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Abstract 18 

A search for martian dust devils has been carried out, using Mars Odyssey Thermal 19 

Emission Imaging System (THEMIS) visible-wavelength images. Simultaneous THEMIS 20 

thermal infrared wavelength images were then processed and analyzed, to investigate the 21 

thermal properties of the dust devils observed. 3079 images were checked, concentrating 22 

on northern spring, summer and autumn (LS from 0
°
 to 270

°
, 20

°
S to 50

°
N). Mars Express 23 

High Resolution Stereo Camera, Mars Global Surveyor Mars Orbiter Camera and other 24 

THEMIS visible images were used for comparison to potentially rule out any ambiguous 25 

geological features. Eight clear examples of dust devils have been found in five separate 26 

images, with a comparable number of unconfirmed possible devils. The rarity of dust 27 

devils observed is believed to result from a combination of the difficulty in identifying 28 

dust devils in medium resolution THEMIS data, and that the Mars Odyssey orbit flyover 29 

local time is later in the afternoon than would be optimum for dust devil searching. The 30 

temporal distribution of dust devil activity appears to be weighted more towards later 31 

afternoon, compared to Earth, but this may be a sampling effect due to size variation with 32 

time of sol, greater coverage later in the sol, or the small-number statistics. The thermal 33 

infrared images indicate that the lofted dust in the column is cooler than the surrounding 34 

surface, and must be equilibrating with the atmosphere in the dust devil. This energy 35 

transfer is estimated to be about 10% of the heat flux energy that is available to drive the 36 

systems. The ground shadowed by the dust column also appears colder than the 37 

surroundings, due to reduced solar illumination. From the visible-wavelength images, the 38 

shadows of the dust columns were used to estimate the column opacity, which in turn 39 

gave estimates of the dust loadings, which ranged from 1.9x10
-5

 to 1.5x10
-4

 kg m
-3

, 40 
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similar to lander-based observations. No thermal or visible trails are associated with the 41 

dust devils, indicating that the surface equilibrates quickly after the devil has passed, and 42 

that track counting as a dust devil survey technique must underestimate dust devil 43 

populations and consequently dust loading calculations, confirming previous work. 44 

1. Introduction 45 

Early studies of arid environments have noted the presence of convective vortices 46 

and dust devils [Baddeley, 1860; Flower, 1936], and their formation and occurrence has 47 

been studied for many years [Balme and Greeley, 2006; Fitzjarrald, 1972; Kaimal and 48 

Businger, 1970; Ryan and Carroll, 1970; Sinclair, 1966; Snow, 1987]. Convective 49 

vortices are symptomatic of atmospheric instability, requiring strong insolation to form 50 

[Ryan and Carroll, 1970; Ryan, 1972]. They have a low pressure, hot core, and a 51 

tangential wind gradient, and if powerful enough they are capable of entraining surface 52 

material and becoming dust devils. Terrestrial dust devil investigations have taken on a 53 

new interest relatively recently, primarily due to the observations of dust devils on Mars. 54 

Dust devils appear to be a ubiquitous process on Mars, having been visually 55 

observed by the Viking Orbiters [Thomas and Gierasch, 1985], Mars Global Surveyor 56 

[Cantor et al., 2001; Malin and Edgett, 2001], Mars Odyssey [Cushing et al., 2005], 57 

Mars Express [Stanzel et al., 2006; Stanzel et al., 2008], and the landers Mars Pathfinder 58 

[Metzger et al., 1999] and the Mars Exploration Rovers [Greeley et al., 2004]. Currently, 59 

the surface boundary layer wind speeds on Mars are considered borderline to be sufficient 60 

to initially loft fine dust particles into the atmosphere [Greeley and Iversen, 1985], 61 

therefore particle lofting by impact saltation, including dust devil action, has been posited 62 

as one of the main mechanisms for moving and redistributing dust on Mars. 63 
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Consequently, they may be potentially hazardous to both robotic and manned missions to 64 

Mars. Terrestrial studies also indicate their potential to degrade the air quality, and 65 

occasionally damage light aircraft [Hess and Spillane, 1990]. 66 

Dust devils on Mars are believed to form and to be influenced by identical factors 67 

to those on Earth [Renno et al., 1998], and detailed study of this hypothesis will enable 68 

terrestrial analogues and modeling to be successfully applied to Mars. Several diagnostic 69 

features such as size and temporal frequency statistics, and the detailed structure of the 70 

dust devil (the nature of temperature, wind and pressure changes within it) have been 71 

considered theoretically [Renno et al., 1998] and directly compared between Mars and 72 

Earth (see [Balme and Greeley, 2006; Cantor et al., 2006] and references therein for a 73 

review). A dust devil is special case of a convective vortex, and one meteorological 74 

diagnostic of a convective vortex is the presence of a hot core [Fitzjarrald, 1973; Ives, 75 

1947; Kaimal and Businger, 1970; Ringrose et al., 2003; Sinclair, 1964; 1973; Tratt et 76 

al., 2003]. Data from the Mars Odyssey Thermal Emission Imaging System (THEMIS) 77 

offers the opportunity to provide insight into this structure from orbit, as this instrument 78 

observes simultaneously in visible wavelengths and in the thermal infrared. This provides 79 

the potential to extract the dust devil’s core temperature, provided the core is large 80 

enough to be clearly resolved (i.e. greater than 100 m across). To investigate this, a 81 

targeted survey for dust devils on Mars was performed, intended to capture well-observed 82 

exceptionally large dust devils. 83 

The statistics generated while searching for dust devils using THEMIS also help to 84 

address the issue of dust devil activity as a function of time of day; THEMIS is well 85 
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suited to this type of activity, as the instrument has moderate resolution and large 86 

coverage. The THEMIS instrument is summarized in [Christensen et al., 2004]). 87 

On Earth, dust devils usually form in dry areas, such as deserts, on sunny days in 88 

spring or summer [Cooley, 1971].  Surface heating is needed, but the atmospheric thermal 89 

gradient (driven by the ground-air temperature difference) is more important than 90 

absolute high temperatures, as dust devils have been recorded in sub-arctic climate where 91 

the air temperature was about 18
°
C [Grant, 1949]. Most terrestrial dust devils are less 92 

than 150 m tall and last only a few minutes, with exceptional observations of dust devils 93 

up to a few thousand meters in height lasting up to an hour [Ives, 1947]. 94 

On Mars, similar formation criteria are expected, but due to the different 95 

atmospheric environment (e.g. a larger boundary layer, and smaller Grashof number, 96 

[Fuerstenau, 2006]), they tend to be larger. It is possible that the generally lower thermal 97 

inertia of the martian surface means that it responds faster than the Earth to insolation 98 

changes, which in turn implies that dust devils may begin to form earlier than on Earth, 99 

and peak during midday to early afternoon. This appears to be supported by the limited 100 

number of lander observations; Ringrose et al. [2003] discussed convective vortices at the 101 

Viking Lander 2 site as early as 10 am, with a relatively flat temporal distribution, while 102 

Mars Pathfinder data [Murphy and Nelli, 2002] shows a peak vortex rate at midday. 103 

However, these meteorological instruments are measuring convective vortices, and 104 

inferring the presence of true dust devils, so caution must be taken in comparing them to 105 

visual observations of dust devils. On the Earth, the temporal distribution of dust devils 106 

shows a distinct skew towards the afternoon [Sinclair, 1969]. THEMIS data can also help 107 

to determine this temporal distribution on Mars, as it has a different local time of day 108 
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flyover to earlier orbital surveys [Cantor et al., 2006; Fisher et al., 2005]. A clear 109 

observation of a dust devil in THEMIS will simultaneously quantify dust devil 110 

dimensions, dust loading, and temperatures allowing comparison with terrestrial work. 111 

2. Previous martian studies 112 

On Earth, the larger dust devils are approximately 50-100 m in diameter and over a 113 

kilometer high [Balme and Greeley, 2006; Bell, 1967]. These are small compared to 114 

Mars, where dust devils have been observed that are over 1 km across and up to 10 km 115 

high [Fisher et al., 2005; Thomas and Gierasch, 1985]. Tracks left by the passage of dust 116 

devils leave behind appear to be ubiquitous across Mars, and active vortices have been 117 

recorded in data from almost all Mars missions, including landers equipped with 118 

meteorology instrumentation or suitable imaging sensors. The two Viking Landers 119 

detected vortices in the late 1970s by their meteorological signal [Ryan and Lucich, 120 

1983]. Ryan and Lucich’s analysis has shown that the Viking Landers appeared to 121 

encounter about 0.6 dust devils per sol, as compared to the 2 dust devils per sol found in 122 

the Pathfinder data [Murphy and Nelli, 2002; Ringrose et al., 2003]. 123 

In 1999, the Mars Pathfinder lander took images in which five different dust devils 124 

were ultimately identified [Metzger et al., 1999], although Ferri et al. [2003] has 125 

expanded upon this number. More recent orbital images acquired by the Mars Global 126 

Surveyor Mars Orbiter Camera (MOC) detected many dust devils, allowing detailed 127 

viewing and statistics to be generated [Cantor et al., 2006; Fisher et al., 2005]. Estimates 128 

of dust devil movement traverse velocity have been made by Mars Express High 129 

Resolution Stereo Camera (HRSC) [Stanzel et al., 2006], giving speeds on the order of 130 

20 ms
-1

. Mars Reconnaissance Orbiter has imaged dust devils at pixel resolutions of 131 
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about 6 m, (using the High Resolution Imaging Science Experiment, HiRISE), and at 132 

20 m, (using the Context Camera, CTX), as noted on the mission web page but not as yet 133 

formally published. Dust devils appear to be very common on Mars: Thomas and 134 

Gierasch [1985] identified almost 100 dust devils in Acidalia Planitia in the Viking 135 

Orbiter images, although resolution limitations may have obscured the smaller dust 136 

devils. Additionally they appear to often leave tracks behind them on the martian surface 137 

[Edgett and Malin, 2000], at nearly all latitudes [Balme et al., 2003b; Cantor and Edgett, 138 

2002; Whelley and Greeley, 2006]. 139 

Of most interest to this study is the recent publication by [Cushing et al., 2005], 140 

which reports the first detection of a dust devil in both THEMIS visible and infrared (and 141 

the only detection by THEMIS published to date). This particular dust devil had a 142 

diameter of approximately 375 m, but is only weakly visible in the infrared data. 143 

Intriguingly, it was detected at an altitude of more than 16 km above the Mars datum, 144 

where the atmospheric pressure is very low (about 1 mbar), and also occurred relatively 145 

late during the day (a local time of 16:06). 146 

3. Approach 147 

3.1 The THEMIS Instrument 148 

The THEMIS Instrument is comprised of two parallel systems; a thermal infrared 149 

(IR) emission imager and a visible-wavelength imager [Christensen et al., 2004]. Visible-150 

wavelength images have resolutions of 18, 36 or 72 m/pixel, compared to the infrared at 151 

about 100 m/pixel. The two parallel multi-spectral systems operate independently, and 152 

can be used to observe the same target simultaneously. Standard radiometrically 153 
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calibrated images from the THEMIS dataset can be obtained from the public domain 154 

NASA Planetary Data System (PDS) online archive. 155 

The visible-wavelength imager can observe in five bands, but typically only band 3 156 

is used (centered at 654 nm). The infrared imager can observe ten bands, between 157 

6.78 µm and 14.88 µm, with each differing in its ability to highlight different surface (or 158 

atmospheric) features [Christensen et al., 2004]. IR bands 3 (7.93 µm) and 5 (9.35 µm) 159 

are believed to have the best contrast for detection of surface dust movement and 160 

transient features, based on spectral modeling work and previous observations of 161 

suspended dust [Cushing et al., 2005; Smith et al., 2003]. As noted by [Brumby et al., 162 

2003], band 3 is mostly insensitive to water and the atmosphere, and can be used for a 163 

good visualization of the ground surface, while the appearance of dust is enhanced in IR 164 

band 5 (due to the atmospheric dust strongly absorbing photons at 9.35 µm). Using 165 

Stephan’s law (assuming a fixed surface emissivity and a transparent atmosphere) and the 166 

infrared data, a brightness temperature image of the surface (in Kelvin) can be 167 

constructed; this is provided as a derived data product on the NASA PDS for each 168 

infrared image. 169 

3.2 Image selection and treatment 170 

Considering the resolution of THEMIS IR observations, it is clear that directly 171 

detecting medium size (a few 100 m) dust devils would not be easy. Hence we decided to 172 

look initially in the higher resolution visible-wavelength imagery, and then compare to 173 

the infrared, whilst using other observations from THEMIS and other missions to rule out 174 

permanent or ambiguous geological features. This technique is supported by the results of 175 

[Cushing et al., 2005] where the dust devil seen has a diameter of 375 m, and is clearly 176 
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resolved in the visible-wavelength data, but shows only a minor deviation from surface 177 

emissivity in the infrared image. 178 

We decided that a semi-targeted search of particular regions was likely to be the 179 

most successful approach. The criteria for targeting consideration were based on two 180 

questions; ‘will there be dust devils there, and will they be observable in the visible and 181 

the infrared data?’ As such, ‘borderline’ dust devil producing areas, which might lack the 182 

required atmospheric instability and only produce a few dust devils (and hence very few 183 

exceptionally large dust devils) were not included [Ryan and Carroll, 1970]. The search 184 

therefore focused on areas previously noted as major dust devil producing areas with 185 

large dust devils observed, for example the Amazonis region [Cantor et al., 2002; Cantor 186 

et al., 2006; Fisher et al., 2005]. The study region should also be close to the equator, as 187 

this is where conditions are most suitable for dust devil formation [Biener et al., 2002]. 188 

However it is also important to consider a large enough percentage of the martian surface 189 

in order to give a reasonable chance of success and to produce statistically meaningful 190 

results. 191 

With this in mind, a latitude range of 20
°
S to 50

°
N was selected, over the full 192 

longitude range, which favors warm areas and maximum levels of light per sol. 193 

(Although dust devil tracks are generally seen to be maximum in the 40-60 latitude bands 194 

[Balme et al., 2003a; Whelley and Greeley, 2006], they are seen at all lower latitudes.) 195 

Dust devil activity is highest in the spring and summer, so images acquired between solar 196 

longitude (Ls) 0
°
 to 270

°
 (northern spring, summer and autumn) were used. Obviously 197 

dust devils will not occur at night, and the largest are expected to occur during the 198 
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brightest daylight hours, so only images acquired between local times of 11:00 to 16:30 199 

were considered. 200 

These constraints were applied to a search of the NASA PDS, and images were 201 

retrieved from the PDS and analyzed systematically at increasing magnification, 202 

investigating and recording features of interest at greater detail as required. Potential 203 

candidates were identified initially based on the criteria of just the presence of a dust 204 

cloud like object. These candidates were then compared with images of the same regions 205 

taken by HRSC, MOC, Mars Reconnaissance CTX, or other THEMIS data to confirm the 206 

presence of a dust devil (dust devils are transient features, and should not appear in other 207 

images of the same location acquired at different times). In a small number of cases, there 208 

were no comparable images. Those candidates were discarded from the list of confirmed 209 

dust devils, but are considered separately later. Rejection was based on a judgment that 210 

these particular anomalies were ambiguous – the features lacked a clear shadow, or a 211 

clear track/trail, and lacked structure indicating a dust column; if they were dust related, 212 

rather than geomorphological, then they were most likely dust flurries or fronts, lacking 213 

convective vorticity. 214 

The visible representations of confirmed dust devils were then analyzed in detail; 215 

where possible the height of the dust devil was calculated using the shadow projection 216 

and the Solar Incidence angle (from the PDS label). Diameter was directly measured 217 

from the image. 218 

Simultaneous observations through the THEMIS infrared system provide a derived 219 

brightness temperature record (BTR) of the same locale. These data give local 220 
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temperatures of the ground and dust devil, providing additional information on dust devil 221 

structure. 222 

4. Results and discussion 223 

4.1 Survey results 224 

The PDS search generated 3079 images within the region of interest, from 2002-04-225 

18 to 2006-03-03, from THEMIS datasets release_id 0001 to 0017 (the latest release at 226 

the time of beginning this work). In reality, observations taken earlier than 16:00 local 227 

time are only from the orbit phasing part of the mission, early in the spacecraft lifetime, 228 

and there are none after 2002-07-20. Observations with a local time from 16:00 to 16:30 229 

are available throughout the mission. Initial analysis revealed 294 candidate images that 230 

warranted further investigation. Comparison of coexistent images from a variety of 231 

sources as discussed allowed removal of false positives by eliminating features that have 232 

not moved between images. Overall, only eight dust devils were reliably detected from 233 

five image frames (there are two frames which each have multiple dust devils). The 234 

locations of these are shown in Figure 1, and summarized in Table 1. Figure 2 gives 235 

detailed images of the dust devils detected, showing both the visible data, and the IR 236 

thermal results (discussed later). Due to the conservative approach taken to eliminating 237 

false positives, the numbers of dust devils confirmed here probably represents a lower 238 

bound, highlighting the clearest, most apparent events, with ambiguous or smaller events 239 

excluded. Events that were eventually unconfirmed as dust devils, primarily to a lack of 240 

supporting overlapping images are shown in Table 2, and examples of these are shown in 241 

Figure 3. These are discussed in more detail later. 242 
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 243 

<fig 1 here> 244 

<table 1 here> 245 

<fig 2 here> 246 

<table 2 here> 247 

<fig 3 here> 248 

<table 3 here> 249 

 250 

Only a few active dust devils were detected by THEMIS in this work, suggesting 251 

that these detections are of relatively rare exceptional events, requiring a fortuitous 252 

combination of size and time of day. No trend is seen with altitude above the Mars 253 

datum. In Figure 2, dust devils 5, 6 and 7, appear more ambiguous, and it is possible they 254 

are in fact dust fronts or flurries, due to the apparent lack of structure. Dust devils 5 and 6 255 

have no clear shadow, so no estimate of height could be made. This ambiguity is 256 

somewhat supported by dust devil 7, as close examination of the shadow cast, which 257 

although distinct, appears to indicates a lower height than might be expected. It may be 258 

that the dust loading is lower later in the day, possibly due to the effect of the time of day 259 

itself (a less intense dust devil due to lower illumination), or of course it may just be that 260 

these areas happen to have less available dust on the ground to loft. Table 3 summarizes 261 

the survey statistics obtained from this search. From this and the PDS image local time 262 

statistics, there is a clear observational bias due to the mean flyover time of Mars 263 

Odyssey, of about 16:30, such that there are relatively few images to search before 15:30, 264 
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and none before 15:00, when dust devil activity is observed to be higher [Cantor et al., 265 

2006; Christensen et al., 2004]. 266 

Statistically, it would seem that very few dust devils have been found. As noted by 267 

Fisher et al., [2005], very few dust devils occur in the late afternoon on Mars, in contrast 268 

to the Earth. The survey of Cantor et al., [2006] using MOC found dust devils in 0.4% of 269 

the images studied, far greater than observed here (MOC over-flight is at about 14:00 270 

local time). For example, peak rates seen during northern spring in the Syria-Claritas 271 

region by [Cantor et al., 2006] were about 1.4x10
-3

 dust devils km
-2

, observed between 272 

14:00 and 15:00. [Fisher et al., 2005] find very similar peak values for Amazonis 273 

Planitia, again using MGS MOC data. One possibility is that the lack of dust devils later 274 

in the day is driven by the low surface thermal inertia and the thin atmosphere both 275 

loosing heat very quickly once the Sun is past zenith, resulting in less energy to drive the 276 

process. Of the 498 dust devils seen by Spirit, [Greeley et al., 2006], only two are after 277 

15:30, but there may be some sampling effect due to the observing constraints of the 278 

rover, which is permitted to produce more images during the middle of day. When 279 

studying terrestrial dust devils in the southwestern USA, Sinclair, [1969] had noted a 280 

tendency for larger dust devils to appear later during the day; one might expect this to be 281 

applicable to Mars, and this would be consistent with the rate distribution shown in Table 282 

3 above. Greeley et al., [2006] detect no trend of diameter with time of day. 283 

For comparison, the biggest dust devil seen by Spirit is about 280 m [Greeley et al., 284 

2006]. The survey conducted by Fisher et al., [2005] (using MGS MOC Wide Angle 285 

images) detected even larger examples, with the largest being about 8.5 km high and 286 

about 500 m in diameter. 287 
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This survey concentrated on detecting large well-resolved dust devils that could be 288 

visible in the infrared; as such some smaller candidates (that may have been real) were 289 

discarded, as they lacked clear diagnostic features (shadow, track etc). This may skew the 290 

perceived detection rate. Ultimately the smallest resolvable is 4-8 pixels in the visible 291 

(approximately 80-160 m), but any dust devils this small will have very little expression 292 

in the lower resolution THEMIS IR image. Table 2 lists dust devil candidates that were 293 

ultimately rejected or remain unconfirmed. The majority are rejected purely on the basis 294 

of size and image resolution; usually there is one single observation that is just not clear 295 

enough to be useful. Figure 3a gives an example of this. In a few cases, signal to noise is 296 

insufficient to resolve the candidate clearly against the background structure. Figure 3b 297 

shows an example of such a candidate, where there may be changes between the two 298 

images, but image saturation prevents confidence that this is a dust devil. Future data 299 

releases giving increased coverage may help to clarify the status of some of these 300 

candidates. Due to the small numbers of dust devils confirmed, statistics derived from 301 

this study are sensitive to the rate of the largest dust devils, and one must be careful in 302 

over interpreting such small number statistics. 303 

A further consideration is that later afternoon dust devils have been suggested to be 304 

less intense and ordered, and more flurry-like [S. M. Metzger, pers. comm., 2005]. 305 

Laboratory investigations by Church et al., [1979] and Mullen and Maxworthy, [1977] 306 

related the compactness of the structure of tornado-like vortices formed to a ‘swirl ratio’, 307 

which compares horizontal to vertical momentum. The swirl ratio will evolve throughout 308 

the day, via the atmospheric stability and average wind speeds, so one would expect a 309 

variation in dust devil compactness through the day. Terrestrially this is demonstrated by 310 
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considering in Figure 4, where two extremes are presented. One should expect the same 311 

variation on Mars, as the underlying mechanism for dust devil formation on the two 312 

planets are probably very similar [Renno et al., 1998; Renno et al., 2000]. 313 

 314 

<fig 4 here> 315 

 316 

It should be noted that none of dust devils found here have produced visible tracks. 317 

This implies that track-counting alone cannot produce accurate population statistics. This 318 

has also been noted by Cantor et al., [2006]. 319 

The dust devil observed by Cushing et al., [2005] on Arsia Mons is not captured by 320 

this survey: It is within the proscribed latitude range (9.38
°
S), and local time of day 321 

(16:06), but occurred at Ls=341, and as such it could be considered a ‘southern’ dust 322 

devil, occurring in southern summer. It would be detected if this survey was repeated 323 

with a southern hemisphere orientation. This might be worthwhile, given that the data of 324 

Whelley and Greeley, [2006] indicated that the southern hemisphere has more visible dust 325 

devil tracks than the northern during peak seasons, per unit area. (see also [Cantor et al., 326 

2006]). The Cushing dust devil appears similar in appearance to the later dust devils seen 327 

here, with little or no expression in the infrared temperature data. However infrared 328 

absorption is weakly seen for this devil in THEMIS band 5, indicating the presence of 329 

suspended dust [Smith et al., 2003]. There is clearly no question that the Arsia Mons 330 

feature is a dust devil, given its structure: It has a well defined shadow and height, 331 

([Cushing et al., 2005], fig 2), whereas the features here suspected to be gusts do not. The 332 

high altitude at this point means that the atmosphere is thin, with a low dust loading, and 333 
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hence a low dust opacity. This would have acted to increase the apparent contrast in the 334 

IR band 5 and the brightness temperature data; however no temperature excursion is seen. 335 

If this structure and temperature difference is typical for this size of dust devils, then it 336 

implies that circumstances may have to be exceptionally fortunate at lower altitude for 337 

thermal anomalies to be observed, and so in some cases dust devil core temperatures may 338 

be difficult to extract from dust devil events seen in THEMIS data. 339 

4.2 Infrared Temperature Data results 340 

Figure 2, right hand column shows the derived temperature anomalies associated 341 

with the dust devils. The visible-wavelength image brightness is overlain as contour lines, 342 

while the color pixels are used to represent temperature data. In all images, the 343 

temperature pixels are 100 m across. 344 

The suspended fine dust in the devil column (about 2-3 µm diameter, [Tomasko et 345 

al., 1999]) will appear clearest in IR band 5 [Smith et al., 2003], because suspended 346 

particles of this size interact with the incoming sunlight with wavelengths near to 9 µm. 347 

Band 3 is less sensitive to suspended dust, and observes the ground below the dust devil. 348 

As such, a comparison of IR data from bands 3 and 5 can be used as a check for the 349 

presence of lofted dust. The temperature data are derived from band 5, and so give the 350 

temperature of the dust devil dust cloud (or the dusty surface if the atmosphere is clear). 351 

Dust devil 2 (Figure 2b) has the clearest classic dust devil structure. The 352 

temperature data shows clear evidence of the shadow cooling the ground, and of the 353 

lofted dust being cooler than the surface. However, although the core should be about 3-4 354 

pixels across, it is not immediately obvious as an expected ‘hot spot’, instead appearing 355 

cold. This is even more apparent in dust devil 3 (Figure 2c), where the shadowed surface 356 
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is only slightly cooler than ambient, but the relatively weak visible dust plume slightly to 357 

the SW of the main core appears strongly-cooled in the temperature data. From previous 358 

terrestrial and martian meteorological work it is known that dust devils have a hot core, 359 

due to their convective nature, but on Earth the core is generally dust free above the 360 

saltation skirt [Ryan and Lucich, 1983; Sinclair, 1969], and as such would not be 361 

observed by the dust sensitive THEMIS infrared data. These observations are consistent 362 

with the suspended dust appearing cold relative to the hot surface, possibly due to the loss 363 

of heat into the dust devil air column. In a terrestrial context, Sinclair, [1966] discusses 364 

modeling to consider the heat flow from the relatively hot dust picked up into the 365 

surrounding air within the column, which would then act to heat the air column (and cool 366 

the dust). Fuerstenau, [2006] indicated that the solar warming of the suspended dust 367 

grains is a major component of the thermodynamics of dust devils, as these warmed 368 

grains will transfer heat into the atmosphere. This warming will be strongest on the edges 369 

of the dust column (dependent on the opacity), which may then result in the inner dust 370 

being shaded somewhat, and thus relatively cooler. It would appear that if this warming is 371 

occurring then the warmed outer layers are relatively thin, and THEMIS is observing the 372 

cooler-than-ambient inner layers of dust. 373 

From the thermal data in Figure 2, the lofted dust column is about 1 K cooler than 374 

the surface in all cases. Given that the system is roughly in a steady state, and taking 375 

plausible values for the dust loading (derived in the following section), and using the 376 

specific heat capacity of basalt for the dust (840 J/kg-K, [Roberts-Austen and Rücker, 377 

1891]), this temperature drop results in about 100 W/m
2
 of heat loss from the dust, as 378 

once lofted the dust immediately and isometrically re-radiates this absorbed heat. This 379 
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compares to the total energy available to drive dust devil activity of about 430 W/m
2
 from 380 

the later afternoon Sun on Mars. Because nearly 25% of the incoming insolation energy is 381 

dissipated by this process, the presence of the dust should be taken into account when 382 

modelling dust devils [Fuerstenau, 2006; Sinclair, 1966]. 383 

In reality, orbital instruments are unlikely to ever be able to see right down the dust-384 

free core of the dust devil, since dust devils are not precisely vertical, but tend to show a 385 

tilt in the direction of ambient wind. A ring of slightly cooler air surrounding the dusty 386 

core has been reported previously in some cases [Ives, 1947; Ringrose et al., 2003] 387 

(although this is somewhat tentative [Balme and Greeley, 2006]), but the resolution here 388 

is insufficient to confirm this. 389 

Dust devils 4 and 7 show no significant temperature anomalies, and so is possible 390 

that they may not be thermally driven, but might instead be wind gusts capable of lofting 391 

dust but lacking convective vorticity, similar to very small local fronts or storms [Briggs 392 

et al., 1979]. However, such storms generally lack the column-like structure seen here, 393 

and are larger, so it is more plausible that the temperature anomalies are merely not large 394 

enough to be detected by the instrument, or that the upper-dust-column temperatures are 395 

equilibrating with surface temperatures, effectively shielding any temperature anomalies 396 

closer to the ground. The contour data clearly shows that dust devil 7 has a apparent 397 

double brightness peak, and this may be a compound dust devil, made up of two (or 398 

more) vortices circling each other; such structures are relatively common terrestrially in 399 

less well defined dust devils such as Figure 4(b) [Balme and Greeley, 2006]. 400 

There are weak hints of a hot anomaly seen on the ground in immediate sunward 401 

direction of dust devil column in dust devils 1, 2, 3, and 6 (Figure 2), which could be a 402 
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result of the dust column absorbing sunlight and scattering light onto the surrounding 403 

surface, which is adding to the direct solar illumination of this area of the surface. These 404 

apparent anomalies are very weak, and near to the resolution of the instrument, so further 405 

work is required to confirm this effect. In the case of dust devil 2 it is just plausible that 406 

this weak hot anomaly may be a false positive caused by the existing apparent 407 

temperature patterns in the surrounding surface. On Mars one would expect these 408 

anomalies to be a weak effect, given the dust devil opacity, but it might be possible to 409 

further investigate these phenomena in terrestrial dust devils using appropriate 410 

instrumentation [Lorenz, 2004]. 411 

In no case does there appear to be any apparent cold (or hot) trail on the ground 412 

upwind of the dust devil, marking the passage of the dust devil. Either the heat being 413 

removed from the ground by the dust devil is below the resolution of the instrument, or 414 

the ground is equilibrating quickly, which might be expected due to the low thermal 415 

inertia of the dusty surface layer. 416 

4.3 Opacity and dust loading from consideration of shadowing 417 

A significant shadow is seen alongside most observed dust devils. Hence, it is clear 418 

that the dust devils have significant opacity, and the depth of this shadow can be used to 419 

approximate the dust loading. We summarize the technique here, for a more detailed 420 

description of the method, see Fuerstenau, [2006]. We assume a Lambertian surface with 421 

constant albedo and geometric properties, and that the drop in illumination caused by a 422 

dust devil's shadow is not influenced by surface variations (Figure 5). By quantifying this 423 

amount of light lost, it is possible to estimate column absorption along the line of 424 

illumination. The measured dust devil diameter combined with the sun altitude above the 425 
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horizon allows opacity to be derived, which can then be related to atmospheric dust 426 

loading using previous work ([Landis, 1996], [Metzger et al., 1999]). 427 

 428 

<fig 5 here> 429 

 430 

Considering the schematic of a dust devil in Figure 5 the average radiances of the 431 

dust devil and surface (Rdd and Rs respectively) can be extracted from image data of the 432 

dust devil shadow and adjacent areas outside the shadow. As measured by THEMIS, 433 

these are both relative radiances, but both are linearly related to absolute radiance by the 434 

same factor, which cancels out when Rdd and Rs are ratioed. To compensate for variations 435 

in terrain reflectivity between areas with and without shadows, a separate THEMIS image 436 

of the scene (with dust opacity and viewing geometry as similar as possible to the dust 437 

devil image) was considered. Radiance values from areas of the second image 438 

corresponding to the previously defined dust devil shadow and well illuminated terrain 439 

are used to derive r, the compensating ratio of the reflectances of the two areas. 440 

Additionally, one must account for the relative amounts of direct and diffuse illumination 441 

because at least some of the radiance emitted from the dust devil's shadow is probably 442 

due to scattered light from the sky and other features [Fuerstenau, 2006]. To evaluate the 443 

effect of the diffuse illumination, a nearby area of terrain shadow (only illuminated by 444 

diffuse lighting) is considered. The pixel values from this terrain shadow are then 445 

subtracted from the dust devil shadow’s pixel values. For this opacity calculation, byte-446 

scaled pixel units are used, for convenience. All measurements needed to calculate 447 

opacity are relative, and from the same image, so byte-scaling of the absolute radiances 448 
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cancels out. This canceling can be shown from Equation 1 using simple algebra: Replace 449 

all terms of R (the byte-scaled radiances) with a linear scaling such as A1x+A0, where A1 450 

and A0 are constants, and x is the original, non-byte-scaled, radiance (in Wcm
-2

Sr
-1
µm

-1
); 451 

after simple manipulation, A1 and A0 completely cancel out and disappear from the 452 

equation, provided all radiances come from the same image. However, the THEMIS data 453 

files from the PDS must be the radiometrically calibrated format (RDR), rather than the 454 

raw data, to account for instrumentation effects such as non-linear sensitivity and varying 455 

zero offset. Additionally, the brightly-lit dust devil column itself could act as a secondary 456 

illumination source, acting to apparently brighten the shadow. Such an effect would be 457 

small, due to the relatively low opacity of the dust devil (and hence the low ratio of 458 

scattered to direct light), and computationally difficult to deal with, and is neglected here. 459 

It would have the effect of making the shadow appear brighter, such that the dust loading 460 

of the devil would appear lower than reality. 461 

From Figure 5, the ratio of the radiances is then approximately 462 
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 464 

Where τ is the opacity, RT is the diffusely lit terrain, and Isrc is the source intensity 465 

(which is unknown, but cancels out). From Landis, [1996], who considered martian dust 466 

opacity with reference to solar panel loading, the opacity can be related to the number 467 

density of particles in the air by 468 

 469 
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OQAN=τ  (Equation 2) 

 

 470 

Where Q is the scattering efficiency, A is the particle average cross sectional area, 471 

and No is the column number density. Due to the geometry of the situation, the path 472 

length measured is the dust devil diameter with a factor of the sine of the solar 473 

illumination angle, θ (A vertical dust column is assumed), so the number density, n, 474 

becomes  475 

 476 

θsinD

N
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=  
(Equation 3) 

 

 477 

Where D is the dust devil diameter, giving 478 

 479 

θ

τ
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(Equation 4) 

 

 480 

Q is taken as 2.98 at 600 nm [Ockert-Bell et al., 1997], which is the closest 481 

wavelength data available to THEMIS visible band 3 (654 nm), as used for these 482 

observations. The lofted dust grain size distribution in a martian dust devil is not well 483 

known. The lower dust devil is assumed to be saltation dominated [Greeley et al., 2003], 484 

so a mean grain diameter is taken as 75 µm, the size of the most easily saltated dust 485 

diameter on Mars [Greeley and Iversen, 1985]. Dust devils are believed to loft finer dust 486 

by a low pressure ‘sucking’ effect, as well as saltation [Balme and Hagermann, 2006; 487 
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Greeley et al., 2003], but this is not yet well understood in detail. Qualitative modelling 488 

implies that this effect should be strongest for small well-formed dust devils on the Earth, 489 

as opposed to the targets of this work, large dust devils on Mars [Balme and Hagermann, 490 

2006]. If significant, this excess dust lofting effect might result in a smaller average dust 491 

grain size, by increasing numbers of smaller particles. Landis, [1996] assumed particle 492 

diameters of 24 µm for his calculations, but he derived this value from the weighted mean 493 

of the suspended dust in the full atmospheric column, as relevant to solar panel 494 

obscuration. A factor of three difference in particle diameters is probably within the 495 

intrinsic variability in dust loading seen in dust devils, as can be seen from dust loading 496 

estimates from the Spirit rover ([Greeley et al., 2006], discussed in following section). 497 

 498 

<table 4 here> 499 

 500 

Table 4 gives the physical parameters measured from the images, and the calculated 501 

dust devil loading. For comparison, the Spirit rover in Gusev crater recorded values from 502 

3.9x10
-9

 to 4.6x10
-4

 kgm
-3

, with a mean of 2.07x10
-5

 kgm
-3

 [Greeley et al., 2006], while 503 

the estimated dust devil loading from Mars Pathfinder is 7x10
-5

 kgm
-3

 [Metzger et al., 504 

1999]. Our calculated values (derived from spacecraft observations) are reassuringly 505 

similar to the values derived from lander observations. The dust concentration derived 506 

here is similar to the values of Greeley et al., [2006], but it is not possible to estimate a 507 

dust flux, as there is no record of the vertical dust devil wind speed. However, the 508 

concentrations and sizes are similar to those observed by Spirit [Greeley et al., 2006], so 509 

one might expect the flux to be comparable. The values for visible-dust opacity 510 
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measurements, from 0.06 to 0.23 across the width of the column (typically a few hundred 511 

meters), are comparable to estimates of 0.03-0.40 for the full atmospheric column [Smith 512 

et al., 2000], which illustrates how much greater than the average dust loading the devil 513 

dust loads are. 514 

Although this approach is general, in the ideal it requires that the dust loading is 515 

strong enough to make a clear dust-devil shadow and that there is a compensating image 516 

(which should ideally be a THEMIS visible-wavelength image as well). The values for r 517 

in Table 4 are all very close to 1, which highlights the fact that the dust devils are moving 518 

across smooth plains, which have a low contrast. The inclusion of r in the calculations 519 

would be more important if a dust devil was amongst terrain with a variety of albedos 520 

which may have altered, such as on top of older dust devil streaks. In cases where no 521 

THEMIS compensating image exists, Mars Express HRSC (the nadir observing channel) 522 

could be used as a substitute, as this observes at 650 nm, compared to 654 nm for 523 

THEMIS band 3. However this should be used with caution, as the flyover time of day 524 

may be different, resulting in a different surface temperature and illumination angle: r 525 

would also be altered by variations in atmospheric opacity, or any surface albedo changes 526 

such as frost. 527 

5. Conclusions 528 

Because THEMIS observes simultaneously in both visible and thermal-infrared 529 

wavelengths, it provides a unique dataset for studying dust devils, allowing simultaneous 530 

analyses to be performed of both physical and thermal properties. To initially detect the 531 

dust devils, a survey of THEMIS visible-wavelength images was conducted for Ls from 532 

0
°
 to 270

°
 and latitude 20

°
S to 50

°
N, initially using THEMIS visible-wavelength 533 
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observations. 3079 images were searched manually, and then cross-referenced against 534 

other images of the same areas to eliminate false positives. Eight dust devils in total have 535 

been identified, in five images, ranging in diameter from 170 to 335 m. 536 

The number of dust devils detected is approximately two orders of magnitude fewer 537 

than were detected in previous studies [Cantor et al., 2006; Fisher et al., 2005]. This 538 

discrepancy probably reflects the later flyover local time of Mars Odyssey (typically 539 

16:30), coupled with the fact that the formation of dust devils may be more clustered 540 

around midday on Mars than on Earth. Previous studies used Mars Global Surveyor data, 541 

which has a local flyover time of around 14:00. 542 

It appears likely that the late afternoon dust devils are more disordered in structure 543 

than ones detected earlier in the afternoon, perhaps because of the weaker driving 544 

insolation. It is possible (although unlikely given their structure) that the latest two dust 545 

devils (numbers 6 and 7, Figure 2) seen are saltation capable wind gusts but lacking in 546 

convective vorticity. 547 

Using the calibrated surface radiances from the visible-wavelength imagery, and 548 

observing the loss in radiance in the shadowed surface, we estimated that the dust loading 549 

in the columns ranges from 1.94x10
-5

 to 1.53x10
-4

 kgm
-3

, and are comparable to the 550 

values derived from surface measurements for Mars Pathfinder and Spirit ([Greeley et al., 551 

2006; Metzger et al., 1999]). The values here are derived from orbit, of the largest dust 552 

devils, and yet the loadings are very similar to those from smaller lander-observed devils. 553 

Measurements from orbit provide a more broadly applicable method for estimating dust 554 

loading in martian dust devils than the spatially limited data acquired from landing craft 555 

observations. 556 
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THEMIS also observed the dust devils at infrared wavelengths, as well as visible 557 

wavelengths, and this infrared data can be used to derive surface temperature data. The 558 

dust devils observed do not have a hot temperature anomaly, although the air temperature 559 

in convective vortex cores has been shown to be higher [Balme and Greeley, 2006]. This 560 

lack of a visible hot core is probably a shielding effect resulting from the dust column 561 

blocking sight of the core, although THEMIS band 5 is primarily sensitive to dust, and 562 

the core may be dust free. THEMIS infrared data indicates that the dust column is cooler 563 

than the surrounding ground surface, implying that the dust has equilibrated with the 564 

atmosphere after lofting. This loss of energy may be a significant part of the energy flow 565 

of a dust devil [Fuerstenau, 2006; Sinclair, 1966]. There are also indications that the dust 566 

column briefly shadows and cools a small portion of the surface. 567 

Thermal tracks on the surface upwind of the dust devils are not detected by 568 

THEMIS, indicating that the low-thermal-inertia surface equilibrates quickly after dust 569 

devils pass (or that temperature drop is below the resolution of the instrument). 570 

Additionally the dust devils discussed here did not produce visible tracks either, 571 

suggesting that track counting statistics may not accurately represent dust devil 572 

populations, as previously noted by Cantor et al., [2006]. 573 

THEMIS 18-m visible-wavelength images can resolve most dust devils, but this is 574 

not an perfectly suited instrument for broad surveying (mostly because of the late 575 

observational times when most dust devils have expired). As more data released to the 576 

NASA PDS, more dust devils that have been captured should be available, and searches 577 

of the southern latitudes may be particularly promising, due to their high density of dust 578 

devil tracks at some times of the year compared to the north [Whelley and Greeley, 2006]. 579 
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Very recently Mars Odyssey has moved to an earlier orbit, which should also improve the 580 

probability of observing dust devils. Dust devil orientated observations do require that 581 

THEMIS is observing simultaneously at infrared and visible wavelengths, which is not 582 

always the case, due to other mission requirements. Although events will be rare, such 583 

searches may be still be fruitful, as the combination of the simultaneous observation by 584 

THEMIS of visible, infrared spectral and infrared temperature data provides unique 585 

opportunity to explore martian dust devil properties, by comparing lofted dust loading 586 

and dust temperature with surface conditions. 587 
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Figure Captions 738 

 739 

Figure 1 – A plot of dust devil positions, with MOLA shaded relief as a background. Symbols 740 

indicate the positions of dust devils observed, while the symbol labels refer to the dust devil number 741 

in Table 1 and the text. 742 

 743 

Figure 2 – Left-hand images show the THEMIS visible-wavelength scenes of dust devils, on the 744 

right are THEMIS IR temperature variations (overlain by visible-wavelength intensity contours 745 

derived from concurrent observations). In all images, Sun illumination is from the left, about 280-300 746 

azimuth. (North is to the top). The scale bars are 1 km long. Absolute temperature varies from scene 747 

to scene, but in all cases the red-blue corresponds to a 3K temperature difference. (a) V02114009 748 

(dust devil 1 in Table 1), (b) V02326010 (dust devil 2), (c) V02326010 (dust devil 3), (d) V02502006 749 

(dust devil 4), (e) V03334003 (dust devil 5), (f) V03334003 (dust devil 6), (g) V03343003 (dust devil 7), 750 

(h) V02326010 (dust devil 8) 751 

 752 

Figure 3 – Two examples of dust devil candidates that were not confirmed as definite. (a) 753 

Shows a low resolution dust devil candidate, with no other supporting coverage (THEMIS image 754 

V09950014). (b) Indicates a possible candidate obscured by the saturation of the image (THEMIS 755 

images V03343003 and V07837020). The scale bars are 1 km. 756 

 757 

Figure 4 – Examples of terrestrial dust devils, ranging from well structured to more 758 

disordered. (a) shows the classic dust devil structure with a dust column made up of fine suspended 759 

particles and a slightly wider saltation skirt near the surface. (b) has a weaker structure, and lower 760 

dust loading, but is physically larger in diameter. 761 

 762 
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Figure 5 – The illumination geometry for dust devil imagery. θθθθ is the solar incidence angle. Isrc 763 

is solar illumination. Rs and Rdd are the radiances detected by the spacecraft from the unobstructed 764 

surface and of the dust devil’s shadow respectively. 765 

 766 

 767 
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Tables 

  Image Image 

resolution 

(m/pixel) 

Latitude (N) Longitude (E) Height 

(±50 m) 

Diameter 

(m) 

Altitude 

(m)
b
 

Date 

(yyyy-mm-dd) 

Ls Local 

time 

Correlating 

images 

1 V02114009 36 26
°
24’10.4” 231

°
56’11.5” 1500 335 -812 2002-06-06 23.6 15:47 V13697011, 

3115_0000
d
 

2 V02326010 36 34
°
26’19.7” 239

°
22’48.0” 1900 170 2252 2002-06-24 31.6 15:58 1576_0009

d
, 

1316_0000
d
 

3 V02326010 36 35
°
25’1.7” 239

°
41’23.6” >1700

a
 260 2252 2002-06-24 31.6 15:58 1576_0009

d
, 

1587_0009
d
 

4 V02502006 36 35
°
15’73.0” 203

°
40’46.1” 550 230 -3951 2002-07-08 38.2 16:05 P01_001393_

2161_XN_36

N156W
e
 

5 V03334003 72 24
°
51’20.3” 327

°
53’56.9” ?

c
 310 -3655 2002-09-15 68.4 16:29 V05244026 

6 V03334003 72 24
°
38’43.3” 327

°
40’54.2” ?

c
 240 -3655 2002-09-15 68.4 16:29 V14717013 

7 V03343003 72 6
°
58’46.3” 65

°
44’31.4” 250 225 1986 2002-09-15 68.8 16:24 V14414019 

8 V02326010 36 36
°
12’27.6” 120

°
23’44.1” 350 110 2384 2002-06-24 31.6 15:58 V20336003 

 

Table 1 – The results of dust devil survey. Dust devil height is inferred from shadow length and solar illumination angle. An estimate the 

accuracy in the diameter is given by the image resolution column. 

a
, minimum size is constrained by shadow impinging on the edge of the image, but maximum unknown. 

b
, is relative to Mars datum. 

c
, there is no 

clear shadow seen. 
d
, image from Mars Express HRSC. 

e
, image from Mars Reconnaissance Orbiter CTX. 
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Image Latitude (N) Longitude (E) Ls Local 

time 

Comments 

V01770009  17
°
5'38.4" 71

°
30'7.2" 10.2 15:32 Too small to resolve clearly in THEMIS visible, no other coverage 

V02055003  11
°
26'16.8" 131

°
20'56.4" 21.3 15:41 Too small to resolve clearly in THEMIS visible, no other coverage 

V10398001  -9
°
19'33.6" 21

°
46'8.4" 21.2 16:29 Structure unclear due to surface features, other coverage lower resolution 

V10259008  7
°
45'21.6" 44

°
52'58.8" 15.8 16:28 Too small to resolve clearly in THEMIS visible, no other coverage 

V18471001  -4
°
16'55.2" 61

°
19'55.2" 10.6 16:26 Structure unclear due to surface features, no other coverage 

V03014004  3
°
49'15.6" 193

°
37'40.8" 56.9 16:14 Bright spot but lack structure, interfering surface features, no other coverage 

V02498007  25
°
23'9.6" 317

°
31'55.2" 38 16:01 Too small to resolve clearly in THEMIS visible, no other coverage 

V09950014  17
°
16'33.6" 319

°
44'49.2" 3.5 16:22 Too small to resolve clearly in THEMIS visible, no other coverage 

V03343003 6
°
13'28" 65

°
47'60.0" 68.8 16:24 Possible small dust devil, signal to noise too low to resolve clearly, no better coverage 

V18311007  3
°
15'0" 328

°
57'39.6" 4.2 16:23 Bright spot but lack of dust devil structure, no other coverage 

 

Table 2 – Discarded dust devil candidates, with a brief description of the reason for discard. Latitude and longitude refers to the image location. 

Two examples of these are shown in Figure 3. 
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Time of Day No. of dust 

devils 

No. of THEMIS 

images 

Total area imaged (km
2
) Rate of occurrence 

(km
-2

hr
-1

) 

Before 15:00 0 0 0  

15:00-15:30 0 211 219000 < 1.82x10
-5

 

15:30-15:45 0 321 536000 < 7.45x10
-6

 

15:45-16:00 4 287 533000 3.00x10
-5

 

16:00-16:15 1 242 526000 7.60x10
-6

 

16:15-16:30 3 2018 2609000 4.61x10
-6

 

     

Table 3 – A summary of detected dust devil survey statistics. 
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 THEMIS 

image 

Compensation 

image 

r Rdd Rs RT Plume 

Opacity 

Incidence 

angle 

Dust load 

(kgm
-3

) 

1 V02114009 V13697011 0.998 169.4 177.5 38.0 0.0594 55.8 1.94x10
-5

 

2 V02326010 H1316_0000 0.995 119 138.7 46.0 0.2436 57.8 1.53x10
-4

 

3 V02326010 H1576_0009 0.971 134.7 139.5 46.0 0.0823 57.8 3.39x10
-5

 

4 V02502006 
a 

 174.4 209.8 43.0 0.2384 58.1 1.14x10
-4

 

5 V03334003 H1619_0000  No shadow No shadow   60.6  

6 V03334003 V05244026  No shadow No shadow   60.6  

7 V03343003 V14414019 0.975 142.3 154.5 12.0 0.1083 65.8 4.78x10
-5

 

8 V02326010 V20336003 0.990 125.5 135.8 46.0 0.1317 57.8 1.28x10
-4

 

 

Table 4 – Opacity and dust loading estimates for confirmed dust devils. HRSC images are 

indicated by starting with H, while THEMIS images start with V. Dust devils 5 and 6 do not appear 

to have a significant shadow, as discussed further in text. 
a
 indicates that no THEMIS or HRSC 

compensation images exist, and r is assumed to be 1. The radiance values Rdd, Rs and RT are byte 

scaled. 
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Fig 1 
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Fig 2 
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Fig 3 
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Fig 4 
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Fig 5 

 


