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Abstract 

The absolute chronology of Mars is poorly known and as a consequence a key science 

aim is to perform accurate radiometric dating of martian geological materials. The 

scientific benefits of in situ radiometric dating are significant and arguably of most 

importance is the calibration of the martian cratering rate, similar to what has been 20 

achieved for the Moon, to reduce the large uncertainties on absolute boundary ages of 

martian epochs. The Beagle 2 Mars lander was capable of performing radiometric 

date measurements of rocks using the analyses from two instruments in its payload: (i) 
                                                 

* Corresponding author. Tel. +44 (0)116 252 5084. 

E-mail address: dlt3@star.le.ac.uk (D.L. Talboys) 
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the X-ray Spectrometer (XRS) and (ii) the Gas Analysis Package (GAP). We have 

investigated the feasibility of in situ radiometric dating using the K-Ar technique 25 

employing flight-like versions of the Beagle 2 instrumentation. The K-Ar ages of six 

terrestrial basalts were measured and compared to the ‘control’ Ar-Ar radiometric 

ages in the range 171 – 1141 Ma. The K content of each basalt was measured by the 

flight spare XRS and the 40Ar content using a laboratory analogue of the GAP. The K-

Ar ages of five basalts broadly agreed with their corresponding Ar-Ar ages. For the 30 

final basalt, the 40Ar content was below the detection limit and so an age could not be 

derived. The precision of the K-Ar ages was ~30% on average. The conclusions from 

this study are that careful attention must be paid to improving the analytical 

performance of the instruments, in particular the accuracy and detection limits. The 

accuracy of the K and Ar measurements are the biggest source of uncertainty in the 35 

derived K-Ar age. Having investigated the technique using flight-type planetary 

instrumentation, we conclude that come of the principle challenges of conducting 

accurate in situ radiometric dating on Mars using instruments of these types include 

determining the sample mass, ensuring all the argon is liberated from the sample 

given the maximum achievable temperature of the mass spectrometer ovens, and 40 

argon loss and non-radiogenic argon in the samples analysed. 

 

Keywords: Mars Chronology; Planetary Instrumentation; Radiometric Dating; X-ray 

Fluorescence Spectrometry; Mass Spectrometry. 

 45 

1. Introduction 
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The absolute chronology for Mars is poorly known and, as a consequence, there are 

significant scientific returns achievable from in situ radiometric dating on Mars by 

robotic landers (for a review see Doran et al., 2004). An important science aim for in 50 

situ dating would be to calibrate the martian cratering rate (Plescia and Swindle, 

2007). For the Moon, the crater density is calibrated in absolute terms by dating 

returned samples from the Apollo and Luna missions (Stöffler and Ryder, 2001). 

However, since there have been no sample return missions for Mars, its cratering rate 

can only be inferred from the Moon (Neukum et al., 2001). As a consequence of this 55 

and discrepancies with the crater density reported by various authors, there are large 

uncertainties associated with the absolute chronology of martian epochs (Hartmann 

and Neukum, 2001). Since the relative stratigraphy and chronology is already 

established for much of Mars (Tanaka, 1986; Scott and Tanaka, 1986; Greeley and 

Guest, 1987; Tanaka and Scott, 1987; Tanaka et al., 1992; Hartmann and Neukum, 60 

2001), the absolute chronology of martian history could be constrained through the 

determination of the radiometric ages of samples at certain key sites. An ideal target 

to achieve this would be igneous rocks located at key sites where the relative 

stratigraphy (and hence chronology) and geological context is well defined. Other 

suitable targets for radiometric dating include: young volcanic lava flows, widespread 65 

ash deposits (e.g., in the polar layered deposits) and fluvial and lacustrine events using 

K-rich salts in sediments (Doran et al., 2004). 

 

A radiometric dating scheme that could be usefully applied in situ on Mars is K-Ar 

dating. This is based on the decay of the radioactive isotope of potassium, 40K, into 70 

40Ar, with a half life of 1.25 billion years, and uses the absolute abundances of these 

isotopes in the rock to derive the age. Given the 1.25 billion year half-life of 40K, the 
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useful period for K-Ar dating is for rocks older than several tens of thousands of years 

in age. Although potassium is a major constituent of many rock-forming minerals, its 

only radioactive isotope, 40K, has a relatively small naturally occurring isotopic 75 

abundance of 0.012%. The major branch for decay into the radiogenic isotope 40Ar is 

through capture of an electron, usually from the K shell, which combines with a 

proton to form a neutron. The principle mode of 40K decay, however, is to 40Ca 

through the emission of a beta particle from its nucleus and the conversion of a 

neutron into a proton. The abundance of 40Ca is not measured relative to 40K for 80 

radiometric dating because of the large amounts of non-radiogenic 40Ca that is 

typically present in rocks. In contrast, 40Ar, the most abundant isotope of Ar, as a 

noble gas is not a major constituent of rocks. When a rock forms (while in a molten 

state), it will not retain 40Ar until to cools to a sufficient temperature; it is at this time 

the potassium-argon clock is ‘set’ and the 40Ar from 40K decay can accumulate. 40Ar is 85 

only liberated if the mineral is melted, recrystallised or heated to a temperature that 

will allow the 40Ar to diffuse through the mineral lattice. The K-Ar dating technique 

relies on accurately determining the amount of radiogenic 40Ar that has decayed from 

40K, and accounting for both non-radiogenic argon (of atmospheric and/or magmatic 

origin) and mechanisms of argon loss which would bias the age determination. 90 

Measurement of the potassium content of the rock can be performed using various 

geochemical analytical methods, although we will focus on the technique of X-ray 

fluorescence spectroscopy, as discussed in section 2.2. The argon content of the rock 

is typically measured using the technique of mass spectrometry (discussed in section 

2.3) where the sample is incrementally heated to release the trapped argon from 95 

various mineral domains within the rock.  
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Ar-Ar dating has superseded K-Ar dating as a modern geochronological technique. In 

this scheme, the rock is irradiated with fast neutrons which converts atoms of 39K in 

the rock (present, like 40K, to a known isotopic abundance) into 39Ar via a n,p 100 

(neutron capture, proton emission) reaction. The 39Ar is used to infer the abundance of 

40K since their relative isotopic abundances are known. Thus the relative amounts of 

40K and 40Ar can be measured simultaneously using a mass spectrometer, which 

means the accuracy of the technique is better than the K-Ar scheme, where the 

absolute abundances of K and Ar are determined using two analytical techniques. A 105 

major advantage of Ar-Ar dating is that the profile of the cumulative argon isotope 

loss during step heating is an indicator of whether radiogenic argon loss or non-

radiogenic argon gain has occurred. However, because of the need to irradiate the 

rock sample with high fluences of neutrons before analysis, Ar-Ar dating is a 

technique that would be difficult to implement using robotic instrumentation on Mars. 110 

 

Beagle 2, the exobiological lander for ESA’s Mars Express orbiter (Schmidt, 2003), is 

the only Mars mission launched to date with the explicit aim to perform in situ K-Ar 

radiometric dating of rocks (Wright et al., 2003). Unfortunately, the Beagle 2 lander 

failed to communicate during its first expected radio contact on 25th December 2003 115 

and hence this science objective was not fulfilled. In situ radiometric dating would 

have been performed using two instruments in the lander’s payload with the 

potassium content measured by the X-ray Spectrometer (XRS), designed to perform 

geochemical analyses of rocks and soils, and the argon isotope content measured by 

the Gas Analysis Package (GAP), a mass spectrometer, capable of analysing the 120 

isotopic composition of atmosphere, rock or soil samples. The GAP would also have 

performed an additional radiometric age measurement, the Cosmic Ray Exposure 
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(CRE) age, based on the analysis of cosmogenic nuclides 21Ne and argon 36Ar 

(although not 3He since GAP is unable to detect this isotope) that are produced by 

cosmic ray nuclear interactions with nuclei in rocks and accumulate over time (Doran 125 

et al., 2004; Eugster, 2003). Isidis Planitia, the planned landing site for Beagle 2, had 

extensive volcanism during the Hesperian into the late Amazonian epochs and so any 

in situ dating could have potentially constrained the absolute chronology of these 

epochs (Bridges et al., 2003). 

 130 

In addition to the GAP, which was essentially an on-board laboratory, the deployable 

elements of the Beagle 2 payload were designed to provide geological context, which 

is essential to reliably interpret the radiometric ages of rocks. This payload comprised 

a package of imaging devices, contact analytical instruments and sampling tools 

called the Position Adjustable Workbench (PAW), situated on the end of a robotic 135 

arm. The Stereo Camera System (Griffiths et al., 2005) consisted of two cameras, 

positioned on opposite sides of the PAW, which could deliver panoramic images of 

the landing area using multispectral filters. The Microscope could perform close up 

imaging of rocks and soils (with its own illumination from LEDs) to provide 

information on surface texture and probe for microstructures of possible biological 140 

origin (Thomas et al., 2004). The Mössbauer Spectrometer (Klingelhöfer et al., 2003) 

had the primary aim identifying the relative abundances of iron-bearing minerals in 

rocks. The payload also included two subsurface sampling tools (Richter et al., 2002). 

The first tool was the Rock Corer-Grinder which could remove the weathered and 

dust covered surface layers of rock to expose the ‘fresh’ interior and also sample cores 145 

or rock chippings (depending on the material) for delivery to the GAP. The second 
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tool was the Planetary Underground Tool which could sample the subsurface regolith 

by penetrating 1.5 m into the martian surface. 

 

K-Ar radiometric dating of rocks was a consequence of the general operational 150 

strategy for Beagle 2 called the ‘rock analysis cycle’ (Pullan et al., 2004). After an 

initial survey using the Stereo Camera System, a target rock would be chosen. This 

rock would be intensively imaged by the cameras from various angles utilising the 

geological and stereoscopic filters. The Microscope, Mössbauer Spectrometers and 

XRS would then perform measurements on the weathered surface of the rock. The 155 

Rock-Corer Grinder would then drill through the surface and sample an interior 

portion of the rock and deliver ~100 mg of chippings to the inlet port of the GAP for 

analysis of isotopic composition, including the argon isotope content. The prepared 

surface would then be analysed using the XRS to determine the geochemical 

composition, including the potassium content. In addition, further measurements on 160 

the prepared surface would also be made using the Microscope and Mössbauer 

Spectrometer in order to compare the weathered surface of the rock to its interior.  

 

In terms of future missions to Mars, the Mars Science Laboratory (MSL) will carry a 

payload capable of K-Ar dating. The Sample Analysis at Mars (SAM) instrument, 165 

which comprises a Gas Chromatograph Mass Spectrometer (GCMS) and pyrolysis 

oven, will analyse the noble (including Ar) gas content of martian rocks whereas the 

K content will be measured by instruments which exploit the geochemical analysis 

techniques of X-ray spectroscopy and laser induced breakdown spectroscopy (Park et 

al., 2009). Studies of the radiometric dating technique when applied to robotic 170 

payloads show promise, for example Swindle (2001) found that the age of martian 
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meteorites can be determined using K-Ar dating to an accuracy of ~20%. As a 

consequence, there are many instruments at the proposal or early development stages 

that use various techniques, including Rb-Sr, Cosmic Ray Exposure (CRE) Age and 

Optically Stimulated Luminescence / Thermoluminescence dating, (Anderson et al., 175 

2006; Kalchgruber et al., 2007). One system of note has been developed specifically 

for K-Ar dating, called the Argon Geochronology Experiment (AGE), is also capable 

of measuring the CRE age (Swindle et al., 2003). The potassium abundance is 

measured using the Laser-Induced Breakdown Spectroscopy (LIBS) technique and 

Ar, He and Ne isotope content is measured using a miniature Quadrupole Mass 180 

Spectrometry Array (QMSA). The samples are delivered to one of 12 sample 

crucibles each of which is transferred for analysis by LIBS and QMSA. Each crucible 

is an oven in which the samples are heated to temperatures of 1500°C to liberate the 

noble gases. The package has relatively modest resource requirements with a mass of 

5.7 kg, volume of 30×28×16 cm and power from 10 W up to 180 W for the short 185 

periods when the ovens are in use. 

 

Although it is clear that there are major scientific returns from in situ radiometric 

dating, the technique when applied by robotic payloads needs to be characterised. 

Indeed, the Committee on Planetary and Lunar Exploration (COMPLEX, 2003) 190 

recommended: “… that studies of the feasibility of in situ determination of rock ages, 

by robotic spacecraft, be pursued”. As Beagle 2 would have performed the first 

measurement of this kind on the surface of Mars, and that this measurement may well 

be attempted in the future, we performed a preliminary assessment of the capabilities 

of in situ K-Ar dating using laboratory analogue versions of the GAP and XRS. We 195 



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

9 

also discuss the difficulties and operational constraints inherent to practically achieve 

this measurement on Mars using robotic payloads. 

 

For this study we employed laboratory analogues to the GAP and XRS that were 

sufficiently similar to the flight versions in operation and analytical performance, as 200 

discussed in detail in sections 2.2 and 2.3, for the purposes of this work. The 

individual potassium and argon isotope measurements were performed on martian 

analogue rocks samples (discussed in detail in section 2.1), specifically six fine-

grained basalt slabs, selected because they are a rock petrology prevalent on Mars and 

had a broad range of ages similar to martian meteorites. The K-Ar ages derived from 205 

these measurements were compared to the more reliable ‘benchmark’ Ar-Ar ages. 

 

2. Experimental technique 

 

2.1 Rock samples 210 

 

Although it is not possible to find direct analogues for martian surface basalt flows on 

Earth, the most appropriate terrestrial rocks are basalts in large igneous provinces 

such as Deccan Traps in India, or the Ontong Java Plateau in the Pacific ocean. Such 

basalts form part of large volcanic fields driven by the impact of a mantle plume, 215 

although on Earth these are known to migrate and are related to the break-up of 

continental landmasses. In fact, the most appropriate example are basalts from a 

province formed during the early Jurassic period, which had a peak eruption time 

around 183 million years ago, similar to the known ages of martian shergottite 

meteorites, which are in the range 170-474 Ma (Nyquist et al., 2001). The similar age 220 
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10 

of these rocks means we are able to demonstrate the capabilities of the laboratory 

analogues of the XRS and GAP on rocks with very similar concentrations of 

radiogenic argon and potassium. Also included is an older sample, around 1140 Ma, 

with a similar age to nakhlites (Nyquist et al., 2001). In addition to their age and 

composition, the fact that these rocks have been at low temperatures (close to the 225 

pole), although not necessarily frozen for most of their history, is an additional 

criterion to qualify them as martian analogues. 

 

The samples are from the Dronning Maud Land LIP which forms part of the Ferrar 

(Australia) – Karoo (South Africa) – DML (Antarctica) Large Igneous Province 230 

which erupted around 183 million years ago close to the time of initial break-up of the 

Gondwana super-continent. They are tholeitic basalts, similar in composition to 

modern day examples such as Hawaii. They are dominated by minerals such as 

plagioclase feldspar, olivine and pyroxene with grain sizes of the order of a 

millimetre, but the main potassium bearing phases are the feldspar and groundmass of 235 

glass and fine grained minerals between the larger grains with grainsizes an order of 

magnitude smaller, around 0.1 mm. The main challenge in dating such terrestrial 

rocks is alteration by later fluids which leads to the growth of clay minerals and 

breakdown of some of the original minerals, particularly olivine. Several analytical 

techniques have been developed in order to circumvent the problem of alteration and 240 

obtain eruption ages, most notably Ar-Ar dating, using a stepped heating technique. 

This was the technique employed to obtain the ages of the rocks used during this 

experiment and against which the K-Ar ages were compared. 
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For detailed explanation of the Ar-Ar dating technique and stepped heating, the reader 245 

is referred to McDougall and Harrison (1999). The full data tables and description of 

the samples can be found in Fazel (2007). In brief, samples of basalt were wrapped in 

aluminium foil and irradiated at the McMaster reactor, Canada. The GA1550 biotite 

age standard, with an age of 98.79 ± 0.96 Ma (Renne et al., 1998), was used to 

monitor the fast-neutron flux. The analysis consisted of stepped heating of 1-2 mg 250 

fragments of basalt using a focused CW Nd-YAG infra-red laser with an external 

shutter. The released gases were cleaned by Zr-Al getters and the resulting argon gas 

admitted into a MAP 215-50 noble gas mass spectrometer. Mass peaks from 35 to 41 

were scanned ten times over ten minutes in peak hopping mode and the concentrations 

were extrapolated back to the inlet time. Analyses were corrected for blanks, 37Ar 255 

decay and neutron-induced interference reactions. All errors on plateau ages are 

quoted at the 2-sigma level.  

 

2.2 Potassium Measurement: X-ray Spectrometer 

 260 

The Beagle 2 XRS was designed primarily to perform an analysis of the major and 

trace element composition of rocks and soils. The XRS has several similarities with 

previous X-ray Spectrometers deployed on Mars. It utilises the same radioisotope 

sources as the X-ray Fluorescence Spectrometer (XRFS) on the Viking landers (Clark 

et al., 1977) and the fluorescent X-rays are detected by the same solid state detector as 265 

that employed for the Pathfinder APXS (Rieder et al., 1997). Primary excitation is 

provided by two 55Fe (105.6 MBq) sources (emitting Mn K X-rays of 5.90 and 6.49 

keV) and two 109Cd (8.77 MBq) sources (emitting Ag K X-rays of 22.16 and 24.94 

keV). The fluorescent X-rays are detected by an AMPTEK Si PiN diode which has a 
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thickness of 300 µm and area of 7 mm2. Detectable elements range from Na (Z=11) to 270 

Nb (Z=41). As part of the instrument development program, a flight spare instrument 

was reserved for characterising the instrument’s analytical and operational 

performance in the laboratory. The Full Width Half Maximum (FWHM) resolution of 

the flight spare XRS employed for this study was ~390 eV at Mn Kα (5.9 keV). 

 275 

The XRS is divided into two parts: the detector head assembly (DHA, shown in Fig. 

1, and the Back End Electronics (BEE). For the flight model XRS in the payload of 

Beagle 2, the DHA was part of the Beagle 2 PAW package whereas the BEE was 

situated in the main body of the lander. The BEE consists of a single electronics board 

(120 × 80 × 15 mm) of mass 98 g. The DHA consists of an aluminium cover 280 

approximately cylindrical in shape of diameter 47 mm, height 47 mm and mass 58 g, 

which houses electronic circuit boards and the Si-PiN diode. A carbon fibre reinforced 

plastic (CFRP) structure on the front of the Al cover houses the four radioisotope 

sources. Two 55Fe sources are mounted in the front of the CFRP structure and two 

109Cd sources are mounted in the rear at 90° positions to the 55Fe sources. Uniquely 285 

for an X-ray spectrometer, the sample is excited by two types of sources 

simultaneously as opposed to sequential source excitation used in some terrestrial X-

ray Spectrometers (Potts et al., 1995) or single source excitation as with the APXS 

(Rieder et al., 1997).  

 290 

The operation of the XRS is as follows. The primary radiation from the XRS’s 

radioisotope sources excite fluorescent X-rays from the constituent elements of the 

sample which are detected by a Si-PiN diode. Each X-ray deposits its energy in the 

diode to produce a number of electron-hole pairs in the depleted region. The reverse 
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bias voltage sweeps the electrons towards the rear contact and the total charge is 295 

converted into a voltage via a preamplifier that is co-mounted with the diode in the 

DHA. The preamplifier collects the charge on a feedback capacitor to produce an 

output pulse whose voltage is proportional to the energy of the original X-ray. This 

voltage pulse is processed by the back end electronics (BEE). The signal from the 

preamplifier has a low signal to noise ratio. The pulse shaping circuit amplifies and 300 

widens the pulse into a shape that approximates a Gaussian. The multichannel 

analyser measures the amplitude of each output pulse from the circuit and converts it 

into a digital signal which is binned into one of 4096 channels according to its 

amplitude. The amplitude of the pulse is directly proportional to the energy of the 

incident X-ray. As the fluorescent X-rays are detected, they are accumulated into a 305 

pulse height histogram over an integration time. 

 

Analysis of the basalts using the flight spare XRS was performed with the DHA 

inside a vacuum chamber at a pressure of 2×10-7 mbar and connected to the BEE on 

the laboratory bench via a sealed feedthrough. The flight spare was typically operated 310 

under vacuum, which has the same X-ray attenuation as the 6 mbar CO2 atmospheric 

conditions at Mars to within 5%.The DHA was cooled to ~250 K for standard 

operation in order to reduce the detector noise on the Si-PiN diode and optimise 

detector resolution. The DHA was mounted inside the chamber such that it was 

pointing vertically downwards towards the samples. Each basalt was mounted on a 315 

platform below the XRS which was raised until the surface of the target was flush 

against the CFRP structure. The integration time for each measurement was 3 hours 

which was enough time for appreciable statistics to be accumulated in the X-ray 

spectrum. 
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 320 

For this study, the potassium content of the basalts were compared to analyses 

performed by a commercial Spectrace TN 9000 X-ray spectrometer designed for 

terrestrial fieldwork in order to compare the XRS with a more analytically capable 

instrument. The Portable X-ray Fluorescence Spectrometer (PXRF) is a field portable 

energy-dispersive spectrometer that has been fully characterised for terrestrial in situ 325 

fieldwork (Potts et al., 1995). It consists of two parts: a probe that contained the 

detector and three radioisotope sources, and an analyser which provides data 

acquisition, data processing and display capabilities. The instrument utilises 55Fe 

(1800 MBq), 109Cd (180 MBq) and 241Am (180 MBq) radioisotope sources for 

primary excitation which excites the sample sequentially. The fluoresced X-rays are 330 

detected by a solid state mercuric II iodide X-ray detector with a resolution of ~260 

eV FWHM at Mn Kα. The PXRF is similar in operation to the XRS although it 

offered considerably more flexibility for making multiple measurements on the basalt 

samples because it is a desktop system with considerably shorter integration times. 

For the analysis using the PXRF, the basalt slabs were placed on top of the Spectrace 335 

9000 probe aperture and primary excitation was performed by sequential illumination 

using 109Cd and 55Fe for 100s and 60 s integration times respectively. 

  

2.3 Argon Measurement: Gas Analysis Package 

 340 

The GAP (Wright et al., 2003) was designed to perform many of the investigations 

associated with the exobiological goals of Beagle 2. It is capable of conducting three 

main studies which are (i) the search for organic matter, (ii) analysis of total light 

element composition and speciation and (iii) atmospheric analysis. It can analyse 
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rock, soil or atmospheric samples. Geological samples are delivered to the GAP for 345 

analysis to one of 12 ovens mounted on a carousel, whereas atmospheric gases are 

sampled passively by simply opening up one of the ovens to atmosphere. The carousel 

rotates the oven containing the sample such that it is in contact with the GAP and the 

sample is heated to temperatures of 1000°C. The GAP magnetic sector mass 

spectrometer performs quantitative and stable isotopic measurements of gases 350 

including H2, N2, O2 and CO2. The instrument can also analyse noble gases, including 

Ne, Ar and Xe, as well as trace constituents indicative of extant life (such as CH4). 

The GAP uses the technique of stepped combustion to distinguish between the various 

types of carbon species, including organically derived carbon, by the temperature at 

which they burn in oxygen. Stepped combustion also allows the isotopic composition 355 

of carbon to be measured, since the level of fractionation can discriminate between 

organic and inorganic origins. As part of its broad scientific remit, the GAP can 

measure the Ar isotope content of a rock and hence provide the 40Ar measurement 

necessary for K-Ar dating. 

 360 

For the purposes of this study, the Ar isotope content was measured using a laboratory 

equivalent of the GAP, called Finesse, developed in-house at the Planetary and Space 

Sciences Research Institute, Open University. For the Ar measurements a 90o sector 

magnetic mass spectrometer (Dennis Lee technology) was employed, which is one of 

the constituents of the Finesse machine (Brilliant et al., 1994; Shelkov et al., 1997; 365 

1998; Verchovsky et al., 1997; Verchovsky et al., 2002) which also includes two more 

mass spectrometers: magnetic sector (SIRA 24 analyser) for carbon isotope analysis 

and quadrupole (Hiden Analytical) for He, Ne and Xe measurements; all fed from a 

single extraction and purification system. Ar was extracted by stepped heating of 5 to 
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15 mg of the samples wrapped in platinum-foil in the double-wall (quartz-ceramic) 370 

furnace with a SiC heating element providing temperature up to 1400oC at which 

complete release of Ar is provided. The space between the inner (6-mm diameter 

quartz) and outer (ceramic) tubes is pumped by a mechanical (oil) pump. This is 

important not only for preventing collapse of the quartz tube at high (>1200oC) 

temperature, but also for significant reduction of Ar blank. The released gases were 375 

transferred from the furnace to the cleanup section using molecular sieve at liquid 

nitrogen temperature and then cleaned on the Ti-Al getter. Argon isotopes were 

measured using two Faraday-cup collectors connected to the remote amplifiers with 

sensitivities different by a factor of 100, which provides a wide dynamic range (~103) 

for the registration of the 40Ar ion beam. Masses 36, 37, 38 and 40 were registered, 380 

one at a time, by changing the acceleration voltage. Mass 37 is usually measured on 

mass spectrometers with relatively low resolution in order to estimate the contribution 

from hydrocarbon radicals on masses 38 and 36. The appropriate collector for 40Ar 

was chosen automatically, depending on the intensity of its ion beam. Only the high 

sensitivity collector was used for the registration of all the other masses. The signal 385 

intensities were measured with a high-performance multi-channel digital multimeter 

(Keithley, Model 2000). The sensitivity of the mass spectrometer was calibrated using 

a standard biotite with known amount of radiogenic 40Ar (Afanas’ev and Zirov, 1974) 

and is ~8×10-5 A/torr. Mass discrimination was determined using an air standard as 

described earlier (Shelkov et al., 1998). The system blank was ~2x10-9 cm3 40Ar. 390 

When the amount of Ar released is comparable with the blank, the precision of 

40Ar/36Ar ratio measurement is ~10%. This was the most important restriction for the 

K-Ar age calculations for the samples when the amount of 40Ar is low. 
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A number of performance parameters must be considered when addressing the 395 

question of how representative the Finesse instrument is of the Beagle 2 GAP. These 

include (i) the sample extraction technique, (ii) the instrument sensitivity and (iii) the 

instrument blank. The radiogenic gas is extracted by stepped heating of the sample. 

The finite amount of electrical power available from the Beagle 2 lander would have 

limited the maximum temperature of the GAP ovens to ~1000-1100°C, whereas in 400 

Finesse a temperature of 1400°C is usually used to ensure full release. In principle 

this may have compromised GAP's ability to release all of the argon from a sample.  

We have therefore estimated the error associated with the difference in the release 

temperature between Gap and Finesse using the step heating data. The difference is 

not significant since the maximum of 40Ar release is observed at 900oC which 405 

translates to 10% difference in the age. The Sample Analysis on Mars instrument on 

MSL has ovens which have a maximum temperature similar to GAP of ~1100°C 

because of power limitations. However, Park et al. (2009) found that in the case of 

mars rock analogue basalts and the Zagami shergottite, that after 60 min of heating in 

the SAM oven, ~90% of the total 40Ar is released at 1100°C and ~70% of the total at 410 

1000°C, which suggests that temperatures higher than ~1100 °C may not be required. 

 

Should it be deemed necessary in a future mission to heat beyond the 1000-1100°C 

limit of the Beagle 2 GAP, a number of further factors should be taken into account. 

The GAP design employs a zirconium/platinum seal which should be validated for 415 

seal integrity (including potential sticking) at further elevated temperatures. Blank 

levels (which are discussed below) from the platinum oven are not anticipated to rise 

unduly, though the mechanical strength of the platinum itself may degrade at such 

temperatures necessitating careful trade-off between sealing force applied and 
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structural integrity of the mated assembly. Finally, it is probably inevitable that 420 

increased oven heater power will be required, which will be limited by the capabilities 

of the particular spacecraft, but this requirement may be mitigated to some extent by 

additional thermal control measures to minimise losses due to conduction, convection 

and radiation (only conductive losses were attended to in detail in the Beagle 2 GAP 

application).   425 

 

For mass spectrometers, the sensitivity may be expressed in terms of the current 

measured at the ion beam detector as a function of the pressure of sample within the 

mass spectrometer, for example in units of Amps per mbar. The Finesse laboratory 

instrument has a sensitivity of around 0.8×10-4 Amps per mbar. The sensitivity of 430 

GAP is approximately half this value i.e. 0.4×10-4 Amps per mbar. Both Finesse and 

GAP are operated in “static” mode, in which the mass spectrometer is isolated from 

the pumping system when sample gas is introduced. This increases the residence time 

of the analyte gas within the mass spectrometer, with a concomitant increase in 

analytical precision. However, because the GAP mass spectrometer has an internal 435 

volume of approximately half that of Finesse, it requires only half as much sample gas 

to achieve a given pressure. Thus, expressed in more direct units of Amps per mole of 

sample gas, GAP is of comparable sensitivity to Finesse, achieving around 1 nA per 

nmol of sample gas. The detection limit of Ar on Finesse is ~10-11 cc. However, for 

K-Ar dating, the detection limit of radiogenic 40Ar is more relevant and is 440 

predominantly limited by the system blank and sample contamination. The estimated 

limit for the detection of 40Ar is ~10-10 cc, although this figure does not necessarily 

translate to the minimum quantifiable limit which is higher. 
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The analytical “blank” is the signal that would be measured by an analytical system in 445 

the absence of any deliberately introduced sample. When aiming to analyse argon in 

terrestrial laboratories, it is important to exclude terrestrial atmosphere from the 

system, as air contains ~1% argon. Finesse is therefore built from ultra-high vacuum 

components and utilises getters to further reduce the argon blank. GAP was designed 

around similar principles, and has the advantage that although argon constitutes of 450 

order 1% of the martian atmosphere, the absolute pressure of argon is around 15 times 

lower than that on Earth, resulting in reduced absolute leak rates into the GAP 

vacuum system. Overall the argon blank of GAP on Mars is still to be determined, but 

could in principle be designed to be similar to that of Finesse. 

 455 

3. Results & Discussion  

 

The collated results for the analysed potassium content, the 40Ar content, and the Ar-

Ar and K-Ar ages for the basalt samples are given in Table 1. The uncertainty on the 

potassium measurement by the PXRF and Beagle 2 XRS was derived from 460 

comparison of analyses of geochemical reference materials with certified 

concentrations (Talboys, 2006). The K measurement for sample E for the PXRF is an 

average of four measurements on the surface of the slab (two on each side). The 

analysed 40Ar content for each sample was corrected for atmospheric 40Ar 

(McDougall and Harrison, 1999). The uncertainty on the K-Ar ages were derived 465 

from and limited by the uncertainties on the respective K and 40Ar measurements and 

are quoted to the one sigma level. The uncertainty on the Ar-Ar age measurements are 

quoted to the two sigma level. Since the K-Ar uncertainties are typically an order of 
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magnitude higher than the Ar-Ar ages then quoting the latter ages to one sigma makes 

no difference to their comparison. 470 

 

In general, the K-Ar ages for samples A (255±84 Ma) and B (186±63 Ma) agree with 

their Ar-Ar ages, within their uncertainties although the Ar-Ar age for sample B is not 

well constrained and within the range 180 - 500 Ma. The K-Ar ages for samples C 

(109±28 Ma) and D (88±30 Ma) are lower than the corresponding Ar-Ar ages (at 475 

179 Ma and 183 Ma respectively) and underestimated by a factor of two. The K-Ar 

age for sample E was higher than the Ar-Ar age but both ages still broadly agree. The 

superior accuracy of the PXRF compared to the XRS is reflected in the smaller 

uncertainties of the ages derived from the PXRF. The average uncertainty for the K-

Ar ages with the K measurement made by the PXRF was ~20% although the 480 

uncertainty on individual measurements has a considerable variation, as Table 1 

shows. Doran et al., (2004) argues that, given how poorly constrained the absolute 

ages of martian geological units are, a 20% uncertainty on the K-Ar age would be of 

scientific use. The accuracy of the individual K and Ar measurements are the biggest 

source of uncertainty for the derived age and clearly advances in the analytical 485 

performance of similar instruments for deployment on planetary surfaces are 

important. 

 

A younger K-Ar age for samples C and D can not easily be attributed to argon loss 

since the Ar-Ar dating demonstrates that the samples did not suffer wholesale argon 490 

loss. There remains the possibility that some portion of the samples suffered alteration 

in some areas selected for the Ar analysis on Finesse but this is not very likely. 

Sample grainsizes were reduced for analysis in Finesse and argon loss can also occur 
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during sample preparation from excessive grinding, but again this is not likely to have 

been caused by gentle hand grinding. Another possible reason may be due to 495 

systematic errors introduced as a result of the low level of 40Ar occurring close to the 

limit of reliably determining the concentration (as opposed to the limit of detection) of 

the mass spectrometer. 

 

4. Operational Considerations for In situ K-Ar Radiometric Dating on Mars 500 

In this section, we discuss the operational constraints and considerations to 

performing a radiometric date measurement on Mars. Whatever the payload 

configuration, choice of measurement target is important. From a field geologist’s 

point of view, exposed bedrock is generally more preferable compared to loose 

boulders. Previous landing sites on Mars have provided access to “grab-bag” samples 505 

(VL1, VL2, MPF and MER-Spirit), exposed bedrock (MER-Spirit, MER-

Opportunity), sedimentary lithologies (MER-Opportunity) and erratics (MER-

Opportunity). Clearly, mobility (for detection and access) and dexterity (for 

measurement and sampling) are key variables. 

 510 

Static landers, with zero mobility and limited dexterity, are heavily dependent on 

landing position and hence are unlikely to encounter bedrock within reach of the 

deployable payload. Boulder fields (VL1, VL2, MPF and MER-Spirit (plains)) could 

yield interesting targets from an array of samples but origin may be ambiguous. 

Rovers (moderate mobility and moderate dexterity) provide an ideal platform for 515 

identifying and accessing outcrops or sub-crops. The latter may be possible with 

suitably equipped rovers such as ExoMars (ground penetrating radar (~3 m) and 
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sampling drill (~2 m)). All situations however are subject to accessibility and 

constrained by platform and payload engineering. 

 520 

Once targeted, rocks would need to be prepared using a grinding tool to ensure the 

measurement footprint is suitably sized (~22 mm in the case of the XRS), flat and 

fresh material (if present) is exposed. The Rock Abrasion Tool (RAT) on MER-Spirit 

and MER-Opportunity (Gorevan, 2003), or something akin to it, would serve this 

purpose. Unfortunately, the so called Rock Corer Grinder (RCG) fitted on the Beagle2 525 

PAW (Pullan, 2004) was not designed to provide the same function so XRS 

measurements would have been restricted to unprepared, inevitably rough and 

probably contaminated (i.e. non-fresh) materials (Fig. 2). Contact measurements using 

the XRS on an RCG prepared surface would have been avoided. As a consequence 

there would have been no guarantee that the XRS and GAP measured the same 530 

material or whether it was in the same state. This is an important operational 

consideration for future applications since it could have been particularly detrimental 

to any radiometric results obtained. The RCG was however designed to acquire cores 

from the fresh interior of rocks and deliver them to the GAP via an inlet port. A key 

measurement for radiometric dating is determining the mass of the sample analysed 535 

by the GAP in order to convert the number of atoms of 40Ar into the fractional mass 

required to calculate the age. On Beagle 2, an estimate of the mass of a sample 

delivered to the GAP would have been obtained visually. The GAP inlet mechanism 

consisted of a shelf onto which the sample was deposited before committing to an 

oven. Sample volume would have been determined using the stereo camera in macro 540 

mode (close-up lens filter) and illuminating the inlet recess with an LED. Sample 

mass would then have been derived following in situ assessment of the composition 
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from elemental chemistry (XRS) and mineralogy (Mössbauer) of the host material. It 

is difficult to estimate the uncertainty of the sampled mass, although trials using the 

flight spare RCG sampling various geological materials would have constrained this 545 

uncertainty. 

 

An alternative to in situ measurement might be an integrated XRS within an on-board 

laboratory. One benefit of this is that the same material is analysed by both the GAP 

and the XRS. This would require suitable core samples on which to perform 550 

geochemical analysis prior to analysis with the GAP. The advantage of analysing core 

samples is that they can be extracted from deep within rocks or exposures at a depth 

beyond the weathering or alteration zone (if such an interface exists and is reachable 

on Mars). One potential drawback for radiometric dating is the quantity of material 

obtained since selective sampling bias may occur if the target material is coarse, 555 

heterogeneous and/or brecciated (as opposed to fine, homogenous and/or massive). 

 

Aside from the sampling strategies, the K measurement by the XRS is subject to 

several field effects. Firstly, surface roughness may alter the relative X-ray 

fluorescence intensities from various elements. A correction for the effect of surface 560 

roughness for the in situ analysis of rocks by a field portable X-ray spectrometer has 

been developed by Potts et al. (1997a). Ideally a sample preparation tool could be 

utilised to make the surface flat such as the aforementioned RAT which was capable 

of making a ‘crater’ of dimensions 45 mm in diameter and depth of 5 mm on the rock 

(Gorevan et al., 2003). Another effect is sample inhomogeneity from the natural 565 

mineralogy which may produce a variation of the K content (Potts et al., 1997b). This 

can be solved using multiple measurements on the sample to determine an average 
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composition. In addition, multiple measurements of Ar would also be useful. Finally, 

rocks may have a weathered coating such that the geochemical composition of the 

exterior differs from the interior (Potts et al., 2006). This can again be addressed by 570 

use of a sample preparation tool to remove the weathered surface. 

 

To perform an accurate measurement of the radiogenic Ar in situ on Mars, the sources 

of non-radiogenic Ar and methods of argon loss must be taken into account (as 

considered by Swindle, 2001). Weathering processes on the surface of the rock can 575 

alter the Ar content (McDougall and Harrison, 1999) which is the reason why a fresh 

interior portion of the rock is sampled. Argon loss occurs by heating in the rocks’ 

history to a temperature high enough to liberate the Ar and this is a common 

mechanism for Earth rocks (McDougall and Harrison, 1999). When a rock is heated to 

such a high temperature it undergoes metamorphism where its physical and/or 580 

chemical properties change. Swindle (2001) maintains that few rocks on Mars will 

have experienced metamorphism and so argon loss by this method is unlikely. Impact 

heating is another mechanism for argon loss but the process only heats a small 

fraction of rocks to a sufficient temperature. For Mars the main sources of non-

radiogenic 40Ar are mainly from the atmosphere and in magma. For terrestrial rocks, 585 

any 36Ar present is assumed to originate from the Earth’s atmosphere and accompany 

40Ar in the ratio 296. On Mars, this ratio is not well characterised and is in the range 

1700 – 1900 (Bogard and Garrison, 1999). However, any instrument similar to GAP 

would have constrained this value. There is an additional component of 40Ar in the 

magma with an 40Ar / 36Ar ratio of 200-400 (Bogard and Garrison, 1999). A further 590 

complication is that where all 36Ar in Earth rocks can be assumed to come from the 

atmosphere, in the case of Mars it can also be produced by high-energy cosmic ray 
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interaction with the regolith. However, another Ar isotope, 38Ar, is produced by 

cosmic rays and the ratio 38Ar / 36Ar is expected to be present in a fixed ratio and so 

the cosmogenic 36Ar can be derived. Ar-Ar dating has superseded K-Ar dating in 595 

geochronology laboratories because it can provide more accurate and precise 

crystallisation ages and circumvents the problem of radiogenic Ar loss.  

Studies of the martian meteorites have shown that their K-Ar ages all generally agree 

with the Ar-Ar age with the exception of ALH84001 where an impact resetting event 

probably occurred at ~4 Ga ago (Doran et al., 2004) which suggests that non-600 

radiogenic argon and argon loss had not generally occurred. However, recent studies 

of the Zagami shergottite have shown that it contains a significant magmatic 

contribution of non-radiogenic 40Ar (Bogard and Park, 2008a). Therefore, a challenge 

for in situ K-Ar dating is to determine whether analysed samples contained large 

amounts of excess magmatic 40Ar. An isochron dating analysis is a useful method of 605 

determining if excess Ar is present in the sample which essentially involves plotting 

the potassium content versus the total (radiogenic and non-radiogenic) 40Ar. This 

analysis when applied to shergottites, including Zagami, showed that similar amounts 

of excess 40Ar were inherited from the magma during their crystallization. A similar 

analysis of nakhlites showed that they contained essentially no excess argon (Bogard 610 

and Park, 2008b). Therefore, an isochron analysis could be applied when performing 

robotic in situ dating provided a sufficient range of K contents can be analysed so as 

to define the isochron slope (Bogard, 2008c). 

  

5. Summary / Conclusions 615 
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The aim of this study was to investigate the feasibility of in situ K-Ar dating using 

robotic payloads on Mars. K-Ar dating was achieved on five basalt slabs using the 

flight spare model of the XRS, for the potassium measurement, and a laboratory 

analogue of the GAP for Ar. Both of these techniques were similar in operation and 620 

analytical performance to the Beagle 2 flight models. The measurements were 

performed on martian analogues that had similar ages and K and 40Ar contents to 

martian shergottites and nakhlite meteorites. The K-Ar ages were compared against 

complementary Ar-Ar ages. The K-Ar ages were found to broadly agree with the Ar-

Ar ages although where discrepancies arose these were a result of the 40Ar content 625 

being near the detection limit or an inhomogeneous distribution of K. 

 

Given the preliminary results, we can conclude that in situ radiometric dating is 

possible in principle although with the following caveats: 

(1) Careful attention must be paid to improving the analytical performance of the 630 

instruments, in particular the accuracy and detection limits. The accuracy of 

the K and Ar measurements are the biggest source of random uncertainty in 

the derived K-Ar age. 

(2) Multiple measurements must be made on rocks to establish a bulk composition 

and account for heterogeneities. 635 

(3) Careful attention must be made to sample acquisition. 

(4) Given the number of variables involved in successfully performing a 

radiometric date measurement on Mars, further work needs to be performed to 

characterise this technique for robotic elements in terms of the instruments 

employed, sampling strategies, analytical procedures and tools, on a wider 640 

variety of martian analogues.  
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Figure Captions 

 840 

Fig. 1. The Detector Head Assembly of the XRS with constituent components 

labelled. The aluminium ring on the CFRP cap is not shown. 

 

Fig. 2. The Rock Corer Grinder (RCG) on Beagle 2 was capable of sampling some 

rocks but had a small grinding footprint (dictated by the 10 mm head diameter, shown 845 

here for scale). In addition, both the tool and PAW lacked the capability to remove the 

residual debris mound that was produced. Subsequent contact between this positive 

feature and the XRS detector head would have probably resulted in contaminating the 

source capsules and/or potentially compromising the Be window. Examples shown 

are orthoquartzite (left) and massive basalt (right). Both samples have oxidised 850 

weathering/alteration rinds and produce debris mounds in excess of 5 mm high.  
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Table 1.  

K Content (%) 40Ar content Radiometric Ages 

K-Ar (Ma) Basalt 
Sample 
Identity 

Beagle 2 
XRS PXRF GAP 

(cc/g) Ar-Ar (Ma) 

B2 XRS PXRF 

A 0.28±0.07 0.26±0.03 (3.0±0.3)×10-6 187.8±2.8 255±84 273±70 
B 0.63±0.16 0.57±0.06 (4.8±0.5)×10-6 180 - 500 186±63 204±52 
C 0.41±0.10 0.45±0.05 (1.8±0.2)×10-6 179±3 109±28 99±14 
D 0.36±0.09 0.44±0.05 (1.3±0.1)×10-6 183.25±3.6 88±30 72±19 
E 0.24±0.06 0.33±0.04 (2.5±0.2)×10-5 1141±23 1627±289 1308±146 
F 0.24±0.06 0.19±0.02 <DL 187.4±2.7 - - 

Table 1. Tabulated results comprising K content as measured by the PXRF and 

Beagle 2 XRS, 40Ar content as measured by flight-like version of the GAP and 

radiometric ages as derived using the Ar-Ar and K-Ar techniques. Each K-Ar age 855 

corresponds to a K measurement as measured by each of the X-ray Spectrometers. 

The sample identities assigned by Dept. of Earth Sciences, Open University are as 

follows: A: Z1865.1, B: Z1868.18, C: Z1853.6, D: Z1873.25, E: Z1866.1, F: 

Z1862.16. 
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Fig. 1. 

NOTE: Please reproduce as colour for the web and greyscale for print. 

Web: 

 865 

Print: 
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Fig. 2. 

NOTE: Please reproduce as colour for the web and greyscale for print. 870 

Web: 

 

Print: 
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