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Abstract.
Recent angle-resolved photoemission spectroscopy (ARPES) has identified

that a finite-range Fröhlich electron-phonon interaction (EPI) with c-axis
polarized optical phonons is important in cuprate superconductors, in agreement
with an earlier proposal by Alexandrov and Kornilovitch. The estimated
unscreened EPI is so strong that it could easily transform doped holes into mobile
lattice bipolarons in narrow-band Mott insulators such as cuprates. Applying a
continuous-time quantum Monte-Carlo algorithm (CTQMC) we compute the total
energy, effective mass, pair radius, number of phonons and isotope exponent of
lattice bipolarons in the region of parameters where any approximation might fail
taking into account the Coulomb repulsion and the finite-range EPI. The effects of
modifying the interaction range and different lattice geometries are discussed with
regards to analytical strong-coupling/non-adiabatic results. We demonstrate that
bipolarons can be simultaneously small and light, provided suitable conditions on
the electron-phonon and electron-electron interaction are satisfied. Such light
small bipolarons are a necessary precursor to high-temperature Bose-Einstein
condensation in solids. The light bipolaron mass is shown to be universal in
systems made of triangular plaquettes, due to a novel crab-like motion. Another
surprising result is that the triplet-singlet exchange energy is of the first order
in the hopping integral and triplet bipolarons are heavier than singlets in certain
lattice structures at variance with intuitive expectations. Finally, we identify
a range of lattices where superlight small bipolarons may be formed, and give
estimates for their masses in the anti-adiabatic approximation [PUBLISHED
AS: J. Phys.: Condens. Matter 19 (2007) 255214].

PACS numbers: 71.38.-k
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1. Introduction

A growing number of observations point to the possibility that high-Tc cuprate super-
conductors may not be conventional Bardeen-Cooper-Schrieffer (BCS) superconduc-
tors [1], but rather derive from the Bose-Einstein condensation (BEC) of real-space
pairs, as proposed by Mott and others [2, 3, 4, 5]. A possible fundamental origin of
such strong departure of the cuprates from conventional BCS behaviour is the un-
screened (Fröhlich) EPI with a polaron shift, Ep of the order of 1 eV (La2CuO4,
Ep ≈ 0.65eV) [6], routinely neglected in the Hubbard U and t − J models [7]. This
interaction with c−axis polarized optical phonons is virtually unscreened because the
upper limit for the out-of-plane plasmon frequency (. 200 cm−1 [8]) is well below the
characteristic frequency of optical phonons, ω ≈ 400 - 1000 cm −1. Since screening
is poor, the magnetic interaction remains small compared with the Fröhlich EPI at
any doping of cuprates. In order to generate a convincing theory of high-temperature
superconductivity, one must treat the Coulomb repulsion and unscreened EPI on an
equal footing. When both interactions are strong compared with the kinetic energy
of carriers, the so-called “Coulomb-Fröhlich” model (CFM) predicts a ground state
in the form of mobile, preformed, inter-site pairs dressed by lattice deformations (i.e
intersite bipolarons) [6, 9, 4].

The most compelling evidence for (bi)polaronic carriers in novel superconductors
is the discovery of a substantial isotope effect on the carrier mass [10] predicted by
the bipolaron theory [11]. Recent high resolution ARPES [12, 13] provides another
piece of evidence for a strong EPI in cuprates between electrons and c-axis-polarised
optical phonons [13]. These, as well as recent tunnelling [14], earlier optical [15] and
neutron scattering [16] experiments unambiguously show that lattice vibrations play
a significant though unconventional role in high temperature superconductors.

Remarkably, earlier path-integral studies of large bipolarons in the continuous
limit [17]) led to a double surprise: (a) The large bipolaron is only stable in a very
limited sector of the parameter space (Coulomb repulsion versus the Fröhlich coupling
constant) (b) Most traditional “Fröhlich polaron” materials (alkali halides and the
like) lie completely outside (and “far” from) this bipolaron stability sector, but several
high-Tc superconductors lie very close and even inside this rather restricted area of
stability in the parameter space.

When the strong Fröhlich EPI operates together with a shorter range deformation
potential and molecular-type (e.g. Jahn-Teller) EPIs, it readily overcomes the
Coulomb repulsion at short distances of about the lattice constant, so that large
(continuous) bipolarons become local (lattice) bipolarons in narrow bands [4]. Even at
significant doping local pairs are not overlapped, so that a high critical temperature for
Bose-Einstein condensation (BEC) could be achieved, if they are sufficiently mobile.
Analysis of the site-local Holstein-Hubbard model has indicated that in order for
the Coulomb repulsion (Hubbard U) to be overcome by the induced attractive force
between electrons, EPI must be so large that the polaron (and bipolaron) masses must
be huge, rendering the transition temperature minuscule [18]. All is not lost, however,
since the Holstein interaction is the extreme short-range limit of a finite range EPI.
Using the finite-range EPI it is possible for electrons to pair between sites [6, 9] without
requiring the electron-phonon induced attraction to be larger than the Hubbard U .
Moreover, the individual polarons are significantly lighter, so the mass of the pair has
potential to be orders of magnitude smaller than in the Holstein case.

To put these arguments on a solid microscopic ground we simulate the CFM
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Hamiltonian on a lattice using an advanced QMC technique for bipolarons and
compare with analytic results in the strong coupling and anti-adiabatic limits. First,
we introduce the model.

2. Coulomb-Fröhlich model

The Hamiltonian for the CFM is written as

H = − t
∑

〈nn′〉σ

c†n′σcnσ +
1

2

∑

nn′σσ′

V (n,n′)c†nσcnσc†n′σ′cn′σ′

+
∑

m

P̂ 2
m

2M
+

∑

m

ξ2
mMω2

2
−

∑

nmσ

fm(n)c†nσcnσξm . (1)

Each ion has a displacement ξm. Sites labels are n and m for electrons and ions
respectively. c annihilate electrons. The phonons are Einstein oscillators with
frequency ω and mass M . 〈nn′〉 denote pairs of nearest neighbours, and P̂m =
−i~∂/∂ξm ion momentum operators. The instantaneous interaction V (n,n′) has on-
site repulsion U and nearest neighbour interaction V (if the electron-phonon coupling
term is set to zero, one obtains the simple UV model). The force function is of the
screened Fröhlich type,

fm(n) =
κ

[(m − n)2 + 1]3/2
exp

(

−|m − n|
Rsc

)

(2)

(κ is a constant) [20]. We will also use a slightly different notation for the electron-

phonon interaction term here, Hel−ph = −ω
∑

ijσ gijc
†
iσciσ(d†j + dj) where gij is a

dimensionless interaction proportional to the force, and d†j create phonons at site j.
We set ~ = 1.

Such a model has a remarkable property. Unlike the site local Holstein model,
there is attraction (and potentially pairing) even in the presence of very strong on-site
Coulomb repulsion. The model is justified in the presence of alternating planes of
itinerant electrons and ions, where there is strong screening along the c-axis.

There have been a number of studies discussing the masses of polarons and
bipolarons with long range interaction [19, 21, 22]. The polaron formed from the
long-range Fröhlich interaction proposed in [6] has been simulated in reference [9],
demonstrating that the polaron mass may be significantly lighter than its Holstein
counterpart. This is due to the nature of polarons in the Holstein case, which
may be demonstrated nicely by examining the Lang-Firsov transformation. In that
transformation, the operators in the Hamiltonian are replaced in the following way,

d†j → d̃†j = d†j +
∑

i

gijni c†i → c̃†i = c†i exp[
∑

j

gij(d
†
j − dj)] (3)

dj → d̃j = dj +
∑

i

gijni ci → c̃i = ci exp[−
∑

j

gij(d
†
j − dj)] (4)

thus hopping processes in the Holstein polaron (where gij = gδij) take place by a
complete relaxation of the lattice on the initial site, a hop, and then a distortion on
the target site. With a longer range interaction, the lattice is pre-distorted before the
particle moves, leading to a much smoother process with a lower intermediate energy
state. We have recently determined that long-range interactions lead to a reduction
of the importance of geometry on the properties of the bipolaron, especially the mass,
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Figure 1. (a) Staggered vs (b) rectangular ladders. Ions are placed one lattice
spacing above a ladder of electrons, with one ion per site. The ions are permitted
to vibrate in the z-direction only. Electrons inhabit one leg each, with no hopping
between the legs. In the strong coupling limit, there are significant geometrical
differences. On the staggered ladder, two degenerate near neighbour pairs (A
and A′) can form, which allows the polaron to scuttle in a crab-like manner
with mass proportional to the polaron hopping. Alternatively, on the rectangular
ladder there is one near-neighbour state, and in order to move, the pair must
break to state A in order to change configuration from state B to B′. Such a
state propagates by waddling awkwardly, and has mass proportional to polaron
hopping squared.

leading to very similar results on triangular and square lattice [21]. We will discuss
the crossover between Fröhlich and Holstein polarons later in this article.

The Lang-Firsov transformation is an exact canonical transformation, and leads
to a transformed Hamiltonian with a new transformed wavefunction |Ψ〉LF = e−S |Ψ〉.
It is most instructive to consider the transformation of the atomic Hamiltonian and
the transformation of the hopping terms separately, since typically the Lang-Firsov
transformation is the starting point for a series of perturbative analyses.

2.1. Transforming the atomic Hamiltonian

When the hopping term is set to zero, the phonon portion of the CFM is written as
follows:

Hat = −ω
∑

ij

gijni(d
†
j + dj) + ω

∑

j

(

d†jdj +
1

2

)

(5)

(N.B. The index i is now taken to contain a spin and a site index). Applying the
Lang-Firsov canonical transformation ‡,

H̃at = − ω
∑

ij

gijni(d
†
j + dj + 2

∑

i′

gi′jni′)

+ ω
∑

j

[

(d†j +
∑

i

gijni)(dj +
∑

i′

gi′jni′) +
1

2

]

(6)

= −
∑

ii′

nini′

∑

j

fijfi′j

2ω2M
+ ω

∑

j

(

d†jdj +
1

2

)

(7)

‡ Inspection of equations 3 and 4 shows that electron number operators are unchanged on
transformation, so the Coulomb part of the Hamiltonian is also unchanged
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Figure 2. Φ functions for (a) the staggered ladder and (b) the rectangular ladder
(subscripts 1 and 2 correspond to the leg of the chain). Note that since an index
is assigned to each unit cell, there is an offset of 1 index in the interaction funcion
between paths 1 and 2, relative to the interaction function between paths 2 and
1 when the staggered ladder is simulated.

where we reordered the summation, and noted that gij = fij/ω
√

2Mω. This shows
the remarkable property of the Lang-Firsov transformation, since the electron and
phonon subsystems in the atomic limit are now completely decoupled.

At this stage, it is convenient to introduce the following function,

Φ∆r[r(τ), r(τ ′)] =
∑

m

fm[r(τ)]fm+∆r[r(τ
′)] (8)

where the reason for adding an additional translation, ∆r, to the phonon sub-system
will become apparent when the action is introduced in the next section. For the
following discussion, ∆r = 0. The Φ function for the ladder systems investigated in
this paper is shown in figure 2, corresponding to a screened Fröhlich interaction with
Rsc = 1. We also define the dimensionless interaction parameter λ = Ep/W where W
is the magnitude of the energy of the tight-binding electron (normally the half band-
width zt). As we can see from equation 7, the energy shift when there is only one

particle (polaron shift for i = i′) is Ep = 1
2Mω2

∑

j f2
0j = Φ0(0,0)

2Mω2 . Thus λ = Φ0(0,0)
2WMω2 .

Substituting that definition into the atomic Hamiltonian, one obtains:

H̃at = −
∑

ii′

nini′
WλΦ0(i, i

′)

Φ0(0, 0)
+ ω

∑

j

(

d†jdj +
1

2

)

(9)

The reason for introducting the new functions Φ can immediately be seen, since they
appear in the Hamiltonian as a ratio. Thus, in combination with λ they give a universal
definition of coupling in models with long-range hopping.

2.2. Transforming the electron hopping term

Substitution of equations (3-4) transforms the tight binding Hamiltonian in the
following way:

Htb =
∑

ii′

tii′c
†
i ci′ → H̃tb =

∑

ii′

tii′ c̃
†
i c̃i′ =

∑

ii′

σii′c
†
ici′ (10)

where

σii′ = tii′ exp





∑

j

gij(d
†
j − dj)



 exp



−
∑

j

gi′j(d
†
j − dj)



 (11)
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i.e. we can see that the electron-phonon interaction in the transformed Hamiltonian
is part of the hopping process, and that to some extent, one may regard the operators
c̃ as creating polarons (i.e. electrons and a phonon cloud at the same time).

We now apply the following identity,

eAeBe−[A,B]/2 = eA+B (12)

(which is valid if C = [A, B] commutes with both A and B) with e−AeA = 1, which
is always valid. Therefore, eAeB = eA+Be[A,B]/2. In equation 11 we may choose
A =

∑

j gij(d
†
j − dj) and B = −

∑

j gi′j(d
†
j − dj). So, A + B =

∑

j(gij − gi′j)(d
†
j − dj)

and [A, B] = 0 Since the commutator is a number, equation 12 may be applied.
The hopping operator becomes:

σii′ = tii′ exp



−
∑

j

(gij − gi′j)dj +
∑

j

(gij − gi′j)d
†
j



 (13)

Now, the identity may be used again, making the grouping, A = −∑

j(gij−gi′j)dj

and B =
∑

j(gij − gi′j)d
†
j . Thus [A, B] = −

∑

j(gij − gi′j)(gij − gi′j), and

σii′ = tii′ exp

[

−Wλ

ω

(

1 − Φ0(i, i
′)

Φ0(0, 0)

)]

e
P

j
(gij−gi′j)d

†
j e−

P

j
(gij−gi′j)dj (14)

This form is particularly useful, due to the order of the creation and annihilation
operators. Thus, when one carries out the perturbation theory, calculation is
reduced to computing matrix elements of the form, 〈l|(

∑

j(gij − gi′j)d
†
j)

n(
∑

j′(gij′ −
gi′j′)dj′ )

m|l′〉. It’s interesting to note that, when computed as an average over the
atomic wavefunction, the hopping integral may be regarded as being modified by the
EPI as tii′ → tii′ exp (−Wλγii′/ω) = t̃ii′ , where γii′ = 1 − Φ0(i, i

′)/Φ0(0, 0). Such an
approximation is valid in the anti-adiabatic limit, and will be revisited later in this
paper. The band-narrowing factor was originally introduced by Tyablikov using an
equations of motion scheme [24].

3. Quantum Monte-Carlo simulation

The CTQMC algorithm presented here is an extension of a similar path-integral
method for simulating the polaron problem [19]. An integration over phonon degrees
of freedom following Feynman leads to an effective action, which is a functional of
two polaron paths in imaginary time which form the bipolaron and is given by the
following double integral when ~ωβ ≫ 1 [22],

A[r(τ)] =
zλω̄

2Φ0(0, 0)

∫ β̄

0

∫ β̄

0

dτdτ ′e−ω̄β̄/2
∑

ij

Φ0[ri(τ), rj(τ
′)]

×
(

eω̄(β̄/2−|τ−τ ′|) + e−ω̄(β̄/2−|τ−τ ′|)
)

+
zλω̄

Φ0(0, 0)

∫ β̄

0

∫ β̄

0

dτdτ ′e−ω̄τe−ω̄(β̄−τ ′)

×
∑

ij

(Φ∆r[ri(τ), rj(τ
′)] − Φ0[ri(τ), rj(τ

′)])

− 1

2

∫ β

0

V (r1(τ), r2(τ)) dτ . (15)
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r

N
−A

N
+A

a

a

ab ∆
1

2 τ=β

N
−B

+B
N

∆a
2

1 ∆

Figure 3. Example path configuration on the ladder system, showing the
notation used. Paths are separated by a vector b, and sites in the chain by
a. The path configuration at τ = 0 is identical to that at τ = β up to a shift ∆r
(i.e. the ends of the beginning and end of the paths are separated by ∆). Each
path has a number of kinks NA/B+ and antikinks NA/B−

.

where the vector ∆r = r(β) − r(0) is the difference between the end points of one of
the paths in the non-exchanged configuration (here ω̄ = ~ω/t and β̄ = t/kBT ). The
indices i = 1, 2 and j = 1, 2 represent the fermion paths. V (r1, r2) is an instantaneous
Coulomb repulsion. The part of the action depending on ∆r arises because the entire
phonon subsystem at τ = β must also be shifted when there is a shift in the electron
sub-system between the start and end configurations. The definition of ∆r and other
nomenclature for the CTQMC simulation of ladder systems are shown in figure 3.

From this starting point, the bipolaron is simulated using the Metropolis Monte-
Carlo (MC) method. The electron paths are continuous in time with hopping events
(or kinks) introduced or removed from the path with each MC step. Analytic
integration is performed over sections of parallel paths. The ends of the two paths
at τ = 0 and τ = β are related by an arbitrary translation, ∆r. In contrast to the
one-particle case, the fixing of the end configurations limits the update procedure to
inserting and removing pairs of kinks and antikinks. We constrain particles to opposite
legs of the ladder, which corresponds to two species of charged particles. In such a
system, there is no exchange between particles. Exchange and singlet triplet splitting
from Quantum Monte-Carlo simulations is briefly discussed in this section, with an
analytical discussion in section 5. A full discussion of the QMC procedure for exchange
is left to a future article.

3.1. Binary updates

In the path integral QMC with two paths, it is necessary to make two kink
operations simulataneously to ensure that the end configurations remain identical
up to a translation. There exist two classes of update. First, kink/antikink pair
addition/removal on a single path is useful, since it always maintains the same end
configurations up to a change in the interpath displacement. Second, kink pair
additions on different paths are needed in the analysis of the bipolaron mass, where
the τ = β end configuration must be exactly equal to the τ = 0 end configuration up
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to a parallel shift. Within both subclasses, there are two specific update types that
satisfy the imaginary-time boundary conditions, as follows:

(I) Two kinks of the same type l are added to or removed from two different paths.

(II) A kink-antikink pair is added to or removed from one of the two paths. An
antikink to kink l is a kink with the opposite direction −l.

(III) A kink of type l is inserted into one path, and another kink of the same type l is
removed from the same path (kink shift).

(IV) A kink of type l is added to one path, and an antikink −l is removed from the
other path.

An important property of the bipolaron system is that the type and time of added
or removed kinks still does not define the new path unambiguously. Indeed, imagine
a kink of type l being inserted on a single path at time τins. This could change the
path in two different ways: Either the path at times τ > τins is shifted in the direction
l, or the path at times τ < τins is shifted in the antidirection l. We refer to the former
change as a top shift, and the latter as bottom shift. For the single-path (polaron)
problem the distinction between the top and bottom shifts was not important because
they are identical up to a translation of the entire path. This argument does not hold
for two paths, since the resulting interpath distance in a binary update changes with
shift type, thus a choice of shifts is an important part of the Monte Carlo update
process. We proceed to derive the update probabilities for the Monte-Carlo scheme
set out above.

There is considerable flexibility in choosing the probabilities for adding and
removing kinks. We choose an equal weighting scheme for choosing kinks, shifts and
paths as follows:

Ai Choose a kink type l from the list of all possible kinks, with equal probability
Pl = 1/Nk, where Nk is the total number of kink types. Pl cancels on both sides
of all balance equations considered below.

Aii Anti-kink types are always determined from the kink type.

Aiii Shift type (top or bottom) is chosen with equal probability Ps = 1/2 independently
for the two kinks. Ps also cancels on both sides of the balance equation.

Aiv Assign path A with equal probability 1/2 from the two available paths.

Av Assign path B as the other path.

We will also choose kinks to add and remove according to the following weightings,
although there are some specific rules in the updates below to deal with cases where
there are no kinks or antikinks of the chosen type on a path.

Bi The probability density for kink time selection when adding a kink is always
p(τ) = 1/β, (0 < τ < β).

Bii The probability for removing a kink of type l from path A in a configuration C
is 1/NAl(C) where NAl(C) is the number of kinks of type l on the path A.

We note that the following is not the only set of possible rules, however, we
consider this to be the most transparent method of choosing kinks to insert and
remove.
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Update type (I): Addition/removal of two kinks to or from different paths Consider
two configurations with two paths, C and D, where configuration D has two more l

kinks than C, one on the first path at time τ1, and one on the second path at time τ2.
The balance equation is

W (C) · QA(C) · P (C → D) = W (D) · QR(D) · P (D → C) . (16)

The relative weight of configurations C and D is W (D)/W (C) = (tl∆τ)2eA(D)−A(C).
In order to approach the limit of continuous time, we rewrite the probability QA

of selecting two kinks at τ1 and τ2 to add to different paths given a configuration C
as QA(l, τ1, A; l, τ2, B|C) = qA(l, τ1, A; l, τ2, B|C)(∆τ)2 , where qA is the corresponding
two-dimensional probability density. The probability of selecting the two specific kinks
τ1 and τ2 to remove from the resultant configuration (D) to get back to C is a finite
number QR(l, τ1, A; l, τ2, B|D), which is the probability of removing those two kinks
given configuration D. Substituting these results into the balance equation, one may
cancel the (∆τ)2. Applying Metropolis, update probabilities are obtained as follows:

P (C → D) = min

{

1 ;
t2l QR(l, τ1, A; l, τ2, B|D)

qR(l, τ1, A; l, τ2, B|C)
eA(D)−A(C)

}

, (17)

P (D → C) = min

{

1 ;
qA(l, τ1, A; l, τ2, B|C)

t2l QR(l, τ1, A; l, τ2, B|D)
eA(C)−A(D)

}

. (18)

Thus we have obtained update probabilities that do not depend on the time
discretisation, and we can immediately take the limit of continuous time. A similar
approach can be taken for any of the update types I to IV. We now demonstrate all
steps in the derivation of the first update probability as an example.

The rules and resulting probabilities are as follows:

(i) Choose kink types, shifts and paths according to rules Ai-Av.

(ii) If the initial configuration has at least one l kink on path A and on path B, then
removal of a pair is proposed with probability PR = 1/2, and addition of a pair
is proposed with probability PA = 1/2. Otherwise, only pair addition can be
attempted and PA = 1.

(iii) If pair addition is selected, times are selected to insert one kink on path A, and
another on path B with independent equal probability density (rule Bi).

(iv) If pair removal is chosen, then one candidate kink is selected with independent
equal probability from each of paths A and B in configuration D (rule Bii).

Implementing these choices, one obtains qA(l, τ1, A; l, τ2, B|C) = PlP
2
s PA(C)/β2 from

the combination of rules (i), (ii), (iii). Likewise, the combination of rules (i), (ii) and
(iv) specifies that QR(l, τ1, A; l, τ2, B|D) = PlP

2
s PR(D)/NlA(D)NlB(D). Rule (iii)

leads to PA(C) = 1/2 if NAl(C) ≥ 1 and NBl(C) ≥ 1 and PA(C) = 1 otherwise.
Since configuration D always has sufficent kinks to make a removal, we always have
PR(D) = 1/2

leading to the following acceptance rules:

P (addition) = P (C → D) = min

{

1 ;
PR(D)(tlβ)2eA(D)−A(C)

PA(C)NAl(D)NBl(D)

}

(19)

P (removal) = P (D → C) = min

{

1 ;
PA(C)NAl(D)NBl(D)

PR(D)(tlβ)2eA(D)−A(C)

}

(20)
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Please note which configuration the kink numbers apply to. In the case of kink

addition, initial configuration is C and final configuration is D. In the case

of kink removal, the initial configuration is D and the final configuration is

C.

Update type (II): Addition/removal of a kink-antikink pair to one path The general
properties of this update type are similar to update type (I): the addition of a
pair at times τ1 and τ2 is characterized by a two-dimensional probability density
qA(l, τ1, A;−l, τ2, A|C) while removal of a pair is charaterized by a finite number
QR(l, τ1, A; l, τ2, A|D). Eqs. (17)-(18) still apply with tlt−l in place of t2l . Since
tl = t−l, the acceptance rules are idential, and only Q and q differ.

We use the following rules.

(i) Choose kink types, shifts and paths according to rules Ai-Av.

(ii) If the initial configuration has at least one l kink and one antikink (NAl ≥ 1,
NA−l ≥ 1), then removal of a pair is proposed with probability PR = 1/2, and
addition of a pair is proposed with probability PA = 1/2. Otherwise, addition of
a pair is proposed with probability PA = 1.

(iii) If pair addition is selected, kink and antikink insertion times are selected with
independent equal probability density for insertion on path A. (Rule Bi)

(iv) If pair removal is chosen, then one candidate kink and one candidate antikink
are selected with independent equal probability from path A in configuration D
(Rule Bii).

One computes the update probabilities as before:

P (addition) = P (C → D) = min

{

1 ;
PR(D)(tlβ)2eA(D)−A(C)

PA(C)NAl(D)NA−l(D)

}

(21)

P (removal) = P (D → C) = min

{

1 ;
PA(C)NAl(D)NA−l(D)

PR(D)(tlβ)2eA(D)−A(C)

}

(22)

Update type (III): Addition and removal of a kink to one path (kink shift) This
update type does not change the number of kinks, and hence does not change the
kinetic energy of the system. We define a configuration C, and a configuration D which
is identical to C except that one kink has been shifted. To get from configuration C
to D, a kink is removed from path A at time τ1 and is reinserted in the path at time
τ2. Since C and D have equal total kink number, the ratio of statistical weights is
W (D)/W (C) = eA(D)−A(C). From detailed balance and Metropolis:

P (C → D) = min

{

1 ;
QR(l, τ2, A|D)qA(l, τ1, A|D)

QR(l, τ1, A|C)qA(l, τ2, A|C)
eA(D)−A(C)

}

(23)

There is only one update rule, since we can get from D and C using exactly the same
process as going from C to D. All attributes of the kinetic energy have dropped out
from the equations. The acceptance rules are determined solely by the electron-phonon
interaction, as expected for this update type.

In many practical situations it is reasonable to choose the functions q and Q
independent of time τ . In this case the above expressions simplify significantly. In
particular, consider the following set of update rules.

(i) Choose kink types, shifts and paths according to the general rules Ai-Av.
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(ii) If the path has no l kinks, Nl = 0, the update attempt is aborted. Otherwise,
Nl ≥ 1, so propose an l kink for removal with equal probability 1/Nl(C) (rule
Bii).

(iii) Propose time for new l kink with constant probability density p(τ) = 1/β (rule
Bi).

These rules result in cancelation of Qremove and qadd from the above equations,
which reduce to

P (C → D) = min
{

1 ; eA(D)−A(C)
}

, (24)

Update type (IV): Kink addition to one path and antikink removal from the other
path In this update, a kink l is added to one path and an antikink −l is removed
from the other path. As a result, the β end configuration shifts as a whole by l. In
a reciprocal process, a kink l is removed from one path, an antikink −l is inserted in
the other path, and the β configuration shifts by −l.

The ratio of weights is W (D)/W (C) = (t−l/tl)e
A(D)−A(C). The balance equation

is satisfied by the following solution

P (C → D) = min

{

1 ;
QR(l; τ1; A|D)qA(−l; τ2; B|D)

QR(−l; τ2; B|C)qA(l; τ1, A|C)
eA(D)−A(C)

}

(25)

Since we can obtain the inverse process by changing kink l for its antikink, the update
probability P (D → C) is not necessary since we always choose l from all kink types.

As the simplest implementation, the following rules are used,

(i) Choose kink types, shifts and paths according to rules Ai-Av.

(ii) If path B has no antikinks −l, NB−l = 0, then the update attempt is aborted.
Otherwise, NB−l ≥ 1, so an antikink is proposed for removal from path B with
equal probability (rule Bii).

(iii) The time location for kink insertion on path A is proposed with equal probability
density (rule Bi).

With these assumptions, the acceptance probability takes the form:

P (C → D) = min

{

1 ;
NB−l(C)

NAl(D)
eA(D)−A(C)

}

, (26)

3.2. Estimators

When our Monte-Carlo scheme has reached equilibrium, we make a series of
measurements of physical properties. The ground state energy is:

ǫ0 = − lim
β→∞

[

〈

∂A

∂β

〉

− 1

β

〈

∑

s

Ns

〉]

, (27)

where Ns is the number of kinks of type s, and angular brackets denote ensemble
averaging. The number of phonons is given by:

Nph = − lim
β→∞

1

β̄

〈

∂A

∂ω̄

∣

∣

∣

∣

λω̄

〉

, (28)

where the derivative is taken keeping λω̄ constant. The polaron band energy spectrum
can be computed from:

ǫk − ǫ0 = − lim
β→∞

1

β
ln〈cos(k · ∆r)〉 , (29)
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where k is the quasi momentum. By expanding this expression in small k, the i-th
component of the inverse effective mass is obtained as

1

m∗
i

= lim
β→∞

1

β~2
〈(∆ri)

2〉 . (30)

Thus the inverse effective mass is the diffusion coefficient of the polaron path in the
limit of the infinitely long “diffusion time” β. The bipolaron radius is the average
distance between paths,

Rbp =

〈

√

1

β

∫ β

0

∆r12(τ)2dτ

〉

(31)

Finally, the mass isotope coefficient, αm∗
i

= d lnm∗
i /d lnM , is calculated as follows

αm∗
i

= lim
β→∞

ω̄

2

1

〈(∆ri)2〉

[〈

(∆ri)
2 ∂A

∂ω̄

∣

∣

∣

∣

λ

〉

− 〈(∆ri)
2〉

〈

∂A

∂ω̄

∣

∣

∣

∣

λ

〉]

.(32)

3.3. General Monte-Carlo considerations

There are certain aspects of good practice for quantum Monte-Carlo simulations that
we adhere to here. As always for Monte-Carlo simulations a random number generator
with sufficient period is used. Measurements are performed every few steps to avoid
unnecessary correlations in results (the aim here is to spend no longer measuring than
simulating, since time correlated results do not make a large contribution to more
accurate measurement). Careful blocking analysis with large blocking sizes NB is
performed to determine accurate error bars. To avoid anomalous error bars caused by
long time correlations, we compare error bars computed with two block sizes NB and
2NB.

3.4. Exchanges

Exchanges are significantly more complicated, with several possibilities for the
exchange update involving inserting and removing kinks. In the exchanged
configuration, there are an additional 4 update rules, and there is also an ambiguous
configuration where both paths have the same start and end points, which leads to
some small additional modifications. We defer a full discussion of exchange update
rules to a later paper. On our ladder models, exchanges are not required, since
electrons sit on opposite legs.

3.5. Singlet-triplet splitting in the Monte-Carlo method

A consequence of exchange is that singlet and triplet states are not degenerate. We
can see the singlet-triplet mass difference as a consequence of interference between
paths in the Monte Carlo simulation. We take a simplified one-dimensional example
to illustrate the mechanism. Consider a bipolaron of separation R propagating from
the sites {0, R} at τ = 0 to {∆r, R + ∆r} at τ = β. We assume that the weight w of
a single-electron path is a monotonically decreasing function of the number n of kinks
in the path, and the paths with the smallest number of kinks dominate. This is likely
to be valid in the strong-coupling limit. We can therefore write the weight of as path
as a monotonically rapidly decreasing function w(d), where d is the distance between
endpoints. We also neglect the interaction between paths.
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Consider first the case of periodic boundary conditions ∆r = 0. The weights of
the singlet and triplet bipolaron paths are respectively the sum and the difference of
the direct and exchange paths.

ws(0) ≈ w(0)w(0) + w(R)w(R), (33)

wt(0) ≈ w(0)w(0) − w(R)w(R). (34)

Here if w(R) ≪ w(0), the singlet and triplet weights are dominated by the direct path
and are nearly equal.

Now consider a twist larger than the bipolaron radius, ∆r > R > 0. The singlet
and triplet weights are dominated by the shortest paths:

ws(0) = w(∆r)w(∆r) + w(∆r + R)w(∆r − R), (35)

wt(0) = w(∆r)w(∆r) − w(∆r + R)w(∆r − R). (36)

In this case the total number of kinks in either the direct or the exchange path is
the same (2∆r), so there will be substantial cancellation in the triplet case. Thus
the diffusion coefficient of the triplet bipolaron will be smaller, and the effective mass
larger, than that of the singlet.

4. Polarons on triangular and rectangular systems

We briefly discuss the lattice dependent features of the polaron problem here. For
more detailed discussion of the polaron problem, the reader is directed towards our
papers on this subject [21, 20, 19], and to the paper by Kornilovitch in this issue [26].
In this section, we specifically discuss the changes to the masses of polaron moving on
trangular and square lattices as the screening length Rsc is varied. The polaron mass
forms part of the argument later in this article.

Screened Fröhlich electron-phonon interactions were simulated by Spencer et al.
[20], who demonstrated a continuous crossover between the Fröhlich and Holstein
limits on the chain. In particular, the mass of the particle is found to be light down
to quite small screening radii, consistent with results by Bonča and Trugman [18] for
nearest-neighbour electron-phonon interactions.

We have previously computed the properties of polarons on several Bravais
lattices, showing that the effects of the lattice type on the properties of the polaron
are ‘washed out’ by long range interactions [21]. Figure 4 shows the effective mass of
the dicrete Fröhlich polaron on square and triangular lattices. Fröhlich polarons are
significantly lighter than their Holstein counterparts, due to the long range interaction.
We have also shown that the overriding factor for the properties of Holstein polarons
is the number of nearest neighbours in the lattice, and not the dimensionality [21].
Since we are interested in long-range interactions in this paper, then it suffices to note
that the masses of Fröhlich polarons are of the same order of magnitude on all lattice
types, and that they are extremely light [21]. The properties of realistic screened
interactions lie somewhere inbetween, but such polarons remain light down to quite
small interaction ranges of the order of a lattice spacing [20].

5. Bipolarons on ladder systems

The properties of bipolarons are significantly more complicated than those of polarons.
One expects bound Holstein bipolarons in strongly correlated materials to be
extremely heavy, since a very large attractive potential is needed to overcome the
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Figure 4. Inverse effective mass of the discrete Fröhlich polaron on square and
triangular lattices. ω/t = 1, and λ is varied. Triangular lattices are shown on
the left, and square lattices are shown on the right. From top to bottom, the
screening radius of the interaction is decreased, with the top graphs showing
Fröhlich interaction Rsc → ∞, middle graphs screened interaction Rsc = 1
and the bottom graphs the Holstein interaction Rsc = 0. Fröhlich polarons
are significantly lighter than their Holstein conterparts because the long range
interaction leads to pre-distortions of the lattice before a hopping.
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repulsion. This is not true for longer range interactions. According to work by
Bonča and Trugman [18], even bipolarons with nearest neighbour interactions are
significantly more mobile than their Holstein counterparts (indeed, one normally
expects the mass of a bipolaron to scale like the squared mass of the polaron, so
polarons which are an order of magnitude lighter than Holstein ones, may become
bipolarons which are two orders of magnitude lighter). Another extremely interesting
proposition is the role of geometry on the bipolaron mass. When bipolarons are
bound on nearest neighbour sites, and another degenerate state may be reached in a
single hopping event, the leading correction to the atomic Hamiltonian is first order
in the hopping term, and not second order as one might expect for the Holstein
model, which leads to a bipolaron with a mass that is of similar order of magnitude
to the polaron mass (i.e. a superlight bipolaron) [9]. Such systems may be realised
on triangular lattices, or on lattices with large next-nearest neighbour hopping. We
have recently extended our Quantum Monte-Carlo algorithm to explore this type of
bipolaron, leading to similar conclusions [22]. In this paper, we discuss some of these
extensions to the algorithm to look at two types of ladder system shown in figure 1.

5.1. Weak and strong coupling

Since the particles on the different legs of the ladder cannot exchange the very weak-
couping limit is not well bound, consisting of two large polarons. As such, the weak-
coupling perturbation theory can be made about the unbound state. As will become
apparent when we show the quantum Monte-Carlo results, the number of phonons
is small for the weakly bound states, especially in the anti-adiabatic limit. The
perturbation theory in the electron-phonon coupling term only excites single phonons,
so if the number of phonons becomes too large, the theory fails. In the presence
of strong on-site repulsion, the bipolaron is not bound at zero coupling. In general,
if there is a bound state for λ → 0+, then this perturbation expansion fails. The
expansion is written as follows:

Ek = 2ǫ
(0)
k − 2

λωW

Φ0(0, 0)

1

N

∑

q

|fq|2
W (k,q)

, (37)

W (k,q) = ǫ
(0)
k−q + ω − ǫ

(0)
k , (38)

fq =
∑

m

fm(0)e−iq·m , (39)

where N is the number of momentum states. Thus the ground state polaron energy

(at k = 0) is ǫ
(2)
0 = −W + λWΓǫ0(ω̄), which defines a dimensionless coefficient ΓE0

.
There is no general analytic solution for the second order perturbation theory, but

values may be computed using numerical integration. The number of phonons, isotope
exponent and inverse mass may also be written as, Nph = 2λΓN (~ω), α = 2λΓα(~ω)
and 2m0/m∗∗ = 1−Γm(~ω)λ. The weak coupling limits for the polaron are discussed
in references [20, 21] amoung others. λ is defined as before.

Aspects of the strong coupling limit are easy to compute from the path integral
formalism. In the very strong coupling limit, the most common configurations are
straight paths, since the action is proportional to λ and that configuration gives the
smallest possible action. Thus the strong coupling action reads:

Astrong =
λW (~ωβ − 1 + e−~ωβ)

Φ0(0, 0)~ω

∑

ij

Φ0(i, j) (40)
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For a polaron, the total energy for a self-interacting strong-coupling system (i.e. a
straight path) is E = −Wλ, where W is the half band width, −ǫk=0. Computing
the action for the straight path configuration, one obtains the energy as Estrong =
−∂Astrong∂β|β→∞. Leading to,

Ebp
strong = −2Wλ[1 + Φ0(0,b)/Φ0(0, 0)] (41)

Where b is a nearest neighbour vector between chains indicating the point of closest
approach. This result is of little suprise, since there are 2 polarons in a bipolaron, with
E = −Wλ each, and 2 inter-polaron binding terms with E = −WλΦ(0,b)/Φ(0, 0).
We may also compute the number of phonons associated with the bipolaron in a
similar manner using equation 28 with Astrong, which we obtain as:

Nph
strong = 2Wλ[1 + Φ(0,b)/Φ(0, 0)]/~ω (42)

As we have discussed, the Φ functions for the ladder systems with Rsc = 1 are
plotted in fig. 2. Numerical values for Φ(0,b), Φ(0, 0) and 1 + Φ(0,b)/Φ(0, 0) are
shown in table 1, from which numerical values for the strong coupling behaviour are
computed. We discuss the region of validity of these results when we compute the
exact QMC results. In particular, if we plot appropriate ratios, such as the ratio
Nphω/λ, we expect saturation at strong coupling, consistent with table 1.

Typically, it has been discussed that an expansion of the Lang-Firsov transformed
Hamiltonian in the polaron hopping can be used at strong coupling. The perturbation
expansion to second order may be written as,

Etot = Eat + 〈Ψ|H̃tb|Ψ〉at +
∑

j

|〈Φj |H̃tb|Ψat〉|2
Ej − Eat

(43)

The values for the strong coupling energy may be computed from the leading
term of this expansion, and have the same form as the energy computed from the
straight paths. This is not suprising, since the corrections to the energy are at least
as small as t̃.

There is a subtle point associated with phonon numbers. By examination,
the ground state of the phonon subsystem in the transformed Hamiltonian is
∑

j d†jdj =
∑

j nj = 0. In order to determine the total number of phonons in the
true ground state of the atomic Hamiltonian, one must transform back to the regular
wavefunction. One may either transform the wavefunction, or the phonon part of
the Hamiltonian. Transforming the phonon part of the Hamiltonian is easy, and one
obtains,

〈φLF |H̃ph|φLF 〉 = 〈φ|Hph|φ〉 = ωNph (44)

thus

Nph = 〈φLF |
∑

j

(d†j +
∑

i

gijni)(dj +
∑

i′

gi′jni′)|φLF 〉/ω (45)

= 〈φLF |
∑

ii′j

gijgi′jnini′ |φLF 〉/ω (46)

the expectation value of the phonons occupation may be rewritten in terms of λ and
Φ, thus:

Nph = −Eat

ω
(47)

(Note the minus sign in front of the equation - phonon number is positive).
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Lattice Φ(0, 0) Φ(0, b) 1 + Φ(0,b)
Φ(0,0)

E/λ ωNph/λ

Staggered 1.06896 0.30034 1.28096 -5.12384 5.12384
Rectangular 1.05554 0.284832 1.26984 -5.07936 5.07936

Table 1. Strong coupling behaviour of the staggered and rectangular lattices.

Thus one determines that the total number of phonons in the bipolaron case is:

Nph,at =
2Wλ

ω

(

1 +
Φ0(0,b)

Φ0(0, 0)

)

(48)

(N.B. A similar argument can be used for polarons.)
Unfortunately, the computation of the mass is not so simple. The mass is very

sensitive to the exact form of the renormalised hopping, and the leading order of the
perturbation expansion varies with lattice type. For the superlight small bipolarons
on triangular plaquettes discussed here, there is a leading term with order t̃, and
for rectangular systems, the leading order is t̃2. Examination of the path integrals
demonstrates that the mass is computed from a parallel shift. The first perturbation of
the paths from the straight line in the atomic limit is the insertion of two parallel kinks
(one on each path). In order for the mass to be genuinely first order in the polaron
hopping, we would require updates with only one kink. Thus, there are significant
contributions from the second order term, including a cancellation between the orders
as λ → ∞. In fact, the expansion of the Lang-Firsov transformed Hamiltonian to
1st order in the hopping turns out to correspond to the extreme anti-adiabatic limit,
which we now discuss.

5.2. Anti-adiabatic approximation

The bipolaron dispersion can be evaluated analytically in the anti-adiabatic strong-
coupling limit (~ω ≫ t, λ ≫ 1), in which case the problem can be reduced to that of a
rigid dimer. In this limit the Lang-Firsov transformation[23] eliminates the phonons
from the Coulomb-Fröhlich Hamiltonian (1). In combination with an averaging over
phonons consistent with the anti-adiabatic approximation (if the phonon frequency
is very large, there are no real phonons) one obtains the following effective UV
Hamiltonian

H̃ = −
∑

nn′σ

t̃nn′c†nσcn′σ − Ep

∑

nσ

c†nσcnσ

+ Ũ
∑

n

c†n↑cn↑c
†
n↓cn↓ +

∑

nn′

′
∑

σσ′

Ṽnn′c†nσcnσc†n′σ′cn′σ′ . (49)

where the primed sum excludes self-interaction, and the renormalised on-site and
inter-site interactions are

Ũ =
V (0,0)

2
− Wλ (50)

and

Ṽnn′ =
V (n,n′)

2
− WλΦ0(n,n′)

Φ0(0,0)
(51)

respectively. (There is no retardation in the anti-adiabatic limit.) Now suppose the
on-site repulsion Ũ ≫ t̃ is large and repulsive and the inter-site interaction has a
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well-defined minimum Vmin < 0 at some separation. Let Nn be the set of sites of n′

at that separation from n:

Nn = {n′ : Ṽnn′ = Vmin} (52)

and

Ṽnn′ − Vmin ≫ t̃ for n′ /∈ Nn. (53)

We shall call Nn the “neighbours” of n. In general, Nn need not be the hopping
neighbours {n′ : t̃nn′ 6= 0}. The low-energy sector for two electrons corresponds to
dimer states (bipolarons) in which the electrons are on neighbouring sites; the energies
in this sector are Vmin +O(t̃). The energy cost of internal excitations of the bipolarons
introduces a gap.

We can now sharply distinguish two types of bipolaron motion: “crab-like”, in
which the constituent polarons remain neighbours, and “crawler”, which requires
virtual transitions out of the low-energy sector. The crab-like bipolaron bandwidth
will be O(t̃), while the crawler contributions will be O(t̃2). We shall for the present
purposes project onto the low energy sector and hence ignore the resulting higher-
order terms in t̃, immobilising crawlers. For simplicity we drop the tildes from the
notation and absorb the polaron shift −Ep into the chemical potential.

If a lattice Λ has L sites with a mean number ν of neighbours per site, then
the single-polaron Hilbert space is 2L-dimensional, the two-polaron Hilbert space is
4L2-dimensional and the crab bipolaron Hilbert space is just 4νL-dimensional. We
can further reduce to one singlet and three triplet spaces, each of dimensionality νL.
The singlet bipolaron space is

S = span

{

1√
2

(|n ↑ n′ ↓〉 + |n′ ↑ n ↓〉) : n ∈ Λ,n′ ∈ Nn

}

(54)

and the Sz = 1, 0,−1 sectors of the triplet bipolaron space are

T1 = span {|n ↑ n′ ↑〉 : n ∈ Λ,n′ ∈ Nn} (55)

T0 = span

{

1√
2

(|n ↑ n′ ↓〉 − |n′ ↑ n ↓〉) : n ∈ Λ,n′ ∈ Nn

}

(56)

T−1 = span {|n ↓ n′ ↓〉 : n ∈ Λ,n′ ∈ Nn} . (57)

This enables us to write the low-energy effective Hamiltonian of the dimers in each
sector as a tight-binding Hamiltonian on the dimer lattice constructed in the following
way: a node is placed on the line joining neighbours in the lattice Λ. If n′ and n′′

are both hopping neighbours of n (t̃n′n′′ 6= 0), then the dimer can hop from nn′ to
nn′′. A bond is then drawn between the two nodes on the dimer lattice with hopping
integral t̃n′n′′ in the singlet sector and −t̃n′n′′ in the triplet sector. This sign change
ensures the correct exchange symmetry for closed paths on odd-membered rings: as a
dimer completes one cycle of an odd-membered ring its end-points are interchanged.
This can lead to a dramatic difference between singlet and triplet bipolaron masses
on a non-bipartite lattice, as we shall see.

5.3. Ladders

In the staggered ladder depicted in Fig 1 the neighbours of a site on one chain are
the two adjacent sites on the opposite chain, while the hopping neighbours of a site
are along the same chain. The corresponding dimer lattice is a one-dimensional chain
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with hopping ±t̃ and two sites per unit cell. As there are no exchange paths, the
sign of the hopping can be gauged away and there is no singlet-triplet splitting. The
polaron and bipolaron dispersions are therefore respectively

Epol(k) = − t̃ cos ka, (58)

Ebip(k) = ± t̃ cos
ka

2
. (59)

The bipolaron effective mass is therefore four times that of the polaron (as previously
reported [9]):

m∗ = ~
2 d2Epol(k)

dk2

∣

∣

∣

∣

k=0

=
~

2

2t̃a2
, (60)

m∗∗ = ~
2 d2Ebp(k)

dk2

∣

∣

∣

∣

k=0

=
2~

2

t̃a2
. (61)

This result is remarkable if one considers the standard strong coupling result for
the mass of the bipolaron. In the rectangular ladder the requirement for a virtual
internal excitation of the bipolaron in the crawler dynamics would lead to a hopping
O(t̃2) and hence mass O((m∗)2). The staggered ladder with long range electron
phonon attraction has two degenerate nearest neighbour bound states (as summarised
in figure 12), so no intermediate state is required when the particle hops. It is clearly
important that the electrons are bound one lattice spacing apart to take advantage of
this effect, but this can easily be achieved in the presence of a strong site-local Coulomb
repulsion (so that the energy is not at a minimum when both particles are on the same
site). This spaced minimum is clearly extremely important when real lattices beyond
the toy ladder models presented here are considered. Some details of real lattices will
be discussed later in this paper, but to briefly summarise, in order to obtain this special
kind of bipolaron, (a) The lattice must have several degenerate near-neighbour bound
states which can be transformed from one degenerate state to another via a single hop
(b) Strong Coulomb repulsion is required to stop a unique single-site bound state from
forming between the polarons, and (c) long range attraction is required so that the
minimum in the potential function (attraction + repulsion) is at approximately one
lattice spacing. This information is summarised in figures 12 and 13 in the conclusion
to this paper.

5.4. QMC

We compute QMC results for bipolarons moving on staggered and rectangular ladders
with period 1000 for a range of λ and ω, including the total energy, inverse bipolaron
mass, bipolaron radius, mass isotope exponent and the number of phonons in the
bipolaron cloud. Figure 5 shows the total energy of the bipolaron for (a) the
rectangular ladder and (b) the staggered ladder. A slight change in gradient between
weak and strong coupling is just discernable, demonstrating (as we shall see in
the coming figures) that the staggered ladder reaches the strong coupling limit at
significantly lower λ than the rectangular ladder. Strong coupling results from the
previous section agree well. We see that there are no significant differences between
the total energy of the bipolarons on the staggered and rectangular ladders, although
the strong coupling limit is reached for slightly lower λ in the case of the staggered
ladder.

If one is to reach a superconducting state via the Bose-Einstein condensation of
bipolarons, there are two conditions. First, the bipolaron pair must be light, and
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second, the pairing radius must be small. We demonstrate the differences between the
inverse masses on the staggered and rectangular ladders in figures 6(a) and (b), which
show the inverse mass of the bipolaron for a number of different λ and ω/t. There
is more than an order of magnitude difference between the mass of the bipolaron on
the staggered ladder, and that on the rectangular ladder over significant regions of
the parameter space. In fact, the magnitude of the bipolaron mass turns out to be of
similar size to that of the polaron mass over a wide range of the parameter space. The
mass is inversely proportional to the transition temperature of the BEC, so a small
mass is essential to obtain a decent TC .

We have demonstrated that one of the precursors for a Bose-Einstein condensate
of pairs above the mK range may be met on the staggered ladder arrangement, but we
also require small pairs, with non-overlapping wavefunctions. In figure 7 we show how
the the size of the bipolaron varies as λ and ω/t are varied. Not only is the bipolaron
on the staggered ladder lighter than that on the rectangular ladder, it is also has a
significantly smaller radius than the bipolaron on the rectangular ladder, making it a
much better prospect for Bose-Einstein condensation.

Since the result that the bipolaron mass is proportional to the polaron mass via
a numerical value relies on the anti-adiabatic limit, where the phonon frequency is
very large, so that phonons may not be excited, we investigate the number of phonons
asociated with the bipolaron in figure 8. The result is weighted by phonon frequency
and electron phonon coupling, so that the strong coupling result can clearly be seen.
Again, we can see that the strong-coupling limit is reached at significantly lower λ on
the staggered ladder than on the rectangular ladder. Strong coupling results from the
previous section agree well, with the ratio ωNph/λ approaching the numerical value
given in table 1. The anti-adiabatic limit can clearly be identified as regions on the
graph where the phonon number approaches zero (i.e. the ω > λ quadrant of the
parameter space), consistent with results for the mass.

We show the mass isotope exponent of the bipolaron in figure 9. Again, we can
see that the strong coupling limit is achieved at significantly lower λ on the staggered
ladder, compared with the rectangular ladder. The isotope exponent is also smaller
on the staggered ladder, demonstrating a much smaller range of mass from weak to
strong coupling.

Finally, in figure 10, we show example path configurations on (a) the rectangular
ladder and (b) the staggered ladder. Hopping events on different paths on the
rectangular ladder are very closely correlated on the imaginary time axis. On the
staggered ladder, there are two degenerate configurations, and paths are just as likely
to sit on either of the two neighbouring sites, significantly reducing the correlation
between kinks, and increasing the probability that kink pairs can be inserted. It is
this that leads to significantly lighter bipolarons on the staggered ladder.

6. Beyond ladders: Other superlight systems

On the ladder systems, the electrons were held on neighbouring legs of the ladders.
This is partially consistent with a very strong local Coulomb repulsion or Hubbard U .
It is also possible to examine the effects of a very strong or even infinite Hubbard U
on the masses of bipolarons bound via long range attraction on other low dimensional
systems. As we have seen by examining the ladder systems, there are 3 requirements
for superlight bipolarons (1) Electrons are not allowed to bind on a single site (2)
There are at least two degenerate configurations of electrons sitting on neighbouring
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Figure 5. Total energy of the bipolaron for (a) the rectangular ladder and (b) the
staggered ladder. A slight change in gradient between weak and strong coupling
is just discernable, demonstrating (as we shall see in the coming figures) that the
staggered ladder reaches the strong coupling limit at significantly lower λ than
the rectangular ladder.
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Figure 6. Inverse mass of the bipolaron for (a) the rectangular ladder and (b) the
staggered ladder. There is more than an order of magnitude difference between
the mass of the bipolaron on the staggered ladder, and that on the rectangular
ladder over significant regions of the parameter space. Bipolaron masses on the
staggered ladder have recently been shown to have a value commensurate with
the polaron mass.
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Figure 7. Size of the bipolaron for (a) the rectangular ladder and (b) the
staggered ladder. Not only is the bipolaron on the staggered ladder lighter than
that on the rectangular ladder, its size is also smaller for equivalent λ.
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Figure 8. Number of phonons associated with the bipolaron for (a) the
rectangular ladder and (b) the staggered ladder, weighted by phonon frequency
and electron phonon coupling. Again, we can see that the strong coupling limit
is achieved at significantly lower λ on the staggered ladder. It is interesting to
note that the states with large omega have a smaller number of phonons. This
is consistent with the anti-adiabatic approximation: When phonon frequency is
large, creating phonons becomes difficult, and phonon wavefunction is the vaccum
state. Then the phonon problem maps onto a UV model (discussed later).
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Figure 9. Mass isotope exponent of the bipolaron for (a) the rectangular ladder
and (b) the staggered ladder. Again, we can see that the strong coupling limit is
achieved at significantly lower λ on the staggered ladder. The isotope exponent
is also smaller on the staggered ladder, demonstrating a much smaller range of
mass from weak to strong coupling.

sites and (3) There are single hopping events which transform one configuration into
another degenerate configurations. Then, hopping of the bipolaron is first order in
the hopping of the polaron. Condition (2) is satisifed by long range electron-phonon
intereraction, and there are several tight binding lattices which also satisfy conditions
(2) and (3), and a strong site-local Coulomb repulsion satisfies condition (1). We
discuss bipolarons on these lattices in the anti-adiabatic approximation in this section.

6.1. Triangular molecule

The staggered ladder system discussed earlier in this paper can be considered to be
made up of triangular plaquettes, so the first logical step to looking beyond the ladder
systems is to analyse the physics of a single plaquette. If hopping is allowed between
all the sites on the plaquette, then one may consider exchange effects, which lead
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Figure 10. Example path configurations on (a) the rectangular ladder and (b)
the staggered ladder. Hopping events on different paths on the rectangular ladder
are very correlated in time. On the staggered ladder, there are two degenerate
configurations, and paths are just as likely to sit on either of the two neighbouring
sites, significantly reducing the correlation between kinks. (ω/t = λ = 4 in both
cases.)

to singlet and triplet bound states. To see exchange effects, we require lattices with
odd-membered rings. As the simplest example, consider three sites 0, 1, 2, all of which
are neighbours, with hopping t̃ > 0. The polaron Hamiltonian is

H =





0 −t̃ −t̃
−t̃ 0 −t̃
−t̃ −t̃ 0



 . (62)

The dimer lattice is constructed by placing a node at the centre of each bond. The
singlet bipolaron Hamiltonian is therefore

HS =





Vmin −t̃ −t̃
−t̃ Vmin −t̃
−t̃ −t̃ Vmin



 (63)

with eigenvalues {Vmin − 2t̃, Vmin + t̃, Vmin + t̃}, and the triplet bipolaron Hamiltonian
is

HT =





Vmin t̃ t̃
t Vmin t̃
t t̃ Vmin



 (64)

with eigenvalues {Vmin− t̃, Vmin− t̃, Vmin+2t̃}. (An alternative choice of basis would be
the six-dimensional unsymmetrised Sz = 0 basis {|i ↑ j ↓〉}. This would transform the
triangle into a six-member ring. Such a basis becomes unwieldy for typical lattices).
Clearly, the properties of the plaquette are defined by single polaron hopping events,
since there are no eigenvalues with O(t̃2) terms. It is this property which makes
lattices which can be constructed from triangular plaquettes a good starting place
when looking for small superlight bipolarons.

6.2. Triangular lattice

Let us consider a triangular lattice with nearest-neighbour hopping t. In the anti-
adiabatic approximation, this is replaced by t̃. The polaron band structure (ignoring
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Figure 11. The triangular lattice (thin lines) with a dimer state (circle) at the
mid-point of each bond. The polaron and bipolaron states are indicated on one
triangle, with spin indices suppressed. The dimer lattice (thick lines) is a kagome
lattice.

polaron shift) is E(k) = −2t̃C(k), where we have defined

C(k) ≡ cos kxa + cos
(

kxa/2 −
√

3kya/2
)

+ cos
(

kxa/2 +
√

3kya/2
)

, (65)

a being the lattice parameter. Expanding near the Γ point gives

E(k) = −6t̃ +
3

2
k2a2t̃ + O(k4) (66)

The polaron effective mass is therefore

m∗ =
~

2

3t̃a2
. (67)

By placing a node on each bond in the lattice, we see that the resulting dimer lattice
is a kagome lattice. The dispersion is easily found as follows (see also ref [25]) by
diagonalising the secular matrix

H(k) = Vmin ∓ t̃

∣

∣

∣

∣

∣

∣

0 1 + γ∗ 1 + β
1 + γ 0 1 + α∗

1 + β∗ 1 + α 0

∣

∣

∣

∣

∣

∣

, (68)

with

α = exp
(

−ikxa/2 + i
√

3kya/2
)

(69)

β = exp
(

−ikxa/2 − i
√

3kya/2
)

(70)

γ = exp (ikxa) . (71)
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The sign in (68) is −t̃ for the singlet and +t̃ for the triplet. There are three bipolaron
bands with no gaps:

E1(k) = Vmin ± t̃
(

−1 −
√

3 + 2C(k)
)

(72)

E2(k) = Vmin ± t̃
(

−1 +
√

3 + 2C(k)
)

(73)

E3(k) = Vmin ± 2t̃. (74)

with sign +t̃ for the singlet and −t̃ for the triplet.
The lowest singlet band is

E1(k) = Vmin − 4t̃ +
1

4
k2a2t̃ + O(k4), (75)

with effective mass

m∗∗
s =

2~
2

t̃a2
= 6m∗. (76)

We notice that this increases linearly with the polaron mass, indicating that crab-like
bipolarons can be relatively light.

The lowest triplet band is the flat band E3(k) = V −2t̃. This implies that a triplet
crab-like bipolaron has infinite mass on a triangular lattice. Once crawler motion is
permitted, the effective mass is expected to be finite but proportional to (m∗)2.

6.3. Lattices with long range hopping

Lattices with triangular components are not the only ones where the ability to
move between degenerate paired states can be utilised to lead to small masses.
For example, if we introduce next-nearest-neighbour hopping to a linear chain,
then, in the anti-adiabatic approximation, we obtain a bipolaron mass, 2(2a)2t̃′

and a polaron mass 2a2t̃ where t̃ = t exp(−Wλ(1 − Φ(0,a)/Φ(0, 0))/ω) and t̃′ =
t′ exp(−Wλ(1−Φ(0, 2a)/Φ(0, 0))/ω). While this does not lead to an exact cancellation
of the exponents, the bipolaron to polaron mass ratio is linear in t′/t, and the bipolaron
is therefore expected to be light.

Another suggestion for bipolarons with light mass comes from the cuprate lattice.
It has often been suggested that the tight-binding structure of the cuprates is a square
lattice with nearest-neighbour hopping t and next-nearest-neighbour hopping t′. In
the presence of very stong Coulomb repulsion U , one may determine that the ground
state of the Lang-Firsov transformed Hamiltonian consists of nearest neighbour pairs
with degeneracy four. If one applies the anti-adiabatic approximation to such a lattice,
one determines that the hopping of such a bipolaron is first order in t′. We obtain
a bipolaron mass, 2(

√
2a)2t̃′ and a polaron mass 2a2t̃ where t̃ = t exp(−Wλ(1 −

Φ(0,a)/Φ(0, 0))/ω) and t̃′ = t′ exp(−Wλ(1 − Φ(0,a − R90a)/Φ(0, 0))/ω). Here R90

is the rotation operator. Again, while we don’t get an exact cancellation of the
exponents, we obtain a resulting mass proportional to t′/t, and light bipolarons
are likely §. Such pairing is an appealing prospect, especially since the Hague has
demonstrated the potential for d-wave superconductivity mediated by Holstein-like
electron-phonon interactions in the intermediate coupling limit [29].

§ It is interesting to note that these lattices share a common feature with triangular lattices, namely
that it is possible for a single particle to hop 3 times to return to the point of origin, indicating a
more universal prospect for this phenomenon
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t

t
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Staggered ladder
Chain

Square latticeTriangular lattice

Figure 12. Pictorial demonstration of lattices which are expected to lead to
superlight and light bipolarons when long range electron-phonon interaction is
present in combination with a strong site-local Coulomb repulsion (Hubbard
U) which stops on-site binding. All degenerate nearest-neighbour bound states
are shown as the thick lines. The lightest bipolarons are expected on lattices
with a trangular component, where hopping between degenerate states can be
realised with the same single hop as the polaron (shown as arrows). Thus the
bipolaron moves in the first order of the polaron mass. We also show potential
single hops for light bipolarons on the chain, and the square lattice, which can be
realised if next-nearest-neighbour hopping is present. The superlight bipolarons
are contrasted with traditional (Holstein) on-site bipolarons, which move with
two hopping events, the first one breaking the bound state (step ii), and the
second reforming it (step iii), thus such on-site (crawler) bipolarons cannot be
simultaneously small (well bound) and mobile.

7. Conclusions

The bipolaronic extension [4] of the BCS theory towards the strong interaction between
electrons and ion vibrations proved that the Cooper pairing in momentum space [1]
and the Ogg-Schafroth real-space pairing [27, 28] are two extreme limits of the same
problem. For a very strong electron-phonon coupling, polarons become self-trapped
on a single lattice site and bipolarons are on-site singlets. In the Holstein model of
the zero-range EPI their mass appears only in the second order of polaron hopping
[18], so that on-site bipolarons are very heavy. This estimate led some authors
to the conclusion that the formation of itinerant small polarons and bipolarons in
real materials is unlikely [30], and high-temperature bipolaronic superconductivity is
impossible [31].

In fact, we have demonstrated here that small but light bipolarons could exist
for realistic values of the finite-range EPI with high-frequency optical phonons in
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Figure 13. Pictorial demonstration of the interpolaron effective interaction which
can lead to superlight bipolarons (cross-section of anti-adiabatic limit of triangular
lattice with λ = 1). A strong on-site Coulomb repulsion (Hubbard U) stops on-site
binding, leading to binding between polarons on neighbouring sites when there is
a long range phonon mediated attraction. In this case, the potential well should
lead to binding of small bipolarons on the order of one lattice site. The long range
Fröhlich electron-phonon attraction may be found on quasi-2D lattices, where ions
oscillate above planes (as described in reference [9].

staggered ladder systems. Small light bipolarons are an essential precursor to high-
temperature superconductivity, since the Bose-Einstein condensate has transition
temperature that is inversely proportional to mass, and wavefunctions may not
overlap. Such bipolarons are easily formed on lattices with triangular plaquettes in
the presence of extremely large on-site Coulomb repulsion, and persist to large EPI.
This conclusion is backed up by analytics in the anti-adiabatic approximation in the
presence of large intersite Coulomb attraction. Another important conclusion is that
the triplet-singlet exchange energy is of the first order in the hopping integral, and
triplet bipolarons are heavier than singlets in certain lattice structures at variance
with simple intuitive expectations. We summarise the types of lattices where light
“crab” bipolarons may be formed in figure 12, contrasting with the traditional
Holstein bipolarons (bottom) and describe the required effective interaction in figure
13 demonstrating the underlying physics of such bipolarons.

Our CTQMC simulations lead us to believe that the following recipe is worth
investigating to look for very high-temperature superconductivity: (a) The parent
compound should be an ionic insulator with light ions to form high-frequency optical
phonons, (b) The structure should be quasi two-dimensional to ensure poor screening
of high-frequency c-axis polarized phonons, (c) A triangular lattice is required in
combination with strong, on-site Coulomb repulsion to form the small superlight Crab
bipolaron (d) Moderate carrier densities are required to keep the system of small
bipolarons close to the dilute regime. Many of these conditions are already met in the
cuprates.
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