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Abbreviations: 

BBB, blood-brain barrier 

CECs, cerebral endothelial cells 

DMNQ, 2,3-dimethyl-1,4-naphthoquinone 

ERK, extracellular signal-regulated kinase 

FAK, focal adhesion kinase 

GAPDH, glutaraldehyde-3-phosphate dehydrogenase 

Gas 6, growth arrest-specific protein 6 

Ma, mannitol 

PDTC, pyrrolidine dithiocarbamate 

PI3K, phosphatidyl inositol 3-kinase 

PMA, phorbol myristyl acetate 

PKC, protein kinase C 
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ABSTRACT 

 

Due to the relative impermeability of the blood-brain barrier many drugs are unable to reach 

the CNS in therapeutically relevant concentration. One method to deliver drugs to the CNS is the 

osmotic opening of the blood-brain barrier using mannitol. Hyperosmotic mannitol induces a 

strong phosphorylation on tyrosine residues in a broad spectrum of proteins in cerebral 

endothelial cells, the principal components of the blood-brain barrier. Previously we have shown 

that among targets of tyrosine phosphorylation are β-catenin, extracellular signal-regulated kinase 

1/2 and the non-receptor tyrosine kinase Src. The aim of this study was to identify new signaling 

pathways activated by hypertonicity in cerebral endothelial cells. Using an antibody array and 

immunoprecipitation we identified the receptor tyrosine kinase Axl to become tyrosine 

phosphorylated in response to hyperosmotic mannitol. Besides activation, Axl was also cleaved 

in response to osmotic stress. Degradation of Axl proved to be metalloproteinase- and 

proteasome-dependent and resulted in 50-55 kDa C-terminal products which remained 

phosphorylated even after degradation. Specific knockdown of Axl increased the rate of 

apoptosis in hyperosmotic mannitol-treated cells, therefore we assume that activation of Axl may 

be a protective mechanism against hypertonicity-induced apoptosis. Our results identify Axl as 

an important element of osmotic stress-induced signaling. 

 

Keywords: blood-brain barrier, cerebral endothelial cells, mannitol, hyperosmosis, Axl 

 

Running title: Hyperosmotic phosphorylation and cleavage of Axl 
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INTRODUCTION 

 

Cerebral endothelial cells (CECs) are the principal components of the blood-brain barrier 

(BBB). They form a continuous monolayer and are interconnected by tight junctions which 

impair the free movement of different chemical compounds from one side to the other side of the 

barrier. The cerebral microvasculature is ensheated by astrocytic endfeet which play an essential 

role in maintaining BBB phenotype (for review see: Abbott et al 2006). Low permeability of the 

endothelial cell monolayer protects the CNS from potentially toxic substances and contributes 

significantly to the homeostasis of the brain. Regulation of permeability is under complex 

control. In these regulatory processes signaling molecules, like protein kinases and phosphatases, 

cyclic nucleotides, calcium, etc. play important roles (Deli et al 1993; Hurst et al 1998; Lohmann 

et al 2004; Krizbai and Deli 2003). 

From clinical point of view, due to the relative impermeability of the barrier many drugs are 

unable to reach the CNS in therapeutically relevant concentration, making the BBB one of the 

major impediments in the treatment of CNS disorders. A large number of strategies have been 

developed in order to circumvent this problem. One of the successfully used methods to deliver 

drugs — especially antitumoral agents — to the CNS is the osmotic opening of the BBB using 

mannitol (Kroll et al 1998; Neuwelt et al 1980; Neuwelt et al 1991). This causes a rapid opening 

(within minutes) of the BBB which is reversible. The barrier function starts to recover 

approximately 1 h after treatment, but complete recovery is achieved only after 6-8 h (Rapoport 

et al 1980; Siegal et al 2000). 

Despite successful clinical trials the molecular mechanisms underlying the effect of 

hyperosmotic mannitol are largely unknown. Early studies were not able to detect any changes in 

the structure of the interendothelial tight junctions of brain capillary endothelial cells (Farrell et 
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al 1984), however, later Lossinsky et al (1995) have demonstrated that a single intracarotid 

injection of hypertonic 1.8 M L (+) arabinose widened interendothelial spaces. Peroxidase tracer 

was observed within vesiculo-tubular profiles, and occasionally within widened interendothelial 

junctional clefts. Furthermore, intraperitoneal infusion of hyperosmotic mannitol induced 

increased expression of AQP4 in astrocytes, at sites where the blood-brain barrier was disrupted 

(Arima et al 2003). 

Hyperosmotic stress initiates a variety of compensatory and adaptive responses (for review 

see: Maurice et al 2007). In response to hypertonicity cells can initiate a rapid reorganization of 

the actin cytoskeleton. Di Ciano et al. have shown that hypertonic conditions induce 

submembranous de novo F-actin assembly and promote association of cortactin with the actin-

related protein 2/3 (Arp2/3) complex (Di Ciano et al 2002). Further research has revealed 

activation of Rho, Rac and Cdc42 as well (Di Ciano-Oliveira et al 2003; Lewis et al 2002). Our 

atomic force microscopic studies have revealed a significant decrease in cell height and elasticity 

accompanied by the appearance of cytoplasmic protrusions (Balint et al 2007). 

There is increasing evidence that hypertonicity induces a concerted action of signaling 

mechanisms. Protein phosphorylation plays an important role in the cellular adaptation to 

hyperosmotic conditions and cellular shrinkage. It has been shown that one target of 

phosphorylation is cortactin, an actin-binding protein which is phosphorylated in a Fyn-

dependent manner in Chinese hamster ovary cells (Kapus et al 1999). Another target protein of 

hyperosmotic stress-stimulated phosphorylation is focal adhesion kinase (FAK) which becomes 

phosphorylated on Tyr-397 and Tyr-577 via a Src-independent pathway in fibroblats and 

epithelial cells (Lunn et al 2004). However, less is known about endothelial, especially cerebral 

endothelial cells. In our previous study we have shown that β-catenin becomes tyrosine 
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phosphorylated in response to mannitol in CECs and this phosphorylation is Src kinase-

dependent (Farkas et al 2005). 

The aim of this study was to identify new signaling pathways regulated by hyperosmosis in 

CECs. 

 

MATERIAL AND METHODS 

 

Materials 

All chemicals, if not otherwise stated, were purchased from Sigma.  

The following inhibitors were used: genistein, PP1, Y27632 (Tocris), GM6001, calpeptin, 

bisindolylmaleinimide, MG132, zVAD (Calbiochem), DMNQ, pyrrolidine dithiocarbamate 

(PDTC), sodium vanadate, verapamil (Sigma), leupeptin, E64, pepstatin, pefabloc (Roche), 

U0126 (Cell Signaling), wortmannin (Alomone). 

Protein G Sepharose was purchased from GE Healthcare. We have used the following 

antibodies: anti-Axl (C20) (Santa Cruz), anti-Akt, anti-phospho-Akt (Ser473), anti-cleaved 

caspase-3 (Asp175) (Cell Signaling), anti-phosphotyrosine, anti-β-actin (Sigma), HRP-anti-goat 

IgG (Santa Cruz), HRP-anti-mouse IgG (Sigma), HRP-anti-rabbit IgG (Cell Signaling), Cy3-anti-

goat IgG and -anti-rabbit IgG (Jackson). 

 

Cell culture and treatments 

The human cerebral endothelial cell line hCMEC/D3 was maintained as described 

previously (Weksler et al 2005). Briefly, the cells were grown on rat tail collagen coated plates or 

glass coverslips in EBM-2 medium (Cambrex) supplemented with EGM-2 Bullet Kit (Cambrex) 

and 2.5% fetal bovine serum (FBS, Sigma). 
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Confluent monolayers of hCMEC/D3 cells were treated in serum free culture medium with 

10-20% mannitol (0.55-1.1 M, corresponding to an additional 550-1100 mOsmol/l compared to 

the 300 mOsmol/l control) and various other substances were added concurrently with mannitol 

as indicated. Genistein treatment was performed with an 1 h preincubation. 

 

Antibody array 

For the detection of phosphorylated proteins we used an antibody array (Hypromatrix) and 

followed the manufacturer’s recommendations during the whole procedure. Briefly, cells were 

lysed in a buffer containing 20 mM Tris, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 1 mM 

sodium vanadate, 10 mM NaF, 1 mM Pefabloc. After centrifugation (10,000 x g, 10 min, 4°C) 

the cell homogenate was incubated with the antibody matrix. Following washing steps, the 

membrane was incubated with HRP-labeled anti-phosphotyrosine antibody (Hypromatrix) and 

the reaction was visualized using ECL Plus (GE Healthcare).  

 

Western-blot 

Cells were washed with phosphate buffered saline (PBS) and scraped into ice-cold lysis 

buffer (20 mM Tris, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 1% sodium deoxycholate, 

0.1% sodium dodecyl sulphate, 1 mM sodium vanadate, 10 mM NaF, 1 mM Pefabloc) and 

incubated on ice for 30 min. For determination of water- and detergent soluble proteins the 

following buffers were used: 20 mM Tris, 150 mM NaCl, 1 mM EDTA, 1 mM sodium vanadate, 

10 mM NaF, 1 mM Pefabloc for water-soluble proteins, and the same buffer containing in 

addition 1% TritonX-100 for detergent-soluble proteins. Lysates were clarified by centrifugation 

at 10,000 x g for 10 min on 4°C and protein concentration was determined with the BCA method 

(Pierce). Proteins were electrophoresed and blotted onto PVDF (Pall) or nitrocellulose 
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(Schleicher-Schuell) membranes. The immunoreaction was visualized using ECL Plus 

chemiluminescence detection kit. 

 

Immunoprecipitation 

For immunoprecipitation experiments cells were homogenized in lysis buffer as described 

above. Briefly, lysates were centrifuged at 10,000 x g for 10 min in a microfuge and the 

supernatant was subjected to immunoprecipitation. After preclearing with protein G Sepharose, 

supernatants were incubated with 2-5 μg primary antibody (anti-phosphotyrosine or -Axl) at 4°C 

for 4 h. The formed immunocomplexes were precipitated by incubating the samples overnight 

with protein G Sepharose beads. The precipitates were washed 4 times with lysis buffer, boiled in 

sample buffer, and subjected to electrophoresis and immunoblotting. 

 

Specific knockdown of Axl by RNA interference 

StealthTM siRNA duplex oligoribonucleotides were designed using Invitrogen BLOCK-

iTTM RNAi designer and were purchased from Invitrogen. The sequences used were as follows: 

sense, 5'-CAGGAACTGCATGCTGAATGAGAA-3'; antisense, 5'-

TTCTCATTCAGCATGCAGTTCCTGG-3'. As control non-targeting RNA we have used the 

following scrambled oligonucleotides: sense, 5’-GACGTAGAGAGAGTTCCGACATACA-3’ 

and antisense 5’-TGTATGTCGGAACTCTCTCTACGTC-3’. Briefly, cells were plated at 50% 

confluency. Transfection of oligonucleotides was then performed in OptiMEM medium 

containing 10 nM RNA and LipofectamineTM RNAiMAX reagent (Invitrogen) following the 

manufacturer's instructions. After 6 h the medium was changed to regular culture medium. In 

order to increase the efficiency, a second transfection was performed the following day. Cells 

were analyzed 24 h after the second transfection when they achieved confluency. 
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Immunofluorescence 

Cells were fixed using a mixture of ice cold ethanol : acetic acid (95:5) for 10 min. After 

blocking with 3% bovine serum albumin for 30 min, coverslips were incubated with primary 

antibody. The staining was visualized using Cy3-conjugated secondary antibody. Coverslips were 

mounted in anti-fading embedding medium (Biomeda) and the distribution of the signal was 

studied using a Nikon Eclipse TE2000U photomicroscope with epifluorescent capabilities 

connected to a digital camera (Spot RT KE). 

 

Real-time PCR 

For real-time PCR analysis we isolated total RNA from treated and untreated cells using 

TRIzol reagent (Invitrogen) following the manufacturer’s recommendations. RNA was 

transcribed into cDNA using a reverse transcription kit (Fermentas). The amplification was 

performed on a BioRad iQ5 instrument using FastStart SYBR Green Mix (Roche) under the 

following conditions: 30 cycles of 95°C for 15 s, 55°C for 30 s, 72°C for 30 s. 

The following primer pairs were used for amplification: GAS6: 5'-

TGCTGTCATGAAAATCGCGG-3' and 5'-CATGTAGTCCAGGCTGTAGA-3', Axl: 5'-

GGTGGCTGTGAAGACGATGA-3' and 5'-CTCAGATACTCCATGCCACT-3' (Sun et al 

2002), GAPDH (glutaraldehyde-3-phosphate dehydrogenase) (control): 5'-

GTGAAGGTCGGTGTCAACG-3' and 5'-GTGAAGACGCCAGTAGACTC-3'. Determination 

of threshold cycle and quantitation was performed using the software of the instrument. 
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Two-dimensional electrophoresis coupled with Western-blot 

Control and mannitol treated cells were washed with Tris buffered sorbitol (10 mM Tris, 25 

mM sorbitol, pH=7.0) and scraped into sample-rehydration buffer (7 M urea, 2 M thiourea, 2% 

CHAPS, 1% DTT, 0.2 mM vanadate, 1 mM Pefabloc, 1 mM NaF, 0.2% ampholite, traces of 

bromophenol blue) and incubated at room temperature for 1 h. Debris was removed by 

centrifugation at 16,000 x g for 20 min on 17°C. The two-dimensional electrophoresis was 

carried out on a Protean IEF Cell using immobilized pH gradient strips (7 cm, pH 4-7 BioRad 

Laboratories Inc.) and a Mini-Protean 3 cell according to the manufacturer’s instructions. 

Western-blots were performed on the second dimension gels. 

 

Determination of apoptosis 

Cells cultured on glass coverslips were transfected with Axl siRNA construct (as described 

previously), followed by treatment with 20% mannitol for 3 h. In order to control the efficiency 

of silencing, parallel Western-blot analysis was performed using anti-Axl antibody (as described 

previously). Immunofluorescence staining was done using anti-cleaved caspase-3 antibody 

(according to the manufacturer’s instructions). 1,000 cells/coverslip were analyzed under 

fluorescence microscope and labelled cells were counted. In another set of experiments nuclear 

morphology was analysed using Hoechst 33342 staining (0.6 µg/ml). Nuclei containing 

condensed chromatin at the nuclear envelope or fragmented chromatin were considered apoptotic 

(Bresgen et al 2003). 
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RESULTS 

 

Phosphorylation of Axl 

In our previous studies we have shown that hyperosmotic mannitol induces a strong 

phosphorylation on tyrosine residues in CECs (Farkas et al 2005). To further identify target 

proteins of tyrosine phosphorylation an antibody array screening was applied using a matrix 

loaded with antibodies directed mainly against signaling molecules. Using this method we found 

β-catenin, the MAPkinase extracellular signal-regulated kinase (ERK)1, p130Cas, focal adhesion 

kinase (FAK) and the receptor tyrosine kinase Axl to become phosphorylated (Fig. 1A). In our 

previous studies we have already shown that β-catenin and ERK are targets of mannitol induced 

phosphorylation in CECs. Literature data are available confirming the phosphorylation of 

p130Cas and FAK in response to hyperosmosis (Ueno et al 2001; Lunn et al 2004). 

To prove that Axl can indeed be phosphorylated under hypertonic conditions we performed 

immunoprecipitation studies using anti-phosphotyrosine antibody (Fig. 1B) and anti-Axl 

antibody as well (Fig. 1C). Both approaches confirmed the tyrosine phosphorylation of Axl after 

treatment of the cells with 20% mannitol for 30 min. 

 

Activation of Akt 

To test the activation of the possible downstream elements of Axl signaling we investigated 

the phosphorylation of Akt (protein kinase B). RNA interference was used to specifically knock 

down Axl and the result of silencing was controlled using Western-blot with anti-Axl antibody 

(Fig. 2A). An almost complete silencing of Axl protein could be achieved. We found that 

mannitol was able to induce the phosphorylation (on Ser473 residue) and thus the activation of 
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Akt (Fig. 2B). This phenomenon was prevented by Axl silencing, showing that mannitol induced 

Akt activation occurs through the receptor tyrosine kinase Axl. 

 

Degradation of Axl 

We have observed that besides phosphorylation, treatment of CECs with 20% mannitol 

induced the appearance of a double proteolytic band with an apparent molecular weight of 50-55 

kDa  (arrowheads, Fig. 1B, 3A) accompanied by a decrease in the intensity of the full size Axl 

band (Fig. 1B, 3A). Since our antibody recognizes the C-terminal of the protein, we conclude that 

this degradation band corresponds to the intracellular domain of Axl. Degradation of Axl proved 

to be time- and concentration-dependent and was clearly detectable after 10 min of mannitol 

treatment (Fig. 3B). 

 

Changes in the localization of Axl in response to mannitol treatment 

Results obtained with Western-blot analysis were supported by immunofluorescence studies 

as well. Under control conditions Axl staining was diffuse, whereas treatment of CECs with 20% 

mannitol led to the appearance of a conspicuous perinuclear staining (Fig. 4). 

 

Regulation of Axl and Gas6 at mRNA level 

To test if mannitol is able to regulate Axl at transcriptional level, we performed real-time 

PCR experiments. We could not observe changes in the expression of either Axl or its ligand 

Gas6 in response to mannitol treatment (Fig. 5). 
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Effect of different stress factors on Axl degradation 

We have tested the effect of other osmotic agents (arabinose, sodium chloride and urea) in 

similar osmotic concentrations to 1.1 M mannitol (additional 1100 mOsmol/l). When osmotic 

stress was caused by poorly cell permeable agents (mannitol, NaCl or arabinose) we observed the 

appearance of the cleavage products with a parallel decrease in the main Axl band (Fig. 6A). 

However, the cell permeable urea did not induce Axl cleavage (Fig. 6A), suggesting that cellular 

shrinkage is probably responsible for Axl degradation. Other stress factors like oxidative stress 

(DMNQ treatment), calcium or glucose deprivation (not shown) or high glucose concentration (8 

g/l) did not cause alterations in Axl levels (Fig. 6B). Degradation of Axl in response to 

hypertonic stress could be detected not only in CECs but in other cell types like Madine Darby 

Canine Kidney (MDCK) or the rat glioma cell line RG2 as well (Fig. 6C). 

 

Mechanism of Axl cleavage 

To identify the mechanisms by which Axl degradation is regulated we have used a series of 

inhibitors of different signaling pathways and protease inhibitors. Inhibition of nuclear factor-

kappa B (NFκB, using PDTC), Rho-kinase (using Y27632), calcium channel (using verapamil), 

protein kinase C (PKC, using bisindolylmaleimide), phosphatidyl inositol 3-kinase (PI3K, using 

wortmannin), ERK 1/2 (using U0126) or Src kinase (using PP1) did not affect the degradation of 

Axl. Caspase inhibition (using zVAD), inhibition of calpain (using calpeptin), and the use of 

cysteine, serine or aspartic protease inhibitors (E64, leupeptin, pepstatin) were also ineffective in 

reducing the degradation of Axl (Fig. 7A, B and C). On the other hand, the matrix 

metalloproteinase inhibitor GM6001 was able to almost completely inhibit the degradation of Axl 

induced by mannitol (Fig. 8A and B). 
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We investigated the solubility of the different Axl bands. Only the lower band of the 

degradation products proved to be soluble in detergent-free buffer. Both the whole protein and 

the upper degradation band were water-insoluble and detergent (i.e. TritonX-100) soluble (Fig. 

8C). The proteasome inhibitor MG132 induced the disappearance of the lower (water-soluble) 

degradation fragment parallelly with the intensification of the upper (detergent-soluble) cleavage 

product, however, no change in the amount of the 140 kDa band was seen (Fig. 7B and 8C). 

 

Phosphorylation and degradation of Axl 

To study the possible relationship between the phosphorylation and degradation of Axl we 

investigated the time course of Axl phosphorylation and degradation. Axl becomes 

phosphorylated after 2 min and reaches its maximum at 15 min whereas the degradation starts 

between 5-15 min (Fig. 9A). Pervanadate, a strong phosphatase inhibitor induced the 

phosphorylation of Axl but did not cause its degradation indicating that the cleavage of Axl is not 

induced by tyrosine phosphorylation (Fig. 9B). This was also supported by the fact that the 

tyrosine kinase inhibitor genistein, which inhibited the phosphorylation of Axl, did not inhibit its 

degradation (Fig. 9B). Furthermore, the metalloproteinase inhibitor GM6001 which inhibited the 

degradation of Axl did not affect activation of Akt, a downstream element of Axl signaling (Fig. 

9C). 

Our results obtained from phosphotyrosine immunoprecipitation studies suggest that the 

degradation products of Axl are phosphorylated in mannitol treated cells (double arrowheads on 

Fig. 9B and 1B and C). The tyrosine kinase inhibitor genistein reduced the mannitol-induced 

phosphorylation of the Axl degradation products to control levels (Fig. 9B). Presence of multiple 

spots at the level of the 55 kDa degradation products on Axl Western-blots performed on two-

dimensional gels may also indicate differentially phosphorylated forms of the protein (Fig. 9D). 
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Role of Axl in mannitol-induced apoptosis 

To gain insight into the role of mannitol-induced Axl activation we have counted the 

number of apoptotic cells after mannitol treatment in control and Axl-silenced cells. The 

knockdown was almost complete in Axl siRNA-transfected cells, however, the scrambled 

sequence did not affect Axl expression (Fig. 10A). The rate of apoptosis was determined based 

on cleaved caspase-3 staining. 30 min mannitol treatment did not induce significant changes in 

the number of apoptotic cells. However, after 3 h mannitol treatment a more than 100% increase 

was detectable: from 2.83±0.10% in Lipofectamine treated and 2.55±0.21% in scrambled RNA-

transfected cells to 5.83±0.21% and 5.50±0.85%, respectively (Fig. 10B). Axl silencing induced a 

more than 50% increase in the number of apoptotic cells in control conditions, and a more than 

40% increase in mannitol treated cells (Fig. 10B). Similar results were obtained when apoptosis 

was assessed based on nuclear morphology (not shown). 

 

DISCUSSION 

 

Experiments of the present study were designed to identify signaling mechanisms activated 

by hyperosmotic stress in CECs. In our previous studies (Farkas et al 2005) we have shown that 

mannitol induces a strong phosphorylation on tyrosine residues in a broad spectrum of proteins 

ranging between 50-200 kDa. We have further shown that among targets of tyrosine 

phosphorylation are β-catenin and the non-receptor tyrosine kinase Src. Here by using a 

screening approach based on an antibody array we could identify three additional proteins to 

become tyrosine phosphorylated in response to hyperosmotic stress: p130Cas (p130 Crk-

associated substrate), FAK (focal adhesion kinase) and Axl. Moreover, we could confirm our 
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earlier finding that β-catenin and ERK1 are tyrosine phosphorylated in CECs in response to 

hyperosmotic mannitol treatment. 

p130Cas is an Src substrate signaling molecule localized to focal adhesions (Harte et al 

1996) and is involved in several processes including motility, adhesion, proliferation and survival 

(for review see: Defilippi et al 2006). p130Cas has already been shown to become tyrosine 

phosphorylated in adipocytes in response to osmotic stress (Ueno et al 2001). FAK which is in 

close interaction with p130Cas (Polte et al 1995) has also been shown to be tyrosine 

phosphorylated under hyperosmotic conditions in fibroblasts and endothelial cells of non-cerebral 

origin (Lunn et al 2004; Malek et al 1998). 

Axl (also called ARK, UFO and Tyro7) is a member of a family of receptor tyrosine 

kinases that includes Mer and Sky, having the vitamin K-dependent Gas 6 (growth arrest-specific 

protein 6) as its natural ligand (for review see: Hafizi and Dahlback 2006a, 2006b). This family 

of receptor tyrosine kinases is characterized by two immunoglobulin-like and two fibronectin 

type III domains in the N-terminal region and a tyrosine kinase domain in the intracellular C-

terminal region. Axl has two alternatively spliced forms (O'Bryan et al 1995) that either contain 

or lack 9 amino acids carboxyl-terminal to the fibronectin domains in the extracellular part of the 

protein. Axl is emerging as a regulator of a large number of cellular functions and has been 

shown to be involved in the regulation of different aspects of endothelial function as well. It has 

been demonstrated that activation of Axl can rescue endothelial cells from apoptosis 

(D'Arcangelo et al 2006; D'Arcangelo et al 2002; Hasanbasic et al 2004) and Axl is involved in 

cell migration and vascular remodeling (Korshunov et al 2007; Korshunov et al 2006) and 

angiogenesis (Gallicchio et al 2005; Holland et al 2005) as well. 

Activation of Axl results in autocatalytic tyrosine phosphorylation, recruitment of different 

signaling molecules (Grb2 and the p85 subunit of phosphatidylinositol-3 kinase) (Weinger et al 
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2008) and activation of downstream elements like Akt. By demonstrating that Akt is 

phosphorylated on Ser473 residue only in cells expressing Axl we could identify a new signaling 

pathway activated by osmotic stress in CECs. 

Furthermore we have shown that Axl is cleaved in response to hyperosmosis, the C-

terminal products having an apparent molecular weight of about 50-55 kDa. Axl has been shown 

to be posttranslationally regulated by proteolysis (O'Bryan et al 1995) resulting in the generation 

of soluble Axl (Costa et al 1996). Our results show that the mannitol-induced cleavage of Axl is 

metalloproteinase-dependent which is in line with previous reports demonstrating the role of 

disintegrin-like metalloproteinase ADAM 10 in the cleavage of Axl (Budagian et al 2005).  The 

role of Axl cleavage and the function of soluble Axl is still far from being completely 

understood. Soluble Axl has been detected in mouse serum and is constitutively released by 

murine primary and transformed cells (Budagian et al 2005). It may play role in the regulation of 

the bioavailabilty of the Axl ligand Gas6 by binding and thus inactivating it. Activation of PKC 

has also been shown to trigger cleavage of Axl and the proteolytic cleavage site was found to 

localize to a 14-amino acid region (VKEPSTPAFSWPWW) between the second fibronectin and 

the transmembrane domain (O'Bryan et al 1995). However, in CECs the PKC inhibitor 

bisindolylmaleimide was able to inhibit only PMA (phorbol myristyl acetate)-, but not 

hyperosmosis-induced Axl degradation (data not shown) suggesting that there is a difference 

between hyperosmosis- and PKC-induced Axl degradation. 

It is well known that Axl is expressed at high levels in gliomas, mediating both tumor 

growth and angiogenesis (Vajkoczy et al 2006). Specific targeting of Axl may become a 

promising target of therapy of these tumors. Our results have shown that hyperosmotic mannitol-

induced cleavage of Axl was not restricted to cerebral endothelial, or tight junction-expressing 

(endothelial and epithelial) cells, but glioma cells as well. Interestingly, when NaCl or arabinose 
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were used instead of mannitol in the same osmotic concentration Axl cleavage occured in the 

same way, however, the cell permeable urea did not induce Axl degradation. Therefore, we 

assume that cellular shrinkage might be responsible for this phenomenon. 

We found that induction of tyrosine phosphorylation of Axl did not lead to its degradation, 

and inhibition of tyrosine phosphorylation did not influence the mannitol-induced cleavage of 

Axl. These findings suggest that there is no direct relationship between phosphorylation and 

cleavage of Axl. Using an antibody recognizing the C-terminal region of Axl we have observed 

that the degradation products containing the catalitically active intracellular domain of Axl 

remain phosphorylated. Mainly the upper (TritonX-100 soluble) degradation band proved to be 

phosphorylated, however, the two degradation bands seem to be different cleavage products and 

not differently phosphorylated forms of the same cleavage products. This is supported by the fact 

that treatment with genistein which inhibited the phosphorylation of Axl, did not inhibit the 

appearance of two cleavage products (Fig. 9B). Moreover, the appearance of the lower 

degradation band was prevented by the proteasome inhibitor MG132 (Fig. 7B and 8C) supporting 

that in hyperosmotic mannitol-treated cells the metalloproteinase-mediated cleavage was 

followed by a proteasomal cleavage, resulting in a water-soluble degradation product. 

In order to address the functional implications of Axl activation, we have performed 

knockdown experiments and examined hyperosmotic mannitol-induced apoptosis. It is well 

documented that hypertonicity induces apoptosis in different cell types (for review see: Bortner 

and Cidlowski 2007). On the other hand, activation of the Axl-Akt pathway is involved in cell 

survival and anti-apoptotic mechanisms (for review see: Hafizi and Dahlback 2006b). We have 

found an approximately 90-100% increase in apoptosis after treatment with hyperosmotic 

mannitol. The relatively low absolute levels of apoptosis are apparently in contrast with previous 

observations by Malek et al (1998), who have shown that treatment of bovine aortic endothelial 
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cells with 600 mOsmol/l mannitol for 3 h induced an increase in the rate of apoptosis from 1.2% 

to 42%. However, microvascular endothelial cells may react differently to apoptotic stimuli than 

macrovascular endothelial cells. It has been shown that hyperglycaemic conditions significantly 

increased apoptosis in macrovascular endothelial cells, while increasing viability and  inhibiting 

apoptosis in microvascular endothelial cells (Duffy et al 2006). In our previous study we have 

shown that prolonged oxidative stress even under hypoglycaemic conditions was able to induce 

an apoptosis of about 7-20% with a great interspecies variability (Bresgen et al 2003). We 

observed that Axl silencing increased the rate of apoptosis in hyperosmotic mannitol-treated 

cells, therefore we assume that activation of Axl may be a protective mechanism against 

mannitol-induced apoptosis. 

Further studies are needed to clarify if Axl is involved in the hyperosmotic mannitol-

induced BBB opening. A direct relationship between Axl signaling and proteins of the tight 

junction has not been shown so far. However, it is well known that a large number of signaling 

pathways are able to regulate junctional functions and tyrosine phosphorylation may play an 

important role in this process. 

Taken together, our results identify Axl as an important element of hyperosmosis-induced 

signaling in cerebral endothelial cells, and suggest that Axl could play an important role in the 

adaptive response of cells to hyperosmotic stress. 
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LEGEND TO FIGURES 

 

Fig. 1. Tyrosine phosphorylation of Axl induced by mannitol. 

(A): Detection of tyrosine phosphorylated proteins using antibody array. CECs were treated 

with 20% mannitol for 30 min. The antibody array was incubated with the cell homogenate and 

stained with anti-phosphotyrosine antibody. Identity of the proteins of interest was determined 

from the position on the membrane. 

(B, C): Detection of phospho-Axl using immunoprecipitation. CECs were treated with 20% 

mannitol for 30 min. Immunoprecipitation was performed using anti-phosphotyrosine antibody 

and blots were stained with anti-Axl antibody (B) or the samples were immunoprecipitated using 

anti-Axl antibody and Western-blot was performed with anti-phosphotyrosine antibody (C). 

Representative blots of three independent experiments are shown. Arrows indicate the 

phosphorylated 140 kDa Axl protein. Arrowheads indicate cleavage products. β-actin was used as 

loading control. 

 

Fig. 2. Activation of Akt in response to hyperosmotic mannitol in cerebral endothelial cells. 

Cells were transfected with Axl siRNA construct or Lipofectamine alone and treated with 20% 

mannitol for 30 min. 

(A): Axl and its degradation products disappear after silencing. 

(B): Activation of Axl in response to hyperosmotic mannitol induces phosphorylation of 

Akt. Blots were stained with anti-phospho-Akt (upper blot) or anti-Akt (lower blot) antibodies. 

Representative blots of two independent experiments are shown. 
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Fig. 3. Effect of mannitol on the cleavage of Axl. CECs were treated with 20% mannitol for 

30 min and blots were stained with anti-Axl antibody. Arrows indicate the location of the whole 

Axl protein, arrowheads show the degradation products of Axl (A). One representative of ten 

independent experiments is presented. 

(B): Time and concentration dependence of Axl degradation. CECs were treated with 10 or 

20% mannitol for 10, 30 or 60 min and blots were stained with anti-Axl antibody. 

 

Fig. 4. Immunofluorescence staining of Axl in CECs. CECs were cultured on glass 

coverslips, treated with 20% mannitol for 30 min, fixed and stained with anti-Axl antibody. One 

representative image of three independent experiments is shown. Scale bar = 20 μm. 

 

Fig. 5. Expression of Axl and Gas6 mRNA in CECs. Real-time PCR was performed to 

assess the expression of Axl and Gas6 in response to mannitol. The housekeeping gene GAPDH 

was used as internal control. Data represent percentage values compared to control (mean ± 

SEM) calculated from four independent experiments. C = control, Ma = mannitol. 

 

Fig. 6. Specificity of hyperosmotic stress-induced Axl degradation. 

(A): Effect of different osmotic agents on the degradation of Axl. Cells were treated with 

1.1 M mannitol, arabinose, urea or 0.55 M NaCl, respectively for 30 min.  

(B): Effect of different stress factors on the degradation of Axl. Cells were treated with: 

20% mannitol, 10 μM DMNQ or 8 g/l glucose, respectively. 

(C): Degradation of Axl in MDCK and RG2 cells in response to mannitol treatment. The 

first two panels show the same blot with different exposure times to visualize changes in Axl and 

its degradation products. β-actin was used as loading control. 
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Fig. 7. Mechanism of Axl degradation. Cells were treated with 20% mannitol for 30 min in 

the presence or absence of different inhibitors: NFκB inhibitor (10 μM PDTC), Rho-kinase 

inhibitor (10 μM Y27632), L-type calcium channel blocker (10 μM verapamil) (A), calpain 

inhibitor (10 μM calpeptin), PKC inhibitor (1 μM bisindolylmaleimide), caspase inhibitor (25 μM 

zVAD), proteasome inhibitor (50 μM MG132), PI3kinase inhibitor (1 μM wortmannin), ERK 1/2 

inhibitor (10 μM U0126) and Src inhibitor (10 μM PP1) (B) or protease inhibitors (100 μM E64, 

50 μM leupeptin, 10 μM pepstatin) (C). β-actin was used as loading control. 

 

Fig. 8. Role of metalloproteinases and of the proteasome in Axl degradation. 

(A): The metalloprotease inhibitor GM6001 was able to inhibit Axl degradation. One 

representative of five independent experiments is shown. 

(B): Densitometric analysis of Axl Western-blots. Data represent percentage values of the 

140 kDa Axl band intensity compared to control (mean ± SD) calculated from five independent 

experiments. *: p<0.001 compared to control using t-test. 

(C): Role of the proteasome. Protein samples were prepared from CECs treated with 20% 

mannitol and 50 μM MG132 either in TritonX-100 containing buffer or detergent-free buffer. 

One representative of three independent experiments is presented. β-actin was used as loading 

control. 

 

Fig. 9. Relationship between degradation and phosphorylation of Axl. 

(A): Time course of Axl phosphorylation (A, upper blot) and Axl degradation (A, lower 

blot). Cells were treated with 20% mannitol for the indicated times. Immunoprecipitation was 
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performed using anti-phosphotyrosine antibodies. Axl Western-blot was performed from the 

immunoprecipitated samples (A, upper blot) and the cell lysates (A, lower blot). 

(B): Phosphorylation of the degradation products. Cells were treated for 30 min with 20% 

mannitol or 50 μM pervanadate or 20% mannitol and 10 μM GM6001 or 20% mannitol and 100 

μM genistein, respectively. Immunoprecipitation was performed using anti-phosphotyrosine 

antibody, followed by Axl Western-blot. Double arrowheads indicate the phosphorylated 

cleavage products of mannitol-treated samples. β-actin was used as loading control. 

(C): GM6001 does not influence phosphorylation of Akt. Cells were treated with 20% 

mannitol for 30 min in the presence or absence of 10 μM GM6001 and blots were stained with 

anti-phospho-Akt (upper blot) or Akt (lower blot) antibodies. 

 (D): Investigation of Axl using two-dimensional electrophoresis combined with Western-

blot. Cells were treated for 30 min with 20% mannitol. Proteins of cell lysates were separated in 

two dimensions based on their isoelectric point and molecular weight, followed by Western-blot 

analysis using anti-Axl antibody. 

 

Fig. 10. Role of Axl in mannitol-induced apoptosis. 

(A): Silencing of Axl. 

(B): Investigation of apoptosis after Axl silencing and mannitol treatment. Cells were 

cultured on glass coverslips and were transfected with Axl siRNA, scrambled RNA construct or 

treated with Lipofectamine alone, followed by treatment with 20% mannitol for 3 h. The rate of 

apoptosis was determined based on cleaved caspase-3 immunostaining. Values represent the 

mean ± SD calculated from two independent experiments. p<0.05 among all groups except 

Lipofectamine and scrambled,  using ANOVA and LSD post hoc test. 
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