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Abstract

We show that if f is a transcendental meromorphic function with a finite number
of poles and f has a cycle of Baker domains of period p, then there exist C > 1 and
r0 > 0 such that{

z :
1
C

r < |z| < Cr

}
� sing(f−p)� ∅, for r � r0.

We also give examples to show that this result fails for transcendental meromorphic
functions with infinitely many poles.

1. Introduction

Let f be a meromorphic function which is not rational of degree one and denote
by fn, n ∈ N, the nth iterate of f . The Fatou set, F (f ), is defined to be the set of
points, z ∈ C, such that (fn)n∈N is well-defined, meromorphic and forms a normal
family in some neighbourhood of z. The complement, J(f ), of F (f ) is called the Julia
set of f . An introduction to the properties of these sets can be found in, for example,
[6] for rational functions and in [7] for transcendental meromorphic functions.
The set F (f ) is completely invariant so for any component U of F (f ) there exists,

for each n ∈ N, a component Un of F (f ) such that fn(U ) ⊂ Un. If Up = U , for
some minimal p ∈ N, then we say that U is a periodic component of period p, and
there are then five possible types of periodic components; see [7, theorem 6]. In
particular, U is called a Baker domain if there exists z0 ∈ ∂U such that fnp(z) → z0
as n → ∞, for z ∈ U , but fp(z0) is not defined. In this case, there is at least one
component Uk, 1 � k � p, with the property that fnp(z)→ ∞ as n → ∞ for z ∈ Uk.
If U is a Baker domain of a transcendental entire function f , then fn(z) → ∞ as
n → ∞ for z ∈ U and, moreover, U is simply connected [2, theorem 3·1]. However, a
transcendental meromorphic function (even one with only finitely many poles) can
have a multiply connected Baker domain; see [8, example 1], for example.
For p ∈ N, we denote by sing(f−p) the set of finite singularities of f−p; that is, the

set of points w ∈ C such that some branch of f−p cannot be analytically continued
through w. The set sing(f−1) consists of the critical values and finite asymptotic
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values of f , and for p ∈ N we have

fp−1(sing(f−1) \ Ap−1) ⊆ sing(f−p) ⊆
p−1⋃
j=0

f j(sing(f−1) \ Aj),

where

Aj = {z : f j is not analytic at z};

see [10, theorem 7·1·2], and also [1, lemma 2] for the case of a transcendental entire
function.
It follows from the proof of [14, theorem A] that if f is a transcendental mero-

morphic function and f has a cycle of Baker domains of period p, then the set
sing(f−p) is unbounded. Here we show that if f has only finitely many poles, then
this result can be strengthened to deduce that the set sing(f−p) is not too sparse.

Theorem 1·1. Let f be a transcendental meromorphic function with a finite number
of poles and with a cycle of Baker domains of period p. Then there exist constants C > 1
and r0 > 0 such that{

z :
1
C

r < |z| < Cr

}
� sing(f−p)�∅, for r � r0.

Theorem 1·1 was first proved by Bargmann [4] for the case of a transcendental
entire function. The proof in the case of a transcendental meromorphic function f
with a finite number of poles has to overcome the difficulty that the Baker domains
of such an f need not be simply connected.
In Section 3, we give examples to show that the result of Theorem 1.1 does not

hold for transcendental meromorphic functions with infinitely many poles. These
examples are of the form

f (z) = cz +
∞∑

n=1

(
1

an − z
− 1

an + z

)
= cz +

∞∑
n=1

2z
a2n − z2

, (1·1)

where c � 1, an+1 > an > 0, for n ∈ N, and an+1/an → ∞ as n → ∞.
It follows from [3, section 4] that, if f is of the form (1·1), then J(f ) ⊆ R, because

the upper and lower half-planes are invariant under f . Also, since c � 1, we have
fn(z) → ∞ as n → ∞ for z in these half-planes. Thus F (f ) consists of one or two
invariant Baker domains, depending on whether J(f ) is a proper subset of R or
J(f ) = R. In fact it turns out that if c > 1 then both of these possibilities can occur
whereas if c = 1 then the Julia set is always equal to R.
We show that if f is of the form (1·1) then the positions of the singularities of f−1

depend on the values of c and an. More precisely, we prove the following result. Here
and later we use the notation B(z, r) = {w : |w − z| < r}, where z ∈ C, r > 0.

Theorem 1·2. Let f be of the form (1.1). Then there exist R > 0 and N1 ∈ N such
that

sing(f−1) ⊂ B(0, R) �
∞⋃

n=N1

B(±can, 5
√

c).

Since an+1/an → ∞ as n → ∞, this result is sufficient to show that the conclusion
of Theorem 1·1 does not hold for functions of the form (1·1).
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2. Proof of Theorem 1·1

We first recall the following fundamental result from [11, theorem 1]. Here we use
the notation H = {z : R(z) > 0}.

Lemma 2·1. Let f be a transcendental meromorphic function with a finite number of
poles, and with a Baker domain U which is periodic with period p. Then there exist a
simply connected domain V in U , an analytic function φ defined in U and a Möbius
transformation T such that:
(a) V is absorbing for fp, that is, fp(V ) ⊂ V and for each compactK ⊂ U there exists

N such that fNp(K) ⊂ V ;
(b) φ : U → Ω ∈ {H, C} and φ is univalent in V ;
(c) T : Ω→ Ω is a bijection, and φ(V ) is absorbing for T ;
(d) φ(fp(z)) = T (φ(z)), for z ∈ U .

The triple (V, φ, T ) is called a conformal conjugacy, or eventual conjugacy, of fp in
U , and V is called a fundamental set for fp in U . We note that properties (b) and (d)
imply that fp is univalent in V, a key fact in the proof of Theorem 1·1.
We require two further results from earlier work.

Lemma 2·2. Let f be a transcendental meromorphic function with a Baker domain U
which is periodic with period p, such that fnp(z) → ∞ as n → ∞ for z ∈ U . Then, for
any a ∈ U and any path Γ =

⋃∞
n=0 fnp(Γ0), where Γ0 joins a to fp(a) in U and 0 � Γ,

there is a positive constant C0 such that

1
C0

|z| � |fp(z)| � C0|z|, for z ∈ Γ.

This result is a special case of [13, theorem 1]. For the case of a transcendental
meromorphic function with a finite number of poles it can alternatively be deduced
from [7, lemma 7] by using the fact that the complement of any periodic component of
the Fatou set must contain an unbounded closed connected set; see [15, theorems 1, 2,
and 4].
We also need a result about the size of the image, under a transcendental mero-

morphic function with a finite number of poles, of a large Jordan curve surrounding
the origin; see [8, proof of theorem F] or [15, lemma 4].

Lemma 2·3. Let f be a transcendental meromorphic function with a finite number of
poles. Then there exist ρ > R > 0 such that if γ is any Jordan curve surrounding
{z : |z| = ρ} and B(γ) is the doubly connected domain bounded by {z : |z| = R}
and γ, then the outer boundary component of f (B(γ)) is a subset of f (γ) and lies in
{z : |z| > 2ρ}.

The proof of Theorem 1·1 is carried out in two main steps.

Lemma 2·4. Let f be a transcendental meromorphic function with a finite number of
poles and with a Baker domain U which is periodic with period p, such that fnp(z)→ ∞
as n → ∞ for z ∈ U . Then there is a path Γ defined by a continuous map γ : [0,∞)→ U
such that:
(a) γ(t)→ ∞ as t → ∞;
(b) fp(γ(t))→ ∞ as t → ∞;
(c) fp(Γ) ⊂ Γ;
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(d) there exist c1, c2 > 0 such that

c1|z| � |fp(z)| � c2|z|, for z ∈ Γ;

(e) there exist c3, c4 > 0 such that

c3 � |(fp)′(z)| � c4, for z ∈ Γ.

Proof. Our proof of Lemma 2·4 follows that of [4, lemma 3] with some simplific-
ations; we give the details for completeness. By Lemma 2·1, there is a conformal
conjugacy (V, φ, T ) of fp in U . Let a ∈ V and let γ : [0,∞)→ V be a continuous map
such that γ(0) = a, γ(1) = fp(a), and

γ(t + n) = fnp(γ(t)), for t ∈ [0, 1], n ∈ N.

Then γ has properties (a), (b) and (c). Also property (d) holds by Lemma 2·2, since
we may assume without loss of generality that Γ = γ([0,∞)) ⊂ C \ {0}.
For z ∈ V and n ∈ N, we define

φn(z) =
fnp(z)− fnp(a)
(fnp)′(a)

.

Note that the functions fnp and hence φn are univalent in V by Lemma 2·1, and

φn(a) = 0, φ′
n(a) = 1, for n ∈ N. (2·1)

We now make several uses of the well-known fact that if F is a family of functions
analytic in a domain G, which is uniformly bounded at some point of G, then F is a
normal family in G if and only if F is locally uniformly bounded in G.
First, we deduce that the sequence φn, n ∈ N, forms a normal family in V . Indeed,

the family of univalent functions g in the unit discD satisfying g(0) = 0 and g′(0) = 1
is locally uniformly bounded inD by the Koebe distortion theorem, so the normality
of φn, n ∈ N, in V follows by use of the Riemann mapping theorem.
Therefore, the functions Φn = φn ◦ fp, n ∈ N, also form a normal family in V , as

do both φ′
n, n ∈ N, and Φ′

n, n ∈ N. Moreover, the functions φ′
n and Φ

′
n are zero-free

in V , by univalence, so 1/φ′
n, n ∈ N, and 1/Φ′

n, n ∈ N, also form normal families in
V , by Hurwitz’s theorem. Hence there exist constants c3, c4 > 0 such that

c3 �
∣∣∣∣Φ′

n(z)
φ′

n(z)

∣∣∣∣ � c4, for z ∈ γ([0, 1]), n ∈ N. (2·2)

Now for n ∈ N and t ∈ [0, 1], we have

(fp)′(γ(t + n)) = (fp)′(fnp(γ(t))) =
(f (n+1)p)′(γ(t))
(fnp)′(γ(t))

=
Φ′

n(γ(t))
φ′

n(γ(t))
,

so part (e) holds by (2·2).

For the second step in our proof of Theorem 1·1 we use the log transform technique
of Eremenko and Lyubich [9]. Bargmann’s proof of this step in [4] used his result
[4, theorem 1] on normal families of meromorphic covering maps. However, he also
mentioned the approach we use below, and this works well for meromorphic functions
with a finite number of poles.

Lemma 2·5. Let f be a transcendental meromorphic function with a finite number of
poles and with a Baker domain U which is periodic with period p, such that fnp(z)→ ∞
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as n → ∞ for z ∈ U . If there are positive sequences rn and Rn such that Rn > rn,
rn → ∞ as n → ∞,

Rn

rn

−→ ∞ as n −→ ∞ (2·3)

and ( ∞⋃
n=1

An

)
� sing(f−p) = ∅, (2·4)

where An = {z : rn < |z| < Rn}, then for any sequence zn such that |fp(zn)| =
√

rnRn

and zn → ∞ as n → ∞, we have∣∣∣∣zn(fp)′(zn)
fp(zn)

∣∣∣∣ −→ ∞ as n −→ ∞. (2·5)

Proof. Let rn, Rn and zn satisfy the hypotheses of the lemma. First we choose
a periodic point c of f . We may assume that the annuli An, n ∈ N, surround the
corresponding periodic cycle and also the poles of f .
Let wn = fp(zn), n = 1, 2, . . . , so |wn| =

√
rnRn, and put

Sn = {t : ln rn < R(t) < ln Rn}, n = 1, 2, . . . .

Also, choose tn ∈ Sn such that etn = wn and then let hn denote the branch of
f−p ◦ exp that maps tn to zn. Since An � sing(f−p) = ∅, the branch hn can be
analytically continued along all paths from tn in Sn to give a single-valued analytic
function in Sn, by the monodromy theorem.
Two cases can then arise (see [12, page 283] or [14]), as follows.
(a) The function hn is univalent in Sn.
(b) The function hn is periodic in Sn with period 2πimn, for someminimalmn ∈ N.

In this case, we have

hn(t) = φn(exp(t/mn)), for t ∈ Sn,

where φn is univalent in the annulus {s : r1/mn
n < |s| < R

1/mn
n }.

In case (a), hn(Sn) is a simply connected domain and c � hn(Sn). Thus, for an
appropriate branch of the logarithm function,

Fn(t) = log(hn(t)− c), t ∈ Sn, n ∈ N, (2·6)

is a single-valued analytic (even univalent) map of Sn onto a domain that contains
no vertical line segment of length greater than 2π and hence no disc of radius greater
than π. By applying Bloch’s theorem (or Koebe’s theorem) in the disc {t : |t − tn| <
1
2 ln (Rn/rn)}, we deduce that

|F ′
n(tn)| � C1

ln (Rn/rn)
, for n ∈ N,

where C1 is a positive absolute constant. On expressing this inequality in terms of f ,
we obtain

∣∣∣∣ (zn − c)(fp)′(zn)
fp(zn)

∣∣∣∣ � 1
C1
ln (Rn/rn), for n ∈ N. (2·7)
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In case (b), hn(Sn) is a doubly connected domain, with c � hn(Sn), and

fp(z) = (φ−1
n (z))

mn , for z ∈ hn(Sn),

is an mn to 1 mapping of hn(Sn) onto An. First consider case (b)(i), where c lies
in the unbounded complementary component of hn(Sn). Then we can define Fn(t)
as in (2.6) to be a single-valued (but not necessarily univalent) analytic map of Sn

onto a domain that contains no disc of radius greater than π. Hence (2.7) holds once
again.
Next consider case (b)(ii), where c lies in the bounded complementary component

of hn(Sn). Here we can use the monodromy theorem again to define

Fn(t) = log(hn(t)− c), t ∈ Sn, n ∈ N,

as a single-valued analytic map of Sn onto a simply connected domain bounded by
two curves, which is invariant under translation by 2πi. Let

Qn = {t : ln rn < R(t) < ln Rn, |I(t − tn)| < πmn}, n ∈ N.

Then Qn is a rectangle contained in Sn, with centre tn, and hn(t) = φn(exp(t/mn))
maps Qn (univalently) onto hn(Sn)\αn, where αn is a cross-cut of hn(Sn) joining the
two boundary components. Thus Fn(Qn) is a quadrilateral containing no vertical line
segment of length greater than 2π, and hence no disc of radius greater than π. By
applying Bloch’s theorem to Fn in the disc {t : |t − tn| < min{πmn, 12 ln (Rn/rn)}},
we deduce that∣∣∣∣ (zn − c)(fp)′(zn)

fp(zn)

∣∣∣∣ � 1
C1
min{πmn,

1
2
ln(Rn/rn)}, for n ∈ N. (2·8)

Now note that if the lemma is false, then we may assume, by taking a subsequence
if necessary, that the sequence∣∣∣∣zn(fp)′(zn)

fp(zn)

∣∣∣∣ , n ∈ N, (2·9)

is bounded. Since Rn/rn → ∞ as n → ∞, it follows from (2·7) that case (b)(ii) must
occur for all sufficiently large n. Thus we may assume that case (b)(ii) occurs for all
n and deduce from (2·8) that the corresponding sequence mn, n ∈ N, is bounded.
Let γn be the image under hn of {t : R(t) = 1

2 ln (rnRn)}. Then γn is a simple
closed curve with c inside γn, and fp is an mn to 1 mapping of γn onto βn = {w :
|w| =

√
rnRn}. Since zn ∈ γn and zn → ∞ as n → ∞ (by hypothesis), we deduce

that dist(γn, c) → ∞ as n → ∞. For if not, there exist R0 > 0 and a subsequence
γnk

, k = 1, 2, . . . , such that γnk
� {z : |z − c| = R0} � ∅, for k = 1, 2, . . . . Then

each circle {z : |z − c| = R}, R > R0, meets all but a finite number of the γnk
and

so contains a point where fp is not analytic (since, on rn, |fp| =
√

rnRn → ∞). This
contradicts the fact that there is a closed countable set E such that fp is analytic in
C \ E.
By adjusting the radius of the circle βn slightly, we can arrange that fp remains

an mn to 1 mapping of a simple closed curve γn onto βn, but there are no critical
values on βn of f, f 2, . . . , fp−1. Then the closed curves

f (γn), f 2(γn), . . . , fp−1(γn),

contain no critical points of fp−1, . . . , f 2, f , respectively. Hence each f j(γn), j =
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1, 2, . . . , p − 1, is a simple closed curve. Since f has only finitely many poles and
dist(γn, c)→ ∞ as n → ∞, it follows from Lemma 2·3 that, for n large enough, each
f j(γn), j = 1, 2, . . . , p − 1, winds positively round 0, at most mn times.
Therefore, by the argument principle, we have

mn � wnd(f (γn), 0) =
∑

k

wnd(γn, ak)−
∑

k

wnd(γn, bk),

where ak are the zeros of f inside γn and bk are the poles of f inside γn. Since mn

is bounded and f has only finitely many poles, we deduce that the number of zeros
of f inside γn is uniformly bounded. Because dist(γn, c) → ∞ as n → ∞ and c lies
inside γn, it follows that f has a finite number of zeros in C. This argument applies
similarily to the zeros of f − a, for any a ∈ C, so we obtain a contradiction to the
fact that f has a transcendental singularity at∞. Thus the sequence (2·9) cannot be
bounded, so the proof of Lemma 2·5 is complete.

We now prove Theorem 1·1. We can assume that f satisfies the hypotheses of
Lemma 2·4. If the theorem is false, then there exist positive sequences rn and Rn

such that Rn > rn, rn → ∞ as n → ∞, Rn/rn → ∞ as n → ∞ and

{z : rn < |z| < Rn} � sing(f−p) = ∅, for n ∈ N.

Hence Lemma 2·5 applies. Now let Γ be the path given by Lemma 2·4, and for
n sufficiently large let wn be the point where Γ meets {w : |w| =

√
rnRn}. Then

wn = fp(zn) for some zn ∈ Γ, for n sufficiently large. We have zn → ∞ as n → ∞, by
Lemma 2·2. The conclusions of Lemmas 2·4 and 2·5 about |zn(fp)′(zn)/fp(zn)| are
now contradictory, so the proof of Theorem 1·1 is complete.

3. Examples of Baker domains

Here we give examples to show that the result of Theorem 1·1 does not hold for
transcendental meromorphic functions with infinitely many poles. Throughout this
section f is a function of the form (1·1); that is,

f (z) = cz +
∞∑

n=1

(
1

an − z
− 1

an + z

)
= cz +

∞∑
n=1

2z
a2n − z2

,

where c � 1, an+1 > an > 0, for n ∈ N, and an+1/an → ∞ as n → ∞.
We saw in the Introduction that J(f ) ⊆ R and that F (f ) consists of one or two

invariant Baker domains, depending on whether J(f ) is a proper subset of R or
J(f ) = R. Later in this section we show that if c = 1, then only the second of these
two cases can occur whereas both cases can occur if c = 2. Also note that J(f ) is
symmetric in the imaginary axis since f is odd.
Theorem 1·2 shows that the result of Theorem 1·1 does not hold for such functions

f . To prove Theorem 1·2, we need the following lemma which also plays a key role
later in this section. Here and later the constantsN0, N1, . . ., depend on the particular
function f .

Lemma 3·1. There exists N0 ∈ N such that, if N � N0, aN � |z| < aN+1 and
z �±aN , then ∣∣∣∣f (z)− cz − 2z

a2N − z2
− 2z

a2N+1 − z2

∣∣∣∣ � 5N
|z|
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and ∣∣∣∣f ′(z)− c − 2(a2N + z2)
(a2N − z2)2

− 2(a2N+1 + z2)
(a2N+1 − z2)2

∣∣∣∣ � 5N
|z|2 .

Proof. Suppose that aN � |z| < aN+1 and z �±aN . Since an+1/an → ∞ as n → ∞
we deduce that, for N sufficiently large,∣∣∣∣f (z)− cz − 2z

a2N − z2
− 2z

a2N+1 − z2

∣∣∣∣ =
∣∣∣∣∣
N−1∑
n=1

2z
a2n − z2

+
∞∑

n=N+2

2z
a2n − z2

∣∣∣∣∣
�

N−1∑
n=1

4|z|
|z|2 +

∞∑
n=N+2

4|z|
a2n

� 4(N − 1)
|z| +

4
|z|

∞∑
n=0

1
2n

� 5N
|z| ,

as required. Similarly, if N is sufficiently large, then we have

∣∣∣∣f ′(z)− c − 2(a2N + z2)
(a2N − z2)2

− 2(a2N+1 + z2)
(a2N+1 − z2)2

∣∣∣∣ =
∣∣∣∣∣
N−1∑
n=1

2(a2n + z2)
(a2n − z2)2

+
∞∑

n=N+2

2(a2n + z2)
(a2n − z2)2

∣∣∣∣∣
�

N−1∑
n=1

4
|z|2 +

∞∑
n=N+2

4
a2n

� 4(N − 1)
|z|2 +

4
|z|2

∞∑
n=0

1
2n

� 5N
|z|2 ,

as required.

We are now in a position to prove Theorem 1·2. First note that f has no finite
asymptotic values by Lemma 3·1. Now consider the critical values of f . Using Lemma
3·1 and the identities

2z
a2n − z2

=
1

an − z
− 1

an + z
and

2(a2n + z2)
(a2n − z2)2

=
1

(an − z)2
+

1
(an + z)2

,

we can deduce that there exists N1 � N0 such that the critical points of f lie in

B(0, aN1 ) �
∞⋃

n=N1

{
z :

1
2
√

c
� |z ± an| � 2√

c

}
,

and also

f

( ∞⋃
n=N1

{
z :

1
2
√

c
� |z ± an| � 2√

c

})
⊂

∞⋃
n=N1

B(±can, 5
√

c).

Since the poles of both f and f ′ are at the points ±an, n ∈ N, it follows that there
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exists R > 0 such that any critical points within B(0, aN1 ) map to points within
B(0, R). This completes the proof of Theorem 1·2.
We now show that when c = 1 the Julia set is always equal to the real line, so

F (f ) consists of two invariant Baker domains. We remark that this fact follows from
a general result of Bargmann [5, theorem 2·24] on the Julia sets of inner functions,
but here we give a direct proof based on Lemma 2·2.

Theorem 3·1. If c = 1, then J(f ) = R.

Proof. We use proof by contradiction. Assume that there exists x0 ∈ R \ J(f ).
Then F (f ) is a single invariant Baker domain and so fn(x0)→ ∞ as n → ∞. Also, it
follows from Lemma 2.2 that there exists C0 > 1 such that

1
C0

|fn(x0)| � |fn+1(x0)| � C0|fn(x0)|, for n ∈ N. (3·1)

We now obtain a contradiction to the fact that fn(x0) → ∞ as n → ∞ by
showing that if N is sufficiently large and |fn(x0)| � 2C0aN for some n ∈ N, then
|fn+1(x0)| � 2C0aN . We begin by noting that if |fn(x0)| � 2aN , for some n, N ∈ N,
then it follows from (3·1) that |fn+1(x0)| � 2C0aN . So, it is sufficient to show that
there exists N2 ∈ N such that

2aN � |x| � 2C0aN ⇒ |f (x)| � |x|, for N � N2, x ∈ R. (3·2)

Since f (z) = z+
∑∞

n=1 2z/(a2n−z2), the implication (3·2) will be proved if we can show
that there exists N2 ∈ N such that

2aN � |x| � 2C0aN ⇒
∞∑

n=1

1
a2n − x2

< 0, for N � N2, x ∈ R, (3·3)

and

2aN � |x| � 2C0aN ⇒
∞∑

n=1

∣∣∣∣ 2x
a2n − x2

∣∣∣∣ � |2x|, for N � N2, x ∈ R. (3·4)

It follows from Lemma 3·1 that (3·4) is true and so it remains to prove (3·3). If
2aN � |x| � 2C0aN and N is sufficiently large, then

∞∑
n=1

1
a2n − x2

=
1

a2N − x2
+

N−1∑
r=1

(
1

a2N−r − x2
+

1
a2N+r − x2

)
+

∞∑
n=2N

1
a2n − x2

<
1

a2N − 4C2
0a
2
N

+
N−1∑
r=1

(
1

−x2
+

2
a2N+r

)
+ 2

∞∑
n=2N

1
a2n

<
1

−4C2
0a
2
N

+
2

a22N

∞∑
n=0

1
2n

< 0.

This proves (3·3) and hence Theorem 3·1.

We now show that if c > 1 then it is possible for F (f ) to consist of either one or
two invariant Baker domains, depending on the values of the constants an. In each
case, we use the following corollary of Lemma 3·1.
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Corollary 3·1. There exists N3 ∈ N such that, if |z| � aN3 and |z ± an| � 3, for
each n ∈ N, then

|f (z)− cz| < 2.

First we give an example with c = 2 and J(f )� R, so that F (f ) consists of one
multiply-connected Baker domain.

Theorem 3·2. Let c = 2 and an = 2pn , for each n ∈ N, where pn+1 − pn → ∞ as
n → ∞. Then an+1/an → ∞ as n → ∞ and J(f )�R.

Proof. LetN3 be the integer given by Corollary 3·1 for this sequence an. Then take
N ∈ N such that

2N+1 − 3 > 2N + 3 > aN3 (3·5)

and put

An = {z : 2n + 3 � |z| � 2n+1 − 3}, for n � N.

It follows from Corollary 3·1 and (3·5) that, for n � N and z ∈ An, we have

2n+1 + 3 < 2(2n + 3)− 2 � |f (z)| � 2(2n+1 − 3) + 2 < 2n+2 − 3,

so f (An) ⊂ An+1, for n � N . Thus
⋃

n�N An ⊂ F (f ), by Montel’s theorem. This
completes the proof of Theorem 3·2.

Finally, we give an example with c = 2 where the constants an are chosen so that
J(f ) = R.

Theorem 3·3. Let c = 2 and an = 2n2n, for each n ∈ N. Then an+1/an → ∞ as
n → ∞ and J(f ) = R.

Proof. We begin by noting that, since f is increasing on each component of the set
R\{±an : n ∈ N}, it follows from Corollary 3·1 that if x > 0 is sufficiently large and
|x − an| � 6, for each n ∈ N, then

f ((x − 3, x + 3)) ⊃ (2(x − 3) + 2, 2(x + 3)− 2) ⊃ (2x − 3, 2x + 3).

Thus, if n is sufficiently large and∣∣∣2mn − 2p2p
∣∣∣ � 6, for 0 � m < n2, p ∈ N, (3·6)

then

fn2 ((n − 3, n + 3)) ⊃
(
2n2n − 3, 2n2n + 3

)
=

(
an − 3, an + 3

)
,

and hence

(n − 3, n + 3) � J(f )� ∅. (3·7)

We now determine which values of n fail to satisfy (3·6). We begin by noting that,
if there exists 0 � m < n2 such that |2mn − 2p2p| < 6 for some p ∈ N, then p is large
(since n is large), p < n (since m < n2), and so p2 > m.
If m = 0, then

|2mn − 2p2p| < 6 ⇐⇒ |n − 2p2p| < 6

⇐⇒ n = 2p2p ± 0, 1, . . . , 5.
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If m = 1, then

|2mn − 2p2p| < 6 ⇐⇒ |2n − 2p2p| < 6

⇐⇒ |n − 2p2−1p| < 3

⇐⇒ n = 2p2−1p ± 0, 1, 2.
If m = 2, then

|2mn − 2p2p| < 6 ⇐⇒ |4n − 2p2p| < 6

⇐⇒ |n − 2p2−2p| < 3/2

⇐⇒ n = 2p2−2p ± 0, 1.
If m � 3, then

|2mn − 2p2p| < 6 ⇐⇒ |2m−3n − 2p2−3p| < 6/8

⇐⇒ n = 2p2−mp.

In particular, if (3·6) fails to be satisfied for some m � 3, p ∈ N, then n must be
even because m < p2.
If n and hence p is sufficiently large, then we have

2p2−2p + 10 < 2p2−1p, 2p2−1p + 10 < 2p2p and 2p2p + 10 < 2(p+1)
2−2(p + 1).

Therefore, if a > 0 is sufficiently large, then the interval [a, a+14] contains an integer
n for which (3·6) is satisfied. Hence, by (3·7) and the symmetry of J(f ), there exists
a0 > 0 such that

[a − 3, a + 17] � J(f )� ∅, for |a| � a0. (3·8)
Now suppose that there is an interval I ⊂ F (f ) � R and that I has length ε. We

have f ′(x) � 2 on R \ {±an : n ∈ N}, and so fn(I) contains an interval In of length
2nε. We know that fn(z)→ ∞ as n → ∞ if z ∈ F (f ) and so, for sufficiently large n,
it follows from (3·8) that In �J(f )� ∅. This is a contradiction, and so we must have
J(f ) = R as claimed.
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