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Abstract. In his paper [The iteration of polynomials and transcendental entire functions.
J. Aust. Math. Soc. (Series A) 30 (1981), 483–495], Baker proved that the function f
defined by

f (z)= z +
sin
√

z
√

z
+ c

has a Baker domain for c sufficiently large. In this paper we use a novel method to prove
that f has a Baker domain for all c > 0. We also prove that there exists an open unbounded
set contained in the Baker domain on which the orbits of points under f are asymptotically
horizontal.

1. Introduction
Let f be a meromorphic function which is not rational of degree one and denote by
f n, n ∈ N, the nth iterate of f . The Fatou set, F( f ), is defined to be the set of points,
z ∈ C, such that the sequence ( f n)n∈N is well defined, meromorphic and forms a normal
family in some neighbourhood of z. The complement, J ( f ), of F( f ) is called the Julia
set of f . An introduction to the properties of these sets can be found in, for example, [2]
for rational functions and [3] and [6] for transcendental meromorphic functions.

The set F( f ) is completely invariant so for any component U of F( f ) there exists,
for each n ∈ N, a component Un of F( f ) such that f n(U )⊂Un . If Up =U for some
minimal p ∈ N, then we say that U is a periodic component of period p. There are five
possible types of periodic components (see [3, Theorem 6]). In particular, U is called a
Baker domain if there exists z0 ∈ ∂U such that f np(z)→ z0 as n→∞, for z ∈U , where
f p(z0) is not defined (see [7] for a survey article on Baker domains). In this case, there is
at least one component Uk , 1≤ k ≤ p, with the property that f np(z)→∞ as n→∞ for
z ∈Uk . If U is a Baker domain of a transcendental entire function f , then f n(z)→∞ as
n→∞ for z ∈U and, moreover, U is simply connected (see [1, Theorem 5]).
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In [1] Baker considered the transcendental entire function f defined by

f (z)= z +
sin
√

z
√

z
+ c. (1.1)

He showed that, for sufficiently large positive constant c, f has a Baker domain. In [4]
we show that this function has sparsely distributed singular values. Here we show that the
function f defined in (1.1) has a Baker domain for all c > 0, thus extending the original
result of Baker. We prove the following.

THEOREM 1.1. For all c > 0, the function f defined in (1.1) has an invariant Baker
domain U, symmetrical about the real axis and containing (xc,∞) for some xc > 0.

In [1] Baker constructed a domain D symmetric about the real axis with a (truncated)
parabolic boundary. He proved that f (D)⊂ D by showing that the distance between
z + c = x + c + iy ∈ D and any point z0 ∈ ∂D is greater than |sin(

√
z)/
√

z| whenever
1
2 c(x + 1+ 1

2 c)−1/2 > e|z|−1/2 for z = x + iy ∈ D.

This inequality is true whenever c is greater than approximately 6 and so f has a Baker
domain with the properties in Theorem 1.1 for such c.

A proof of this type (finding a set D that is invariant under f ) can be given for certain
smaller values of c (for example, c > 1). However, when 0< c < 1, a serious problem
arises in the application of Baker’s method since no invariant parabolic domain exists.
This fact will be explained in more detail in the proof of Lemma 3.4 and the remarks that
follow it.

Therefore, in order to establish the result for all c > 0 we use a more general approach;
namely, we find a domain G which is not invariant under f but which instead has the
property that C \

⋃
n∈N f n(G) contains an open set. Furthermore, G contains an invariant

curve 0 such that f n(z)→∞ as n→∞ for all z in 0. We are grateful to the referee for
pointing out that this approach was also used by Morosawa in [5].

In this paper we also prove the following.

THEOREM 1.2. Let the function f be as defined in (1.1) and let U be the invariant Baker
domain of f shown to exist in Theorem 1.1. There exists an open unbounded set V
contained in U such that, for any given z ∈ V , there exists a constant ηz ∈ R such that:
(i) <( f n(z))→∞ as n→∞; and
(ii) =( f n(z))→ ηz as n→∞.

Moreover, if z ∈ V then


ηz > 0, if =(z) > 0,

ηz = 0, if =(z)= 0,

ηz < 0, if =(z) < 0.

Remark. Theorems 1.1 and 1.2 concern the function f as defined in (1.1). It should be
noted that, by making only minor changes to the proofs, these theorems can easily be
generalized to the broader family of functions

f (z)= z + a
sin(b
√

z)
√

z
+ c,

where a, b, c > 0.
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FIGURE 1. Julia set of f for c = 6.

Remark. The geometry of the Baker domain of f is dependent on the value of c. The effect
of varying c can be illustrated by considering the fixed point equation on the positive real
axis, R+, given by

sin
√

x
√

x
=−c.

When c > 1, we have (sin
√

x)/
√

x >−c for all x ∈ R+ and so there are no fixed points on
the positive real axis. In this case the Baker domain contains the whole positive real axis.

Now we consider the point x0 = (3π/2)2 as c decreases towards zero. When
c < c0 ≈ 0.2 we have (sin

√
x0)/
√

x0 <−c so there exists a bounded interval (0, x ′c) of
the real line that contains a finite number of fixed points of f .

As the value of c decreases continuously from c0 towards 0, x ′c increases. There exists
a sequence {cn}n∈N of values of c tending to zero from above as n tends to infinity with the
following properties: for each n ∈ N, as c decreases continuously through cn , a parabolic
fixed point of f appears on the real line to the right of the other real fixed points, and this
new real fixed point instantaneously bifurcates into a pair of fixed points that remain on the
real axis. The left-hand fixed point in the pair is attracting and the right-hand fixed point
in the pair is repelling. Each attracting fixed point is associated with an attracting domain
and each repelling fixed point is in J ( f ). Hence the Baker domain (symmetric about the
real axis) appears to move to the right as c decreases, with more and more attracting Fatou
components appearing to the left of the Baker domain.

This behaviour is supported by computer experiments. Figures 1 and 2 present the
results of computer experiments to estimate the shape of the Julia set (black) for a large
value of c and a small value of c respectively.
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FIGURE 2. Julia set of f for c = 0.05.

In Figure 1, we have c = 6 and the invariant parabolic domain used by Baker has been
shaded on the diagram. In Figure 2, we have c = 0.05 and there are three attracting domains
corresponding to attracting fixed points on the real line. These attracting domains, together
with their pre-images, are shaded in grey.

2. Strategy for proving Theorem 1.1
To prove Theorem 1.1, we consider the function g defined by

g(w)=
√

f (w2)=

√
w2 +

sin w
w
+ c. (2.1)

Throughout this paper c > 0 is fixed and√ denotes the principal square root.
Now, for K ≥ 0 and L > 0 define the open half-strip R(K , L) by

R(K , L)= {w | <(w) > K , |=(w)|< L}. (2.2)

We show that for any given L > 0 there exist K > 0 and L ′ > 0 such that

gn(R(K , L ′))⊂ R(K , L) for all n ∈ N. (2.3)

It should be noted that we do not insist that R(K , L) be contained in R(K , L ′). With
h(w)= w2, we deduce that

f n(h(R(K , L ′)))= h(gn(R(K , L ′)))⊂ h(R(K , L)) for all n ∈ N. (2.4)

Thus, by Montel’s theorem, V = h(R(K , L ′))⊂ F( f ). Since V is unbounded and
connected, we deduce that there exists a single unbounded component U of F( f ) such
that V ⊂U .
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Finally, there exists K0 > 0 such that

f (x) > x +
c

2
for all x ≥ K0, (2.5)

and 0 = (K0,∞)⊂ V ⊂U . Then 0 is invariant under f and f n(x)→∞ as n→∞.
It follows that f n(z)→∞ as n→∞ for all z ∈U , so U is a Baker domain of f . The
symmetry of U in the real axis follows from the fact that f (z)= f (z) for z ∈ C.

3. Preliminary results

We can write the function g defined in (2.1) as

g(w) = w

√
1+

sin w

w3 +
c

w2

= w

(
1+

1
2

(
sin w

w3 +
c

w2

)
−

1
8

(
sin w

w3 +
c

w2

)2

+ · · ·

)
= w +

sin w

2w2 +
c

2w
+ B(w), (3.1)

say, provided ∣∣∣∣ sin w

w3 +
c

w2

∣∣∣∣< 1.

Writing w = u + iv, we can express g in terms of its real and imaginary parts as

g(w)= u + iv + δu + iδv, (3.2)

where

δu =<

(
sin w

2w2

)
+<

(
c

2w

)
+<(B(w)) (3.3)

and

δv = =

(
sin w

2w2

)
+ =

(
c

2w

)
+ =(B(w)). (3.4)

Let L > 0 be fixed for the rest of this paper. Since g is symmetric in the sense that
g(w)= g(w), it is sufficient to consider the properties of iterates of points in the set
R+(K , L) defined by

R+(K , L)= {w | <(w) > K , 0< =(w) < L}. (3.5)

We begin by establishing two properties of B that will be required later.

LEMMA 3.1. There exist positive constants A1 and K1 >max{1,
√

K0} such that

|B(w)|<
A1

u3 for all w ∈ R+(K1, L). (3.6)
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Proof. From (3.1) we have

B(w)= w
∞∑

m=2

1
2mm!

( m∏
k=1

(−2k + 3)
)(

sin w

w3 +
c

w2

)m

. (3.7)

Defining bm by

bm =
1

2mm!

m∏
k=1

(−2k + 3) for all m ∈ N, (3.8)

we note that

|bm | =

∣∣∣∣ 1
2mm!

m∏
k=1

(−2k + 3)

∣∣∣∣= ∣∣∣∣ m∏
k=1

(−2k + 3)
2k

∣∣∣∣< 1 for all m ∈ N. (3.9)

Thus

|B(w)| ≤ |w|
∞∑

m=2

|bm |

∣∣∣∣ sin w

w3 +
c

w2

∣∣∣∣m
< |w|

∞∑
m=2

∣∣∣∣ sin w

w3 +
c

w2

∣∣∣∣m
= |w|

∣∣∣∣ sin w

w3 +
c

w2

∣∣∣∣2 ∞∑
m=0

∣∣∣∣ sin w

w3 +
c

w2

∣∣∣∣m . (3.10)

Clearly, there exists K1 >max{1,
√

K0} such that∣∣∣∣ sin w

w3 +
c

w2

∣∣∣∣< 1
2

for all w ∈ R+(K1, L), (3.11)

and so, by (3.10),

|B(w)|< 2|w|

∣∣∣∣ sin w

w3 +
c

w2

∣∣∣∣2 = 2

|w|3

∣∣∣∣ sin w
w
+ c

∣∣∣∣2 for all w ∈ R+(K1, L). (3.12)

It easily follows that there exists A1 > 0 such that

|B(w)|<
A1

u3 for all w ∈ R+(K1, L), (3.13)

and this completes the proof. 2

Next, we derive an estimate for the derivative of B(w).

LEMMA 3.2. There exists a positive constant A2 such that

|B ′(w)| ≤
A2

|w|4
for all w ∈ R+(K1, L). (3.14)

Proof. From equations (3.7) and (3.8) we have

B(w)= w
∞∑

m=2

bm

(
sin w

w3 +
c

w2

)m

. (3.15)
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Differentiating and re-arranging we have

B ′(w) =

(
sin w

w3 +
c

w2

)2 ∞∑
m=0

bm+2

(
sin w

w3 +
c

w2

)m

+ w

(
cos w

w3 −
3 sin w

w4 −
2c

w3

)(
sin w

w3 +
c

w2

)
×

∞∑
m=0

(m + 2)bm+2

(
sin w

w3 +
c

w2

)m

,

so

|B ′(w)| ≤

∣∣∣∣ sin w

w3 +
c

w2

∣∣∣∣2 ∞∑
m=0

|bm+2|

∣∣∣∣ sin w

w3 +
c

w2

∣∣∣∣m
+ |w|

(∣∣∣∣cos w

w3

∣∣∣∣+ 3

∣∣∣∣ sin w

w4

∣∣∣∣+ 2

∣∣∣∣ c

w3

∣∣∣∣)∣∣∣∣ sin w

w3 +
c

w2

∣∣∣∣
×

∞∑
m=0

|(m + 2)bm+2|

∣∣∣∣ sin w

w3 +
c

w2

∣∣∣∣m . (3.16)

By (3.9) and (3.11),

∞∑
m=0

|bm+2|

∣∣∣∣ sin w

w3 +
c

w2

∣∣∣∣m < 2 for all w ∈ R+(K1, L). (3.17)

Now note that, for m ≥ 2,

|mbm | =
m

2mm!

m∏
k=2

(2k − 3)=
1
2

m∏
k=2

2k − 3
2k − 2

<
1
2

(3.18)

and so, by (3.11),

∞∑
m=0

|(m + 2)bm+2|

∣∣∣∣ sin w

w3 +
c

w2

∣∣∣∣m < 1 for all w ∈ R+(K1, L). (3.19)

It follows from (3.16)–(3.19) that

|B ′(w)|<
2

|w|4

∣∣∣∣ sin w
w
+ c

∣∣∣∣2 + 1

|w|4

(
|cos w| + 3

∣∣∣∣ sin w
w

∣∣∣∣+ 2c

)∣∣∣∣ sin w
w
+ c

∣∣∣∣
for all w ∈ R+(K1, L). (3.20)

Thus, there exists A2 > 0 such that

|B ′(w)| ≤
A2

|w|4
for all w ∈ R+(K1, L),

and this completes the proof. 2

With these properties of B(w) established, we proceed to obtain estimates for δu and
δv valid in R+(K1, L). First we consider δu.
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LEMMA 3.3. Let δu be as defined in (3.3) and (3.1). Then there exists a positive constant
A3 such that ∣∣∣∣δu − c

2u

∣∣∣∣≤ A3

u2 for all w ∈ R+(K1, L). (3.21)

Proof. We first note that

<

(
sin w

2w2

)
≤

∣∣∣∣ sin w

2w2

∣∣∣∣
<

√
sin2 u + sinh2 L

2u2 + 2v2

<

√
1+ sinh2 L

2
1

u2

=
cosh L

2
1

u2 for all w ∈ R+(K1, L). (3.22)

Secondly, we note that∣∣∣∣<( c

2w

)
−

c

2u

∣∣∣∣= ∣∣∣∣ cu

2|w|2
−

c

2u

∣∣∣∣= cv2

2u3 + 2uv2 <
cL2

2
1

u3 for all w ∈ R+(K1, L).

(3.23)

Lastly, from Lemma 3.1, we have

|<(B(w))|<
A1

u3 for all w ∈ R+(K1, L). (3.24)

The result follows from (3.3) and (3.22)–(3.24). 2

Remark. Lemma 3.3 implies that when the real part of the orbit of any point is sufficiently
large, and the imaginary part remains bounded above by L and below by 0, then the orbit
will continue to move to the right. In Lemmas 3.4, 4.1 and 4.2 below, we will show that for
points contained in the narrower strip R+(K , L ′), the imaginary part of their orbits does
indeed remain bounded in this way.

Now we consider δv.

LEMMA 3.4. Let δv be as defined in (3.4) and (3.1). Then there exists a positive constant
A4 such that ∣∣∣∣δv − cos u sinh v

2u2 +
cv

2u2

∣∣∣∣≤ A4
v

u3 for all w ∈ R+(K1, L). (3.25)

Proof. We consider the terms on the right-hand side of equation (3.4). Firstly, we observe
that there exists α1 > 0 such that∣∣∣∣cos u sinh v

2u2 − =

(
sin w

2w2

)∣∣∣∣
=

∣∣∣∣cos u sinh v

2u2 −
(u2
− v2) cos u sinh v − 2uv sin u cosh v

2|w|4

∣∣∣∣
=

∣∣∣∣ (3u2v2
+ v4) cos u sinh v + 2u3v sin u cosh v

2u2(u2 + v2)2

∣∣∣∣
≤ α1

v

u3 for all w ∈ R+(K1, L). (3.26)
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Next, we observe that

0<
cv

2u2 + =

(
c

2w

)
=

cv3

2u4 + 2u2v2 ≤
cv3

2u4 ≤
cL2

2
v

u3 for all w ∈ R+(K1, L). (3.27)

Finally, we consider the term =(B). Clearly B(R)⊂ R, and so the image under B of
any curve segment starting on the real axis also starts on the real axis. Let w = u + iv ∈
R+(K1, L) and consider the line segment 0 with the parametrization

γ (t)= u + i t, 0≤ t ≤ v.

Since B(0) is some curve joining the point B(u) ∈ R to the point B(u + iv), we have

|=(B(u + iv))| ≤ Length(B(0))=
∫ v

0
|B ′(γ (t))| dt ≤ v ×max

0
{|B ′|}. (3.28)

Now, by Lemma 3.2, we have

|B ′(w)| ≤
A2

|w|4
≤

A2

u4 for all w ∈ R+(K1, L).

Substituting this estimate into (3.28), we have

|=(B(w))| ≤ v ×
A2

u4 < A2
v

u3 for all w ∈ R+(K1, L). (3.29)

The result follows from (3.26), (3.27) and (3.29). 2

Remark. Note that, in the case c > 1, when v is sufficiently small the magnitude of the
third term on the left-hand side of (3.25) is greater than that of the second and so, when
v is positive and sufficiently small and u is sufficiently large, δv is necessarily negative.
This observation, together with Lemma 3.3, means that orbits in R+(K1, L) move down
towards the real axis and to the right so that R+(K1, L) is invariant under g. In this case
it is possible to use a simpler proof that f has a Baker domain by finding an invariant
half-strip for g, which corresponds to an invariant parabolic domain for f in the z-plane.

When 0< c < 1, however, the magnitude of the third term can be less than that of the
second for any v > 0 and δv can be positive for suitable values of u. This means that there
is no invariant half-strip in the w-plane. This explains why the more general approach
presented in this paper is necessary.

4. Proof of Theorem 1.1
To prove Theorem 1.1, we show that we can choose K so that (2.3) holds.

We consider a point w0 = u0 + iv0 in a half-strip of the form R+(K , L). We denote
gn(w0) by wn = un + ivn .

We begin by showing in Lemma 4.1 that if K is sufficiently large, then the growth of
the imaginary part of the orbit of w0 over a particular number of iterates is quite small.
In Lemma 4.2 we will use this result to show the much stronger result that the imaginary
part actually decreases in a certain sense that will be made precise. Finally, we show that
the results of Lemmas 4.1 and 4.2 can be applied repeatedly along the whole forward orbit
of w0.
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LEMMA 4.1. There exist positive constants K2 ≥ K1 and A5 such that for any L ′

satisfying 0< L ′ ≤ L, and any w0 ∈ R+(K2, L ′/2), if M0 is the smallest integer such
that u0 ≤ 2πM0, then there exists a positive integer n(M0) depending on w0 such that
un(M0)−1 ≤ 2πM0 < un(M0), and for n in {1, . . . , n(M0)} we have:
(i) c/(8u0) < un − un−1 < 3c/(4u0) < π ;
(ii) |vn − v0|< A5v0/u0; and
(iii) 0< vn < L ′.

Proof. We begin by setting

A5 =max
{

1
2
,

17π
c

}
×

(
sinh L

L
+ c + A4

)
, (4.1)

and

K2 =max
{

K1, 6π, A5,
4A3

c
,

c

π

}
. (4.2)

We proceed by constructing an induction argument to show that properties (i)–(iii) hold
whenever un−1 ≤ 2πM0. We begin by considering the case n = 1.

Since w0 ∈ R+(K2, L ′/2) and K2 ≥ K1, we can use Lemmas 3.3 and 3.4 to estimate
δu0 and δv0, respectively. By Lemma 3.3,∣∣∣∣δu0 −

c

2u0

∣∣∣∣≤ A3

u2
0

<
A3

K2u0
≤

c

4u0
,

since u0 > K2 ≥ 4A3/c. Thus,

c

4u0
< δu0 = u1 − u0 <

3c

4u0
<

3c

4K2
< π,

so (i) holds for n = 1.
Lemma 3.4 gives

|v1 − v0| = |δv0| ≤

∣∣∣∣cos u0 sinh v0

2u2
0

−
cv0

2u2
0

∣∣∣∣+ A4
v0

u3
0

<
1

2u2
0

(sinh v0 + cv0 + A4v0),

as u0 > K2 > 2. Since

sinh v0 < v0
sinh L

L
,

we can write

|v1 − v0| <
v0

2u2
0

(
sinh L

L
+ c + A4

)
<
v0

u0

1
2

(
sinh L

L
+ c + A4

)
≤ A5

v0

u0
(4.3)

and so (ii) is true for n = 1.
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Since A5v0/u0 < A5v0/K2 ≤ v0, it follows that 0< v1 < 2v0 < L ′ and so (iii) is true
for n = 1.

Now we suppose that

c

8u0
< un − un−1 <

3c

4u0
< π, |vn − v0|< A5

v0

u0
and 0< vn < L ′ (4.4)

for all n ∈ {1, . . . , k} where k is any positive integer with the property that uk ≤ 2πM0.
We then claim that

c

8u0
< uk+1 − uk <

3c

4u0
< π, |vk+1 − v0|< A5

v0

u0
and 0< vk+1 < L ′. (4.5)

First note that, since wk ∈ R+(K1, L), it follows from Lemma 3.3 that∣∣∣∣δuk −
c

2uk

∣∣∣∣≤ A3

u2
k

<
A3

K2uk
≤

c

4uk

since uk > K2 ≥ 4A3/c. Note that uk < 2u0 since u0 > K2 ≥ 6π and uk < u0 + 2π .
Thus, by (4.4),

c

8u0
<

c

4uk
< δuk = uk+1 − uk <

3c

4uk
<

3c

4u0
<

3c

4K2
≤

3c

4
π

c
< π.

This proves the first part of (4.5).
By (4.4) again, 0< vn < L ′ and un > u0 > K2 for all n ∈ {1, . . . , k}, so wn ∈

R+(K2, L) for all n ∈ {0, . . . , k}. Thus, by Lemma 3.4,

|vk+1 − v0| =

∣∣∣∣ k∑
n=0

δvn

∣∣∣∣≤ k∑
n=0

(
sinh vn

2u2
n
+

cvn

2u2
n
+ A4

vn

u3
n

)

≤
1

2u2
0

k∑
n=0

(sinh vn + cvn + A4vn)

where, again, we have used the fact that u0 > 2.
Since 0< vn < L ′ ≤ L for all n ∈ {0, . . . , k}, we can write

0< sinh vn < vn
sinh L

L
,

and hence

|vk+1 − v0|<
1

2u2
0

k∑
n=0

vn

(
sinh L

L
+ c + A4

)
. (4.6)

By (4.4) we have

vn ≤ v0

(
1+

A5

u0

)
< v0

(
1+

A5

K2

)
≤ 2v0 (4.7)

for all n ∈ {0, . . . , k}, so

|vk+1 − v0|<
v0

u2
0

(
sinh L

L
+ c + A4

)
(k + 1). (4.8)
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Now we derive an upper bound for k + 1. Since uk − u0 < 2π (because uk ≤ 2πM0 is
a condition on the choice of k) and un − un−1 > c/(8u0) for n in {1, . . . , k}, by (4.4),
we have

k <
2π

c/(8u0)
=

16πu0

c
.

Since, by (4.2), πu0/c ≥ πK2/c ≥ 1, we have

k + 1<
16πu0

c
+ 1≤

17πu0

c
. (4.9)

Substituting this estimate into (4.8) gives

|vk+1 − v0|<
v0

u0

(
sinh L

L
+ c + A4

)
17π

c
≤ A5

v0

u0
.

This proves the second part of (4.5).
Since A5v0/u0 < A5v0/K2 ≤ v0, it follows that 0< vk+1 < 2v0 < L ′. Thus the proof

of (4.5) is complete.
Lastly we show that the required positive integer n(M0) exists. We have shown that (i)–

(iii) are true for all n such that un−1 ≤ 2πM0. It follows from (i) that there exists n such
that un > 2πM0. We take n(M0) to be the smallest such n. We have shown that (i)–(iii)
hold for all n ≤ n(M0) as required. 2

In Lemma 4.1 the choice of L ′ was arbitrary (so long as 0< L ′ ≤ L). Now we set
L ′ = L/2 and consider any w0 in R+(K2, L ′/2)= R+(K2, L/4). Since the hypotheses
of Lemma 4.1 are met, we see that wn is in R+(K2, L/2) for all n in {0, . . . , n(M0)}.
Next we consider the forward orbit of wn(M0). Note that it follows from property (i) of
Lemma 4.1 that un(M0) < 2πM0 + π . Since wn(M0) is in R+(K2, L/2) and since K2 is
independent of L ′, we can apply the arguments of Lemma 4.1 again (this time with L ′ = L)
to show that there exists a positive integer n(M0 + 1) > n(M0) depending on w0 such that
un(M0+1)−1 ≤ 2π(M0 + 1) < un(M0+1) and for n in {n(M0)+ 1, . . . , n(M0 + 1)}we have

c/(8un(M0)) < un − un−1 < 3c/(4un(M0)) < π, (4.10)

|vn − vn(M0)|< A5vn(M0)/un(M0) (4.11)

and

0< vn < L ′ = L . (4.12)

Thus we see that if w0 is in R+(K2, L/4), then wn lies in R+(K2, L) for all n in
{n(M0), . . . , n(M0 + 1)}. In the following lemma we use (4.10)–(4.12) to prove the
stronger property that there exists K3 > 0 such that for any w0 ∈ R+(K3, L/4) we in fact
have vn(M0+1) < vn(M0), which implies that both wn(M0) and wn(M0+1) lie in the narrower
strip R+(K3, L/2).

LEMMA 4.2. There exists a positive constant K3 ≥ K2 such that for any w0 ∈

R+(K3, L/4) we have

vn(M0+1) < vn(M0). (4.13)
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Proof. We begin by defining

κ =max{K2, A3, 2A5, 9π}. (4.14)

Let w0 be a point in R+(κ, L/4). By Lemma 4.1 and (4.12) we see that 0< vn < L for all
n in {n(M0), . . . , n(M0 + 1)}. Hence by Lemma 3.4

vn(M0+1) − vn(M0) =

n(M0+1)−1∑
n=n(M0)

δvn ≤
1
2

n(M0+1)−1∑
n=n(M0)

sinh vn cos un

u2
n

−
c

2

n(M0+1)−1∑
n=n(M0)

vn

u2
n

+ A4

n(M0+1)−1∑
n=n(M0)

vn

u3
n
. (4.15)

We derive bounds for each of the three sums in turn, to show that the right-hand side
of (4.15) is negative for all w0 in R+(κ, L/4) with sufficiently large modulus, and this is
sufficient to prove Lemma 4.2.

First we derive an upper bound for the third sum. By Lemma 4.1, (4.2), (4.11) and (4.12)
we have, for all n in {n(M0), . . . , n(M0 + 1)},

0< vn ≤ vn(M0) + A5
vn(M0)

un(M0)

= vn(M0)

(
1+

A5

un(M0)

)
< 2vn(M0),

so that we can write

A4

n(M0+1)−1∑
n=n(M0)

vn

u3
n
< 2A4vn(M0)

n(M0+1)−1∑
n=n(M0)

1

u3
n
.

Next, by (4.10), we see that un ≥ un(M0) for all n in {n(M0), . . . , n(M0 + 1)} and so

A4

n(M0+1)−1∑
n=n(M0)

vn

u3
n
< 2N A4

vn(M0)

u3
n(M0)

,

where N is the number of terms in the sum; that is,

N = n(M0 + 1)− n(M0). (4.16)

Now, by (4.10), Nc/(8un(M0)) < un(M0+1) − un(M0) < 3π and so

N <
24πun(M0)

c
. (4.17)

Thus

A4

n(M0+1)−1∑
n=n(M0)

vn

u3
n
<

48π A4

c

vn(M0)

u2
n(M0)

. (4.18)

Next we obtain a lower bound for the second sum on the right-hand side of (4.15). Note
that vn > 0 for all n in {n(M0), . . . , n(M0 + 1)− 1} by (4.12).
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Using (4.11) again we have vn > vn(M0) − A5vn(M0)/un(M0) for all n in

{n(M0), . . . , n(M0 + 1)− 1}

so, by (4.14),

c

2

n(M0+1)−1∑
n=n(M0)

vn

u2
n
>

c

2
vn(M0)

(
1−

A5

un(M0)

) n(M0+1)−1∑
n=n(M0)

1

u2
n
>

c

4
vn(M0)

n(M0+1)−1∑
n=n(M0)

1

u2
n
.

Since un(M0) > K2 ≥ 6π , it follows from (4.10) that for all n in {n(M0), . . . ,

n(M0 + 1)− 1} we have un < un(M0) + 3π < 2un(M0). Hence

c

2

n(M0+1)−1∑
n=n(M0)

vn

u2
n
>

c

16
vn(M0)

u2
n(M0)

N .

By Lemma 4.1, un(M0) < 2πM0 + π , and so un(M0+1) − un(M0) > π . Thus, by (4.10),

N >
4πun(M0)

3c
(4.19)

and so

c

2

n(M0+1)−1∑
n=n(M0)

vn

u2
n
>
π

12
vn(M0)

un(M0)

. (4.20)

Lastly we consider the first sum on the right-hand side of (4.15). This is the most delicate
of the three estimates, as it involves showing that there is significant ‘cancellation’ amongst
the terms of the sum. Here we estimate the size of the sum by using orders of magnitude,
the asymptotic order terms being valid as w0 tends to infinity in R+(κ, L/4) for all n in
{n(M0), . . . , n(M0 + 1)− 1}.

We start by estimating sinh vn . From (4.11) we deduce that

vn = vn(M0) + O

(
vn(M0)

un(M0)

)
.

Since 0< vn < L and 0< vn(M0) < L , we deduce by the mean value theorem that

sinh vn = sinh vn(M0) + O

(
vn(M0)

un(M0)

)
.

We use this expression to write the term inside the first sum on the right-hand side of (4.15)
as

sinh vn cos un

2u2
n

=
(sinh vn(M0) + O(vn(M0)/un(M0))) cos un

2u2
n

.

Now, for all n in {n(M0), . . . , n(M0 + 1)− 1} we have 2πM0 < un(M0) ≤ un ≤

2π(M0 + 1) so un = un(M0) + O(1), and so

u2
n = u2

n(M0)
+ O(un(M0))

giving

1

u2
n
=

1

u2
n(M0)

(
1+ O

(
1

un(M0)

))
.
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Substituting for 1/u2
n we have

sinh vn cos un

2u2
n

=
(sinh vn(M0) + O(vn(M0)/un(M0))) cos un

2u2
n(M0)

(
1+ O

(
1

un(M0)

))
=

sinh vn(M0) cos un + O(vn(M0)/un(M0))

2u2
n(M0)

+ O

(
vn(M0)

u3
n(M0)

)
=

sinh vn(M0) cos un

2u2
n(M0)

+ O

(
vn(M0)

u3
n(M0)

)
.

Thus

n(M0+1)−1∑
n=n(M0)

sinh vn cos un

2u2
n

=
sinh vn(M0)

2u2
n(M0)

n(M0+1)−1∑
n=n(M0)

cos un +

n(M0+1)−1∑
n=n(M0)

O

(
vn(M0)

u3
n(M0)

)
.

(4.21)

The second sum on the right-hand side of (4.21) consists of N terms. By Lemma 3.3
we have |δun − c/(2un)| ≤ A3/u2

n and so δun = c/2un + O(1/u2
n) as u0 tends to infinity.

Hence, we can write

N = (4πun(M0))/c + O(1). (4.22)

Thus,

n(M0+1)−1∑
n=n(M0)

sinh vn cos un

2u2
n

=
sinh vn(M0)

2u2
n(M0)

n(M0+1)−1∑
n=n(M0)

cos un + O

(
vn(M0)

u2
n(M0)

)
.

Finally, since vn(M0) is bounded, we have

n(M0+1)−1∑
n=n(M0)

sinh vn cos un

2u2
n

= O

(
vn(M0)

u2
n(M0)

) n(M0+1)−1∑
n=n(M0)

cos un + O

(
vn(M0)

u2
n(M0)

)
. (4.23)

We now show that

n(M0+1)−1∑
n=n(M0)

cos un = O(1). (4.24)

It is easy to deduce from Lemma 3.3 and the fact that un = un(M0) + O(1) that

δun =
c

2un
+ O

(
1

u2
n

)
=

c

2un(M0)

+ O

(
1

u2
n(M0)

)
= O

(
1

un(M0)

)
, (4.25)

so

(δun)
2
= O

(
1

u2
n(M0)

)
and

1
δun
=

(
c

2un(M0)

+ O

(
1

u2
n(M0)

))−1

=
2un(M0)

c
+ O(1). (4.26)
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Thus

n(M0+1)−1∑
n=n(M0)

cos un =

n(M0+1)−1∑
n=n(M0)

δun

δun
cos un

=
2un(M0)

c

n(M0+1)−1∑
n=n(M0)

δun cos un +

n(M0+1)−1∑
n=n(M0)

O(1)δun cos un

=
2un(M0)

c

n(M0+1)−1∑
n=n(M0)

δun cos un +

n(M0+1)−1∑
n=n(M0)

O

(
1

un(M0)

)
. (4.27)

Using (4.22) we can simplify the second sum on the right-hand side of (4.27) and write

n(M0+1)−1∑
n=n(M0)

cos un = O(un(M0))

n(M0+1)−1∑
n=n(M0)

δun cos un + O(1). (4.28)

We now show that

n(M0+1)−1∑
n=n(M0)

δun cos un = O

(
1

un(M0)

)
.

Since |cos′x | = |sin x | ≤ 1, we have∫ un+1

un

cos x dx = δun cos un + O((δun)
2)= δun cos un + O

(
1

u2
n(M0)

)
.

Now (see Figure 3), it is easy to see that∣∣∣∣∫ un(M0)

2πM0

cos x dx

∣∣∣∣< δun(M0)−1 = O

(
1

un(M0)

)
and ∣∣∣∣∫ un(M0+1)

2π(M0+1)
cos x dx

∣∣∣∣< δun(M0+1)−1 = O

(
1

un(M0)

)
.

So, by (4.22),

0=
∫ 2π(M0+1)

2πM0

cos x dx =
∫ un(M0)

2πM0

cos x dx +
∫ un(M0+1)

un(M0)

cos x dx −
∫ un(M0+1)

2π(M0+1)
cos x dx

=

n(M0+1)−1∑
n=n(M0)

δun cos un + N × O

(
1

u2
n(M0)

)
+ O

(
1

un(M0)

)

=

n(M0+1)−1∑
n=n(M0)

δun cos un + O

(
1

un(M0)

)
. (4.29)

Thus

n(M0+1)−1∑
n=n(M0)

δun cos un = O

(
1

un(M0)

)
,
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FIGURE 3. Labelling of points in the orbit of w0.

and so, by (4.28),

n(M0+1)−1∑
n=n(M0)

cos un = O(1).

It now follows from (4.23) that

n(M0+1)−1∑
n=n(M0)

sinh vn cos un

2u2
n

= O

(
vn(M0)

u2
n(M0)

)
. (4.30)

From (4.15), (4.18), (4.20) and (4.30) we have

vn(M0+1) − vn(M0) ≤−
π

12
vn(M0)

un(M0)

+ O

(
vn(M0)

u2
n(M0)

)
as w0→∞ in R+(κ, L/4) (4.31)

and this completes the proof of Lemma 4.2. 2

In the discussion following Lemma 4.1 we showed that, for w0 in R+(K2, L/4), the
points wn lie in R+(K2, L) for all n in {n(M0), . . . , n(M0 + 1)}.

It follows from Lemma 4.2 that for any w0 in R+(K3, L/4) the points wn(M0) and
wn(M0+1) are both in fact in R+(K3, L/2). Thus, wn(M0+1) meets the hypotheses of
Lemma 4.1 (with L ′ = L) and so there exists n(M0 + 2) such that un(M0+2)−1 ≤ 2π(M0 +

2) < un(M0+2) with conditions analogous to (4.10)–(4.12) being satisfied for all n in
{n(M0 + 1), . . . , n(M0 + 2)}.
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This enables us to apply the method of Lemma 4.2 to wn(M0+1) to show that vn(M0+2)

< vn(M0+1) and hence wn(M0+2) ∈ R+(K3, L/2). By repeatedly applying the methods of
Lemmas 4.1 and 4.2 in this way we deduce that for each M ≥ M0 there exists n(M) such
that un(M)−1 ≤ 2πM < un(M) and, for each n in {n(M)+ 1, . . . , n(M + 1)},

c/(8un(M)) < un − un−1 < 3c/(4un(M)) < π, (4.32)

|vn − vn(M)|< A5vn(M)/un(M) (4.33)

and

0< vn < L ′ = L . (4.34)

Thus the whole forward orbit of w0 lies in R+(K3, L).
We recall that g is symmetric in the sense that g(w)= g(w) so that equivalent properties

to (4.32)–(4.34) hold for any w0 in

R−(K3, L/4)= {w | <(w) > K3,−L/4< =(w) < 0}.

Setting K = K3 and L ′ = L/4, and using (2.5) together with the fact that K ≥
√

K0, we
see that (2.3) holds. Thus the proof of Theorem 1.1 is complete.

5. Proof of Theorem 1.2
To prove Theorem 1.2 we let the unbounded open set V from the statement of Theorem 1.2
be h(R(K , L ′)) with K = K3 and L ′ = L/4 from the proof of Theorem 1.1 where, as in
Section 1, h(w)= w2.

We start by considering the real line. It follows from (2.5), since K ≥
√

K0, that the
conclusions (i) and (ii) of Theorem 1.2 hold on (K 2,∞)⊂ h(R(K , L ′)) with ηx = 0.

Now we consider points in h(R(K , L ′)) \ R. Since g is symmetric in the sense
that g(w)= g(w) for all w ∈ C, to prove Theorem 1.2 for a general point in the set
h(R(K , L ′)) \ R, it is sufficient to consider only the iterates of points w in R+(K , L ′)
under g.

For any w0 in R+(K , L ′), by (4.32), un =<(wn) tends to infinity as n tends to infinity
and vn = =(wn) remains positive and bounded, by (4.34). Hence <(zn)= u2

n − v
2
n tends

to infinity as n tends to infinity and this proves conclusion (i) of Theorem 1.2 for any z0 in
h(R(K , L ′)).

Next we prove Theorem 1.2(ii). Since h ◦ g(w)= f ◦ h(w)= f (w2), it is sufficient to
show that

=((h ◦ gn(w)))= =((gn(w))2)→ ηw2 as n→∞, for all w ∈ R+(K , L ′), (5.1)

where ηw2 is some positive constant depending on w2.
As in the previous section, for any fixed w0 = u0 + iv0 ∈ R+(K , L ′) we denote the nth

iterate under g by wn = un + ivn . Thus we can write condition (5.1) as

unvn→
1
2ηw2

0
as n→∞, for all w0 ∈ R+(K , L ′). (5.2)
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To prove Theorem 1.2(ii), we note that for each n ≥ n(M0), there exists some M
satisfying M ≥ M0 such that n = n(M)+ d where 0≤ d < n(M + 1)− n(M). By (4.32)
and (4.33), we have

un = 2πM + O(1)= 2πM

(
1+ O

(
1
M

))
as M→∞, (5.3)

and

vn = vn(M) + O

(
vn(M)

M

)
= vn(M)

(
1+ O

(
1
M

))
as M→∞, (5.4)

so

unvn = 2πMvn(M)

(
1+ O

(
1
M

))
as M→∞. (5.5)

Thus, to prove Theorem 1.2(ii), it is sufficient to show that Mvn(M) tends to some positive
limit as M tends to infinity. We proceed by deriving a recursive expression for vn(M).

It follows from (4.15), (4.18), (4.20) and (4.30) and the observations immediately
following the proof of Lemma 4.2 that

vn(M+1) − vn(M) =

n(M+1)−1∑
k=n(M)

δvk = O

(
vn(M)

u2
n(M)

)
−

n(M+1)−1∑
k=n(M)

cvk

2u2
k

as M→∞. (5.6)

We consider the sum on the right-hand side of (5.6) and we derive a more accurate estimate
than that found in Lemma 4.2.

It follows from (5.3) and (5.4) that

−

n(M+1)−1∑
k=n(M)

cvk

2u2
k

=−
c

2
N

(
vn(M)

4π2 M2 + O

(
vn(M)

M3

))
as M→∞,

where N = n(M + 1)− n(M). By Lemma 3.3 and (4.32) we can estimate N by

N =
8π2 M

c
+ O(1) as M→∞.

Putting all these observations together, we have

−

n(M+1)−1∑
k=n(M)

cvk

2u2
k

=−vn(M)

(
1
M
+ O

(
1

M2

))
as M→∞.

Substituting for the sum in equation (5.6) and re-arranging, gives

vn(M+1) = vn(M)

(
1−

1
M
+ O

(
1

M2

))
= vn(M)

M − 1
M

(
1+ O

(
1

M2

))
as M→∞,

so there exists a sequence AM , M ≥ M0, and a constant A > 0 such that

vn(M+1) = vn(M)
M − 1

M

(
1+

AM

M2

)
for M ≥ M0, (5.7)
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where |AM |< A for all M ≥ M0. Let M ′ be such that M ′ ≥ M0 and |AM |/M2 < 1 for all
M ≥ M ′. It follows from (5.7) that

vn(M) = vn(M ′)
M ′ − 1
M − 1

M−1∏
j=M ′

(
1+

A j

j2

)
, (5.8)

and so, by (5.5),

unvn = 2πMvn(M ′)
M ′ − 1
M − 1

(
1+ O

(
1
M

)) M−1∏
j=M ′

(
1+

A j

j2

)
as M→∞.

Now the infinite product

∞∏
j=M ′

(
1+

A j

j2

)
is convergent with a strictly positive limit, Q say. Thus

unvn→ 2πvn(M ′)(M
′
− 1)Q as n→∞,

since M tends to infinity as n tends to infinity. Setting ηz0 = 2πvn(M ′)(M ′ − 1)Q > 0, we
have shown that the imaginary parts of the sequence of iterates f n(z0), where z0 = w

2
0 in

h(R+(K , L ′)), tend to a positive limit which depends on the initial point z0. This concludes
the proof of Theorem 1.2.
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