
Open Research Online
The Open University’s repository of research publications
and other research outputs

A trust based methodology for web service selection
Conference or Workshop Item
How to cite:

Galizia, S.; Gugliotta, A. and Domingue, J. (2007). A trust based methodology for web service selection. In:
International Conference on Semantic Computing (ICSC 2007), 17-19 Sep 2007, Irvine, CA, pp. 193–200.

For guidance on citations see FAQs.

c© 2007 IEEE

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1109/ICSC.2007.63

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82909340?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1109/ICSC.2007.63
http://oro.open.ac.uk/policies.html

A Trust Based Methodology for Web Service Selection

Stefania Galizia, Alessio Gugliotta and John Domingue
Knowledge Media Institute

Open University
Milton Keynes, MK7 6AA, UK

{s.galizia, a.gugliotta, j.b.domingue}@open.ac.uk

Abstract

In this paper, we propose a methodology for

addressing trust in Semantic Web Services (SWS) -
based applications. The aim is to enhance the
capability-driven selection provided by current SWS
frameworks with the introduction of trust-based
selection criteria. We present an ontology - Web
Services Trust Ontology (WSTO) – that models the
context of a trust-based interaction and enables the
participants to describe semantically their trust
requirements and guarantees. WSTO makes use of
WSMO as reference ontology for representing Web
Services and embodies the problem of finding the most
“trusted” Web service as a classification problem. To
test our methodology, we implemented a specific
module within IRS-III – a WSMO-based SWS broker –
and deployed a prototype application based on a use
case scenario.

1. Introduction

Semantic Web Service (SWS) technology combines
the flexibility, reusability, and universal access that
typically characterize Web Services (WS), with the
expressivity of semantic mark-up and reasoning of
semantic Web [3]. SWS introduce semantic
descriptions of the capabilities of Web services to
enable their automatic discovery and selection.
Whenever a user expresses a goal that she wants to
achieve, the most appropriate Web service is
dynamically discovered and selected on the basis of the
available descriptions. Since the selected Web service
is not known a priori by the user, the notion of trust
becomes an important aspect of WS selection.
Nevertheless representing trust is not a trivial task.
Though in the well known “layer cake”1 for semantic
Web architecture “trust” is the higher layer, few

1 http://www.w3.org/2002/Talks/04-sweb/

approaches in semantic Web really provide a
methodology to represent it. In particular, the most
common approaches for describing semantic Web
services, such as WSMO [7] or OWL-S [16], do not
provide exhaustive means for trust annotation.

We believe that the main difficulty of representing
trust lies in its context-based nature: the same user may
have different trust policies in different contexts. For
instance, a user tends to trust a Web service with strong
security certifications, whenever she has to provide
credit card information. Otherwise, she may trust Web
services with high data accuracy in contexts where
required data are crucial, such as biomedical services.
Moreover, different users may privilege distinct trust
parameters in the same context; their priority may
depend on their personal preferences.

In literature, a number of trust establishments can
be found [1], [11], [15], [17], [20]. Some of them are
very complex and elaborate, but no one is suitable for
all contexts. For this reason, our approach is
intentionally general. We do not provide any new trust
definition; we developed an ontology – Web Services
Trust Ontology (WSTO) - that is able to represent
generic trust specifications within SWS-based
interaction context. Differently to other approaches, we
embodied the Web service selection in a classification
problem: given a set of user and Web service policies
and established a classification criterion, our goal is to
identify the solution, i.e. the class of Web services
matching with trust policies of involved interaction
participants. To accomplish this, we based WSTO on a
general purpose classification library developed within
the European project IBROW [8], [13]. Furthermore,
WSMO is our reference model for describing semantic
Web services; WSTO extends it by supplying the trust
management mechanism introduced above.

IRS-III [4], the Internet Reasoning Service, is a
suitable tool that we use as execution environment, for
actualizing our methodology. IRS-III is a broker that is
able to perform capability-driven selection of WSMO

compliant semantic Web services. We improved the
selection mechanism of IRS-III reasoning on the
concepts defined in WSTO. As a result, whenever
several Web services with the same capability can
satisfy a user’s goal, the class of Web services that
exposes trust policies matching with the user policies is
selected.

An earlier version of WSTO has been described in
[9]. In the present paper, we outline the background
information at the basis of our approach (Section 2)
and propose an improved version of WSTO (Section
3). Moreover, we describe a prototype application
based on a use case scenario that adopts the trust-based
version of IRS-III (Section 4), and outline the related
work in section 5. Section 6 concludes this paper.

2. Background

In this section, we provide some information to
place our approach among existing trust approaches as
well as to introduce the two ontologies that are at the
basis of our methodology: WSMO and Classification
Library.

2.1. Trust Approaches

As trust can have different meaning in different
contexts, several specifications can be found in
literature. We can classify existing models into the
following three main approaches:
• Policy-based. Policies are a set of rules that

specify the conditions to disclose own resources.
• Reputation-based. Reputation based approaches

make use of rating coming from other agents or a
central engine, by heuristic evaluations.

• Trusted Third Party-based (TTP). Trusted Third
Party based models use an external, trusted, entity
that evaluates trust.

These general approaches can be refined and/or
combined in order to build a concrete trust
establishment solution that can be deployed in a real
system.

Many models [15], [11] formulate trust policies in
SWS by security statements, such as confidentiality,
authorization, authentication. W3C Web service
architecture [21] recommendations base trust policies
on security consideration, even if the way to disclose
their security policies is still not clear.

Some policy-based models rely on a TTP, which
works as a repository of service description and
policies [15] and meanwhile as an external
matchmaker that evaluates service trustworthiness
according to given algorithms.

Reputation based models reuse concepts and
approaches taken from Web-based social networks
[10]. In SWS as well as in social networks, trust is a
central issue. In both the cases, interactions take place
whenever there is trustworthiness.

The idea is that involved participants express their
opinion of trust, by means of a shared vocabulary.
Several algorithms for trust propagation and different
metrics have been defined. In reputation-based
approaches most of trust algorithms are more
generically Quality of service based [17], [20] by
making the service ability the main trust statement.
Quality of service (QoS) is defined by a set of
properties related to the service performance. Precision
and accuracy of data, timeliness in executing a task, are
the main features; also security can be considered part
of QoS.

Our approach can be classified as Policy/TTP-
based, since the interacting participants express their
trust policies in their – semantically described -
profiles. The SWS broker – in our case IRS-III – will
behave as a TTP by storing participant profiles and
reasoning on them.

2.2. WSMO

The Web Service Modelling Ontology (WSMO) [7]
is a formal ontology for describing the various aspects
of services in order to enable the automation of Web
service discovery, composition, mediation and
invocation. The meta-model of WSMO defines the
following four top level elements. (i) Ontologies
provide the foundation for describing domains
semantically. They are used by the three other WSMO
elements. (ii) Goals define the tasks that a service
requester expects a Web service to fulfil. In this sense
they express the requester’s intent. (iii) Web Service
descriptions represent the functional behavior of an
existing deployed web service. The description also
outlines how web services communicate
(choreography) and how they are composed
(orchestration). (iv) Mediators handle data and process
interoperability issues that arise when handling
heterogeneous systems.

2.3. Classification library

Classification can be seen as the problem of finding
the solution (class) which best explains a certain set of
known facts (observables) about an unknown object,
according to some criterion.

The classification framework - that we use and
extend for our purposes - is a library of generic,
reusable components whose purpose is to support the

specification of classification problem solvers. The
library was developed within the European project
IBROW [8], [13] and its basic structure is centered
around UPML [5], a framework for libraries of
reusable knowledge level components, founded on
tasks, problem solving methods and domain models.
Furthermore, the library was specified using the
OCML modelling language [12]. We use the term
“observables” to refer to the known facts we have
about the object (or event, or phenomenon) that we
want to classify. Each observable is characterized as a
pair of the form (f, v), where f is a feature of the
unknown object and v is its value. Here, we take a very
generic viewpoint on the notion of feature. By feature,
we mean anything which can be used to characterize an
object, such that its value can be directly observed, or
derived by inference. As is common when
characterizing classification problems [22], we assume
that each feature of an observable can only have one
value. This assumption is only for convenience and
does not restrict the scope of the model. The solution
space specifies a set of predefined classes (solutions)
under which an unknown object may fall.

A solution itself can be described as a finite set of
feature specifications, which is a pair of the form (f, c),
where f is a feature and c specifies a condition on the
values that the feature can take. Then, we can say that
an observable (f, v) matches a feature specification (f,
c) if v satisfies the condition c.

It is possible to envisage different solution criteria.
For example, we may accept any solution which
satisfies some condition and is not inconsistent with
any other condition. This criterion is called positive
coverage [18]. Alternatively, we may require a
complete coverage - i.e., a solution is acceptable if and
only if it satisfies all conditions. Thus, the specification
of a particular classification task needs to include a
solution (admissibility) criterion. This in turn relies on
a match criterion, i.e., a way of measuring the degree
of matching between candidate solution and a set of
observables. By default, this library provides a match
criterion based on the aforementioned model. More
details are available in [13].

3. WSTO

The Web Service Trust Ontology (WSTO)
introduces a novel approach for managing trust in
SWS-based applications. The underlying idea is
considering trust strictly depending on the context,
without providing a further trust definition. To
accomplish this, we embed the trust-based selection of
Web services into a classification problem: Web
services are classified according to the specific user as

well as policies. A policy is expressed in terms of
either trust requirements or guarantees.

Briefly, both user and Web service expose their
trust guarantees, which are represented as observables
of the Classification Library (Section 2.3); conversely,
trust requirements are conditions represented within
the candidate solutions. Given observables and
candidate solutions, a classification criterion is
necessary to first classify Web services and then
identify the most appropriate class that address both
the user and Web service requirements and guarantees.
The selection of one - or a set - of Web services
corresponds to the task of finding the solutions in a
classification problem.

The following section details the main elements of
WSTO that address the process introduced above.

3.1. Classifying Semantic Web Services

Figure 1 summarizes how our classification
framework is applied within SWS trusted discovery.

Figure 1 Classifying Web Services

Candidate solutions - i.e. user requirements - are

defined as pairs (feature, condition). In the example
user requirements are represented by a pair feature-
condition (fi,ci), such as (encryption-algorithm, {
encryption-algorithm= any symmetric algorithm}),
(CA-country, {country-origin= any country in the
continent America}).

The observables are pairs (feature, value)
representing WS guarantees. The values of the specific
encryption algorithm adopted, certification authority
(CA) issuing security tokens and CA origin country are
provided by Web services as guarantees. According to
our methodology, they are represented as pairs feature-
value (fi,vi). The chosen solution admissibility
criterion, in this example, is complete coverage. Our
classification goal is to identify the class of Web
services that fit with user trust requirements, given a
set of WS trust guarantees.

Figure 2 depicts the main concepts of WSTO. Goal,
WS and User are the key concepts. Both User and WS

are subclasses of the class participant. Every
participant can expose their own trust profiles.

A trust profile represents the policy that a
participant declares to the execution environment –
IRS-III in our case - in order to have a trust based
interaction. It is expressed in terms of trust guarantees
and/or requirements. For instance a client, that has to
provide a credit card number in order to obtain a
service, will trust Web services that provide “good”
security guarantees.

Figure 2 Diagram partially representing WSTO

In WSTO, Trust-guarantees are represented as

observables: pairs of feature and corresponding value
(f, v); Trust-requirements are candidate solutions,
which are represented by pairs of feature, condition (f,
c). The classification match criterion that we use in our
prototype is that one described in Section 2.3.
However, WSTO can be easily extended and further
classification criteria will be introduced.

We apply the complete coverage as solution
admissibility criterion, because we look for a solution
that satisfies all conditions and is not inconsistent with
any data. In other words, our constraint is that all user
trust requirements have to be satisfied.

The Classification Library implements two different
classification methods: single-solution-classification
and optimal-classification. The former implements hill
climbing algorithm with backtracking to find a suitable
solution, the latter executes an exhaustive search for an
optimal solution. In turn, the two implemented
classification tasks are: optimal-classification-task and
single-solution-classification-task, respectively solved
by the two methods described above, according to
UPML framework [8]. WSMO is based on WSMF [6]
which is itself partly descendent from UPML, thus,

there is an existing strong relationship between the two
frameworks. In particular, we can simply link WSMO
goals and UPML tasks, as they both represent the
user’s objective.

We make use of the optimal-classification-task and
redefine it as WSMO goal - optimal-classification-
goal; participant-profiles represent the goal pre-
conditions and trusted-ws could be an example of goal
post-conditions.

4. Prototype Application

To prove the feasibility and applicability of our
methodology, we deployed a prototype application
based on an improved version of IRS-III. In particular,
we implemented a new IRS-III module that introduces
a trust-based selection mechanism. In this way, IRS-III
is now able to behave as TTP (Section 2.1) by storing
participant profiles and reasoning on them.

4.1. IRS-III Overview

IRS-III is a platform and a broker for developing
and executing semantic Web services. By definition, a
broker is an entity which mediates between two parties,
and IRS-III mediates between a service requester and
one or more service providers. To achieve this, IRS-III
adopts a semantic Web based approach and thus it is
founded on ontological descriptions. In particular, IRS-
III has incorporated and extended WSMO as the core
epistemological framework. A core design principle for
IRS-III is to support goal-centric and capability-based
invocation mechanism. An IRS-III user simply asks for
a goal to be solved. Using a set of SWS descriptions,
IRS-III will: a) discover potentially relevant Web
services; b) select the set of Web services which best
fit the incoming request; c) mediate any mismatches at
the data, ontological or business process level; and d)
invoke the selected Web services whilst adhering to
any data, control flow and Web service invocation
constraints. Additionally, IRS-III supports the SWS
developer at design time by providing a set of tools for
defining, editing and managing a library of semantic
descriptions and also for grounding the descriptions to
either a standard Web service with a WSDL
description, a Web application available through an
HTTP GET request, or code written in a standard
programming language (currently Java and Common
Lisp).

4.2. Prototype Implementation

Web service selection in IRS-III - up to now
restricted to a capability-based model - became trust-

based thanks to WSTO. Given several Web services,
semantically described in IRS-III, all with the same
capability, but different trust profiles, the class of Web
service selected will be the one that matches closest
with the user trust profile.

In this section, we present a prototype, an
implemented example of a virtual travel agent service.
The prototype is implemented in OCML [12], the
modelling language underlying IRS-III. The goal is to
find the train timetable, at any date, between two
European cities. Origin and destination cities have to
belong to the same country (European countries
involved in our prototype are: Germany, Austria,
France and England). The client that uses this
application in IRS-III publishes her trust-profile, with
trust requirements and/or trust guarantees. In our
prototype, we provide three different user profiles and
three different Web services, able to satisfy the user
goal. Specifically, in this basic example, User profiles
are expressed solely through trust requirements,
without trust guarantees. In principle, our approach is
symmetric: users as well as Web services can provide
trust requirements and guarantees.

All user requirements are performed in terms of
security parameters: encryption-algorithm,
certification-authority and certification-authority-
country. Every user expresses a qualitative level of
preference for every parameter.

USER4

(def-class trust-profile-USER4 (trust-
 profile)
 ((has-trust-guarantee :type guarantee-
 USER4)

(has-trust-requirement :type requirement-
 USER4)))

(def-class requirement-USER4 (security-
 requirement)
 ((encryption-algorithm :value high)

(certification-authority :value medium)
(certification-authority-country :value
 medium)))

USER5
........

(def-class requirement-USER5 (security-
 requirement)
 ((encryption-algorithm :value medium)
 (certification-authority :value low)
 (certification-authority-country :value
 low)))

USER6
........

(def-class requirement-USER6 (security-
 requirement)
 ((encryption-algorithm :value low)

(certification-authority :value high)
(certification-authority-country :value

 high)))

Listing 1 User Profiles

For instance, the class user-4 would like to interact

with a Web service that provides a high security level
in term of encryption algorithm, but she accepts
medium value for certification authority and
certification authority country. Representing user
requirements in a qualitative way seems to be more
user-friendly. Heuristics are necessary for express
quantitative representations in qualitative. The listing
below is an example of heuristic.

ENCRYPTION-ALGORITHM HEURISTIC

(def-instance encryption-algorithm-

 abstractor abstractor
 ((has-body '(lambda (?obs)
 (in-environment
 ((?v . (observables-feature-
 value ?obs 'encryption-algorithm)))
 (cond ((== ?v DES)
 (list-of 'encryption-
 algorithm 'high

(list-of (list-of 'encryption-algorithm
 ?v))))

((== ?v AES)
 (list-of 'encryption-algorithm 'medium
 (list-of (list-of 'encryption-algorithm

 ?v))))
 ((== ?v RSA)

(list-of 'encryption-algorithm 'low
(list-of (list-of 'encryption-algorithm
 ?v))))))))

(applicability-check (kappa (?obs)
 (member 'encryption-algorithm
 (all-features-in-observables ?obs))))))

Listing 2 Encryption Algorithm Heuristic

The heuristic encryption-algorithm-abstractor

establishes that whenever the encryption algorithm
adopted by a Web service provider is like DES, then its
security level is considered high. Whenever both User
and Web service describe their profiles, they implicitly
agree with the qualitative evaluation expressed the
heuristic. If a Web service provides an encryption
algorithm 3DES, for instance, it is considered secure,
as 3DES adopts DES, how it specified in the Listing 3.

3DES SUBCLASS OF DES ALGORITHM

(def-class DES-type () ?x
 :iff-def (or (= ?x DES)
 (subclass-of ?x DES)))

(def-class DES (algorithm))
(def-class 3DES (DES))

Listing 3 3DES subclass of DES Algorithm

In turn, whenever the Web service provider makes

use of an algorithm like AES, according to the heuristic
in Listing 2, its encryption ability is deemed medium,

otherwise, if the adopted algorithm is like RSA, the
security level is low. Other heuristics provide
qualitative evaluations of Certification Authorities
(CA), and CA countries. For instance, security level of
globalsign-austria is retained high, conversely German
CAs are considered medium-secure.

The user can apply these heuristics, or define her
own, sharing her expertise and knowledge with other
users. Alternatively, the user can even express her
requirements in precise/quantitative way, by specifying
the exact values expected from Web service
guarantees, for example, the certification authority
issuing security token has to be VeriSign.

The Web services able to satisfy the user goal,
implement their profile only in terms of guarantees. As
shown in Listing 4, three different Web services show
their trust guarantees by the same parameters provided
by the users in their requirements, that are encryption-
algorithm, certification-authority and certification-
authority-country.

TRUSTED WEB SERVICE WS1

(def-class get-train-timetable-service-T1

 (trust-web-service)
 ((has-capability :value get-train-

 timetable-capability-T1)
(has-interface :value get-train-
 timetable-service-interface-T1)
(has-trust-profile :type get-train-
 timetable-service-trust-profile-T1)))

(def-class get-train-timetable-service-
 trust-profile-T1 (trust-profile)

 ((has-trust-guarantee :type get-train-
 timetable-service-guarantee-T1)
(has-trust-requirement :type get-train-
 timetable-service-requirement-T1)))

(def-class get-train-timetable-service-
 guarantee-T1 (Trust-non-functional-

 properties)
 ((encryption-algorithm :type 3DES)

(certification-authority :value verisign)
(certification-authority-country :value
 north-american-country)))

TRUSTED WEB SERVICE WS2
........

(def-class get-train-timetable-service-
guarantee-T2 (Trust-non-functional-
 properties)

 ((encryption-algorithm :type RSA)
 (certification-authority :value

 globalsign-austria)
(certification-authority-country :value
 austria)))

TRUSTED WEB SERVICE WS3
........

(def-class get-train-timetable-service-
guarantee-T3 (Trust-non-functional-
 properties)

 ((encryption-algorithm :type AES)
(certification-authority :value tc-trust-
 center)
(certification-authority-country :value

 germany)))

Listing 4 Web Services Trust Profiles

Our example only includes users and Web services

with trust policies expressed by same parameters. As
we apply the complete coverage admissibility solution
criterion, we look only for an exact match, thus every
user requirement has to be satisfied by at least one
Web service trust guarantee; Web services that do not
satisfy all conditions are not selected.

Listing 4 shows that the Web service get-train-
timetable-service-T1 warrants its security level by
declaring that encryption algorithm it adopts is 3DES,
the CA issued the security token is VeriSign and its
head office is in USA. The Web service get-train-
timetable-service-T2 publishes values RSA, globalsign-
Austria, Austria, for the same guarantee statements.
The Web service get-train-timetable-service-T3
warrants secure interaction by adopting AES as
encryption algorithm, and declaring the German CA tc-
trust-center as security token issuer.

We developed a user-friendly Web application to
test our implementation, which is available at http://irs-
test.open.ac.uk/trusted_vta/.

The snapshot in Figure 3 shows the Web application
interface. The user who would like to know train
timetable between two European cities enters the
desired city names and date. The user owns a trust
profile associated to her name: dinar is instance of
user4 trust profile, vanessa of user5, stefania of user6.

Whenever the application starts, IRS-III recognizes,
from the user name, the trust user profile. In the
prototype, the requirements expressed by the user are
treated as candidate solutions within the classification
goal. The class of Web services whose trust guarantees
best match with user requirements is selected. As we
applied the complete coverage criterion, the match is
strict, that means every user requirement is explained
(matches with a Web service trust guarantee) and none
is inconsistent.

The user dinar, instance of user profile user4, likes
to travel by train between Berlin and Frankfurt on 9th
December 2006. She would like to interact only with
the Web services with high security level encryption
algorithm, medium security level CA and CA country.
Suitable heuristics consider highly secure encryption
algorithms like DES, medium level secure the CA
Americans, particularly Verisign.

The class of Web services that satisfies all dinar
trust requirements is get-train-timetable-service-T1.
Actually, get-train-timetable-service-T1 adopts the
encryption algorithm 3DES, in turn, the heuristic in
Listing 2 shows DES, as highly secure. As 3DES is a
subclass of DES algorithm, then it matches with dinar
trust requirements.

Figure 3 WSTO Web Application

The application returns the list of Web services able

to satisfy the user goal, and that one invoked, which
matches with dinar trust requirements. It follows the
Web service output, the requested timetable. Easily the
application can be tested with the other user instances
implemented, vanessa and stefania. It can be noticed
that vanessa trust profile matches with Web service
class get-train-timetable-service-T3, while stefania
with get-train-timetable-service-T2.

A non-trusted based version of the application is
available at http://irs-test.open.ac.uk/not_trusted_vta/
for comparison purposes. In the non trusted version, if
more then one Web service with same capability are
able to satisfy a user goal, the selection happens
completely random. The output of this Web application
returns only the train timetable requested, without any
trust based comparison.

5. Related Work

There is a growing corpus of literature on trust, and
different approaches focus on how trust assumptions
are made and enforced. A number of current
approaches model social aspects of trust [10], while
some recent efforts in the last few years concern
service-oriented views of trust [2]. However, few
approaches provide methodologies for managing trust
in a SWS, and none comprehensively incorporate all
possible approaches of trust (policy, reputation TTP),
as we do in WSTO.

The work proposed by Vu and his research group
[20], who use WSMX2 [23] as an execution
environment, is closely related to the work reported
here. Vu et al. [20] propose a methodology for
enabling a QoS-based SWS discovery and selection,
with the application of a trust and reputation
management method. Their approach yields high-

2 http://www.wsmo.org/TR/d13/d13.0/v0.2/

quality results, even under behaviour which involves
cheating. With respect to their work, our methodology
does not propose any algorithm for service behaviour
prediction. However, their algorithm is wholly founded
on reputation mechanisms, and is therefore not suitable
for managing policy-based trust assumptions.
Currently, policy-based trust mainly considers access
control decisions via digital credentials. Our
framework, by enabling participants to declare general
ontological statements for guarantees and
requirements, is also able to accommodate a policy-
based trust framework.

Olmedilla et al. [15] propose a methodology for
trust negotiation in SWS. They employ PeerTrust [14],
a policy and trust negotiation language, for establishing
if trust exists between a service requester and provider.
The main issue, which distinguishes their methodology
from ours, is that they assume that trust is solely based
on policy. Similar to our approach, they use WSMO as
the underlying epistemology. Moreover, they assume
delegation to a centralized trust matchmaker, where the
participants disclose policies. Similarly, in our
approach, we assume that IRS-III plays the role of trust
matchmaker. Furthermore, they also address
negotiation, which is an important issue in SWS
interaction. We do not propose a formal negotiation
mechanism here, but, as both requester and provider
disclose their guarantees, as credentials within IRS-III,
we are able to automatically enable an implicit
negotiation process.

There are other approaches for managing trust in
SWS which are less closely related to ours such as
KAoS [19]. Even though KAoS presents a dynamic
framework, and recognize trust management as a
challenge for policy management, the framework is not
specifically tailored to trust management in SWS.

6. Conclusion

In this paper, we have presented a prototype of a
trust-based selection in IRS-III, based on WSTO, an
ontology for managing trust in SWS. Furthermore, our
framework makes use of a classification library,
developed within the European project IBROW [8].
We have envisaged the Web service selection as a
classification problem, where the solution is the class
of Web services matching with participant trust
profiles. Trust profiles are represented in terms of
requirements and guarantees. Whenever participant
trust policies match, a trusted interaction can occur.

This work does not provide any new definition of
trust, because we strongly believe that trust holds
different meanings in different contexts.

One novel feature of our approach is that the
framework allows trust to be modelled using a specific
set of concepts that best capture the particular context.

WSTO is a general ontology, that can be easily
extended to include different trust approaches, such as
the ones that make use of QoS statements, or
reputation based mechanisms.

10. References

[1] Almendra, V., and Schwabe, D. (2006). Trust Policies
for Semantic Web Repositories. In proceedings of 2nd
International Semantic Web Policy Workshop (SWPW'06),
at the 5th International Semantic Web Conference (ISWC),
Athens, GA, USA, Nov. 5-9, 2006.
[2] Anderson, S., et al. (2004). Web Services Trust Language
(WS-Trust), version 1.1. May 2004.
http://msdn.microsoft.com/ws/2004/04/ws-trust/.
[3] Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic
Web. Scientific American 284(4):34-43, (2001).
[4] Cabral, L., Domingue, J., Galizia, S., Gugliotta, A.,
Norton, B., Tanasescu, V., Pedrinaci, C. (2006). IRS-III: A
Broker for Semantic Web Services based Applications. In
Proceedings of the 5th International Semantic Web
Conference (ISWC2006), Athens, USA, November 2006.
[5] Fensel, D., Benjamins, V. R., Motta, E. and Wielinga, B.
J. (1999a). A Framework for knowledge system reuse.
Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI-99). Stockholm, Sweden, July
31 – August 5, 1999.
[6] Fensel, D. and Bussler, C. (2002) The Web Service
Modeling Framework WSMF. Electronic Commerce
Research and Applications 1(2): 113-137.
[7] Fensel, D., Lausen, H., Polleres, A., De Bruijn, J.,
Stollberg, M., Roman, D., Domingue, J. (2006). Enabling
Semantic Web Services: Web Service Modeling Ontology.
Springer, 2006.
[8] Fensel, D., Motta, E., Benjamins, V. R., Decker, S.,
Gaspari, M., Groenboom, R., Grosso, W., Musen, M., Plaza
E., Schreiber, G., Studer, R. and Wielinga, B. (1999b). The
Unified Problem-solving Method Development Language
UPML. IBROW3 Project (IST-1999-19005) Deliverable 1.1.
[9] Galizia, S. (2006). WSTO: A Classification-Based
Ontology for Managing Trust in Semantic Web Services, in
Proceedings of 3th International Semantic Web Conference
(ESWC 2006), Budva, Montenegro, June 11-14 2006.
[10] Golbeck, J. and Hendler, J. (2006). Inferring trust
relationships in web-based social net-works. ACM
Transactions on Internet Technology, 2006.
[11] Maximilien, E. M., Singh, M. P. (2004). Toward
Autonomic Web Services Trust and Selection. In
Proceedings of 2nd International Conference on Service
Oriented Computing (IC-SOC 2004), New York, November
2004.
[12] Motta E. (1999). Reusable Components for Knowledge
Models: Principles and Case Studies in Parametric Design
Problem Solving. IOS Press.
[13] Motta, E., Lu, W. (2000). A Library of Components for
Classification Problem Solving. In Proceedings of PKAW

2000 - The 2000 Pacific Rim Knowledge Acquisition,
Workshop, Sydney, Australia, December 11-13, 2000.
[14] Nejdl, W., Olmedilla, D. Winslett, M.(2004). PeerTrust:
Automated Trust Negotiation for Peers on the Semantic Web.
Workshop on Secure Data Management in a Connected
World (SDM'04), in conjunction with 30th International
Conference on Very Large Data Bases, Aug.-Sep. 2004,
Toronto, Canada.
[15] Olmedilla, D., Lara, R., Polleres, A., Lausen, H. (2004).
Trust Negotiation for Semantic Web Services. 1st
International Workshop on Semantic Web Services and Web
Process Composition in conjunction with the 2004 IEEE
International Conference on Web Services, July 2004, San
Diego, California, USA.
[16] OWL-S working group. (2006). OWL-S: Semantic
Markup for Web Services. OWL-S 1.2 Pre-Release.
(Available at http://www.ai.sri.com/daml/services/owl-
s/1.2/).
[17] Sepandar D., K., Schlosser, M. T., Garcia-Molina, H.
(2003). The EigenTrust Algorithm for Reputation
Management in P2P Networks. In Proceedings of the Twelfth
International World Wide Web Conference. Budapest,
Hungary, 20-24 May 2003.
[18] Stefik M. (1995). Introduction to Knowledge Systems.
Morgan Kaufmann, San Francisco, CA, USA.
[19] Uszok, A., Bradshaw, J. M., Johnson, M., Jeffers, R.,
Tate, A. Dalton, J., Aitken, J. S. (2004). KAoS Policy
Management for Semantic Web Services. IEEE Intelligent
Systems 19(4): 32-41 (2004).
[20]Vu, L.-H., Hauswirth, M., Aberer, K. (2005). QoS-based
Service Selection and Ranking with Trust and Reputation
Management 2005 International Conference on Cooperative
Information Systems (CoopIS), Agia Napa, Cyprus, 31 Oct -
4 Nov 2005.
[21] W3C (2004). Web Services Architecture. W3C Working
Draft 11 February 2004 (Available at
http://www.w3.org/TR/ws-arch/).
[22] Wielinga, B. J., Akkermans, J.K. and Schreiber, G.
(1998). A Competence Theory Approach to Problem Solving
Method Construction, International Journal of Human-
Computer Studies, 49, pp. 315-338.

