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Maximum likelihood kernel density estimation:

on the potential of convolution sieves

M.C. Jonesa,∗ and D.A. Hendersonb

aDepartment of Mathematics and Statistics, The Open University, Walton Hall,
Milton Keynes MK7 6AA, UK

bSchool of Mathematics and Statistics, Newcastle University, Newcastle upon
Tyne NE1 7RU, UK

Abstract

Methods for improving the basic kernel density estimator include variable
locations, variable bandwidths and variable weights. Typically these methods
are implemented separately and via pilot estimation of variation functions
derived from asymptotic considerations. The starting point here is a sim-
ple maximum likelihood procedure which allows (in its greatest generality)
variation of all these quantities at once, bypassing asymptotics and explicit
pilot estimation. One special case of this approach is the density estimator
associated with nonparametric maximum likelihood estimation (NPMLE)
in a normal location mixture model. Another, closely associated with the
NPMLE, is a kernel convolution sieve estimator proposed in 1982 but little
used in practice to date. Simple algorithms are utilised, a simulation study is
reported on, a method for bandwidth selection is investigated and an illustra-
tive example is given. The simulations and other considerations suggest that
the kernel convolution sieve provides an especially promising framework for
further practical utilisation and development. And the method has a further
advantage: it automatically reduces, where appropriate, to a few-component
mixture model which indicates and initialises parametric mixture modelling
of the data.
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1. Introduction

Let X = (X1, ..., Xn) be a random sample from a univariate distribution
with unknown density f . Let K be a symmetric probability density function
to be used as a kernel and h > 0 its scaling parameter, or bandwidth; write
Kh(·) = h−1K(h−1·). Then the standard kernel estimator of the density f at
a point x is given by

f̂(x) = n−1
n∑

i=1

Kh(x − Xi)

(Silverman, 1986, Wand and Jones, 1995, Simonoff, 1996). Let m =
(m1, ..., mn), w = (w1, ..., wn) and b = (b1, ..., bn) with wi ≥ 0 and bi > 0,
i = 1, ..., n. One interpretation of the kernel density estimator is as a special
case of an over-parametrised mixture model of the form

f̂m,w,b(x) =

{
n∑

i=1

wi

}−1 n∑

i=1

wiKbi
(x − mi) (1)

where each datapoint Xi is associated with its own mixture component den-
sity K with its own location, mi, scale parameter or bandwidth, bi, and
weight, wi. Clearly, f̂(x) = f̂X,1,h1(x) where 1 = (1, ..., 1). Other special
cases of the general formulation include variable location kernel density es-
timators of the form f̂m(x) ≡ f̂m,1,h1(x) (Samiuddin and el-Sayyad, 1990,
called ‘data sharpening’ by Choi and Hall, 1999), variable weight kernel den-
sity estimators f̂w(x) ≡ f̂X,w,h1(x) (Hall and Turlach, 1999) and variable

bandwidth kernel density estimators f̂b(x) ≡ f̂X,1,b(x) (Abramson, 1982),
the last often being referred to as variable kernel density estimators. These
approaches can all achieve ‘higher order bias’ and as such most of them are
reviewed and compared with other higher order bias kernel density estimators
in Jones and Signorini (1997).

In an earlier technical report (Jones and Henderson, 2005), we simply
fitted the general model f̂m,w,b(x) and each of its submodels such as f̂m(x)

or perhaps f̂m,b(x) ≡ f̂m,1,b(x) to data by maximum likelihood, with the
important proviso that g(b) ≡ (

∏n
i=1 bi)

1/n = h for a given overall bandwidth
h. In one case, f̂m,w, we were actually utilising the nonparametric maximum
likelihood estimator (NPMLE; Laird, 1978, Lindsay, 1983, 1995) of a normal
location mixture model as density estimator. We note that, while there
has been much interest in normal mixture NPMLEs, most of that interest
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has centred on the estimation of the mixture distribution itself and little
on the resulting mixture density thought of as a density estimate per se.
We found empirically that the best of all these estimators can achieve every
bit as good performance as the best of the higher order bias kernel density
estimators. Moreover, they achieve this level of performance without resort
to the asymptotic arguments that underlie the practical implementation of
most higher order bias kernel density estimators (Jones and Signorini, 1997).

In a fairly substantial simulation study to which the reader is referred
for comparative details, Jones and Henderson (2005) argued that the best
of these estimators is f̂m and so it is this estimator that we concentrate on
in this short article. This particular estimator turns out to be precisely the
(normal) kernel convolution sieve estimator proposed in Section 6 of Geman
and Hwang (1982; Ŝm in their notation). After describing it, we provide
empirical evidence of its considerable potential in results extracted from our
earlier simulations. We also briefly describe the least squares cross-validation
method for selection of h but have to report disappointing empirical results
for it. We have been unable to contribute to the difficult problem of the
theoretical analysis of the performance of f̂m as an estimator of f (Ghosal
and van der Vaart, 2001, and references therein). We provide application
to a real data example which illustrates how (as also mentioned in Section
2) the well known sparseness properties of NPMLE solutions transfer to f̂m,
whose form can then be used to suggest a much simpler parametric finite
mixture model for the data.

In many ways, this article is an encomium to the potential of the convo-
lution sieve approach to kernel-type density estimation which has heretofore
remained to some extent an object of theoretical scrutiny rather than being
recognised as a simple approach with real practical potential. It is the very
lack of sophistication of our preferred version of this general approach, yet
potentially yielding outstanding performance, that we feel is its strength and
appeal. The interested reader accessing Jones and Henderson (2005) should
be aware that it assumes a degree of novelty to its work that is actually
unsupportable, although we still wish to record our debt to the exceptional
doctoral work of Storvik (1999). A referee has also kindly mentioned earlier
relevant doctoral work of Scott (1976) and Kim (1995), each of which works
with f̂w and notes the sparsity of the weight vector w when it is well chosen.
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2. The estimator

Set w = 1, b = h1 in (1) and consider h to be a specified value. Then

f̂m(x) = n−1
n∑

i=1

Kh(x − mi).

Maximising likelihood, choose m∗ = argmaxm

∑n
k=1 log f̂m(Xk). Straight away

specifying K = φ, the standard normal density, the estimating equations are

n∑

k=1

φ′
h(Xk − mℓ)

f̂m(Xk)
=

n∑

k=1

(Xk − mℓ)φh(Xk − mℓ)

f̂m(Xk)
= 0, ℓ = 1, ..., n,

which immediately yields a beautifully simple iterative scheme for computing
m∗:

mnew
ℓ =

{
n∑

k=1

tℓ,k

}−1 n∑

k=1

Xktℓ,k with tℓ,k =
φh(Xk − mold

ℓ )

f̂mold(Xk)
.

Finally, use f̂m∗. The natural starting point for this iteration, which we
always use, is m = X. The weights are all nonnegative and so each calculated
mℓ falls within the range of X at all iterations.

This algorithm is, of course, an EM algorithm (e.g. Laird, 1978, DerSimo-
nian, 1986, McLachlan and Peel, 2000). It is therefore guaranteed to increase
the likelihood at each iteration and thus to converge to a local maximum of
the likelihood. In our implementation of this algorithm, we deemed con-
vergence to have occurred when the average absolute difference between the
parameter values at the current and previous iterations was less than 10−C

for some appropriate value of C. Most of our simulations concern n = 100
in which case we took C = 5. Typical numbers of iterations to convergence
were then 100–500 for f̂m. The effect on our performance measure of chang-
ing C was not large. In further simulations of the performance of f̂m when
n = 500, we reduced C from 5 to 3. The number of iterations was then in
the tens rather than the hundreds.

The NPMLE of g(µ) in the location mixture
∫

φh(x − µ)g(µ)dµ turns
out to be a discrete distribution with support of size k ≤ n (Laird, 1978,
Lindsay, 1993, 1995). The NPMLE Gaussian mixture distribution must then
coincide with f̂m,w (provided the algorithm used successfully maximises the
likelihood). See also Proposition 1 of Geman and Hwang (1982). The estima-
tor f̂m can be thought of as an approximation to f̂m,w which yields slightly
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different results: allowing locations m to be coincident and/or weights w to
be zero as necessary, notice that the actual NPMLE allows estimation of
both w1, ..., wn and m1, ..., mn while f̂m fixes w1 = ... = wn = 1 and varies
just m1, ..., mn. For the extent of the difference in practice, see Jones and
Henderson (2005).

Moreover, normal mixture NPMLE solutions have been observed to be
sparse in their number of discrete support points (Laird, 1978, p. 809, Geman
and Hwang, 1982, p. 411) and these sparseness properties transfer to f̂m. The
beauty of this is that the form of f̂m can then be used to suggest a much
simpler parametric finite mixture model for the data. In this way, there is
much added value in modelling terms in employing f̂m over f̂ .

It is also gratifying to find, empirically, that f̂m seems not to change
abruptly anywhere as h increases but rather changes smoothly with h in
much the way one is familiar with from experience with f̂ .

We have also investigated the use of least squares cross-validation (LSCV)
to select h for f̂m. That is, h was chosen to minimise

∫
{f̂m(x; h)}2dx − 2n−1

n∑

i=1

f̂m,−i(Xi; h) (2)

where f̂m(·; h) is the density estimate (with bandwidth h) derived from the
full data set, and f̂m,−i(·; h) is the density estimate (with bandwidth h) based
on all datapoints except Xi.

3. Simulation study

3.1. Simulation set-up

We pattern our simulation study after that of Jones and Signorini (1997)
who in turn utilise the first 10 densities suggested as a simulation testbed
by Marron and Wand (1992). The densities, all built from normal mixtures,
are referred to as 1: Gaussian, 2: Skewed unimodal, 3: Strongly skewed, 4:
Kurtotic unimodal, 5: Outlier, 6: Bimodal, 7: Separated bimodal, 8: Skewed
bimodal, 9: Trimodal, 10: Claw.

To deal with the bandwidth selection problem (selection of an appropriate
value for the overall value h), we first provide a “best possible” analysis in
the sense that we empirically approximately compute the value of h that
minimised the integrated squared error (ISE) between the estimated density
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and the true density. In this way, we decouple the potential capability of each
density estimator from the thorny issue of empirical bandwidth selection.
That thorny issue is taken up, somewhat unsatisfactorily it turns out, via
LSCV in Section 3.4.

Density estimates were calculated on an equally spaced grid of 301 points
on [−3, 3]. The following rule was used to approximate the ISE:

ISE(f̂) ≃ 1

50

301∑

j=1

{
f̂(yj) − f(yj)

}2
,

where yj = −3 + (j − 1)/50. Minimisation over h was performed over a
carefully chosen grid of values. Our procedure was: (i) to start with an
equally-spaced grid of 12 points from 0.1 to 1.2. (If the optimal h was not
in this range, a different grid was tried); (ii) based on the results of the
first grid, a second, finer, grid needed to be used for some densities. These
finer grids were nearly always between 9 and 13 point grids but not always
equally-spaced; (iii) this ad hoc process was repeated — rarely beyond three
different grids — until a ‘satisfactory’ grid of values was obtained and used
thereafter.

Our main simulation study concerns samples of size n = 100, replicating
the experiment 1000 times. This is the subject of Section 3.2. A smaller
simulation study when n = 500 (also with 1000 replications) is reported in
Section 3.3. The case n = 100 is revisited in Section 3.4 where the ISE-
optimal bandwidth selector is replaced by the LSCV bandwidth selector.
The normal kernel is used in all cases.

3.2. Simulation results, n = 100

The results of our simulations when n = 100, which will be found in Table
1, follow Jones and Signorini (1997) in giving the mean and standard error
of the minimised ISE (×105) calculated over the 1000 simulated datasets for
each estimator/density combination. Also given in Table 1 is the median
percentage reduction of the minimised ISE for the estimator f̂m compared
with that of f̂ . Clearly, f̂m proves to be superior to f̂ in 8 of the 10 cases,
often considerably so (although once — for model 8 — the improvement is
not statistically significant). Its only significant disimprovement is for model
3, the strongly skewed density. Our results are more favourable towards f̂m

compared with f̂ than were simulations alluded to by Geman and Hwang
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Table 1
Means (standard errors in parentheses) of minimized ISE × 105 for samples
of size n = 100 from each of the first ten Marron-Wand densities over 1000
simulations. The median % reduction is given on the second line for f̂m.
ISE-optimal bandwidths are used.

Estimator Density

Gaussian Skewed Strongly Kurtotic Outlier
unimodal skewed unimodal

f̂ 493 (13) 779 (18) 4165 (49) 4044 (56) 5188 (121)

f̂m 165 (6) 442 (12) 4645 (53) 3526 (48) 2212 (67)
72.5 45.1 −11.8 11.6 59.5

Bimodal Separated Skewed Trimodal Claw
bimodal bimodal

f̂ 706 (13) 1099 (19) 903 (14) 860 (14) 3540 (34)

f̂m 537 (13) 633 (15) 938 (16) 791 (14) 3429 (37)
28.5 45.5 −1.6 9.1 3.1

(1982, p. 410); the reason, we suspect, is that Geman and Hwang used the
same bandwidth for both estimators.

A parallel set of results for a variety of different (fourth order bias) esti-
mators is given in Jones and Signorini (1997, Table 1; henceforth JST1). We
can compare the results of Table 1 with those of JST1, bearing in mind that
the two refer to different sets of simulations, that JST1 uses the biweight
kernel while Table 1 uses the normal, and that in the current experiment,
we may not have computed the ISE-optimal bandwidth to such a high de-
gree of accuracy. Comparison of results for f̂ in Table 1 and in JST1 shows
the two to be comparable to the levels of accuracy required to make general
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claims. In particular, we can compare the performance of f̂m in Table 1 with
that of its “asymptotics-based” counterpart, Jones and Signorini’s (1997)
implementation of the variable location estimator (f̂6 in JST1): f̂m shows
considerably better performance than JST1’s f̂6 except for slightly inferior
performance for model 3 and, perhaps, comparable performance for model 8.
We also note in Jones and Henderson (2005) that the fully iterated estimator
f̂m generally outperforms its alternative version utilising just one iteration
of the algorithm.

Finally, how does f̂m compare with the best of the single-bandwidth
higher order bias estimators in JST1? (There are also two-bandwidth ver-
sions of some estimators in JST1, but Jones and Signorini, 1997, Section
6, are suspicious of their worth because of the extra difficulties in realis-
ing any potential improvements in practice involving data-driven bandwidth
selection.) This best estimator appears to be what JST1 calls f̂3,1, the mul-
tiplicatively bias corrected density estimator of Jones, Linton and Nielsen
(1995). And, consistently across all densities except numbers 3 (barely sig-
nificantly) and 8 (insignificantly), f̂m outperforms f̂3,1, albeit not by huge
amounts. This is consistent with Jones and Signorini’s observation that the
variable location estimator in JST1, f̂6 is “a little behind f̂3,1” and the ob-

servation made about the comparative performance of f̂m and f̂6 above.

3.3. Simulation results, n = 500

In order to check that our claims of good performance of f̂m are not
confined, for some reason, to n = 100, we repeated the above experiment for
n = 500. The results are in Table 2. Whether measured by mean or median
reduction, the performance of f̂m relative to that of f̂ is enhanced over that
for n = 100 in every single case. (This even translates a slightly worse
relative performance for model 8, the skewed bimodal, when n = 100 into
a slightly better relative performance when n = 500.) Also, when n = 500,
f̂m continues to perform generally better than the Jones, Linton and Nielsen
estimator (in JST1), perhaps even a little enhanced relatively in most cases,
although slightly less well for a few. By the way, we have evidence that the
relaxing of the convergence criterion for n = 500 mentioned in Section 2 has
made the ISE values for f̂m a little larger than they might be, but this effect
is generally small.
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Table 2
Means (standard errors in parentheses) of minimized ISE × 105 for samples
of size n = 500 from each of the first ten Marron-Wand densities over 1000
simulations. The median % reduction is given on the second line for f̂m.
ISE-optimal bandwidths are used.

Estimator Density

Gaussian Skewed Strongly Kurtotic Outlier
unimodal skewed unimodal

f̂ 158 (3) 247 (5) 1378 (15) 1249 (16) 1634 (35)

f̂m 35 (1) 109 (3) 1439 (14) 988 (12) 571 (16)
84.6 59.7 −2.7 21.0 67.9

Bimodal Separated Skewed Trimodal Claw
bimodal bimodal

f̂ 230 (4) 325 (5) 301 (5) 284 (4) 1117 (11)

f̂m 128 (3) 132 (3) 275 (5) 258 (4) 884 (10)
48.5 63.1 10.3 10.3 21.6

3.4. Simulation results, n = 100, LSCV bandwidth selection

After computing formula (2) on an equi-spaced 12-point grid of values of
log(h) from −5 to 0.5, a new initial grid was formed, tailored to each specific
model. The LSCV bandwidth was taken to be the largest local minimiser of
the LSCV function (Marron, 1993, Wand and Jones, 1995, Section 3.3), where
the optimize function in R (R Development Core Team, 2008) was applied
to the interval (hlow, hhigh), these being the grid values immediately below
and above the (tailored) grid value corresponding to the largest minimiser.
The same procedure was applied to f̂ as to f̂m. Results are in Table 3.

9
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Table 3
Means (standard errors in parentheses) of minimized ISE × 105 for samples
of size n = 100 from each of the first ten Marron-Wand densities over 1000
simulations. The median % reduction is given on the second line for f̂m.
LSCV bandwidths are used.

Estimator Density

Gaussian Skewed Strongly Kurtotic Outlier
unimodal skewed unimodal

f̂ 834 (25) 1246 (35) 5136 (73) 5013 (82) 8380 (341)

f̂m 353 (14) 834 (23) 6633 (95) 5154 (99) 7909 (361)
63.9 31.1 −28.5 2.0 30.9

Bimodal Separated Skewed Trimodal Claw
bimodal bimodal

f̂ 1025 (25) 1456 (33) 1217 (21) 1176 (22) 4971 (38)

f̂m 1856 (6) 921 (24) 2108 (12) 1179 (21) 5533 (12)
−112.2 40.5 −84.0 −6.4 −7.4

First, performance is, naturally, rather worse for both estimators than
it was for ISE-optimal bandwidths. Second, performance of f̂m is, in terms
relative to that of f̂ , consistently a bit worse for LSCV bandwidth selection
than it was for ISE-optimal bandwidth selection. (In one case, model 6,
bimodal, there is particularly strong disimprovement for f̂m relative to f̂ .)
The result is just three clear ‘wins’ for f̂m, four for f̂ and three cases where
the difference is not statistically significant.

Further investigation by scatterplot and other pictorial devices (not shown)
of the joint behaviour of the LSCV and ISE-optimal bandwidths in the simu-
lations was also done. This showed, in most cases, a reasonably good centring
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of the distribution of the former on the latter but a particularly large degree
of variability in the LSCV bandwidth; the two bandwidths were not strongly
correlated. This behaviour is essentially as is familiar from the ordinary ker-
nel density estimation case. For the more structured densities (especially
numbers 6, 8 and 10), LSCV bandwidths tended to be much larger than the
ISE-optimal bandwidths.

The hunt for better bandwidth selectors for use with f̂m should, there-
fore, be pursued. The potential improvement to be afforded by f̂m is not
realised with LSCV bandwidth selection. In saying this, we are at odds with
Geman and Hwang’s (1982, p.412) statement, made after “experiment[ing]
extensively” in the sieve context, that “cross-validation is often a strikingly
effective means of choosing an appropriate degree of smoothing”. This may
partly be a matter of semantic degree in the use of the word “effective”. Our
own efforts to find an empirical relationship between bandwidths appropriate
to f̂m and to f̂ and thence to provide a ‘rule-of-thumb’ approach to band-
width selection, although initially promising, eventually proved fruitless, so
no further details are given.

4. Example

As an illustrative example of the methodology, we estimate the density
of velocities associated with n = 82 galaxies in the Corona Borealis region
of the sky. These data, due to Postman, Huchra and Geller (1986), are as
given and studied by Roeder (1990). (We join Roeder in working in units
of 1000km/s.) We use f̂m with least squares cross-validation selection of h,
Section 3.4 notwithstanding. The cross-validated value of h = 0.79. The data
and resulting density estimate are shown in Fig. 1. The density estimate in
Fig. 1 displays six modes. For convenience, call them modes 1 to 6 reading
from left to right. In comparison with the least squares cross-validated kernel
density estimate given in Roeder (1990, Fig. 1), our estimate is a little less
smooth: in Roeder’s estimate, modes 3 and 4 are not separated, there is but
the vaguest suggestion of mode 2 and none of mode 5, and there is an extra
small mode to the left of mode 1. The kernel density estimate with (smaller)
bandwidth selected by the Sheather and Jones (1991) method (not shown) is
more similar to Fig. 1; the differences are only less accentuation of modes 3
and 4 and the division of mode 6 into two modes. Fig. 1 is pretty similar to
Fig. 5(c) of Roeder (1990) where a parametric six component normal mixture
(with equal variances) has been fitted. It differs relatively little from Roeder’s
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Fig. 1. The variable location density estimate f̂m with h = 0.79 for the
galaxy velocity data. The datapoints are plotted as vertically jittered circles.
The eight distinct locations involved in f̂m(·; 0.79) are shown by crosses.
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(1990, Fig. 7) preferred normal mixture-based density estimate which has
five modes, mode 2 not being present. However, Roeder’s five mode density
corresponds to a mixture model with some 17 components, although she does
state that “this is partly an artifact of [her particular implementation of her]
algorithm”.

However, f̂m has, without any prior specification of, or any complex pro-
cedure directly selecting, the number of components, reduced to a relatively
simple normal mixture model anyway. This is an illustration of the general
point made in Section 2. The normal mixture has eight components; their
locations are plotted on Fig. 1 and their weights and precise locations are
given in Table 4. Modes 4 and 6 are each made up of two normal components
suggesting skewness. Of course, arguments about mode 6 are meaningless,
there being only three datapoints involved, but that of mode 4 is based on
31 of the 82 datapoints and hence may be more interesting.
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Table 4
The normal mixture components associated with f̂m(·; 0.79) for the galaxy
velocity data, n = 82. Each has variance 0.792 = 0.624.

Component Weight (×82) Mean

1 7 9.710
2 2 16.138
3 36 19.876
4 19 22.507
5 12 23.885
6 3 26.599
7 2 32.561
8 1 34.014

More information on the points of support of f̂m is provided by plotting
the maximum likelihood locations as a function of increasing bandwidth.
Such a plot is strongly reminiscent of the ‘mode tree’ of Minnotte and Scott
(1993) in which the modes of the density estimate, rather than the underlying
mixture locations, are plotted as a function of h. This aesthetically pleasing
plot, shown in Fig. 2, contributes evidence to our claim (Section 2) that f̂m

changes smoothly with h; further investigation of, for example, the region
around h = 1.7 where two locations disappear at essentially the same time
shows that even this still corresponds to only a very moderate change in the
density estimate with h. A referee has suggested that such a plot might have
more sophisticated uses (e.g. to do with bandwidth selection) but these have
not yet been explored.

Our illustration of the use of f̂m stops there but further modelling of the
data might start with the eight component mixture model we have found and
work parametrically towards a simpler model (e.g. without two components
for mode 6).

13
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Fig. 2. Plot of maximum likelihood locations obtained for different values of
h from 0 to 3 when applying f̂m to the galaxy velocity data. The data are
themselves plotted, masquerading as the locations corresponding to h = 0.
The horizontal line is drawn at the LSCV selection of h = 0.79.
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5. Conclusions

There has been much interest over the years in sophistications of the ba-
sic kernel density estimator. A major strand of work has focussed on single
adaptations, such as higher order kernels, variable bandwidths, locations or
weights, transformations and multiplicative corrections designed to improve
performance. Jones and Signorini (1997) reviewed and compared many of
these and came to the conclusion that “It remains debatable, however, as
to whether even the best methods give worthwhile improvements, at least
for small-to-moderate sample exploratory purposes”. While they argued at
the time that “ ‘failings’ of such estimators thus are often due not to sub-
standard methodology, but rather to limitations in the information available
in the data”, it has since transpired that certain methodological improve-
ments remain possible. Two particular negatives associated with the types
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of method considered by Jones and Signorini are an overreliance first on
asymptotics and second on reducing bias with no particular regard paid to
variance. Maximum likelihood kernel/convolution sieve density estimation
seeks to sweep these considerations aside in one fell swoop.

Another strand of work has sought to try to reduce the complexity and
improve the interpretability of kernel density estimates by (usually compli-
cated) schemes involving removing/reweighting kernels while not changing
the density estimate appreciably. Examples include Marchette et al. (1996),
Priebe and Marchette (2000) and Scott and Szewczyk (2001). We feel that
this work, too, is somewhat undermined by the simplicity of the action of
kernel convolution sieve density estimation in automatically producing inter-
pretable solutions of the type desired. That said, a referee has suggested that
the current work could serve to provide an input mixture to, say, the filtered
kernel density estimator and that this added complexity may, in some cases,
be warranted.

We repeat our admission of a failure to obtain the kinds of theoretical
results we would like in terms of asymptotic bias and variance. We hope that
publication of this paper will inspire such theory to be developed. Not only
would it be informative about the quality of maximum likelihood kernel den-
sity estimation per se, but it should give assistance concerning the bandwidth
selection problem, thereby replacing the computationally clumsy and, as we
have shown, rather ineffective, cross-validation procedure. As suggested by
a referee, successful efforts at speeding up the computation of f̂m would also
be a valuable contribution.

To finish, though, we re-emphasise that the simple location-only max-
imum likelihood kernel density estimator or kernel convolution sieve, f̂m,
seems to provide an especially promising framework for further practical
utilisation and development.
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