
Open Research Online
The Open University’s repository of research publications
and other research outputs

A Novel Half-Way Shifting Bezier Curve Model
Conference or Workshop Item
How to cite:

Sohel, Ferdous; Dooley, Laurence S. and Karmakar, Gour C. (2005). A Novel Half-Way Shifting Bezier Curve
Model. In: 10th IEEE International Conference on Convergent Technologies (TENCON ’05), 21-25 Nov 2005,
Melbourne, Australia.

For guidance on citations see FAQs.

c© [not recorded]

Version: [not recorded]

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1109/TENCON.2005.300930

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82907761?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://dx.doi.org/doi:10.1109/TENCON.2005.300930
http://oro.open.ac.uk/policies.html


A Novel Half-Way Shifting Bezier Curve Model  
Ferdous Ahmed Sohel, Laurence S. Dooley, and Gour C. Karmakar 

Gippsland School of Information Technology 
Monash University, Churchill, Victoria – 3842, Australia 

E-mail: {Ferdous.Sohel, Laurence.Dooley, Gour.Karmakar}@infotech.monash.edu.au 
 
 
 
 

Abstract 
 

Bezier curves can cause a considerable gap to occur 
between the approximation curve and its control polygon, 
due to considering only the global information of the 
control points. In order to reduce this error in curve 
representations, localised information needs to be 
incorporated, with the main philosophy to narrow down 
the gap by shifting the Bezier curve points closer to the 
control polygon. To integrate this idea into the theoretical 
framework of the classical Bezier curve model, this paper 
presents a novel Half-way shifting Bezier Curve (HBC) 
model, which automatically incorporates localised 
information along with the global Bezier information. Both 
subjective and objective performance evaluations of the 
HBC model using upon a number of objects having 
arbitrary shape confirm its considerable improvement over 
the classical Bezier curve model without increasing the 
order of computational complexity. 

Index Terms – Bezier curve, localised information, global 
information, half-way shifting. 
 
 
 

I. INTRODUCTION 

Bezier curves were independently developed by P. de 
Casteljau and P.E. Bézier and have been applied to many 
computer-aided design (CAD) applications. While their 
origin can be traced back to the design of car body shapes 
in the sixties, their usage is no longer confined to this field. 
Indeed, their robustness in curve and surface representation 
has meant that Bezier curve usage now pervades many 
areas of multimedia technology including shape 
description of characters [1-2] and objects [3], active shape 
lip modelling [4], shape error concealment for MPEG-4 
objects [5] and surface mapping [6].  

Bezier curves are defined by a set of control points 
which, depending upon their number and orientation, 
govern the shape of the curve. Bezier curves however, only 

consider the global information about the control points [7] 
and calculate the curve points in a linear iterative 
subdivision approach of the edges of the control polygon 
(CP). As a result, there is often a large error between the 
curve and its CP especially in the middle region of the 
curve, thereby restricting the maximum curve length for a 
given number of control points. A composite Bezier [8] 
strategy comprising multiple segments, and hence more 
control points can be used to address this shortcoming, 
however when describing a shape using a Bezier curve, 
most of the control points are required to be defined 
outside the original shape which will not necessarily be 
inside the coordinate system, so increasing the 
computational overhead in many applications. Degree 
elevation [9] has been exploited to form a curve with an 
increased number of control points though all these points, 
except the two end points have to be recalculated so 
incurring a significant computational overhead. 
Subdivision and refinement techniques have also been used 
to reduce the gap between the Bezier curve and its CP by 
increasing the number of curve segments. When the 
control points of a curve are known, two sets of new 
control points that are closer to the curve can be calculated 
using subdivision algorithms such as midpoint subdivision 
[10] or arbitrary subdivision [11]. All these algorithms 
however increase the number of curve segments and thus 
the number of control points. Moreover, to ensure that 
curve segments are conjoint, the number of subdivisions 
has also always to be constrained.  

All the aforementioned algorithms minimise the gap 
between the Bezier curve and its CP by increasing the 
number of control points. In communication applications 
this means a higher coding and transmission cost to 
represent a particular shape. To overcome this problem, 
this paper presents a novel Half-way shifting Bezier Curve 
(HBC) model, which incorporates localised information 
within the classical Bezier curve framework by shifting the 
curve point at the midpoint between the curve point and 
the CP, with no increase in computational complexity. It is 
particularly noteworthy that this new model can be 
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Figure 1. A quadratic 
Bezier curve illustrating 

the gap. 

seamlessly integrated into Bezier refinement algorithms 
such as degree elevation and subdivision and it will be 
shown that HBC retains many of the core properties of the 
classical Bezier curve. The performance of the model as a 
generic shape descriptor for a number of arbitrary shapes 
has been extensively analysed using both quantitative and 
qualitative metrics, with results clearly confirming its 
superiority compared with the classical BC.   

The remainder of the paper is structured as follows: 
Section II provides a short overview of the classical Bezier 
curve identifying problems due to the global control, while 
Section III discusses the theoretical basis of the new HBC 
model along with proofs that the key properties of the 
classical Bezier curve are retained. Section IV presents 
some experimental results confirming the superior 
performance of HBC model relative to the original Bezier 
curve, with some conclusions given in Section V. 

 

II. OVERVIEW OF THE CLASSICAL BEZIER CURVE 

The Bezier curve (BC) is defined in iteratively linear 
weighted subdivision, having variation diminishing 
property, of the edges of the control polygon. The variation 
diminishing property is in the sense that it starts with the 
edges of the control polygon and decrements the number of 
edges by one in each iteration and stops when the final 
point is generated for a particular weight t . The set of 

1+N starting points is referred to as the control points 
which govern the characteristics of the Bezier curve of 
degree N . The polygon connecting the control points is 
called the control polygon (CP). The Casteljau form of the 
Bezier curve for an ordered set of control points 
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where t  is the weight of subdivision which determines the 
number of points on the Bezier curve. The final generation 

)(1
1 tvN +  is the Bezier curve.  

From (1) it is evident that a particular BC point is 
generated by blending all 
control points. This implies that 
BC only considers the global 
information of a shape and 
yields a gap between the curve 
and its CP. Figure 1 shows an 
example of a quadratic BC 

using control point 210 ,, ppp  
illustrating the large gap that 
occurs between the curve and 

its CP. For 5.0=t , the inner part of BAp1∆  is never reached 
and curve point C  is generated on line AB . This gap which 
manifests itself as a significant shape distortion is due to the 
classical BC considering only the global information. In 
order to reduce this error, a novel strategy incorporating 
local information about the CP is presented in the next 
section.  

 
III. HALF-WAY SHIFTING BEZIER CURVE (HBC) MODEL 

To minimise the gap between a Bezier curve and its 
control polygon the generated Bezier curve point for each 
t  must be shifted inside the area between the control 
polygon and the Bezier curve using half-way shifting as 
follows:-  

 

 

 

 

 

 

Figure 2. Half-way Bezier curve point generation 
illustration. 

The HBC point is then calculated as the mid-point between 
the BC point and this pivot point.  Mid point (half-way 
shifting) is subsequently chosen as the new point, since 
being average it will retain both the properties of the 
Bezier curve as well as the CP. This process is illustrated 
in Figure 2, where a  is the Bezier curve point for a 
particular t .The minimum distance edge from t  is 21vv  

and PQ  is the line parallel to the −y axis through a . The 
intersection point between PQ  and 21vv  isQ . After half-

way shifting the HBC point becomes b . A similarly 
translation takes place for point c , with the corresponding 
HBC point now being d . However, for a particular BC 
point; if the edge of the CP with the minimum distance is 
parallel or almost parallel to the −y axis (or indeed the 

−y axis itself) then there will be no intersection point 
between the edge and line passing through the BC point or 
the intersection point be far outside the CP and so the 
curve is discontinuous. Two examples illustrating these 
problems and solutions are presented in Figure 3. 

Figure 3(a) shows a discontinuous curve caused by the 
CP edges being parallel to the −y axis. This can be solved 
as follows so that when the minimum distance edge is 
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parallel to the −y axis, a line parallel to the x-axis rather 
than the −y axis is drawn through the Bezier curve point.  

Firstly, the edge of the control polygon, which ensures 
the minimum distance between the CP and the Bezier 
curve point, is determined. A line parallel to the −y axis 
and passing through the Bezier curve point is then 
generated, with the intersection point of this line and the 
minimum distance edge being the pivot point.  
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                                 (c)                               (d) 

Figure 3. Problems and their solutions when any edge 
of the control polygon is parallel or almost parallel to 

the −y axis. 

The ordinate value of the HBC point is then calculated 
from the half-way interpolation of the ordinates of Bezier 
curve point and the intersection point, and the abscissa is 
retained as the Bezier curve point. The resultant curve is 
shown in Figure 3(b).  
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Figure 4. HBC and Bezier curve of different degrees 
and orientation of the control points. 

A further complication is that curves generated in this 
manner may have unnecessary oscillations and even in 
certain cases go outside the CP (Figure 3(c)) when any CP 
edge is almost parallel to the −y axis. To overcome this 
problem, the actual slope of a particular edge is considered. 
If the edge is flat with respect to the −x axis then a line 
parallel to the −y axis will be drawn and the HBC points 
generated, otherwise the edge will be steeper and a line 
parallel to the −x axis will be drawn and the HBC points 
generated accordingly. Deciding upon whether a curve is 
flat or steep is easily detected by checking the absolute 
value of the slope. If it is greater than 1 then the curve is 
steep, otherwise it is flat. The resultant model will then 
generate the curve shown in Figure 3 (d) for the same 
control points as in Figure 3(c). Some example curves 
generated using this approach is presented in Figure 4. It is 
clear from the figures that HBC is containing more 
information of the control points and producing less 
distance from the CP. 

The HBC can be formally defined as in Algorithm 1. 

Algorithm 1.  Half-way Shifting Bezier curve 
Algorithm. 

 
Input: A set of control points, },,,{ 21 nvvvV L= , which 

will govern the shape of the curve.  
Variables: t is the weight, },,,{ 21 nvvvV L= is the set of 
control points. 
Output: The half-way shifting Bezier curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. For each value of t  
2. Find the BC point )(tVa = by (1). 

3. Find the edge 1+ii vv of the CP with minimum distance 

from a . (In case of ties select the first edge among 
them) 

4. IF the slope of the edge 1+ii vv  is less than 1 THEN 

Draw a line l  parallel to the −y axis through a . 
6. Find the intersection point Q between line l and 

edge 1+ii vv . 

7. Calculate HBC point by:- 
8.         HBCx (t)= xQ and HBCy (t)= 0.2/)( yy Qa + . 

9. ELSE 
10. Draw a line l parallel to the −x axis through a . 
11. Find the intersection point Q between line l and 

edge 1+ii vv . 

12. Calculate HBC point by:- 
13.        HBCx (t)= 0.2/)( xx Qa + and HBCy (t)= yQ . 

14. END. 



As the foundation HBC model is underpinned by the 
classical Bezier curve theory, many of the core properties 
[7] are preserved. The following examines some of these 
properties as well as also considering the computational 
complexity overhead of the HBC model. 

Lemma 1: End point interpolation: The HBC always 
passes through its first and last control points. 

Proof: Any Bezier curve interpolates its end control 
points [7] for the starting control point 0=u  and for the 
end 1=u . So the corresponding pivot point and hence the 
HBC points will be that particular end-point. 

Lemma 2: Convex Hull Property: The HBC lies 
within the convex hull of its control points. 

Proof: The Bezier curve lies within its control polygon 
[7]. And the HBC points lie in area between the CP and the 
BC inclusive. So the HBC will lie within the convex hull 
of its control points. 

Lemma 3: Linear Precision: When all the control 
points are on a straight line the HBC will also be a straight 
line. 
Proof: By Lemma 2, HBC lies within the convex hull of 
its control points. Therefore, when all the control points are 
on a straight line, HBC will be a straight line.  

Computational complexity analysis: The HBC model 
has the same order of complexity as the original BC. The 
BC in (1) requires ( )NO  iterations for an N th order curve. 
Similarly for HBC as summarised in Algorithm 1: Step 2 
takes ( )NO  time as it is actually BC point generation, while 
Step 3 also takes ( )NO  since it is a linear search among the 
distances from the edges. For the next part of the algorithm, 
either Steps 4-8 or Steps 10-13 are executed, which both 
take constant time, irrespective of the degree of the curve. 
Thus, the overall complexity of HBC is ( )NO , which is the 
same of the classical BC.  

 
IV. EXPERIMENTAL RESULTS AND ANALYSIS 

While Figure 4 is showing some examples of HBC 
compared with the classical Bezier curve for some 
hypothetical control point sets, HBC can be of better use in 
real applications. Next two experimental examples of 
shape description are presented to support this statement.  

Before analysing the experimental results, some 
theoretical context will be provided. Cubic Bezier curves 
have been used for shape description [3] using an a priori 
number of curve segments (segment rate-SR) each having 
the same number of shape points. It means the entire shape 
is divided into SR number of segments, and each segment 
described by a single cubic Bezier curve. The control 
points are selected from the shape points, with the points 
for a curve segment, approximating the shape 

{ }MpppP ,,, 21 K= , between ip  to mip +  (where
SR
Mm = ) 

are:-   

    miiii pvpvpvpv mm +++ ==== × 4321 ;;;
4

3
4

                   (2)   

In the experiments, the same control points generated 
in (2) were used by both the Bezier curve and HBC model 
for two different natural images [3]. The minimum gap 
between a point on the contour and the approximated shape 
represents the shape distortion at that contour point.  
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Figure 5. a) Fish image; b) Shape described by 5 
segments. 

For numerical analysis purposes, the popular and widely 
used shape distortion measurement metrics 
[12] maxD and ovlD were used for class one (peak) and class 

two (mean-squared) distortion values respectively with the 
edge distortion measured by using [13]. In Figure 5(b), 
shape descriptions of the fish object are shown for a fixed 
segment rate (SR=5). The Bezier curve produced a 
maximum distortion of 9.5 pel at the tail portion of the 
object, while the HBC model generated a corresponding 
maximum distortion of 8.2 pel. When the entire shape was 
considered, HBC model provided a better shape 
description in comparison to the Bezier curve, as 
confirmed by the numerical results in Table 1, for the 
maximum and overall (Ovl) distortion values, for various 
segment numbers. For instance, with 5 segments the Bezier 
curve and HBC representations had overall distortions of 
14.1 and 9.1 pel2 respectively. This improvement 
highlights the fact that HBC considered localised 
information in addition to the inherent global information 
of the Bezier curve. 

Table 1.  Distortion  (units: max distortion = pel; Ovl 
distortion = pel2) in shape representation. 

SR = 5 SR = 6 SR = 7 SR =8   
Max Ovl Max Ovl Max Ovl Max Ovl

BC 9.5 14.1 6.3 7.1 6.2 4.08 4.7 2.9 Fish
 HBC 8.2 9.1 6.0 5.0 5.7 2.6 4.2 1.9 
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Figure 6: Lip shape description. 

The next series of experiments was performed upon the 
lip shape used in [4], which was divided into five segments 
using the curvature information of the shape. For each 
segment, the control points were generated using (2) with 
m  being the total number of shape points for a particular 
segment. Figure 6 shows the comparative results between 
BC and HBC for this shape, with HBC again generating 
better results than the classical BC. The class one 
distortion values for HBC and BC were respectively 2.8 
and 3.9 pel, while the corresponding class two distortions 
were 1.8 and 3.6 pel2. 
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Figure 7. HBC curve and Bezier curve using Bezier 
subdivisions. 

A further series of experiments was conducted to 
illustrate the potential of HBC model using the midpoint 
subdivision algorithm [8] of Bezier curve, with the results 
shown in Figure 7. The HBC was drawn using the resultant 
control points generated in [8]. Again the HBC model 
generated better curves compared with the original Bezier 
curve using the same subdivided control points set. 

Table 2. Area coverage (in pel2) by curve of different 
degrees. 

Degree of the 
curve 

Control 
polygon 

HBC Bezier 
Curve 

2 17.5 14.53 11.55 
3 21.0 18.03 15.14 
4 14.5 12.56 10.52 
5 387.5 277.06 224.20 
10 280.5 236.81 213.84 

The final experiments tested the performance of the 
HBC model for higher degree curves. Different control 
point sets were used for different degree curves; however, 
for a particular degree the same set was used for both HBC 
and BC. The curves were closed by joining the first and 
last curve points and the total area covered by the curves 
used as a comparison metric, with the results given in 
Table 2. This shows that HBC consistently covered a 
greater area for all degree curves compared with the BC, 
with the CP being the upper bound, so confirming that 
HBC more closely follows the CP than the Bezier curve. 

 
V. CONCLUSIONS 

While the Bezier curve is a well established tool for a wide 
range of applications, its main drawback is that it does not 
incorporate localised information. This paper has focused 
upon bridging this by integrating localised information into 
the BC framework. A novel half-way shifting Bezier curve 
(HBC) model has been presented and mathematically 
proven that it retains the core properties of the BC. The 
qualitative and quantitative results using different shapes 
and also the examples in the theoretical analysis confirmed 
that HBC model exhibited considerable improvement over 
the Bezier curve in terms of shape distortion performance 
and kept the same computational complexity order.  
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