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Texture as a pixel feature for video object segmentation 
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As texture represents one of the key perceptual attributes of any object, integrating textural information into 

existing video object segmentation frameworks affords the potential to achieve semantically improved 

performance. While object segmentation is fundamentally pixel-based classification, texture is normally 

defined for the entire image, which raises the question of how best to directly specify and characterise texture 

as a pixel feature. This letter introduces a generic strategy for representing textural information so it can be 

seamlessly incorporated as a pixel feature into any video object segmentation paradigm. Both numerical and 

perceptual results upon various test sequences reveal a considerable improvement in the object 

segmentation performance when textural information is embedded.  

Introduction: Recent developments have principally focused upon automatic object segmentation strategies 

[1-4] because of their diverse application base. A statistical framework based on graphical model is found in 

[1], while an alternative approach [2, 3] employs a Gaussian mixture model (GMM) to represent spatio-

temporal features. In [2], spatio-temporal 3D volume of pixels comprising the video is modelled by a GMM, 

while the strategy in [3] separates objects frame by frame. 

However, fully automated object segmentation based on conventional low level homogeneity criteria is still in 

its infancy since an object typically comprises multiple colours, and/or non-homogeneous motion in different 

parts. Most natural surfaces exhibit texture as it is a primitive perceptual cue, which can be visually sensed, 

so providing the feel of an object. To successfully segment an object thus requires consideration to be given 

to texture, alongside other low level features, with all features having equal priority. Video object segmentation 

techniques typically separate objects based upon pixel-level classifications in contrast to popular textural 

approximation techniques normally calculated for either the entire image or a region. Recent developments 

such as scale invariant feature transform and gradient location and orientation histogram [5] have exhibited 

promising performance in describing region, though pragmatically it is infeasible to consider them with other 

pixel features as they are histograms generated from the region. Markov random field model [6] considers 

texture involving the interactions among neighbouring pixels assuming homogeneous pixel intensity and thus 

is unable to represent a real object. This provided the motivation to formulate a textural representation 

strategy that quantifies texture as a pixel feature and enables the information to be incorporated into any 
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video object segmentation process alongside other low level features, to accomplish perceptually and 

semantically improved performance. The standard deviation (SD) and fractal dimensions (FD) of a group of 

neighbouring pixels have been separately considered to approximate texture as a pixel feature, with the 

potential of these two strategies being individually tested upon both a GMM-based joint spatio-temporal (JST) 

[2] and context-based spatio-temporal (CST) [3] video segmentation paradigm, to evince the generic nature of 

the solution using a number of standard test videos, with an objective evaluation metric [7] being introduced to 

quantitatively verify the perceptual findings. 

Object segmentation using textural information: As texture is a contextual property, its definition must involve 

pixel intensity values in any spatial neighbourhood of an image frame. Two effective strategies are presented 

for defining pixel textural information in terms of its neighbourhood. The SD of pixel intensity values of 

neighbouring elements is one feasible descriptor of texture, such that the textural feature  for pixel  in a 

frame comprising  pixels can be represented by the SD of the luminance of its neighbouring pixels [4]: 
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where H  is the number of neighbouring pixels,  is the luminance of pixel  and ixLu ix Lu  is the average 

luminance of H  neighbouring pixels. 

A second strategy using the well-accepted FD has been adopted to represent texture as a pixel feature. A 

bounded set  in a Euclidean S η -space is self-similar whenever  is the union of  distinct copies of itself, 

each of which has been scaled down by a ratio 

S C

r . The FD then provides a measure of surface roughness as: 

( )rlogClogFD 1=  (2) 

where the larger the value of , the rougher the surface. While this can effectively represent surface texture, 

the major obstacle remains of how to incorporate this information as a pixel-based feature within a video 

segmentation model, as FD applies to the entire image. To address this limitation, the popular differential box 

counting (DBC) [8] method for FD is used to calculate the textural feature for a candidate pixel  by 

introducing a sliding window (SW) of size 

DF

j,ix

hh×  pixels instead of using the entire image [8]. Since the 

candidate pixel lies inside the SW, the calculated FD feature in effect represents the surface variations of its 

neighbouring pixels, and so can be used as the textural feature for the candidate pixel. 

To determine the FD for a SW of size  pixels, let the scale down ratio be hh× hr χ= , where the image grid 

size is χχ ×  and a third coordinate is introduced to represent the intensity level of each grid comprising a 
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column of boxes of size χχχ ′×× , which for 8-bit luminance samples implies χχ h=′256 . If the maximum 

and minimum intensity levels in the grid  reside in boxes  and  respectively, then the surface 

variation represented by the thickness of the blanket covering the image surface on the grid is: 

v,uG maxB minB

1+−= minmaxv,u BBsv  (3)  

while the contribution from all grids defining the blanket is: 

∑=
v,u

v,usvC  (4) 

The FD of a SW calculated using (2) and (4), then represents the textural feature for pixel . The greater 

the number of grids, the finer the measure of surface roughness. Lengthening the window commensurately 

increases the computational time, as more grids are included in the DBC calculations, though the overall 

order of complexity remains unchanged. 

j,ix

To validate the efficacy of the approximated textural information in terms of video segmentation performance, 

the SD and FD representations, denoted respectively by SDT and FDT, have been correspondingly integrated 

within the JST  [2] and CST [3] together with other low level pixel features, adding an extra dimension to the 

original feature vector set for the GMM. 

Results: Simulations have been performed using MATLAB with true colour standard test sequences of frame-

size 96×72. Fig 1 displays sample frames for the widely used Table Tennis (TT) and the highly complex 

colour ultrasound Baby Beatrix (BB) sequence of a moving foetus in a mother’s womb which is especially 

significant for its potential applications in medical imaging. 

The comparative results for the original JST [2] and CST [3] models and their respective SDT and FDT based 

paradigms are shown in Fig 1. Results for the TT sequence (Figs 1b-d) consistently confirm a considerable 

number of pixels been correctly classified by both JST-SDT and JST-FDT, especially in the vicinity of the 

tennis bat and hand, with both methods correctly extracting the whole body, in contrast to the original JST 

approach. As the background of this particular sequence has a complex texture, the inclusion of a pixel 

texture feature has enabled relevant pixels to be grouped into a separate cluster, and while the 

misclassification by JST along the table edge is not fully eradicated in JST-SDT, it has been successfully 

corrected by JST-FDT due its latent capacity to more effectively represent surface variation. Comparative 

analysis for CST model shown in Figs 1e-g also reveals a significant improvement in object segmentation with 

the addition of textural features in both CST-SDT and CST-FDT. 
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Segmentation results for the BB sequence in Figs 1c-d confirm that both JST-SDT and JST-FDT have 

corrected a significant number of misclassifications of the original JST result along the foetus region and also 

in background pixel classification for all the representative frames. The comparative results for the CST based 

methods in Fig 1e-g display a similar trend with the foetus being correctly segmented, concomitant again with 

a noticeably lower background pixel misclassification for FDT.   

To numerically substantiate the perceptual results, a discrepancy metric [7] based upon the spatial accuracy 

using false positive and false negative errors with respect to the ground truth, is presented in Fig 2. It can be 

readily concluded for the TT sequence that by embedding textural information, both SDT and FDT 

consistently outperformed the original JST and CST models, in terms of temporal coherence. This shows that 

both JST and CST display greater robustness to motion variations when textural information is incorporated. 

A similar observation can be made with respect to the BB sequence corroborating that the inclusion of pixel-

based texture improves the quality of object segmentation. 

Conclusion: Texture is an important perceptual attribute of any object, so this letter has introduced an 

innovative strategy to represent textural information as a pixel feature and seamlessly integrate it into two 

popular and contemporary spatio-temporal segmentation frameworks. Improved video object segmentation 

has been achieved in both segmentation paradigms, with the theory developed being generic in that it affords 

an efficacious way of seamlessly integrating texture to improve the quality in any segmentation model that 

exploits low-level pixel features.  
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Figure Captions: 

Fig 1: Segmentation results for TT sequence 

Fig 2: Segmentation results for BB sequence 

Fig 3: Spatial Accuracy
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Figure 1 

Frame # 10 Frame # 20 Frame # 30 

(a) Original Frames 

(b) Segmentation results with JST 

(c) Segmentation results with JST-SDT 

(d) Segmentation results with JST-FDT 

(e) Segmentation results with CST 

(f) Segmentation results with CST-SDT 

(g) Segmentation results with CST-FDT 
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Figure 2 

 

Frame #10 Frame # 20 Frame # 30 

(a) Original Frames 

(b) Segmentation results with JST 

(c) Segmentation results with JST-SDT 

(d) Segmentation results with JST-FDT 

(e) Segmentation results with CST 

(f) Segmentation results with CST-SDT 

(g) Segmentation results with CST-FDT 
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Figure 3 
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