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RECENT ADVANCES IN IMAGE AND VIDEO RETRIEVAL

Robust texture features for still-image retrieval

P. Howarth and S. Rüger

Abstract:A detailed evaluation of the use of texture features in a query-by-example approach to
image retrieval is presented. Three radically different texture feature types motivated by i)
statistical, ii) psychological and iii) signal processing points of view are used. The features were
evaluated and tuned on retrieval tasks from the Corel collection and then evaluated and tested
on the TRECVID 2003 and ImageCLEF 2004 collections. For the latter two the effects of
combining texture features with a colour feature were studied. Texture features that perform
particularly well are identified, demonstrating that they provide robust performance across a
range of datasets.

1 Introduction

Texture is a key component of human visual perception. Like
colour, this makes it an essential feature to consider when
querying image databases. Everyone can recognise texture,
but it is more difficult to define. Unlike colour, texture occurs
over a region rather than at a point. It is normally perceived
by intensity levels and as such is orthogonal to colour.
Texture has qualities such as periodicity and scale; it can be
described in terms of direction, coarseness, contrast and so on
[1]. It is this thatmakes texture a particularly interesting facet
of images and results in a plethora of ways of extracting
texture features. To enable us to explore awide range of these
methods we chose three very different approaches to
computing texture features: the first takes a statistical
approach in the form of co-occurrence matrices, next the
psychological view of Tamura’s features and finally signal
processing with Gabor wavelets.

Our study is the first to focus on evaluation of texture
features on heterogeneous everyday images, and to tailor
features for optimum retrieval performance in this context.
The majority of original papers devising or evaluating
texture features used classification or segmentation tasks to
measure performance [2–5]. The VisTex database [6]
contains both reference textures and texture scenes and has
been used in several studies. Although its images are real-
world scenes they are subsequently divided into homo-
geneous patches and used in a classification context.
Segmentation and classification tasks are significantly
different to the problems faced in image retrieval, where
one looks at generic queries for an entire picture. Real
pictures are made up of a patchwork of differing textures
rather than the uniform texture images often used in studies,

such as the ones taken fromBrodatz’s photographic book [7].
To that effect we suggest encoding texture in terms of joint
histograms of low dimensional texture characteristics over
the image in the same way 3-D colour histograms are
computed, we have called this a Tamura image.

2 Texture features

2.1 Co-occurrence

Statistical features of grey levels were one of the earliest
methods used to classify textures. Haralick [8] suggested the
use of grey level co-occurrence matrices (GLCM) to extract
second order statistics from an image. GLCMs have been used
very successfully for texture classification in evaluations [2].

Haralick defined the GLCM as a matrix of frequencies at
which two pixels, separated by a certain vector, occur in the
image. The distribution in the matrix will depend on the
angular and distance relationship between pixels. Varying
the separation vector allows the capturing of different
texture characteristics. Once the GLCM has been created,
various features can be computed from it. These have been
classified into four groups: visual texture characteristics,
statistics, information theory and information measures of
correlation [3, 8]. We chose the four most commonly used
features, listed in Table 1, for our evaluation. Note that P(a,
b) is the frequency that quantised grey level a co-occurs
with quantised grey level b, separated by a vector v.

Figure 1 is a diagram showing the construction of GLCM.
The rows of the co-occurrence matrix represent the value
at the start of the separation vector and the columns the value
at the end. The circled entry in the GLCM therefore
represents the number of occurrences of the separation
vector [1, 0] that have a start value of 3 and an end value of 1.
The three occurrences of these in the quantised image are
shown by the arrows representing the vectors.

2.2 Tamura

Tamura et al. took the approach of devising texture features
that correspond to human visual perception [1]. They
defined six textural features (coarseness, contrast, direction-
ality, line-likeness, regularity and roughness) and compared
them with psychological measurements for human subjects.
The first three attained very successful results and are used
in our evaluation, both separately and as joint values.
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Coarseness has a direct relationship to scale and
repetition rates and was seen by Tamura et al. as the most
fundamental texture feature. An image will contain textures
at several scales; coarseness aims to identify the largest size
at which a texture exists, even where a smaller micro texture
exists. Computationally one first takes averages at every
point over neighbourhoods the linear size of which are
powers of 2. The average over the neighbourhood of size
2k � 2k at the point (x, y) is

Akðx; yÞ ¼
Xxþ2k�1�1

i¼x�2k�1

Xyþ2k�1�1

j¼y�2k�1

Iði; jÞ=22k ð1Þ

where I(i, j) is the grey level at the image pixel coordinates
(i, j). Then at each point one takes differences between pairs of
averages corresponding to non-overlapping neighbourhoods
on opposite sides of the point in both horizontal and vertical
orientations. In the horizontal case this is

Ek;hðx; yÞ ¼ jAkðxþ 2k�1; yÞ � Akðx� 2k�1; yÞj ð2Þ

At each point, one then picks the size of k that maximises E in
either the horizontal or vertical direction; this is kopt: The
coarseness measure is then the average of Soptðx; yÞ :¼ 2kopt

over the picture.
Contrast aims to capture the dynamic range of grey

levels in an image, together with the polarisation of the
distribution of black and white. The first is measured using
the standard deviation of grey levels and the second the

kurtosis a4: The contrast measure is defined as

Fcon ¼ s=ða4Þn ð3Þ

The kurtosis is calculated by dividing the fourth moment
about the mean, m4; by the variance squared,

a4 ¼ m4=s
4 ¼

P
i

P
jðIði; jÞ � mÞ4

Ns4
ð4Þ

where m is the mean intensity and N ¼ ij (the number of
samples).

Experimentally, Tamura found n ¼ 1=4 to give the
closest agreement to human measurements. Our initial
retrieval experiments confirmed this choice, and this is the
value we used in our following experiments.

Directionality is a global property over a region.
The feature described does not aim to differentiate between
orientations or patterns, but measures the total degree of
directionality. Two simple masks are used to detect edges in
the image. At each pixel the angle and magnitude are
calculated. A histogram, Hd; of edge probabilities is then
built up by counting all points with magnitude greater than a
threshold an quantising by the edge angle. The histogram
will reflect the degree of directionality. To extract and
measure from Hd the sharpness of the peaks are computed
from their second moments. An example image and its
direction histogram is shown in Fig. 2. This shows a main
peak in the first bin which represents the horizontal direction
in the image and a smaller peak in the ninth bin representing
the vertical component.

Tamura image is a notion where we calculate a value for
the above three features at each pixel and treat as a spatial
joint Coarseness-coNtrast-Directionality (CND) distri-
bution, in the same way as images can be viewed as spatial
joint RGBdistributions. The regional nature of texturemeans
that the values at each pixel are computed over a window.
We then extract colour histogram style features from the
Tamura CND image, creating both marginal and 3-D
histograms. A similar 3-D histogram feature is used by
MARS [9].
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Fig. 1 Construction of grey level co-occurrence matrix

Table 1: Features calculated from the normalised
co-occurrence matrix P (a, b)

Feature Formula

Energy
P

a

P
b P

2ða;bÞ

Entropy
P

a

P
b Pða;bÞ logPða;bÞ

Contrast
P

a

P
bða � bÞ2Pða;bÞ

Homogeneity
P

a

P
b

Pða;bÞ
1þja�bj
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2.3 Gabor

One of the most popular signal processing based approaches
for texture feature extraction has been the use of Gabor
filters. These enable filtering in the frequency and spatial
domain. It has been proposed that Gabor filters can be used
to model the responses of the human visual system. Turner
[10] first implemented this by using a bank of Gabor filters
to analyse texture. A bank of filters at different scales and
orientations allows multichannel filtering of an image to
extract frequency and orientation information. This can be
used to decompose the image into texture features.

Our implementation is based on that of Manjunath et al.
[11, 12]. The feature is computed by first filtering the image
with a bank of orientation and scale sensitive filters and then
computing the mean and standard deviation of the output in
the frequency domain.

In the spatial domain a Gabor function is a sinusoid
modulated by a Gaussian with an aspect ration of sx=sy:
A two-dimensional Gabor function can therefore be
expressed as

gðx; yÞ ¼ 1

2psxsy
exp � 1

2

x2

s2x
þ y2

s2y

� �
þ 2pjFx

� �
ð5Þ

We can generate a bank of self-similar filters by appropriate
dilations and translations of the parent wavelet g(x, y). For
this we Manjunath’s method [11] using the generation
function:

gmnðx; yÞ ¼a�mgðx0; y0Þ with a>1 and m; n both integers,

x0 ¼ a�mðx cos yþ y sin yÞ and
y0 ¼ a�mð�x sin yþ y cos yÞ

ð6Þ

where y ¼ np=K and K is the total number of orientations.
The scale factor a�m is meant to ensure that the energy is
independent of m.

We can now generate our bank of filters following a
design strategy that ensures that the half-peak magnitude
supports of the filter responses in the frequency domain
touch each other [11]. An example of a filter bank generated
in this way is shown in Fig. 3.

Filtering an image I with Gabor filters gmn results in its
Gabor wavelet transform:

Wmnðx; yÞ ¼
Z

Iðx1; y1Þg�mnðx� x1; y� y1Þ dx1dy1 ð7Þ

The mean and standard deviation of the magnitude jWmnj are
used for the feature vector. The outputs of filters at different
scales may be over differing ranges. For this reason each
element of the feature vector is normalised using the
standard deviation of that element across the entire
database.

3 Experimental setup

We used a three-stage approach for our work. Initial
evaluation and modification to the features were tested using
a carefully selected subset of the Corel image library. We
then ran larger tests on the TRECVID 2003 [13] data to
confirm our findings and completed a submission to the
image track of the Cross Language Evaluation Forum [14,
15] (ImageCLEF).

3.1 Image collections

3.1.1 Corel: We selected 6,192 images from the Corel
collection to give 63 categories that were visually similar
internally, but different from each other [16]. A set of 630
single-image category queries was executed to test perform-
ance across all categories. Relevance judgements on the
retrieved images were based on the categorisation. The results
shown in Section 4 are the corresponding mean average
precision (m.a.p) as defined in [17].

3.1.2 TRECVID 2003: A second, larger image
collection was used to give a more realistic performance
comparison. This comprised of 32,318 key-frames from the
TRECVID 2003 collection [13]. The search task specified
for TRECVID 2003 consisted of 25 topics; for each topic
several example images were given as a query. The
published relevance judgements for these topics were used
to evaluate the retrieval performance for different features
and combinations of features.

3.1.3 ImageCLEF: The collection for this evaluation
comprised of 8,725 medical images and 26 single image
queries. Medical images have very specific characteristics.
The majority are monochrome images, such as X-rays and
CT scans, with a very formulaic layout.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
angle

I

Fig. 2 Example image and direction histogram

Fig. 3 Filter responses of a Gabor filter bank with 4 scales and 6
orientations
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3.2 k-nearest neighbours

Distances between feature vectors were calculated using the
Manhattan metric. The resultant distances were then median
normalised to give even weighting when combined.
For multiple image queries with the TRECVID collection
we used a version of the distance weighted k-nearest
neighbour measure (k-nn) from Mitchell [18]. We have a
baseline for evaluation from previous work with the TREC
dataset for which k-nn has consistently proved the best
retrieval method [16].
k-nn is calculated using positive image examples (P)

supplied as the query and negative examples (N) randomly
selected from the collection. To rank an image i in the
collection we identify those images in P and N that are
amongst the set K of k-nearest neighbours of i. Using these
neighbours we determine the dissimilarity as

DðiÞ ¼
P

n2N\Kðdði; nÞ þ EÞ�1P
p2P\Kðdði; pÞ þ EÞ�1 þ E

ð8Þ

where d() is the distance function and E is a small positive
number to avoid division by zero. For our experiments we
used a value of k ¼ 40; which was found to give good
performance in [16].

4 Evaluation and results

For each feature we evaluated performance in the
configuration described in Section 2. Ideas to improve
performance were devised and evaluated. The general
themes considered were how best to represent an entire
image, how to accommodate differing sizes and scale of
images and how to cope with the regional qualities of
textures. These evaluations were run on the Corel data.
Paired t-tests were carried out to check whether results were
statistically significant at a ¼ 0:05:
The best performing features from the initial evaluation

were then tested on the TRECVID 2003 data set. Tests were
run with each texture feature combined with a high
performing colour feature.

4.1 Image tiling

As part of the evaluation we carried out experiments to
determine the effect of applying features to image tiles. The
method was to split the image into non-overlapping tiles and
calculate the feature for each tile. The resulting features for
each tile are then concatenated into a single vector. Tilings up
to 9� 9 were evaluated. The effect of tiling is to add location
information to the feature. The distance between features
will be the sum of the distances between corresponding tiles.
Tiling was evaluated for all three texture features.

Retrieval performance increased with tiling, peaking at
7� 7 or 9� 9 depending on the feature. The graph in Fig. 4
shows the average retrieval for different tilings with the
Tamura features. The detailed results can be seen in Table 3.
Beyond this optimum level of tiling there was no

significant gain. As the image tiles decrease in area the
features have smaller regions to work on, thus reducing their
effectiveness. At the limit the feature will approximate to
comparing images at pixel level. We find that increasing
tiling much beyond 9� 9 starts to add noise to the feature
for images of a typical linear size of 300 pixels.

4.2 Co-occurrence

The two main variables when creating a GLCM are the
number of quantisation levels and the vector. We decided to

use four vector angles: 0, 45, 90, 135 and four distances.
This could be used to calculate up to sixteen GLCMs.
However, as the statistics are not invariant under rotation we
also tried summing the four angles at each distance into a
single matrix. GLCMs can be made symmetrical by
calculating the GLCM using both the specified vector and
one in the opposite direction; symmetric and asymmetric
matrices were tested. The number of quantisation levels
dictate the size and density of the matrix. This may become
a problem with small images or tiles. The effect of varying
quantisation between 4 and 64 levels was tried. Features
were calculated for whole and tiled images.

Preliminary results showed that distances between 1 and
4 pixels gave the best performance. Tiling of the image gave
a large increase in retrieval which flattened out by 9� 9
tiles. The results in Table 2 are for 7� 7 tiles. Results and
implications of the evaluation are below:

. There was no significant difference between generating
matrices symmetrically or asymmetrically.
. Increasing quantisation up to 5–6 bits improves perform-
ance. The optimum level depends on the feature.
. Concatenated matrices outperformed the rotationally
invariant summed matrices.
. With this collection the homogeneity feature performed
best with a m.a.p. of 12.2%.

4.3 Tamura

When calculating standard Tamura features for whole or
tiled images the main variable is the largest k value for

Table 2: Co-occurrence features -mean average precision
retrieval

Quantisation

Feature 4 8 16 32 64

Energy: cat 7.6% 8.1% 9.3% 9.9% 9.5%

Energy: sum 7.0% 7.8% 8.9% 9.2% 9.0%

Entropy: cat 8.1% 9.2% 10.4% 11.1% 11.4%

Entropy: sum 7.5% 8.8% 9.8% 10.4% 10.7%

Contrast: cat 8.5% 8.5% 8.4% 8.3% 8.3%

Contrast: sum 7.8% 7.9% 7.7% 7.6% 7.6%

Homogeneity: cat 9.2% 10.2% 11.2% 11.8% 12.2%

Homogeneity: sum 8.5% 9.5% 10.4% 10.9% 11.3%

cat ¼ 16 concatenated matrices

sum ¼ 4 rotationally invariant summed matrices
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Fig. 4 Effect of tiling for Tamura features
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coarseness. The effect of varying this, and the number of
tiles, can be seen in Table 3. The dashes in the table are
where the image size resulting from tiling meant that the k
value was too large to be used because of the border needed.

With the histogram features the main variable to evaluate
was the window size. Coarseness can be calculated at a pixel
level. However, both the directionality and contrast features
operate over a region. A large window would smear the
feature and lose resolution; conversely a small window may
invalidate the statistical features, particularly if the
directionality histogram is too sparsely populated. To
evaluate this the features were run over several window
sizes, creating a histogram for each feature, see Table 4.

A little surprisingly, initial results showed that increasing
the largest considered k value for coarseness reduced the
performance – the optimum value was 2. This may be due
to the large borders necessary for higher values of k.
However, it is more likely caused by the nature of textures
in images and the way the algorithm averages the 2k values.
In normal images textures occur at much smaller scales
than in Brodatz style texture images. Correspondingly, there
are unlikely to be textures with a coarseness of 64 or 32
pixels in images with a typical diagonal of 450 pixels.
The algorithm may still detect noise at this dimension,
biasing the average value of the feature. A change to the
algorithm was made so that it took the values of k rather than
2k – effectively introducing a logarithmic scaling of the

coarseness and giving less influence to the larger scales.
This gave a significant increase in performance for the
histogram, from 6.1% to 10.1%, but no improvement when
applied to the standard feature.

Performance of the directionality feature was poor.
A detailed look at the operation of the algorithm showed
that this was largely a result of the sparse population of the
histogram and subsequent difficulty in calculating valid
variance of its peaks. Several options for improvement were
tried including calculating global variance of the histogram
and using entropy. The latter gave a substantial improvement,
from 6.6% to 9.7%, for the standard feature but negligible
effect on the histogram. The entropy of the normalised
histogram Hd was computed using

Pd
i¼0 Hi logHi:

Finally the combined marginal and 3-D histograms were
evaluated using a window size of 8, largest k of 3 and
entropy directionality. In addition, a combined feature
vector of the 3 standard features was evaluated. The m.a.p.
results were: marginal histogram 12.0%, 3-D histogram
13.7% and standard 14.3%. All gave a significant improve-
ment over the single features. Precision recall graphs for
these combined features are shown in Fig. 5.

4.4 Gabor

Section 2.3 describes the generation of this feature.However,
there still remain questions over how to apply it to
a heterogeneous set of images in which texture patches of
varying size, scale and orientation occur. The evaluation in
[11] was applied to fixed tiles extracted from the Brodatz
album. In [12] the feature was used successfully with aerial
photographs split into a large number of fixed size tiles and
then querying to find individual tiles. We decided to evaluate
the feature in two configurations across a range of scale and
orientation values. The first scaled the filter dictionary to the
size of the image or image tile. This should scale the response
so that the same image of different size gives a similar value.
The second approach was to use a fixed size filter and apply
this to a sliding window over the image.

Initial results showed that scaling the filter size gave
much superior results to the sliding window approach.
Tiling increased performance in a similar manner to the
other features. The results shown in Table 5 are for 7� 7
tiling. The best performance is obtained from just 2 scales
and 4 orientations. This was unexpected as most literature
recommends 4 scales and 6 orientations. Looking at the
filtered images indicated that, as for Tamura, this may be
due to noise at coarser scales.

Table 3: Standard Tamura features – mean average
precision retrieval

Tiling

Feature 1 � 1 3 � 3 5 � 5 7 � 7 9 � 9

Contrast 3.2% 6.1% 7.2% 8.1% 8.0%

Directionality: peak

finding

2.9% 4.2% 5.0% 5.8% 6.6%

Directionality: entropy 2.7% 5.4% 7.5% 8.9% 9.7%

Coarseness 2k: max k ¼ 2 4.4% 8.3% 9.5% 9.9% 9.9%

Coarseness 2k: max k ¼ 3 3.5% 7.6% 8.8% 9.2% 9.0%

Coarseness 2k: max k ¼ 4 3.5% 7.2% 7.7% 7.0% –

Coarseness 2k: max k ¼ 5 3.3% 5.7% – – –

Coarseness 2k: max k ¼ 6 2.9% – – – –

Coarseness k : max k ¼ 2 4.4% 8.0% 9.3% 9.6% 9.6%

Coarseness k : max k ¼ 3 3.9% 7.5% 8.9% 9.1% 8.9%

Coarseness k : max k ¼ 4 3.4% 7.0% 7.7% 7.2% –

Table 4: Histogram Tamura features – mean average
precision retrieval

Window size

Feature 2 4 8 16

Contrast 6.0% 6.7% 7.0% 6.9%

Directionality: peak finding 5.4% 5.6% 5.6% 4.9%

Directionality: entropy 4.9% 4.4% 5.2% 5.4%

Coarseness 2k : max k ¼ 2 6.9% 6.0% 6.1% 6.0%

Coarseness 2k : max k ¼ 3 6.5% 5.9% 6.0% 5.8%

Coarseness 2k : max k ¼ 4 6.1% 5.7% 5.6% 5.4%

Coarseness k : max k ¼ 2 6.4% 10.0% 9.8% 8.2%

Coarseness k : max k ¼ 3 5.7% 10.1% 9.2% 7.9%

Coarseness k : max k ¼ 4 8.8% 9.3% 8.1% 7.7%
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4.5 Evaluation using TRECVID 2003 video
data

A range of the best performing features were run on the
TRECVID 2003 data and evaluated using the published
relevance judgements. The queries were run singly and then
combined with a colour histogram feature, HSV [16]. The
results are shown in Table 6. For comparison some features
used for previous evaluations [16] gave m.a.p. of: HSV
1.9%, convolution 2.2% and variance 1.7%; random
retrieval would give 0.26%.
In this evaluation the texture features performed extre-

mely well in comparison with previous benchmarks. Gabor
gave the best results, 3.9% or 15 times better than random
retrieval. Of the Tamura features the best performing was
the combined standard features. The top 3 performing
texture features combined gave a m.a.p. of 4.22%.
Combining with the HSV feature improved average

retrieval performance in all cases, but at an individual query
level the benefits were both positive and negative. It is
interesting that using a simple combination of features gives
varying degrees of improvement; being able to choose the
optimum combination based on the query would be
beneficial.

4.6 ImageCLEF evaluation

Following the original evaluation work [19] an opportunity
arose to evaluate the texture features on an additional
collection within the image track of the cross language
evaluation forum (CLEF); full details of this work are
presented in [15].
The nature of the image collection, described in Section

3.1, makes texture a key discriminator. Table 7 shows the
retrieval performance for a range of the texture features. The

Gabor feature on its own outperformed all runs submitted to
the evaluation, achieving a m.a.p. of 35.3%. We actually
submitted a run which combined five features. This gave a
map of 34.5% which was third in the evaluation, less than
1% behind the leader.

This evaluation confirmed that the work evaluating and
modifying the features is applicable over a range of image
collections. The choice of parameters has produced robust
features that perform well.

5 Conclusions and recommendations

We selected from the literature three different texture
features, implemented, modified and evaluated them. Both
the evaluation and implementation focused on query-by-
example image retrieval rather than the usual classification
task.

This led to some novel modifications to the Tamura
features. We found that looking for large scale coarseness
degraded performance, so we limited the range and used a
logarithmic scale. An improvement in directionality per-
formance over small window sizes was achieved by using an
entropy measure rather than taking the second moments of
the peaks. We also encoded the features in terms of joint
histograms, the overall performance of these was similar to
the standard features.

To improve the retrieval with Gabor we scaled the filter
size to that of the image, rather than using a fixed size filter.
Rather unintuitively we found that fewer scales gave higher
retrieval rates. Our tests of co-occurrence matrices showed a
solid performance, as was expected.

Although throughout our work we have considered how
best to cope with varying image sizes, scales, formats and
orientations, we have predominantly worked with images of
roughly 105 pixels, i.e. 450 diagonal pixels. When working
with larger images we suggest first down scaling them to
roughly this size before extracting the texture features from
this paper.

Our evaluation with TRECVID 2003 data showed that the
top three texture features performed better than previously
used colour features. Combination with a colour feature
boosted retrieval performance in all cases. We carried out a
further evaluation on a medical image collection, Image-
CLEF. The Gabor feature performed particularly well. This
further demonstrated the feature’s robustness across differ-
ing collections and proved its effectiveness on a largely
monochrome image library. Overall we have identified
robust texture features for image retrieval.
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