desired structure and then populate the
sections. Repeated sections would require two ‘pools’ of information; those attributes common to
both, and those for that specific iteration.

Image 4 - Possible layout allowing common material to be shared between sections

15 Role-expressiveness

The role-expressiveness of an element relates to how easily the user can infer its purpose (Green &
Blackwell, 1998). The use of metaphor (such as mixing desks, synthesisers, piano rolls and
manuscript) allows users to quickly understand the potential uses of each editor.
Text-oriented programming languages (such as Csound) are not as role-expressive as graphical
systems unless the user is experienced in reading and understanding the code. AthenaCL by
Christopher Ariza (2011) is a composition framework written in Python. The role-expressiveness of
the code is low; the system allows for graphical output in the form of piano-roll-style mapping, but
there is minimal use of metaphor.
Graphical languages (such as Pure Data) can be expressive as the connections between elements are
clear. It is possible for a user to see an image of a Pure Data patch and understand the
interrelationships of the objects and the purpose of the patch.
Impro-Visor (Keller, 2012) uses a lead sheet metaphor. The software is targeted at jazz musicians with
an assumption that users will be familiar with the use of manuscript and chord progressions. The
interface includes a transport control metaphor (play, pause, stop, record) and presents algorithmic
choices as musician’s names to denote the intended style. The role-expressiveness will therefore be
high among the target users.

 9

PPIG, University of Sussex, 2014 www.ppig.org

16 Towards design tools for the compositional representation of time

Some important issues in interaction design for algorithmic composition do not appear to be fully
addressed by cognitive dimensions, or by other design discussion tools noted in the present paper.
One such issue is the variety of demands made on compositional representations of time. Of course,
notions of time are considered in design discussion tools. For example, Crampton Smith identified
time as one of the four dimensions of interaction design (Moggridge, 2006). Time is not viewed as a
separate entity in cognitive dimensions, although it is implicit in some dimensions. Kutar et al. (2000)
reviewed the representation of various time granularities in TRIO, a real-time logic language
(Morzenti et al., 1989), with reference to cognitive dimensions. There are various representations of
time in software generally; research suggests that there is no one preferred type (Kessell & Tversky,
2008).
Payne (1993) reviewed the representations of time in calendars, which primarily focussed on the use
of horizontal and vertical spatial information to imply the passage of time: in many cases a similar
approach can be taken by music software. Sequencers, such as Cubase (Steinberg GmbH, 2013),
frequently use horizontal motion from left to right to denote the passage of time. Trackers, such as
Renoise (Impressum, 2013), frequently show the passage of time as a vertical scroll from top to
bottom.
The use of a static horizontal plane to denote time is common (sometimes with a moving pointer or
index); Tune Smithy, Maestro Genesis and Noatikl are examples of this. Some of the reviewed
software does not directly show the passage of time; offline, non-realtime software such as Musical
Algorithms output files for use elsewhere. The text-oriented systems reviewed here are generally
capable of generating graphical elements but this is not vital to their operation; the software can
operate without any visual feedback for the user.
Much musical software makes use of cyclic time (loops), as well as linear time. Both of these kinds of
time can be sequenced, or mixed, or arranged hierarchically at different scales, or arranged in parallel
streams, or all of these at once. This can also be true of general programming languages, but is often a
detailed focus of algorithmic composition software. Software written to perform loop-based music
frequently uses a different interface to denote the passage of time. Live (Ableton, 2014) makes use of
horizontal time in some interface components; other interface elements allow the user to switch
between sample and synthetic content in real-time with no time representation. Mixtikl is a loop-based
system and, in several edit screens, does not show the passage of time at all as the user interacts with
the interface.
Audiocubes (Percussa, 2013), used with Improvisor (Percussa, 2012), use a static view of a
perpetually looping step sequencer and so do not need to show time elapsing. Audiocubes are wireless
hardware devices that use their orientation with relation to other cubes (via 4 IR ports) to trigger
rhythmic and melodic patterns. Patterns are created in the Improvisor software according to the
different orientations of each combination of cube surfaces. Performance is therefore achieved by the
spatial placement of the cubes.
In a classic paper, Desain and Honing (1993) discuss different implicit time structures in tonal music.
They point out that, in order to competently speed up piano performances in certain genres, it is no
good simply to increase the tempo. While this may be appropriate for structural notes, decorations
such as trills tend to need other manipulations such as truncations without speed-ups or substitutions
to work effectively at different tempi. Similarly, elements of rhythm at different levels of periodicity,
for example periodicities below 200 ms vs. above 2 seconds, may require very different kinds of
compositional manipulation since the human rhythm perception (and composers and performers) deal
very differently with periodicities in these different time domains (Angelis et al., 2013; London,
2012). In a related sense, Lerdahl & Jackendoff (1983) uncover four very different sets of time
relationships in harmonic structures in tonal music.
Honing (1993) differentiates between tacit (i.e. focussed on ‘now’), implicit (a list of notes in order)
and explicit time structures. Some of the software under review can be considered in this way; for
example, some modes of operation in Mixtikl and Live utilise tacit time structures, the note lists in
Maestro Genesis and MusiNum are implicit time structures, and software such as Max or Csound can

 10

PPIG, University of Sussex, 2014 www.ppig.org

generate material which uses explicit time structures. The flexibility of many of the programming
environments under consideration means that the user can determine the timing structures to be used.
Honing (1993) also applies the same process to structural relations (see Repetition Viscosity above):
he suggests that there are tacit, implicit and explicit structural relations. A system which uses explicit
structural relations would allow the musical structure to be both declarative and explicitly represented.

17 Summary

Cognitive dimensions have proven to be a useful, if not quite comprehensive, tool in the analysis of
algorithmic music software and in the articulation of issues affecting how usable these tools are and
how well they work. Much of the reviewed software exhibits a low viscosity and requires significant
user knowledge. The use of metaphor (manuscript, music production hardware) introduces multiple
levels of abstraction which the user has to understand in order to use effectively: some instances of
close mapping reduce abstraction but require the user to do more work. Significant premature
commitment is not conducive to music composition, and there are clear opportunities for the greater
provisionality that a piece of structurally-aware music software could provide. Visibility and
juxtaposability are frequently compromised by complex design. Patching software reduces the hard
mental operations required of the user by making the signal flow clear, although graphical complexity
can have a negative impact on role-expressiveness. Complexity leads to error-proneness in several
instances, although there are some tools (such as error-checking and auto-completion) to ameliorate
the main problems.
There are opportunities for future work to consider the design of structurally-aware algorithmic
composition software. It would be interesting to further employ cognitive dimensions in suggesting
concrete improvements to the design of the software under review.
The issue of time raises particular questions and problems. Algorithmic composition tools use varied
interaction designs, and may promiscuously mix diverse elements from different musical, algorithmic
and interaction approaches. Consequently, such tools can raise challenging design issues in the
compositional representations of time. To some degree, these issues parallel similar issues in general
programming, for example concerning sequence, looping, hierarchy and parallel streams. However,
growing knowledge about how people perceive and process different kinds of musical structure at
different time scales suggests that the design of algorithmic composition tools may pose a range of
interesting new design issues. We hope that this paper has made a start in identifying opportunities to
create or extend design tools to deal better with these challenging issues.

18 References

Ableton (2014) ‘Ableton live 9’, [online] Available from: https://www.ableton.com/en/live/new-in-9/
(Accessed 14 February 2014).

Adkisson, Heidi P. (2005) ‘Breadcrumb navigation’, Web Design Practices, [online] Available from:
http://www.webdesignpractices.com/navigation/breadcrumb.html (Accessed 04 September 2011).

Anders, Torsten (2012) ‘Strasheela’, [online] Available from:
http://strasheela.sourceforge.net/strasheela/doc/index.html (Accessed 26 March 2013).

Angelis, Vassilis, Holland, Simon, Upton, Paul J. and Clayton, Martin (2013) ‘Testing a
computational model of rhythm perception using polyrhythmic stimuli’, Journal of New Music
Research, 42(1), pp. 47–60.

Apple Inc. (2013) ‘Logic pro x’, [online] Available from: https://www.apple.com/uk/logic-pro/
(Accessed 24 October 2013).

Ariza, Christopher (2011) ‘athenaCL’, Flexatone HFP, [online] Available from:
http://www.flexatone.org/article/athenaCLMain (Accessed 26 March 2013).

 11

PPIG, University of Sussex, 2014 www.ppig.org

Bellingham, Matt, Holland, Simon and Mulholland, Paul (2014) An analysis of algorithmic
composition interaction design with reference to cognitive dimensions, The Open University,
[online] Available from: http://computing-reports.open.ac.uk/2014/TR2014-01.pdf.

Berg, Paul (2012) ‘Algorithmic composition toolbox’, [online] Available from:
http://www.koncon.nl/downloads/ACToolbox/ (Accessed 26 January 2014).

Blackwell, Alan and Green, Thomas (2003) ‘HCI models, theories, and frameworks: toward a
multidisciplinary science’, In Carroll, J. M. (ed.), San Francisco, Morgan Kaufmann, pp. 103–
134.

Collins, David (2005) ‘A synthesis process model of creative thinking in music composition’,
Psychology of Music, 33(2), pp. 193–216.

Cooper, Alan (2004) The inmates are running the asylum: why high-tech products drive us crazy and
how to restore the sanity, 2nd ed. Sams Publishing.

Cooper, Alan, Reimann, Robert and Cronin, David (2007) About face 3: the essentials of interaction
design, 3rd ed. John Wiley & Sons.

Cycling ’74 (2014) ‘Max’, [online] Available from: http://cycling74.com/products/max/ (Accessed 10
February 2014).

Dannenberg, Roger B. (1993) ‘Music representation issues, techniques, and systems’, Computer
Music Journal, 17(3), pp. 20–30.

Desain, Peter and Honing, Henkjan (1993) ‘Tempo curves considered harmful’, In Kramer, J. D.
(ed.), Time in contemporary musical thought, Contemporary Music Review, pp. 123–138.

Green, T. R. and Petre, M. (1996) ‘Usability analysis of visual programming environments: a
‘cognitive dimensions’ framework’, Journal of Visual Languages and Computing, 7, pp. pp.131–
174.

Green, Thomas and Blackwell, Alan (1998) ‘Cognitive dimensions of information artefacts: a
tutorial’, [online] Available from:
http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf (Accessed 18 September
2013).

Honing, Henkjan (1993) ‘Issues on the representation of time and structure in music’, Contemporary
Music Review, 9(1-2), pp. 221–238.

Impressum (2013) ‘Renoise’, [online] Available from: http://www.renoise.com.
Intermorphic (2013) ‘Mixtikl’, [online] Available from:

http://www.intermorphic.com/tools/mixtikl/index.html (Accessed 27 March 2013).
Intermorphic (2012) ‘Noatikl’, [online] Available from:

http://www.intermorphic.com/tools/noatikl/index.html (Accessed 27 March 2013).
Keller, Robert (2012) ‘Impro-visor’, Harvey Mudd Computer Science Department, [online] Available

from: http://www.cs.hmc.edu/~keller/jazz/improvisor/ (Accessed 27 March 2013).
Kessell, Angela M. and Tversky, Barbara (2008) ‘Cognitive methods for visualizing space, time, and

agents’, Berlin. In Stapleton, G., Howse, J., and Lee, J. (eds.), Diagrams 2008, Springer-Verlag,
pp. 382–384.

Kutar, Maria, Britton, Carol and Wilson, Jonathan (2000) ‘Cognitive dimensions – an experience
report’, In A.F.Blackwell and E.Bilotta (eds.), PPIG, Psychology of Programming Interest Group,
pp. 81–98.

Lerdahl, Fred and Jackendoff, Ray (1983) A generative theory of tonal music, MIT Press.
London, Justin (2012) Hearing in time, Oxford University Press.
McCartney, James (2014) ‘SuperCollider’, [online] Available from:

http://supercollider.sourceforge.net (Accessed 26 January 2014).

 12

PPIG, University of Sussex, 2014 www.ppig.org

Middleton, Jonathan N. (2004) ‘Musical algorithms’, Northwest Academic Computing Consortium
(NWACC), [online] Available from: http://musicalgorithms.ewu.edu/index.html (Accessed 27
March 2013).

Moggridge, Bill (2006) Designing interactions, MIT Press.
Morzenti, A., Ratto, E., Roncato, M. and Zoccolante, L. (1989) ‘TRIO, a logic formalism for the

specification of real-time systems’, In Real time 1989, pp. 26–30.
Payne, Stephen J. (1993) ‘Understanding calendar use’, Human-Computer Interaction, 8(2), pp. 83–

100.
Percussa (2013) ‘Audiocubes’, http://percussa.us/, [online] Available from: http://percussa.us/

(Accessed 27 March 2013).
Percussa (2012) ‘Improvisor’, [online] Available from: http://land.percussa.com/audiocubes-

improvisor/ (Accessed 22 March 2013).
Puckette, Miller (2014) ‘Pure data’, [online] Available from: http://puredata.info/ (Accessed 10

February 2014).
Rogers, Yvonne, Sharp, Helen and Preece, Jenny (2011) Interaction design: beyond human-computer

interaction, 3rd ed. John Wiley & Sons.
Rosenberg, Nathan (1982) Inside the black box: technology and economics, Cambridge University

Press.
Schürger, Thomas (2012) ‘SoundHelix’, [online] Available from: http://www.soundhelix.com/

(Accessed 26 March 2013).
Sens, Olivier (2013) ‘Usine’, Sensomusic, [online] Available from:

http://www.sensomusic.com/usine/ (Accessed 14 February 2014).
Sorensen, Andrew (2010) ‘Impromptu’, [online] Available from: http://impromptu.moso.com.au/

(Accessed 14 February 2014).
Steinberg GmbH (2013) ‘Cubase’, [online] Available from:

http://www.steinberg.net/en/products/cubase/start.html.
Synleor (2013) ‘Harmony improvisator’, [online] Available from:

http://www.synleor.com/improvisator.html (Accessed 27 March 2013).
Szerlip, Paul and Hoover, Amy (2012) ‘Maestro genesis’, Evolutionary Complexity Research Group,

University of Central Florida, [online] Available from: http://maestrogenesis.org/ (Accessed 27
March 2013).

Vercoe, Barry (2014) ‘Csound’, MIT.
Walker, Robert (2011) ‘Tune smithy’, [online] Available from:

http://www.robertinventor.com/software/tunesmithy/music.htm (Accessed 27 March 2013).
Wang, Ge and Cook, Perry R. (2013) ‘ChucK’, CCRMA, [online] Available from:

http://chuck.cs.princeton.edu/ (Accessed 26 March 2013).
Wolfram Research Labs (2011) ‘WolframTones’, Wolfram Alpha, [online] Available from:

http://tones.wolfram.com/ (Accessed 27 March 2013).

