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ELICITING A DIRECTED ACYCLIC GRAPH FOR A MULTIVARIATE

TIME SERIES OF VEHICLE COUNTS IN A TRAFFIC NETWORK

Running heading: ELICITING A DIRECTED ACYCLIC GRAPH

Catriona M Queen1, Ben J Wright and Casper J Albers

The Open University

Summary

The problem of modelling multivariate time series of vehicle counts in traffic

networks is considered. It is proposed to use a model called the linear mul-

tiregression dynamic model (LMDM). The LMDM is a multivariate Bayesian

dynamic model which uses any conditional independence and causal structure

across the time series to break down the complex multivariate model into sim-

pler univariate dynamic linear models.

The conditional independence and causal structure in the time series can

be represented by a directed acyclic graph (DAG). The DAG not only gives

a useful pictorial representation of the multivariate structure, but it is also

used to build the LMDM. Therefore, eliciting a DAG which gives a realistic

representation of the series is a crucial part of the modelling process.

A DAG is elicited for the multivariate time series of hourly vehicle counts

at the junction of three major roads in the UK. A flow diagram is introduced

to give a pictorial representation of the possible vehicle routes through the net-

work. It is shown how this flow diagram, together with a map of the network,

can suggest a DAG for the time series suitable for use with an LMDM.

Key words: conditional independence; dynamic linear model; linear multire-

gression dynamic model; model elicitation; traffic modelling

1 Introduction.

This paper considers the problem of modelling multivariate time series of vehicle counts in

traffic networks. This can be a difficult problem. The model needs to be complex enough
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to accommodate the multivariate structure of the time series, but it also needs to be simple

enough to work in real time if the model is to be of practical use. The model also needs

to be easily adaptable to cope with any changes which may occur in the network caused

by external events, such as roadworks or bad weather. In this respect, it is also helpful if

the model is interpretable.

Several modelling approaches have been used for vehicle counts in traffic networks.

These include historical, data-based algorithms, classical time series methods, neural net-

works and Bayesian dynamic linear models (see, for example, Smith & Demetsky (1997),

Dougherty & Cobbett (1997), Kirby et al. (1997), Whittaker et al. (1997) and Tebaldi et

al. (2002)). Here a Bayesian dynamic linear modelling approach is used for the problem.

Both the Bayesian models of Whittaker et al. (1997) and Tebaldi et al. (2002) use vehicle

counts over one-minute intervals. However, the data considered in this paper are hourly

and have quite different modelling requirements. Firstly, hourly data are far less noisy so

that brief periods of unusual activity (such as caused by congestion) are largely smoothed

away. Secondly, during an hour, each vehicle may be counted at several different data

collection points. The data in this paper therefore require a different model.

A particular type of multivariate Bayesian dynamic linear model (DLM) (West &

Harrison, 1997) will be used called a Linear Multiregression Dynamic Model or LMDM

(Queen & Smith, 1993). An LMDM represents any heuristic conditional independence

relationships and causal drive within a multivariate time series by a directed acyclic graph

(DAG) (see, for example, Cowell et al., 1999). This DAG not only gives a useful pictorial

representation of the multivariate structure of the time series, but is also used in the

LMDM to decompose a complex multivariate time series model into simpler workable

components. Thus the LMDM can accommodate the multivariate structure of the time

series as represented by the DAG, and yet is also computationally simple. The model is

adaptable and any external information which may affect the network can be integrated

into the model through intervention (see West & Harrison, 1997). In addition, an LMDM

can also often be defined so that its parameters are interpretable.

The elicitation of a DAG which accurately represents the structure of the series is a

crucial part of the LMDM modelling process and this paper focuses on this important
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elicitation problem. A DAG will be elicited for a particular traffic network at the junction

of three major roads — the M25, A2 and A282 — east of London, UK. Although just a

single network is considered here, the principles of the elicitation methods presented can

be applied to any network.

The traffic data are in the form of hourly counts of vehicles passing over induction

loops in the road surface at a number of data collection sites. A diagram of the network

showing the layout of the data collection sites is given in Figure 1. Each site is identified

by a number and white arrows on the diagram indicate the direction of traffic flow on each

part of the network. The network is such that traffic flows into the network, through a

number of data collection sites, and then out of the network. During normal conditions it

will only take a few minutes for a vehicle to traverse the network.

The structure of the paper is as follows. In the next section a brief overview of the

LMDM is given and the type of DAG suitable for an LMDM is considered. In Section 3

a diagram is introduced, called the flow diagram, which gives a pictorial representation

of possible vehicle routes through the network. It is shown, in Section 4, how this flow

diagram, together with Figure 1, can be used to elicit a suitable DAG for an LMDM.

The model associated with the elicited DAG is implemented in Section 5 over a 12 week

period. Changes in a traffic network can occur from time to time and Section 6 describes

how these changes can be accommodated by the DAG and the LMDM. Finally, Section 7

contains some concluding remarks.

2 The Linear Multiregression Dynamic Model

This section provides a brief (non-technical) overview of the LMDM. For a full account of

the model, see Queen & Smith (1993).

Consider a multivariate time series Y t = (Yt(1), . . . , Yt(n))⊤. Suppose that there is a

conditional independence and causal structure defined across the series, so that, at each

time t = 1, 2, . . .,

Yt(i) ∐ {{Yt(1), . . . , Yt(i − 1)} \pa(Yt(i))} |pa(Yt(i)) for i = 2, . . . n

which reads “Yt(i) is independent of {Yt(1), . . . , Yt(i − 1)} \pa(Yt(i)) given pa(Yt(i))” (us-
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ing the notation that “\” reads “excluding”), where pa(Yt(i)) ⊆ {Yt(1), . . . , Yt(i − 1)}.

Each variable in the set pa(Yt(i)) is called a parent of Yt(i) and Yt(i) is known as a child

of each variable in the set pa(Yt(i)). A DAG represents these conditional independence re-

lationships within the system pictorially, where each Yt(i) is represented by a node on the

graph and there is a directed arc to Yt(i) from each of its parents. For example, Figure 2

shows a DAG for four time series at time t, where pa(Yt(2)) = ∅, pa(Yt(3)) = {Yt(1), Yt(2)}

and pa(Yt(4)) = {Yt(3)}.

As Yt(i) is independent of {Yt(1), . . . , Yt(i−1)}\pa(Yt(i)) given pa(Yt(i)), a forecasting

model for Yt(i) need only depend on pa(Yt(i)), rather than all the series at time t. An

LMDM uses this idea and models the multivariate time series by n separate univariate

models – for Yt(1) and Yt(i)|pa(Yt(i)), i = 2, . . . , n. For each Yt(i) with parents pa(Yt(i)),

the (conditional) univariate model is simply a regression DLM with pa(Yt(i)) as linear

regressors. For those series without parents, any suitable univariate DLM may be used. As

long as the parameters for each (conditional) univariate model are mutually independent

a priori, they can be updated separately. Forecasts for Yt(1) and Yt(i)|pa(Yt(i)), i =

2, . . . , n, can also be found separately. The marginal forecast distributions for Yt(i), i =

2, . . . , n, may not be mathematically simple. However, the moments of the marginal

forecast distributions can be easily calculated (see Queen et al., 2007).

The joint one-step ahead forecast distribution of Y t can be expressed as the product

of Yt(1)’s forecast distribution and the individual univariate conditional forecast distribu-

tions, Yt(i) |pa(Yt(i)), i = 2, . . . , n. Even though regression is linear so that each of the

univariate forecast distributions for Yt(1) and Yt(i) |pa(Yt(i)), i = 2, . . . , n, is Gaussian,

these models can yield highly non-Gaussian joint forecast distributions. As such, they are

analogous to non time series graphical models in that although the sub-problems can be

fairly simple to work with (in this case univariate DLMs), the joint distribution can be

highly complex (Cowell et al., 1999).

To illustrate an LMDM, consider again the time series represented by the DAG in

Figure 2. Let θt(i) be the model parameters for Yt(i), i = 1, . . . , n. The parameter

θt(i) can be considered as another parent of Yt(i) on the DAG. Further, the LMDM

assumes independent (Gaussian) priors for θt(1), . . . ,θt(4). The DAG, including the model
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parameters, is given in Figure 3. As Yt(1) and Yt(2) are both without parents, each of

these series can be modelled separately using any suitable univariate DLMs. Both Yt(3)

and Yt(4) have parents and so these would both be modelled by (separate) univariate

regression DLMs with the two regressors Yt(1) and Yt(2) for Yt(3)’s model and the single

regressor Yt(3) for Yt(4)’s model.

The forecast distributions for Yt(1), Yt(2), and the conditional forecast distributions for

Yt(3)|(Yt(1), Yt(2)) and Yt(4)|Yt(3) are all Gaussian, each calculated separately using the

priors for θt(1), θt(2), θt(3) and θt(4), respectively. The marginal forecast distributions

for Yt(3) and Yt(4) may not be mathematically simple and marginal moments usually

need to be calculated. After observing yt(i), the (Gaussian) posterior distributions for

each θt(i)|yt(i) can be calculated. Because of the DAG structure, the parameters θt(1),

θt(2), θt(3), θt(4) remain independent a posteriori. The (Gaussian) prior distribution

for each θt+1(i) is then calculated from the posterior for θt(i)|yt(i), and so the process

continues.

It is important to note that whereas two DAGs may exhibit the same conditional in-

dependence statements, they can yield quite different LMDMs. For example, consider the

two DAGs in Figure 4. In both DAGs At ∐ Ct |Bt. However, they would yield quite dif-

ferent LMDMs. For LMDMs, the DAG needs to represent the conditional independence

structure related to causality, so that (following Wermuth & Lauritzen, 1990) variables

which are hypothesized to be causally linked should be connected by a directed arc fol-

lowing the direction of causation.

3 How does traffic pass through the network?

To investigate the relationships between the time series of vehicle counts, consider first

how traffic flows through the sites in the network. Eliciting conditional independence

relationships which are consistent with the direction of traffic flow will help to establish

the conditional independence structure related to causality.

It is useful to make the simplifying assumption that drivers will behave rationally and

follow the most direct route through the network. For example, in Figure 1 suppose that a

vehicle is entering the network southbound on the A282 and wishes to exit southbound on
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the M25. Then it is assumed that the vehicle will take the most direct route (continuing

on the M25 at both Junctions 1b and 2, passing sites 167, then 170A and finally 173A)

and not use a more indirect route (such as leaving and then rejoining the M25 at Junction

2, passing sites 167, then 170B and finally 173B). Although some drivers may behave

irrationally in this way, it is unlikely that such behaviour is common.

By considering the layout of sites (Figure 1), it is possible to draw a diagram repre-

senting how vehicles pass through the sites in the network. Represent each site by an oval

and draw an arrow leading from one site to another if there is a direct route from one to

the other; see Figure 5. This will be called the flow diagram. Note that flows into and out

of the network itself are also shown in the flow diagram.

The flow diagram helps to give some insight into the relationships between the time

series of vehicle counts. For example, knowing that vehicles at site 167 can go to sites 168,

170A or 170B only, means that these time series will be highly correlated and that the

sum of vehicles at sites 168, 170A and 170B at time t should be the number of vehicles

counted at site 167 at time t (approximately, accounting for vehicles which are between

sites at the end of the hour and measurement error in the vehicle detectors). It also means

that the time series at 167 is hypothesized to be causally linked to the series at sites 168,

170A and 170B.

Unfortunately due to faulty data collection equipment, no data were collected at some

sites. The missing data could be estimated using Markov chain Monte Carlo techniques

(see Whitlock & Queen, 2000). However, to allow evaluation of the model, only time

series for which data are observed will be considered here. The sites for which no data are

available are 160, 166, 173A and 173B. Figure 6 shows a new flow diagram with these sites

removed. When site 166 is removed, sites 164A and 165 become disconnected from the

rest of the network. As this paper aims to examine the multivariate nature of the traffic

network, these two sites shall be dropped from the model here for simplicity. Notice also

that the network is now subdivided into two separate subnetworks.
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4 Eliciting a DAG for the network

Consider the flow diagram in Figure 6, which shows how vehicles flow through the (ob-

served) sites in the network. This flow diagram, together with the diagram of the traffic

network in Figure 1, will be used to heuristically elicit a DAG for the time series which

can be used for an LMDM. To do this it is helpful to form the sites into three groups:

{167, 168, 170A, 170B}, {170B, 169, 171, 161} and {162, 172, 163, 164B}.

For each site s, denote the vehicle count at time t by Yt(s). Following Vaughan (2001),

it is natural to make the assumption that hourly traffic counts follow a Poisson distribution

with a different rate for each of the 24 hours in a day. Therefore, for hour t and site s,

Yt(s) ∼ Po(µt(s)), where Po(µt(s)) denotes a Poisson distribution with mean µt(s). In

what follows the following results will be used:

• For any two variables X1 and X2 such that X1 ∼ Po(µ1) and X2 ∼ Po(µ2), the distri-

bution of (X1|X1+X2) is binomial so that (X1|X1+X2) ∼ Bi (X1 + X2, µ1/(µ1 + µ2)),

where Bi(n, p) denotes a binomial distribution of sample size n with parameter p.

• For Bi(n, p) (n large), Bi (n, p) ≈ N (np, np(1 − p)).

• For Po(µ) (µ large), Po(µ) ≈ N(µ, µ).

4.1 DAG for sites 167, 168, 170A and 170B

As traffic only flows from site 167 to the other three, Yt(167) should be (approximately)

equal to the sum of Yt(168), Yt(170A) and Yt(170B). It is therefore possible to define the

conditional distribution

Yt(168)|Yt(167) ∼ Bi

(

Yt(167),
µt(168)

µt(167)

)

with similar conditional distributions for Yt(170A)|Yt(167) and Yt(170B)|Yt(167). This

could be represented by a DAG with Yt(168), Yt(170A) and Yt(170B) as children of Yt(167).

As hourly vehicle counts are typically large, these conditional binomial distributions can

be approximated by conditional normal distributions — for example,

Yt(168)|Yt(167) ≈ N

(

Yt(167)

(

µt(168)

µt(167)

)

, Yt(167)

(

µt(168)

µt(167)

) (

1 −
µt(168)

µt(167)

))

.
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Then the observation equation in an LMDM for the (conditional) univariate model for

Yt(168), for example, would be of the form:

Yt(168) = Yt(167)

(

µt(168)

µt(167)

)

+ vt(168), vt(168) ∼ N(0, Vt(168)).

However, the parameters for the three distributions for Yt(168), Yt(170A) and Yt(170B),

conditional on Yt(167), are not independent of one another. Consequently the parameters

for each univariate model in an LMDM could not be considered mutually independent. To

ensure independent model parameters, the DAG needs to be elicited in a slightly different

way.

Consider Yt(167). From Figure 1, at Junction 1b, a proportion of the vehicles making

up Yt(167) will continue southbound onto the M25 to become Yt(170A) + Yt(170B), and

the rest will leave to become Yt(168). Of the vehicles making up Yt(170A) + Yt(170B), a

proportion will leave the M25 at Junction 2 to become Yt(170B) and the rest will continue

on the M25 to become Yt(170A). Thus there are two alternative conditional distributions:

Yt(170A) + Yt(170B)|Yt(167) ∼ Bi (Yt(167), αt)

Yt(170B)|Yt(170A) + Yt(170B) ∼ Bi (Yt(170A) + Yt(170B), βt)

where αt = (µt(170A) + µt(170B))/µt(167) and βt = µt(170B)/(µt(170A) + µt(170B)). Both

parameters αt and βt are interpretable:

αt = proportion of vehicles at 167 continuing south on to the M25 at Junction 1b

βt = proportion of those vehicles continuing south on the M25 after Junction 1b

that leave the M25 at Junction 2

These conditional distributions can be represented by the DAG in Figure 7. Independence

of parameters is now a reasonable assumption because there is no structural reason to

believe otherwise. Here both Yt(168) and Yt(170A) are logical functions of their parents

and are known once their parents are known. Following the terminology of WinBUGS

software (http://www.mrc-bsu.cam.ac.uk/bugs/), these will be called logical variables and

denoted on the DAG by a double oval. Note that Yt(170A) + Yt(170B) and/or Yt(170B)
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could have been chosen as the logical variables instead. The series Yt(168) and Yt(170A)

were chosen simply because site 170B leads to other parts of the network.

Approximating the Poisson distribution for Yt(167) and the conditional binomial dis-

tributions to normality, the observation equations in an LMDM for the DAG in Figure 7

are of the following forms:

Yt(167) = µt(167) + vt(167), vt(167) ∼ N(0, Vt(167))

Yt(170A) + Yt(170B) = Yt(167)αt + vt(170A + 170B),

vt(170A + 170B) ∼ N(0, Vt(170A + 170B))

Yt(170B) = (Yt(170A) + Yt(170B)) βt + vt(170B), vt(170B) ∼ N(0, Vt(170B))

and Yt(168) = Yt(167) − (Yt(170A) + Yt(170B))

Yt(170A) = (Yt(170A) + Yt(170B)) − Yt(170B).

Note that although the observation equations are algebraically the same for each time t,

the actual parameters (µt(167), αt and βt) will vary depending on which hour of the day t

is. For example, if time t is the hour 1:00-2:00 a.m. when the roads are very quiet, µt(167)

will be quite small, but if time t is the hour 8:00-9:00 a.m. during the morning rush hour,

µt(167) will be much larger.

4.2 DAG for sites 170B, 169, 171 and 161

From Figure 6, vehicles at 170B flow to both sites 171 and 161, and the same is true for

vehicles at site 169. Vehicles from the unobserved site 160 also flow to both sites 171 and

161. At first sight it seems reasonable to draw a DAG with Yt(171) and Yt(161) as children

of both Yt(170B) and Yt(169). However, the parameters for the conditional distributions

Yt(171)|(Yt(170B), Yt(169)) and Yt(161)|(Yt(170B), Yt(169)) are not independent. Thus

Yt(171) and Yt(161) cannot be modelled as separate children of Yt(170B) and Yt(169) using

an LMDM. Instead, following the methods of Subsection 4.1, a DAG can be elicited using

the conditional distributions Yt(161) + Yt(171)|(Yt(170B), Yt(169)) and Yt(161)|Yt(161) +

Yt(171). The latter of these conditional distributions is straightforward:

Yt(161)|Yt(171) + Yt(161) ∼ Bi(Yt(171) + Yt(161), δt),
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where δt = µt(161)/(µt(171)+µt(161)), the proportion of those vehicles joining the A2 that

travel west bound. However, the conditional distribution Yt(161)+Yt(171)|(Yt(170B), Yt(169))

requires more thought.

Consider the sum Yt(171)+Yt(161). The vehicles making up this sum come from three

sources: 170B, 169 and the unobserved site 160. All vehicles at 170B flow to either 171 or

161, whereas only a proportion of the vehicles at 169 do. Write

Yt(171) + Yt(161) = Xt(u) + Yt(170B) + Xt(169) (1)

where Xt(u) = vehicles at 171 or 161 at time t inherited from the unobserved site

Xt(169) = vehicles at 171 or 161 at time t inherited from site 169

Model Xt(x) ∼ Po(µt(X(x))). Then

Xt(u) ∼ Po(µt(X(u)) and Xt(169)|Yt(169) ∼ Bi(Yt(169), γt)

where γt = µt(X(169))/µt(169), the proportion of those vehicles travelling south from

Junction 1b that join the A2. Approximate the Poisson distributions for Xt(u) and

Yt(170B), and the conditional binomial distribution for Xt(169)|Yt(169) to normality.

Then, using Equation 1, the conditional distribution for Yt(171)+Yt(161)|(Yt(170B), Yt(169))

is approximately normal with mean µt(X(u)) + Yt(170B) + Yt(169)γt.

A DAG representing the conditional distributions defined here for this part of the

network is shown in Figure 8. An LMDM using this DAG has the two regressors Yt(170B)

and Yt(169) in the DLM for Yt(171)+Yt(161), with the regression parameter for Yt(170B)

set to 1. Unfortunately, Yt(170B) and Yt(169) are highly correlated leading to problems

with collinearity. In conventional regression, collinearity is often dealt with by dropping

one of the correlated regressors. However, here it is desirable to retain the information

contained in both parents. Let mean169 and sd169 be the mean and standard deviation of

hourly counts of vehicles at site 169 over some period in the past, and let mean170B and

sd170B be the corresponding values at site 170B. Define two new orthogonal variables

Zt(1) = Ut + Vt, Zt(2) = Ut − Vt,
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with

Ut =
Yt(169) − mean169

sd169
and Vt =

Yt(170B) − mean170B

sd170B
.

Without any loss of information, Zt(1) and Zt(2) can be considered as independent re-

gressors in the DLM for Yt(171) + Yt(161), instead of the correlated variables Yt(170B)

and Yt(169). Introduce Zt(1) and Zt(2) into the DAG as logical children of Yt(170B)

and Yt(169), and parents of Yt(171) + Yt(161). Then Yt(171) + Yt(161)|(Zt(1), Zt(2)) is

approximately normal with mean

E(Yt(171) + Yt(161)|(Zt(1), Zt(2))) = µt(X(u)) + Zt(1)γt(Z(1)) + Zt(2)γt(Z(2)) (2)

for parameters γt(Z(1)) and γt(Z(2)). Unfortunately, γt(Z(1)) and γt(Z(2)) are not easily

interpretable. However, using Zt(1) and Zt(2) does allow us to build a DAG which still

respects the conditional independence structure of the series and produces an LMDM

which is still computationally simple. The final elicited DAG for sites 170B, 169, 171 and

161 is given in Figure 9.

Approximating the Poisson distribution for Yt(169) and the conditional binomial dis-

tribution for Yt(161)|Yt(171) + Yt(161) to normality, an LMDM representing the DAG in

Figure 9 then has the following observation equations for Yt(169), Yt(171) + Yt(161) and

Yt(161):

Yt(169) = µt(169) + vt(169), vt(169) ∼ N(0, Vt(169))

Yt(171) + Yt(161) = µt(X(u)) + Zt(1)γt(Z(1)) + Zt(2)γt(Z(2)) + vt(171 + 161),

vt(171 + 161) ∼ N(0, Vt(171 + 161))

Yt(161) = (Yt(171) + Yt(161)) δt + vt(161), vt(161) ∼ N(0, Vt(161))

and Yt(171) = (Yt(171) + Yt(161)) − Yt(161).

4.3 DAG for sites 162, 172, 163 and 164B

The flow diagram for this group of sites is almost identical in structure to that for the

four sites in Subsection 4.2. As was the case there, it is not possible to simply draw

a DAG for an LMDM with Yt(163) and Yt(164B) as children of Yt(162) and Yt(172),

because the parameters of the conditional distributions Yt(163)|(Yt(162), Yt(172)) and
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Yt(164B)|(Yt(162), Yt(172)) would not be independent. Instead, following the methods

of Subsections 4.1 and 4.2, a DAG can be elicited using the conditional distributions

Yt(163) + Yt(164B)|(Yt(162), Yt(172)) and Yt(163)|Yt(163) + Yt(164B). The DAG and as-

sociated LMDM for this part of the model can be elicited in exactly the same way as

was described for the second group of sites in Subsection 4.2. To avoid repetitiveness,

the details will be omitted here, except to mention that (as with the four sites in Sub-

section 4.2), in order to avoid problems of collinearity, two new orthogonal variables are

introduced into the model. These are

Zt(3) = U∗

t + V ∗

t , Zt(4) = U∗

t − V ∗

t

with

U∗

t =
Yt(162) − mean162

sd162
and V ∗

t =
Yt(172) − mean172

sd172

where mean162 and sd162 are the mean and standard deviation of hourly counts of vehicles

at site 162 over some period in the past, and mean172 and sd172 are the corresponding

values at site 172.

The final DAG for sites 162, 172, 163 and 164B is given in Figure 10 and the associated

observation equations for an LMDM are as follows:

Yt(162) = µt(162) + vt(162), vt(162) ∼ N(0, Vt(162))

Yt(172) = µt(172) + vt(172), vt(172) ∼ N(0, Vt(172))

Yt(163) + Yt(164B) = µt(X
′(u)) + Zt(3)εt(Z(3)) + Zt(4)εt(Z(4)) + vt(163 + 164B),

vt(163 + 164B) ∼ N(0, Vt(163 + 164B))

Yt(164B) = (Yt(163) + Yt(164B)) ζt + vt(164B), vt(164B) ∼ N(0, Vt(164B))

and Yt(163) = (Yt(163) + Yt(164B)) − Yt(164B).

The parameter µt(X
′(u)) represents the vehicles at site 163 inherited from the unob-

served site 160. The parameter µt(X(u)) (from Equation 2) represents the vehicles at

sites 161 or 171 inherited from the same unobserved site. So the parameters µt(X
′(u))

and µt(X(u)) are correlated. However, as Yt(160) is unobserved, for practical purposes

knowing one of these parameters will not actually tell us very much about the other. So,

for simplicity it will be assumed that µt(X
′(u)) and µt(X(u)) are independent.
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5 Model performance

The focus of this paper is the elicitation of a suitable DAG representing the traffic network,

and its associated LMDM. Using the resulting LMDM for forecasting is an interesting

problem in its own right and is addressed in detail in another paper (in preparation). It is,

however, useful to illustrate the model’s performance over a short period when the series

are ‘well-behaved’, so that forecasting is straightforward.

The time series of vehicle counts exhibit different daily patterns for different days of

the week. For example, the general pattern of hourly counts observed on Sundays is

quite different to that observed on Mondays. These different daily patterns can be easily

accommodated in the model with a little extra work. However, for simplicity, in this

illustration only data for Tuesday, Wednesday and Thursday each week are considered, as

the daily patterns are similar for these days.

The LMDM defined in Section 4 was applied to data for Tuesday-Thursday over a 14

week period. As genuine expert priors were not available, the first two weeks of data were

used to form initial priors for the model parameters. The one-step ahead forecasts were

then calculated for the remaining 12 weeks.

Vehicle count series often exhibit unexpected changes in behaviour, due to events such

as road accidents or adverse weather conditions. As a consequence, outliers can occur in

the series, producing unexpected large forecast errors. This is illustrated in Figure 11.

The graphs on the left in Figure 11 show the one-step ahead forecasts (solid line) and ±2

forecast standard deviations (dotted lines) obtained using the LMDM, together with the

actual values observed (dots) for series Yt(167) and Yt(170A)+Yt(170B) during week eight.

The graphs on the right are the one-step ahead forecast errors with ±2 forecast standard

deviation error bars for the same series over the same time period. For both series, an

unusually large negative forecast error occurs at time 560 (07.00-08.00 on Thursday, week

8), followed by an unusually large positive forecast error. This pattern of forecast errors

is consistent with a slowdown in traffic flow, for example due to a temporary block in the

road following a crash, followed by an increase in traffic flow as the problem is resolved

and delayed cars move through the network. Such patterns are not uncommon in traffic
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networks. The median squared error (MedianSE) has therefore been used when assessing

model forecast performance, as this measure is more robust to possible outliers such as

these.

Recall that vehicles at site 167 move to sites 170A, 170B and 168. It is therefore no

surprise that Yt(167) and Yt(170A) + Yt(170B) exhibit similar patterns at times 560 and

561. Figure 12 shows the one-step ahead forecast and error graphs for series Yt(168) and

Yt(163). As might be expected, the same pattern can also be seen for Yt(168) at times

560 and 561. However, the same pattern is not evident for series Yt(163), as site 163 is

counting vehicles travelling in the opposite direction.

As with any Bayesian DLM, intervention can be used in the LMDM to accommodate

unexpected changes in the behaviour of series, and thus improve forecast performance.

Although the forecast performance was poor for all three of the series Yt(167), Yt(170A)+

Yt(170B) and Yt(168) at times 560 and 561, the LMDM exploits the causality between the

series so that intervention is only required in the single univariate DLM for Yt(167). This

was done as follows. The observation y560(167) was unexpected and so was treated simply

as an outlier. During the following time period (t = 561), as the road blockage clears and

vehicles start moving, the delayed vehicles (from the previous hour) are expected to pass

site 167, in addition to the vehicles that arrive during hour t = 561. The expected number

of cars delayed from hour 560 is f560(167) − y560(167), where f560(167) is the one-step

forecast for Y560(167). Thus the observation equation is adjusted at hour 561 so that

Y561(167) = µ561(167)+f560(167)−y560(167)+v561(167), v561(167) ∼ N(0, V561(167)).

The resulting plots of one-step forecasts and forecast errors during week eight, after this in-

tervention was used, are shown in Figure 13 for series Yt(167) and Yt(170A)+Yt(170B). Fol-

lowing intervention in the model for Y561(167), there is now a good forecast for Y561(167).

There is also a good forecast for Y561(170A)+Y561(170B), due to the fact that Yt(167) is a

parent of Yt(170A)+Yt(170B). There is a similar improvement in the forecast for Y561(168)

(not shown), whereas the forecast for Y561(163), for example, is practically unaffected by

the change in Y561(167)’s model.

Table 1 shows the MedianSE for each series using the LMDM, both with and without
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intervention. The improvement in forecast performance when using intervention is clearly

seen. It is interesting to note that while the forecast for Yt(170A) + Yt(170B) improved

after intervening in Y561(167)’s model, the forecasts for the individual series Yt(170B) did

not.

The natural model to compare the LMDM’s performance with is a standard multivari-

ate DLM. However, unfortunately, this model cannot be used for these series because the

series are so highly correlated that the computation of the DLM updating algorithm breaks

down (the inverse of an estimate of the observation covariance matrix cannot be calculated

since the determinant is too small). Instead, the model performance of univariate DLMs

were used for comparison because univariate DLMs are similar to the LMDM in the level

of simplicity in implementation. The MedianSE for the one-step forecasts for univariate

DLMs are given in the final column of Table 1. The values of the MedianSE for the LMDM

(without intervention) are lower for all series except Yt(161) and Yt(164B). The models

for both of these series depend on the unobserved series Yt(160), which perhaps explains

the LMDM’s poor performance for these series.

When intervention is required (as it frequently is for traffic networks), the LMDM has

a clear advantage over univariate (or indeed, standard multivariate) DLMs. As was seen

in Figures 11 and 12, when there is an unexpected large forecast error in one series, then

this is invariably accompanied by an unexpected large forecast error in its children’s series

and further down the DAG. The LMDM only requires intervention in the parent’s model,

whereas univariate or standard multivariate DLMs require intervention not only in the

parent’s model, but also in all of its children’s models. This is not only more work, but

it can also be hard to formulate the required intervention in the children’s models. For

example, if Yt(167) was estimated to increase by an extra 500, say, at hour t, then it is not

immediately obvious how Yt(171), for example, might change as a consequence. In large

networks, intervening for so many series would simply be infeasible in real time.

6 Accommodating changes in the network

Changes in the network can occur for a variety of reasons and for various lengths of time.

For example, an accident may cause a short term temporary diversion; roadworks may
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cause a longer term temporary diversion; or the road layout may be altered permanently.

The DAG representing the time series of vehicle counts will need to be altered to ac-

commodate any such changes in the network. Luckily, because of the structure of the

LMDM, much of the posterior information for parameters in the original DAG can be car-

ried forward into the new DAG. Additionally, it is also possible for the posteriors for the

original parameters to help form priors for any new parameters. The following example

will illustrate how this might be done.

6.1 Example: blocked road at site 170B

Suppose that the road at site 170B is temporarily blocked from time t due to roadworks,

for example. Suppose further that vehicles travelling southbound who wish to leave the

M25 at Junction 2 are diverted via Junction 1B and sites 168 and 169.

Figure 14 shows the flow diagram which reflects the new possible routes through the

network. Using exactly the same methods as in Section 4, this flow diagram and the

diagram of the traffic network (Figure 1) can be used to elicit a DAG for the new network.

A suitable new DAG is given in Figure 15 for the first part of the flow diagram. Sites 162,

172, 163 and 164B are unaffected by the network change, and so their DAG would remain

as in Figure 10.

The new observation equations are as follows.

Yt(167) = µt(167) + vt(167), vt(167) ∼ N(0, Vt(167))

Yt(168) = ηtYt(167) + vt(168), vt(168) ∼ N(0, Vt(168))

Yt(169) = µt(169) + λtYt(168) + vt(169), vt(169) ∼ N(0, Vt(169))

Yt(171) + Yt(161) = µt(X(u)) + ξtYt(169) + vt(171 + 161),

vt(171 + 161) ∼ N(0, Vt(171 + 161))

Yt(161) = δt (Yt(171) + Yt(161)) + vt(161), vt(161) ∼ N(0, Vt(161))

and Yt(170A) = Yt(167) − Yt(168)

Yt(171) = (Yt(171) + Yt(161)) − Yt(161)

There are three new parameters here and each is easily interpretable: ηt is the proportion of

those vehicles at 167 leaving the M25 southbound at Junctions 1b or 2, λt is the proportion
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of those vehicles leaving southbound at Junction 1b that are following the diversion to

Junction 2, and ξt is the proportion of those vehicles travelling south from Junction 1b

(which includes diverted traffic) that join the A2.

Notice that several of the parameters (µt(167), µt(169), µt(X(u)), δt) remain in the

model and so their posteriors carry through to form priors at time t under the new model.

It is possible to elicit priors for the new parameters ηt and λt as follows. Calculate the

priors at time t for the original parameters αt and βt and the one step ahead forecasts for

Yt(170B) and Yt(168) assuming no change in the DAG and model (i.e. assuming the DAG

in Figure 9 still holds). Denote these by α̂t, β̂t, Ŷt(170B) and Ŷt(168). Denoting the first

t − 1 observations by yt−1, prior mean estimates of the new parameters ηt and λt can be

obtained using

E(ηt|y
t−1) = 1 − α̂t + α̂tβ̂t and E(λt|y

t−1) =
Ŷt(170B)

Ŷt(170B) + Ŷt(168)
.

The most obvious prior estimate for ξt is of the form

E(ξt|y
t−1) =

Ŷt(170B) + Ŷt(169)γt

Ŷt(170B) + Ŷt(169)

where γt was defined in Section 4.2 as the proportion of vehicles at 169 flowing to 171

or 161, and Ŷt(169) is the one step ahead forecast for Yt(169) assuming no change in the

DAG and model. However, the parameter γt was not used in Yt(171) + Yt(161)’s model

because of the collinearity problem, so posterior information for γt is not available from

the LMDM. A prior which is more vague therefore needs to be placed on ξt.

Once the temporary blockage at 170B is removed at time t + k, the original DAG

(Figure 9) and LMDM for the network are again used. Posterior information at time

t + k − 1 forms priors at time t + k for those parameters used in both models (µt+k(167),

µt+k(169), µt+k(X(u)), δt+k), whereas the posteriors at time t − 1 can be used to form

priors for αt+k, βt+k, γt+k(Z(1)) and γt+k(Z(2)).

7 Discussion

This paper has primarily focused on the crucial first stage in implementing the LMDM

— namely, the elicitation of a DAG and associated simple model accommodating the
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multivariate structure of the series. A traffic network can potentially have a huge number

of counting sites which would make eliciting the DAG by hand impractical. There is

therefore a need for developing an automated procedure based on the techniques presented

in this paper.

Although logical variables in the network have a deterministic relationship with their

parents, in practice these variables may not actually be deterministic due to measurement

error in the vehicle detectors. Measurement error will only be a problem if the observed

values of the logical variables are not matching up with the expected values for these

series. This would be a particular problem if poor forecasting of the logical variables is

then feeding through to any children of logical variables. Any logical variable with poor

forecasts should therefore account for measurement error in its model. However, if the

forecasts are reasonable, there is little to be gained by including measurement error in a

logical variable’s model.

Using the model for forecasting is an interesting problem in itself and there are several

important issues which have not been covered in this paper. Firstly, the model needs

to accommodate different patterns of traffic volumes for different days of the week. Sec-

ondly, intervention required in traffic networks is not always as simple as the intervention

illustrated in this paper and often needs more sophisticated intervention techniques. And

finally, for practical purposes, the model requires an automatic monitoring system which

can detect, and react to, both short and long-term changes in traffic flow.
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Figure legends

Figure 1: Diagram showing the layout of data collection sites used around the M25/A2/A282

junction. The grey diamonds are the data collection sites, each of which is numbered. The

white arrows indicate the direction of traffic flow on each part of the network.

Figure 2: Directed acyclic graph representing four time series at time t.

Figure 3: Directed acyclic graph from Figure 2 with independent model parameters in-

cluded.

Figure 4: Two directed acyclic graphs both representing At∐Ct |Bt, but yielding different

Linear Multiregression Dynamic Models.

Figure 5: Flow diagram for the network.

Figure 6: Flow diagram for the network with missing and trivial sites removed.

Figure 7: Directed acyclic graph representing Yt(167), Yt(168), Yt(170A) and Yt(170B),

together with the model parameters.

Figure 8: Directed acyclic graph representing Yt(170B), Yt(169), Yt(171) and Yt(161),

together with the model parameters.

Figure 9: Final elicited directed acyclic graph representing Yt(170B), Yt(169), Yt(171) and

Yt(161), together with the model parameters.

Figure 10: Final elicited directed acyclic graph representing Yt(162), Yt(172), Yt(163) and

Yt(164B), together with the model parameters.

Figure 11: The graphs on the left show the one-step ahead forecasts (solid line) and

±2 forecast standard deviations (dotted lines) obtained using the Linear Multiregression

Dynamic Model, together with the actual values observed (dots) for series Yt(167) and

Yt(170A) + Yt(170B) during week eight. The graphs on the right are the one-step ahead

forecast errors with ±2 forecast standard deviation error bars for the same series over the

same time period.

Figure 12: The graphs on the left show the one-step ahead forecasts (solid line) and

±2 forecast standard deviations (dotted lines) obtained using the Linear Multiregression

Dynamic Model, together with the actual values observed (dots) for series Yt(168) and

Yt(163) during week eight. The graphs on the right are the one-step ahead forecast errors

with ±2 forecast standard deviation error bars for the same series over the same time

period.

Figure 13: The graphs on the left show the one-step ahead forecasts (solid line) and

±2 forecast standard deviations (dotted lines) obtained using the Linear Multiregression

Dynamic Model, together with the actual values observed (dots) for series Yt(167) and
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Yt(170A) + Yt(170B), after intervention was used for Yt(167) at times 560 and 561. The

graphs on the right are the one-step ahead forecast errors with ±2 forecast standard

deviation error bars for the same series over the same time period.

Figure 14: Flow diagram for the network when the road is blocked at site 170B.

Figure 15: New directed acyclic graph for the first part of the flow diagram when the road

is blocked at site 170B.
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Tables

Table 1: MedianSEs for each series using the LMDM, both with and without intervention,
and using univariate DLMs without any intervention.

Series LMDM LMDM Univariate DLMs
(no intervention) (intervention) (no intervention)

Y (167) 4915 4834 4915
Y (170A) + Y (170B) 4734 4637
Y (168) 125 125 132
Y (170A) 2272 2225 2298
Y (170B) 821 823 835
Y (169) 202 202 202
Y (161) + Y (171) 7984 7984
Y (161) 927 927 796
Y (171) 3971 3971 3973
Y (162) 812 812 812
Y (172) 1088 1088 1088
Y (163) + Y (164B) 1599 1599
Y (163) 174 174 175
Y (164B) 1019 1019 981
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