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Abstract 

Generalised Procrustes Analysis (GPA) is a method for matching several, possibly large, data 

sets by fitting to each other using transformations, typically rotations. The linear version of 

GPA has been applied in a wide range of contexts. A non-linear extension of GPA is 

developed which uses Optimal Scaling (OS). The approach is suited to match data sets that 

contain nominal variables.  A data base of a Dutch power supplier that contains many 

categorical variables unfit for the usual linear GPA methodology is used to illustrate the 

approach. 

 

Key words: Generalised Procrustes Analysis; Optimal Scaling; Multivariate Data Analysis; 

switching behaviour. 



1 Introduction 

Generalised Procrustes Analysis (GPA, Gower 1975) is a versatile set of methods for 

matching several data sets. Originally it was designed to match configurations. However, it 

can also match more general data sets, including the case that we consider in this paper where 

different variables are observed in each data set (see Gower and Dijksterhuis 2004). Recently 

GPA has been generalised to include PLS regression (Dijksterhuis, Martens and Martens 

2005) and combined with canonical variate analysis by Gardner, Gower and LeRoux (2006). 

The applicability of GPA is limited to those cases where all variables in all data sets 

are measured on a ratio scale or on an interval scale. In the present paper we develop an 

extension that can be used to match data sets containing nominal variables. We propose to 

code the category levels in indicators and to match the data sets using an optimal scaling 

version of Generalised Procrustes Analysis that we develop in this paper. Our method 

conceptually fits into the Gifi (1990) system of nonlinear multivariate data analysis, as we 

employ an Alternating Least Squares (ALS) algorithm to compute both optimal scores for the 

categories and an optimal Procrustes fit of the data sets.  

 The GPA loss function is ∑
<

−
K

kh

kkhh QXQX , where 
1, , KX XL are data sets consisting 

of quantitative variables, and by A  we mean tr( )′A A . The columns of each kX refer to 

different variables and the rows correspond to (the same) observational units (e.g. 

respondents). Columns of zeroes are padded such that all data sets have the same number of 

columns (this is further explained in Section 2). As in all applications of GPA, we seek the 

rotation matrices 1, , KQ QL  that minimize this loss function. To accommodate categorical 

variables, we rewrite the loss function as ∑
<

−
K

kh

kkkhhh QZGQZG , where kG is an indicator 

matrix for the kth set of categorical variables and 
kZ  is a matrix containing the category 



quantifications (cf. Gifi 1990) that need to be determined. Our aim is to assign optimal scores 

to the category levels, in the sense that the scores minimise the GPA least-squares criterion. 

The underlying idea of our approach is that the Procrustean fit may be improved by assigning 

appropriate quantifications to the levels of the nominal variables. We name this optimal 

scaling version of GPA, not surprisingly, OS-GPA. 

 OS-GPA is related to OVERALS (van der Burg 1988, Gifi 1990), but differs on one 

important issue. In GPA the transformation matrices, kQ , are orthogonal rotation matrices, 

whereas the transformation matrices are unconstrained in OVERALS. The difference in 

treatment of the row-objects in the data sets is that the distance between the row-points is 

invariant in GPA, but is allowed to vary under the transformations in OVERALS. This 

restriction is particularly useful in applications where the rows correspond to observational 

units, which is often the case in applications of GPA where the row-points are observational 

units whose inter-relations, here distances, should remain fixed (cf. Dijksterhuis and Gower 

1991, Steenkamp, Van Trijp and Ten Berge 1994). In our application, the row-objects are 

customers and the distances between them indicate similarities based on the estimated scores 

on the variables in the data sets. In the marketing setting of the application, differences 

between customers (the row-points) enable the interpretation of effects of the different 

variables. The differences between customers also enable the identification of meaningful 

segments of customers. For such reasons the distances between row-points are to remain fixed 

in the analysis. 

 As a simple alternative to our approach, one might consider a GPA of the indicator 

matrices kG  themselves. We note that a Procrustean rotation of an indicator matrix does not 

necessary result in an indicator matrix and one might have reservations about centring and/or 

scaling each kG . So at first sight, applying GPA directly to kG  is not attractive. However, 

the squared distance between a pair of rows of an indicator matrix is twice the number of 



mismatches among the categorical variables. This represents the complement of the extended 

matching coefficient (EMF) which counts the number of matches, a direct extension of the 

simple matching coefficient for binary variables (see Gower and Hand, 1996). The EMF is a 

simple but effective measure of similarity, so the configurations defined by the 
kG  are not 

unacceptable. Indeed, we may do multidimensional scaling analyses (MDS, cf. Borg and 

Groenen, 1997) of the EMF matrices, replacing them by coordinates that generate the EMFs. 

A GPA of these matrices of derived coordinates would be equivalent to a GPA of the 

indicator matrices themselves. That the MDS coordinates are not defined up to an arbitrary 

rotation is immaterial in the context of GPA. The derived coordinates may be regarded as a 

form of quantification, though different occurrences of the same category level will be given 

multidimensional “scores”. We compare the results obtained by this simple approach with 

those obtained by assigning optimal scores. 

 We apply OS-GPA to a data base of a Dutch power supplier. The data base contains 

many categorical variables originating from different business units within the company. This 

induces natural splits in the data base. The underlying research problem for the power supplier 

is to characterize their customers, e.g. for identifying potential drivers of switching behaviour. 

The latter is a managerially relevant issue as the power market has recently been liberalised in 

the Netherlands. 

2 Theory 

Let 
kX , 1, ,k K= L , denote K data matrices of size (

kn p× ), in which the corresponding rows 

refer to identical objects. For 
kX with maxk k

k
p p<  columns with zeroes are padded so that 

1 2 maxK k
k

p p p p p= = = = ≡L . Padding with zeroes neither increases the dimensionality of 

the data, nor does it affect inter-row distances (see Gower and Dijksterhuis 2004, p.34). We 

assume that all data are nominal, i.e. consist of scores on a finite number of categories. The jth 



categorical variable in set k can be coded into an kjn c×  indicator matrix kjG , where kjc  

equals the number of categories of variable j in set k. Let 
kjz  denote the 1kjc ×  vector of 

quantifications (cf. Gifi 1990, Section 2.2) for the jth variable in set k. We assume that the k 

sets contain different variables. In this case mean values cannot be compared because the 

variables differ, so orientational information is all that is available. 

Using this notation the data matrix 
kX  can be written as  

1 1 2 2[ , , , ]k k k k k kp kp=X G z G z G zL  (1) 

where, as explained above, the indicator matrices are zero for variables that do not occur. As 

an illustration, consider the following data matrix for a data set k with two variables, where 

the first has three categories and the second has two: 

















=

1

2

1

2

1

3

kX . 

The corresponding indicator matrices 1kG  and 2kG  and quantification vectors 1kz  and 

2kz are: 

















=

010

001

100

1kG , 

















=

0

1

0

1

0

1

2kG ,

















=

13

12

11

1

z

z

z

kz , and 







=

22

21

2
z

z
kz . 

The Procrustes problem is to minimise 

∑
<

−
K

kh

kkhh QXQX ,  (2) 

where 
1, , KQ QL  are p p×  orthogonal matrices. The basic idea of GPA with optimal scaling 

is to alternate between steps (i) and (ii) in the following: 

(i) For given kjz , obtain 1, , KQ QL  by conventional GPA; 

(ii) For given kQ  determine optimal scores kjz ( 1, ,k K= L ; 1, , kj p= L ). 



Step (i) is extensively described by Gower and Dijksterhuis (2004). The interesting step is 

step (ii), where optimal quantifications kjz  ( 1, ,k K= L ; 1, , kj p= L ) are determined for 

given rotation matrices 
kQ  ( 1, ,k K= L ). 

Note that in step (ii) the maximum value of j is kp , implying that padding is irrelevant 

when estimating the optimal scores. In step (i) any necessary columns of each current kX  are 

padded with zeros when updating the estimated orthogonal matrices. Thus, when estimating 

kjz  summations over j from 1, , pL  are understood to terminate at kp . 

To proceed with the analysis, we take into account the usual requirement of GPA that all 

variables are centred to zero mean (thus dealing with translation) i.e. 

0kj kj
′ =1 G z  (for all k, j), which implies 0kj kj

′ =1 L z  (for all k, j), (3) 

where 1 is a vector of ones and kj kj kj
′=L G G . In GPA we often have a size constraint, such as 

1

tr k k

k

K
=

′ =∑X X . Such a constraint is essential when kX is defined in terms of quantifications, 

as in (1), to rule out the trivial solution 0kj =z  (for all k, j). It turns out that pathological 

solutions are avoided only if the kjz  satisfy the constraint  1kj kj kj
′ =z L z  for all k and kpj ≤ . 

Thus, ( )tr k k kp′ =X X  (see the end of this section for remarks on kp  scaling). 

In Van Buuren and Dijksterhuis (1988) the same constraint is used but is not included in 

the optimisation. They calculate unconstrained solutions and impose the constraint in the 

algorithm by standardizing the quantifications kjz  obtained in each iteration. The optimization 

in our approach explicitly takes centring and standardising of the matrices 
kj kjG z  into account 

which van Buuren and Dijksterhuis (1988) also perform but in a separate step, i.e. not 

included in the objective function. 

We now develop our OS-GPA approach. The Procrustes problem is  



∑
<

−
K

kh

kkhh QXQXminimise , 

subject to 

0kj kj
′ =1 L z , for all k, j and 1kj kj kj

′ =z L z , for all k and j with kpj ≤ . 

A Lagrangian for this problem is 

( )
1 1 1 1

2 1
p pK K K

h h k k kj kj kj kj kj kj kj

h k k j k j

L µ λ
< = = = =

′ ′= − − − −∑ ∑∑ ∑∑X Q X Q 1 L z z L z . (4) 

From (4) we isolate the terms involving 
kjz . The terms involving 

kjz  in ∑
<

−
K

kh

kkhh QXQX  

occur in∑
≠

−
K

kh

kkhh QXQX  and are:



( ) ( )1 tr 2tr
K

k k k k h h

h k

K
≠

 
′ ′ ′− −  

 
∑X X Q X X Q = ( ) ( )( 1) tr 2 trk k k k kK −

 ′ ′ ′− − X X Q X Y , (5) 

where 
k−Y  is the k-excluded group average ∑

≠
−

K

kh

hhK
QX

1
1 . Observe that 

( )
1

tr
kp

k k kj kj kj

j=

′ ′=∑X X z L z  (6) 

and 

( )

( )

1 1 2 2

1 1

1 2

tr( ) tr , , ,

tr  , , , ,

k

k k k k k k k kp kp k k

k k

k k kp

kp kp

− −

′′ ′ ′=

 ′ ′
 

=  
 ′ ′ 

Q X Y G z G z G z Y Q

z G

y y y

z G

L

M L

 (7) 

where kjy  is defined as the jth column of k k−
′Y Q . For a specific j the only term of (7) 

involving kjz is kj kj kj
′ ′z G y . Thus, the only terms in (5) that involve kjz  follow from (6) and (7) 

to give 

2kj kj kj kj kj kj
′ ′ ′−z L z z G y . (8) 

Note that the objective of the optimisation problem reduces to a linear term subject to the 

quadratic constraint 1kj kj kj
′ =z L z . Thus, finally, the only terms in the Lagrangian (4) involving 

kjz  are 

( ) ( )2 2 '
kj kj kj kj kj kj kj kj kj kj kj kj kj

µ λ′ ′ ′ ′− − −z L z z G y 1 L z z L z . (9) 

Differentiating (4) with respect to kjz  therefore results in the first-order condition 

( ) ( )1
kj kj kj kj kj kj kj

λ µ′− = +L z G y L 1 . (10) 

Pre-multiplying (10) by ′1 and imposing the centring constraint gives  

( ) 0
kj kj kj kj

µ′ ′ ′+ =1 G y 1 L 1 , i.e. 
1

kj kj
n

µ ′= − 1 y  (11) 

and if we pre-multiply (10) by kj
′z , we obtain 



1kj kj kj kjλ ′ ′= − z G y .  (12) 

Substituting (11) and (12) into (10) gives 

( ) ( )kj kj kj kj kj kj kj
′ ′ ′= −z G y L z G I N y , 

where 
1

'
n

=N 11 , so that we can now solve for kjz : 

1 1/2 1[ ( ) ( ) ] ( )kj kj kj kj kj kj kj kj kj

− − −′ ′ ′= − − −z y I N G L G I N y L G I N y . (13) 

We show in Appendix B that (13) does indeed give a minimum of the objective function, 

except in pathological situations where there is an exact fit, but possibly non-unique. 

When the different sets have differing numbers of variables this may introduce spurious 

size effects. These can be circumvented by adapting the normalisation, using 
kp -scaling (cf. 

Gower and Dijksterhuis 2004), where each variable is divided by kp , 
kp  being the number 

of variables in set k. This scaling results in a slightly different expression for the kjz : 

1 1/2 11
[ ( ) ( ) ] ( )kj kj kj kj kj kj kj kj kj

kp

− − −′ ′ ′= − − −z y I N G L G I N y L G I N y . 

One outcome of the OS-GPA analysis gives a group average Y , i.e. a position of each 

customer in a multidimensional space; there is also a position of each customer, per set of 

variables, i.e. one such point in the space of each of the K sets: k k kG Z Q , 1, ,k K= L . The kZ  

contain the quantifications for the categories of the variables. These can all be plotted in the 

space of the first few, typically two, dimensions of the principal components analysis (PCA, 

cf. Jolliffe 2002) on Y . A PCA on Y gives a low dimensional representation of the high 

dimensional OS-GPA result in Y . An algorithm for our approach is listed in Appendix A. 

3 Application 

The data refer to 500 customers of a Dutch power supplier. The data base contains data from 

four different business units within the company (hence, K = 4). The first data set contains 



three variables that quantify consumption of the power supplier’s services, viz. variables that 

measure usage of electricity, gas and cable TV. The second set consists of five different cost 

variables, such as the number of inbound phone contacts and the paying behaviour of the 

customers. The third set contains eight different demographic variables of the customer. The 

fourth set contains 17 satisfaction variables as measured in a survey. Table 1 gives an 

overview of the variables in the four data sets and their measurement scales. 

Table 1 The four data sets, a description of the variables, and the number of categories. 

Table 1 

 

The four data sets were matched using the OS-GPA developed in the previous section. We 

have analysed the variables assuming that all are nominal. To this end, we discretisised 

variables that are measured on an ordinal, ratio or interval scale, without restricting their 

category quantifications. Such an analysis on a nominal level enables non-linear relationships 

between variables to be taken into account. 

We decomposed the overall loss value (2) into 500 respondent-specific losses, which are 

presented in Figure 1. The losses can be seen to run smoothly from low values to higher 

values. A number of customers can be identified to have a relatively high loss value. The high 

large loss levels are caused by the fact that these customers have atypical values for some of 

the variables. It can be useful to determine the reasons for this atypicality as these customers 

may require special attention. Such customers may e.g. shortly decide to switch to another 

power supplier, which could perhaps be prevented by giving them some attention by offering 

them a special deal. 

 

Figure 1 

 



A decomposition of the total loss value in losses per data set (not shown) does not identify 

important differences in fit between the four sets. 

 The first two principal components of the GPA group average contain 30% of the 

variance in the GPA group average and will be used to illustrate the results of the OS-GPA 

method. The results can be given in a biplot (Blasius, Eilers and Gower 2009), as they are the 

result of a proper PCA. As there are 500 row points, and a total of 33 variables, which 

together have 152 categories in total, a plot with all this information easily becomes cluttered. 

We therefore present for each data set a biplot in Figure 2. This plot contains the position of 

the 500 customers, the rows from 
k k kG Z Q V , labelled by the set number (1 through 4) and 

the positions of the quantified variable categories, the rows from 
k kZ Q V , where V  is the 

matrix from the SVD of  ′=Y USV (see Appendix A, algorithm step 4). The latter are 

indicated by open dots labelled by three numbers (variable no., category no, set no.) which 

correspond to the numbers in Table 1. The category scores belonging to the same variable are 

connected by a straight line through the origin. This is not an artefact but is a natural 

consequence of the scores being on a linear coordinate axis, whose projection is shown. Note 

that not every plot contains the full number of 500 customers because many points may 

coincide. The number of non-coinciding points is limited by the number of profiles, that is, by 

the number of variables and the number of categories per variable. The first set contains three 

variables which have 4, 4 and 2 categories, which totals to 32 different possible profiles. The 

other sets, no. 2, 3 and 4, contain 144, 1944 and over 30 10
12

 possible profiles, respectively. 

Hence, only the biplots for sets 3 and 4 can show the 500 customer points although, even 

there, some points may coincide. 

 

Figure 2 

 



Visual inspection of the cloud of customer points shows two outliers in the points in set four. 

Two clearly quite atypical customers, in terms of the satisfaction variables, can be discerned. 

Compared to the other customers, they must have extreme scores on category 6 of variable 2 

and category 2 of variable 11. The lower number of possible profiles makes the biplots for set 

1 and set 2 easier to inspect. 

Two groups of customers can be identified when inspecting the group average 

configuration (see Figure 3, indicated by the ellipses), the right group is characterised by the 

variables and categories indicated in the figure. 

 

Figure 3 

 

We display the category quantifications for all variables in each of the four sets in the separate 

panels of Figure 4. This figure shows that indeed, most variables should be quantified as 

nominal variables. For instance variable 1 of set 3, indicating ‘type of house/area’ (a 

nominally scaled variable), clearly shows non-monotonic category quantifications. The 

quantifications for the ordinal categories of variable 1 in set 2, indicating the number of 

automatically paid contracts are also non-monotonic. This indicates a non linear relationship 

between this variable and other variables. 

An analysis that assumes a ratio, an interval, or an ordinal scaling would harm the 

optimality of the GPA solution. Note that if the quantifications of two categories of a variable 

are the same, one could combine these categories. 

 

Figure 4 

 



We analysed the same data sets by performing a GPA on the indicator matrices kG , 

1, , 4k = L . The loss value (2) for this analysis is 2.74, while the value of (2) for the OS-GPA 

method was 2.5. This confirms that the OS-GPA method attains a greater agreement between 

the data sets, because the category quantifications are optimal with respect to the 

minimisation of (2), while the ‘quantifications’ obtained by the GPA on the 
kG  do not 

necessarily minimize (2). 

4 Discussion and conclusion 

The inclusion of an optimal scaling step to ordinary GPA is a useful extension of the method. 

It allows for categorical variables in different sets to be compared under the orthogonal affine 

assumptions of GPA. A visual inspection of the results enables a scan of potential groupings 

of row-objects (here customers), of outliers and of ways of treating the categories of variables. 

The quantifications of most variables show that an ordinal or numerical treatment would have 

been sub-optimal compared to our OS-GPA approach. 

We have considered the case where each of the K sets use different variables. When the 

same variables are used in each set, then only one set of quantifications is required. This is not 

the ideal structure for using Procrustean methods because now it would usually be better to 

analyse how means vary from set to set. One situation where the approach may be useful is 

when it is suspected that although variables may have the same names across sets, they may 

not be similarly interpreted. Then it is interesting to compare two analyses, one assuming 

different quantifications and the other the same quantifications. The details of the 

modifications required for evaluating common optimal scores are available on request. 

Appendix A 

Algorithm in pseudo code: 

1. Initialisation 



a. indicator matrices kG  (
1

p

kj

j

n c
=

×∑ ), where 
1 2
, , ,

k k k kp
 =  G G G GL ; 

b. rotation matrices 
kQ  ( p p× ), 1, ,k K= L  are identity matrices of appropriate 

order; 

c. category quantification matrices kZ  (
1

p

kj k

j

c p
=

×∑ ), 1 2[ , , , ]
kk k k kp=Z z z zL . 

2. Main ALS iteration until ε<−∑
<

K

kh

kkkhhh QZGQZG , a small positive number, 

a. optimal scaling: 1
1

K

k h hK

h k

− −
≠

= ∑Y X Q , with 
k k−

′Y Q  centred as in equation (13); 

kj kj kj
′=L G G ; 1 1

kj kj j k k k k k kj k k k

− −

− − −
′ ′ ′ ′ ′=z L G Y Q Q Y G L G Y Q  providing 

kjz  for given 

Y  and Q , for each 1, ,k K= L  (possibly taking into account 
kp -scaling); 

b. GPA, providing rotation matrices kQ  minimising ∑
<

−
K

kh

kkkhhh QZGQZG  for 

given kZ , for each 1, ,k K= L ; 

3. convergence test, going back to step 2 when ε<−∑
<

K

kh

kkkhhh QZGQZG ; 

4. perform PCA on ∑
=

=
K

k

kkkK

1

1 QZGY , give the k k kG Z Q  the same rotation, say V , with 

′=Y USV  the SVD of Y ; as well as the k kZ Q ; plot YV , k k kG Z Q V  and k kZ Q V . 

Appendix B 

Here we show that the value of kjz  given by (13) minimises the objective function (9). For 

simplicity, in this section we drop the suffices k and j. To establish a minimum requires the 

second derivative of (9), given by differentiating (10). If we do this and use (12), we get the 

second differential as: 



( ) ( )1  λ ′ ′− =L1 z G y L1 .   (B1) 

On substituting for z from (13), we have: 

( ) ( )

( )

1 1 2 1

1 1 2 1

[ ( ) ( ) ] ( )

[ ( ) ( ) ] ,n

− − −

− − −

′ ′ ′ ′ ′ ′ ′= − − −

′ ′ ′ ′ ′= − − −

z G y L1 y I N GL G I N y y I N GL G y L1

y I N GL G I N y y GL G 11 yL1
  (B2) 

where the term in square brackets is assumed positive (confirmed below) and L1  necessarily 

has positive frequency elements. 

Now ( )1− ′ ′= =GL G 1 G 1 1 , so 1  is an eigenvector of the positive semi definite matrix 

1− ′GL G . It follows that 

 ( )
1 1

1 2

1 1

( )
k kp p

i i i i i

i i

n γ γ
− −

−

= =

 
′ ′ ′ ′ ′ ′− = = 

 
∑ ∑y GL G 11 y y v v y v y ,   (B3) 

where iγ , iv  are an eigenvalue, necessarily positive, and associated eigenvector of the matrix 

on the left-hand-side. It follows that, apart from a pathological case about to be discussed, all 

the components of the second differential (B2) are positive, which is the condition for a 

minimum. Additionally this confirms that the positive square root must be taken in (13). 

 The pathological case is in the unlikely event where y  happens to be 1  or some other 

null-vector of the matrix on the left-hand-side of (B3). Then (B2) is zero and we have not 

demonstrated a minimum. When =y 1 , then the second term of (8) becomes zero as 

′ ′ ′=z G 1 z L1, which is constrained to be zero. Thus (8) has an infinite number of exact 

solutions satisfying ′ =z Lz 1  and 0′ =1 Lz . Similarly, when y  is any other null vector, then 

0′ =1 y , so that ( ) 0− ′ =1GL G y , which in turn  implies that 0′ =G y . Again the second term 

of (8) vanishes and we have the same exact solutions as when =y 1 . Thus the pathological 

solutions, should they occur, may not correspond formally to analytical minima but they give 

exact fits that cannot be bettered. 
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Figure 1 

Loss distributed over 500 customers, sorted from low to high loss. 

 



 

 



 



Figure 2  

Biplots of the first two dimensions of customer-points ( k k kG Z Q V ) and variable category points ( k kZ Q V ) per set labelled by three numbers 

(variable, category, set).



 

  

 

Figure 3 



The first two dimensions of a PCA of Y , the group averages, of the 500 customers labelled by their ID number, and variable categories, see 

equation (13), labelled by three numbers (variable, category, set). The two ellipses indicate a potentially interesting clustering of customers.
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Figure 4 2 

Category quantifications kjz , (one panel per set 1, , 4k = L ). Numbers refer to variables within each set. 3 
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