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Trapping of lattice polarons by impurities

J.P. Hague,1, 2 P.E. Kornilovitch,3 and A.S. Alexandrov1
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We consider the effects of impurities on polarons in three-dimensions (3D) using a continuous time
quantum Monte-Carlo algorithm. An exact treatment of the phonon degrees of freedom leads to a
very efficient algorithm and we are able to compute the polaron dynamics on an infinite lattice by
developing an auxiliary weighting scheme. The magnitude of the impurity potential, the electron-
phonon coupling and the phonon frequency are varied. We determine the magnitude of the impurity
potential required for polaron trapping. For small electron-phonon coupling the number of phonons
increases dramatically on trapping combined with a sharp decrease in kinetic energy. The polaron
binding diagram is computed, showing that intermediate-coupling low-phonon-frequency polarons
are localized by exceptionally small impurities. [PUBLISHED AS PHYS. REV. B. 78 (2008) 092302]

PACS numbers: 71.38.-k

Interest in the role of electron-phonon interactions
(EPIs) and polaron dynamics has recently gone through
a vigorous revival. Polarons have been shown to be rele-
vant in high-temperature superconductors, colossal mag-
netoresistance oxides, polymer and many inorganic semi-
conductors, and electron transport through nanowires
often depends on vibronic displacements of ions. The
continued interest in polarons extends well beyond the
physical description of advanced materials. The field has
been a testing ground for analytical, semi-analytical, and
different numerical techniques [1].

The situation as regards polaron formation and dy-
namics in real materials is complicated by an intrinsic
disorder. Moreover, the EPI cannot be considered either
weak or strong in many of the materials described above,
so standard approximations based on perturbation the-
ories break down. In a pioneering paper Economou and
coauthors [2] studied a one-dimensional (1D) large po-
laron with diagonal disorder by using methods from the
theory of non-linear systems. Bronold et al. [3] inves-
tigated the dynamics of a single electron in a Holstein
model with a site-diagonal, binary-alloy-type disorder by
applying a dynamical mean-field theory (DMFT) for a
Bethe lattice with infinite coordination number. DMFT
was further improved by Bronold and Fehske [4], who de-
scribed Anderson localization and the self-trapping phe-
nomena within the same model.

There is a delicate interplay between the self-trapping
by EPI and trapping by dopant-induced disorder in the
intermediate-coupling regime, so even a single polaron
has to be studied by exact methods such as continuous-
time quantum Monte-Carlo (CTQMC) which was devel-
oped for the free lattice polaron and bipolaron in Refs.
5 and 6 respectively and/or diagrammatic Monte-Carlo
(DMC) [7] techniques. In particular, the CTQMC al-
gorithm treats the phonon degrees of freedom exactly,
does not suffer from time discretization errors and is not
limited to finite lattices, thus providing numerically ex-
act solution of the (bi)polaron problem in any dimen-

sions and on any lattice. While the properties of free
(bi)polarons are very important, the interplay between
polarons and disorder should also be addressed to under-
stand the properties of many materials.

To address this crucial question, we make a further
development of the CTQMC algorithm, so that the algo-
rithm can be used to solve the problem of the electron
interacting with phonons in the presence of an impurity
on a 3D lattice with no finite size errors. The electron
hopping is assumed to be between nearest neighbors only.
The phonon subsystem is made up of independent oscil-
lators with frequency ω, displacement ξm, momentum
P̂m = −ih̄∂/∂ξm and mass M associated with each lat-
tice site. The real space Hamiltonian reads,

H = −t
∑

〈nn′〉

c†
n′cn +

∑

n

∆nc†ncn (1)

+
∑

m

(

P̂ 2
m

2M
+

Mω2ξ2
m

2

)

−
∑

nm

fm(n)c†
n
cnξm .

Here 〈nn′〉 denote pairs of nearest neighbors. Sites are in-
dexed by n for electrons and m for ions. Spin indices and
Hubbard U are omitted since there is only one electron.
The strength of the EPI is defined through a dimension-
less coupling constant, λ =

∑

m
f2
m(0)/2Mω2zt which is

the ratio of the polaron energy when t = 0 to the kinetic
energy of the free electron W = zt. In this paper, we
discuss Holstein polarons, which have a force function,
fm(n) = κδn,m [8]. A special case of the Hamiltonian
given in eq. (1) is the case where the external potential,
∆n = ∆δn,0, representing an impurity. We will study
this in detail in this paper.

The main development here is the extension of the
CTQMC algorithm for polaron trapping by an impurity.
The effective polaron action that results when the phonon
degrees of freedom have been integrated out analytically
is given by,



A[r(τ)] =
zλω̄

2

∫ β̄

0

∫ β̄

0

dτ̄dτ̄ ′e−ω̄β̄/2 cosh(ω̄(β̄/2 − |τ̄ − τ̄ ′|))
Φ0[r(τ), r(τ ′)]

Φ0(0, 0)
−

∫ β

0

∆(r(τ)) dτ , (2)

The contribution of this action to the statistical weight
of a path configuration is eA. Φ0[r(τ), r(τ ′)] =
∑

m
f̄m[r(τ)]f̄m[r(τ ′)] is the phonon mediated interac-

tion (here ω̄ = ω/t and β̄ = t/kBT ).
One of the main complications regarding the simula-

tion of a particle in a single impurity potential is ensuring
that the whole configuration space is sampled. This can
be understood in the following way. During a binary kink
update (discussed below) the ends of the path may either
stay put or move along one of the nearest neighbor bonds,
i.e. the path is essentially a random walker. In a thought
experiment, we set up the system with a very small at-
tractive ∆ → 0−, with the path close to the impurity. In
1D, the random walker has finite probability to return to
the start site after a finite number of steps. In 2D the
walker has vanishing probability to return, so ergodicity
is not guaranteed. In 3D, the walker will not in general
return to its start point even after an infinite time, so
if updates only have the properties of a basic random
walker, then the Monte-Carlo procedure will fail, since
the impurity will (on average) never be visited.

In order to ensure that the path includes sufficient sam-
pling of the impurity, it would be useful to make the path
spend more time near the impurity, weighting the esti-
mators in such a way that the final measurements are the
same. Such sampling may be achieved by introducing an
auxiliary weighting to the problem. A functional of the
path w[{C}] is introduced, which represents the prob-
ability that an unbound path is found in a particular
configuration. w[{C}] is tuned so that the path samples
the impurity regularly, modifying the measurements as,

〈O〉 =
〈

Ô
〉

Atot

=

∑

{C} O[{C}]eAtot[{C}]

∑

{C} eAtot[{C}]
(3)

=

∑

{C} O[{C}]w[{C}]eAtot[{C}]/w[{C}]
∑

{C} w[{C}]eAtot[{C}]/w[{C}]
(4)

=

〈

Ô/w[{C}]
〉

Atot,w

〈1/w[{C}]〉Atot,w

(5)

and the update probabilities are modified by the ratio
of weights w[{D}]/w[{C}] on changing from configura-
tion {C} to {D}. Atot is the total action including ki-
netic energy terms (for reasons relating to the continuous
time algorithm, the kinetic energy part of the statisti-
cal weight is taken into account through the update rule
below). Thus the measurement of an observable with
respect to the ensemble defined by the action Atot can
be related to the measurement of an observable with re-

spect to the ensemble defined by Atot and w. Error bar
estimation is an important aspect of Monte-Carlo sim-
ulation, for which we use the bootstrap method. It is
necessary to take into account the covariance between
〈Ô/w[{C}]〉Atot,w and 〈1/w[{C}]〉Atot,w when determin-
ing error bars.

In the weighted ensemble, the ground state polaron
energy, E, the kinetic energy and number of phonons are
computed using the estimators in e.g. Ref. 9 modified
according to eqs. 3-5. The average distance from the
impurity is computed via,

Rimp =

〈

1

w

√

1

β

∫ β

0

r2(τ)dτ

〉

Atot,w

/

〈

1

w

〉

Atot,w

. (6)

The form of w is a matter of choice, but it is useful to
choose a form that allows control over the confinement
of the new path. To avoid undesirable long timestep
correlations, we use an auxiliary weighting of the form
w ∝ 1/(α + Rd+1+η), where R is the distance of the
configuration from the impurity, d the dimensionality of
the lattice, η is a small value and α stops the weight
blowing up on the impurity site. In this way, the average
distance from the impurity is finite, since in the absence
of interaction, 〈R〉 ∼

∫∞

0
w[R]Rd−1 dR, shows that “free”

particles are localized, but not bound too strongly. We
found α = 10, η = 0.1 to be a good compromise in both
bound and unbound cases.

In the path integral QMC for a polaron in an im-
purity, it is necessary to make update operations in-
volving two kinks to ensure that the end configura-
tions of the path remain periodic in imaginary time,
since the translational symmetry has been broken. A
binary update satisfying the imaginary-time boundary
conditions involves adding or removing a kink-antikink
pair (an antikink to kink l is a kink with direction
−l). Update probability is determined following a sim-
ilar argument to that in Ref. [9] with a small mod-
ification; consider two path configurations, {C} and
{D}, where configuration {D} has one more l kink at
time τ1 and one more −l antikink at time τ2 than
{C}. The balance equation is W [{C}]QA[{C}]P [{C} →
{D}] = W [{D}]QR[{D}]P [{D} → {C}]. With rela-
tive contribution of configurations {C} and {D} mod-
ified by the auxiliary weighting, W [{D}]/W [{C}] =
(t∆τ)2eA[{D}]−A[{C}]w[{D}]/w[{C}].

We modify the equal weighting scheme in Ref. 9
for the probability of choosing kinks with a partic-
ular kink time when adding or removing the second



kink, allowing weighted kink insertion with the anti-
kink time chosen with probability p(τ − τ ′) where
∫ β

0
p(τ)dτ = 1. In this way, kinks and antikinks

in the pair can be chosen at similar τ , and the up-
date acceptance is improved. This choice leads to
update probabilities for insertion of a direction l

kink at τ and a direction −l kink at τ ′, P [C → D] =

min{1 ; w[D]tlt−lβeA[D]−A[C]/w[C]Nl[D]
∑N−l[D]

i=1 p(τ, τi)}

In order to sample the configuration space faster, we
also examined path updates which shift the whole path
through a certain distance, but the efficiency of the al-
gorithm was not improved. The auxiliary weighting ap-
proach may be used for systems with several particles,
with the auxiliary weight depending on either the abso-
lute or relative positions of the paths.

Applying the Lang-Firsov (LF) canonical transforma-
tion to the Hamiltonian and assuming large phonon
frequency, an approximate form can be derived, H̃ =
−t̃
∑

〈ij〉 c†i cj +
∑

i ∆ic
†
i ci, with t̃ = t exp(−ztλ/ω). It

is possible to compute an analytic value of the impu-
rity potential, ∆ at which binding occurs. For po-
larons on a 3D lattice under the influence of an impu-
rity, ∆C = 3.958t̃ = 3.958m0/m∗. When there is no
electron-phonon coupling, the relation ∆C = 3.958t is
exact. While the approximation for t̃ is not expected to
hold for low phonon frequency, use of the exact value
of the inverse mass computed from CTQMC in the ab-
sence of the impurity is expected to lead to a quali-
tatively correct value for ∆C . We will return to this
point later in the article. An exact value for the energy
of the instantaneous problem is given by the equation,
1 = |∆|

∫ ∫ ∫ π

−π
d3q/(2π)31/[|E| − 2

∑d
i=1 cos(qi)].

To establish the circumstances under which the po-
laron is localized by the impurity, the total energy must
be determined. Fig. 1 shows the total energy E vs ∆ for
various λ at ω̄ = 1. The transition can be seen as a sud-
den change in the gradient. The flat gradient corresponds
to the energy of the unbound polaron. The strong bind-
ing asymptotes show how the small polaron with large
λ almost immediately binds strongly as an impurity po-
tential is introduced. We show the exact energy as a line
beneath the λ = 0 points, but for the other cases, lines
are a guide to the eye. It is also interesting to see how
the kinetic energy changes as the polaron binds. For weak
electron-phonon coupling, the kinetic energy collapses at
the transition, whereas at strong coupling the polaron is
already small, and there is no significant sudden change
in the kinetic energy on binding, rather a slow decrease.
The ω → ∞ theory determined after taking the LF trans-
formation does not properly show this effect, rather the
λ = 0 curve is just scaled and always has a kink on local-
ization. This is evidence that exact numerics are required
to properly understand the problem.

The measure of the inverse radius gives another crite-
rion for the critical binding potential. Fig. 2 shows R−1
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FIG. 1: Total energy E vs ∆ for various λ at ω̄ = 1. In all fig-
ures, error bars are plotted to 3 standard errors. Where error
bars are not visible, error bars are smaller than the points.
Straight dotted lines indicate the strong impurity asymptote
−ztλ + ∆. Inset: Kinetic energy.
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FIG. 2: R−1
imp vs ∆ for various λ at ω̄ = 1.

vs ∆ for various λ at ω̄ = 1. The inverse radius van-
ishes continuously on binding. As the electron-phonon
interaction increases in strength, the polaron binds at
monotonically smaller values of the impurity potential,
until around λ = 1, where tiny impurities are capable of
binding the polaron. This is because the kinetic energy
of the polaron decreases rapidly on increasing λ. Binding
occurs when the depth of impurity potential is approxi-
mately the kinetic energy of the free polaron.

Small (strong-coupling) polarons contain much larger
numbers of phonons than large (weak-coupling) polarons.
It is therefore of interest to see if the reduction in size as-
sociated with localization is also associated with a similar
phenomenon. Fig. 3 shows the variation of Nph with ∆
at a number of different λ at ω/t = 1. For small λ, there
is a sudden increase in the number of phonons as the
large polaron is trapped by the impurity, consistent with
the change to small polaron behavior. The localization
of the polaron wavefunction increases the possibility for
interaction between the electron and the local ion mode
through a local coupling. Such an effect is expected to be
less pronounced for long range electron-phonon coupling.

Our final result is the binding diagram in λ, ∆ space
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FIG. 3: Nph vs ∆ for various λ at ω̄ = 1. For small λ, there
is a sudden increase in Nph as the large polaron is trapped by
the impurity, leading to small polaron behavior.
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FIG. 4: Binding diagram in λ, ∆ space. Also shown are the
approximate values predicted by the LF transformation with
zero excited phonons ∆C(λ) = ∆C(0) exp(−zλ/ω̄), from the
exact mass in the case with translational invariance (measured
using QMC) ∆C(λ) = ∆C(0)m0/m∗ and the value measured
using Monte-Carlo. Data obtained independently from the
diagrammatic Monte Carlo approach by Mishchenko et at [10]
are shown to agree with our method. The inset shows the
convergence of ∆c with the LF result for much larger λ

shown in Fig. 4. Also plotted are approximate values
predicted by the LF transformation with zero excited
phonons ∆C(λ) = ∆C(0) exp(−zλ/ω̄), from the exact
mass in the translationally-invariant case (measured us-
ing QMC) ∆C(λ) = ∆C(0)m0/m∗ and the value mea-
sured from the current Monte-Carlo code. For ω̄ = 1, we
examined the energy for β̄ = 112 close to binding. Below

β̄ = 56, error bars dominated temperature corrections,
and led to small differences between analytics and nu-
merics when ω̄ = 10. At low phonon frequencies, the Hol-
stein polaron binds almost immediately at λ >

∼ 1. This
leads to the expectation that polarons with local inter-
action are almost completely localized in materials with
strong electron-phonon coupling. Mobile behavior could
re-emerge if the electron density is similar to the density
of impurities and a strong Coulomb repulsion (U >

∼ 4λ)
is also available so that polarons become repulsive rather
than attractive impurities when pinned. Longer range
interactions lead to more mobile polarons, which are less
likely to be pinned (the role of mass is shown by the
similarity between the binding diagram from QMC, and
the approximate one determined from the mass of the
unbound polaron). Such long range electron-phonon in-
teractions are difficult to justify in 3D materials, and we
expect that polarons strongly coupled with low-frequency
phonons are strongly localized in such materials.

In summary, we have developed an algorithm for study-
ing the trapping of polarons by impurities. Analysis
showed that for electron-phonon coupling λ > 1, low-
frequency polarons are strongly bound to the impurity.
For small λ, there is a more gradual binding, coupled
with a sudden increase in the number of phonons present
in the polaron, and sudden decrease in the kinetic en-
ergy. We computed the binding diagram, showing that
critical impurity strength changes dramatically with λ
for intermediate-coupling, in contrast to the conclusion
for continuum (weak-coupling) polarons, and differs sig-
nificantly from the strong-coupling approximation.
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