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Dynamic Bezier Curves for Variable Rate-Distortion 

Ferdous A. Sohel1, Gour C. Karmakar, and Laurence S. Dooley 

ABSTRACT 

Bezier curves (BC) are important tools in a wide range of diverse and challenging applications, 

from computer aided design to generic object shape descriptors. A major constraint of the 

classical BC is that only global information concerning control points (CP) is considered, 

consequently there may be a sizeable gap between the BC and its control polygon (CtrlPoly), 

leading to a large distortion in shape representation. While BC variants like degree elevation, 

composite BC, and refinement and subdivision narrow this gap, they increase the number of CP 

and thereby, both the required bit-rate and computational complexity. In addition, while quasi-

Bezier curves (QBC) close the gap without increasing the number of CP, they reduce the 

underlying distortion by only a fixed amount. This paper presents a novel contribution to BC 

theory, with the introduction of a dynamic-Bezier curve (DBC) model, which embeds variable 

localised CP information into the inherently global Bezier framework, by strategically moving 

BC points towards the CtrlPoly. A shifting parameter (SP) is defined that enables curves lying 

within the region between the BC and CtrlPoly to be generated, with no commensurate increase 

in CP. DBC provides a flexible rate-distortion (RD) criterion for shape coding applications, with 

a theoretical model for determining the optimal SP value for any admissible distortion being 

formulated. Crucially DBC retains core properties of the classical BC, including the convex hull 
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and affine invariance, and can be seamlessly integrated into both the vertex-based shape coding 

and shape descriptor frameworks to improve their RD performance. DBC has been empirically 

tested upon a number of natural and synthetically shaped objects, with qualitative and 

quantitative results confirming its consistently superior shape approximation performance, 

compared with the classical BC, QBC and other established BC-based shape descriptor 

techniques.  

Index Terms – Vertex-based shape coding, image processing, video processing, and Bezier 

curves. 

I. INTRODUCTION 

Bezier curves (BC) were independently introduced by P. de Casteljau and P. E. Bézier, and have 

been applied to a wide variety of computer-aided design applications. While their genesis lies in 

the design of car body shapes, their usage is no longer confined to this domain. Indeed, their 

robustness in curve representation means BC now pervade many areas of multimedia technology, 

such as shape description of characters [1] and objects [2]-[3], shape coding and error 

concealment for video objects [4].   

The classical BC is defined by a set of control points (CP), which when conjoined, form the 

control polygon (CtrlPoly), with the number and orientation of the vectors connecting the CP, 

governing the curve shape. A major limitation of BC theory is that only global information about 

the CP is considered [5], since each BC point is produced by blending all CP. As a consequence, 

a large gap can arise between the curve and its CtrlPoly, leading to high distortion in shape 

representation and approximation applications.  



A number of approaches have been proposed to reduce this gap, including degree elevation 

[6], composite Bezier curves (CBC) [7] and refinement and subdivision [8]-[9]. While these 

techniques successfully reduce to some extent, the distance between a Bezier approximation and 

CtrlPoly, they concomitantly increase the CP number so incurring higher coding or descriptor 

lengths. In contrast, quasi-Bezier curves (QBC) [10] reduce this gap by incorporating localised 

CP information into the Bezier framework, shifting curve points towards the CtrlPoly by a fixed 

amount, without compromising the CP number. The gap is narrowed however, by the same preset 

amount, and there is no mechanism to flexibly control its size in a rate-distortion (RD) context. 

As generically-shaped objects may contain contour portions that exhibit regular geometric 

features like edges, while other parts have more complex random patterns, shifting each Bezier 

point by the same amount fails to fully exploit the potential to reduce the distortion and motivates 

investigation of alternative paradigms that support variable localised shifting of curve points. 

This provided the impetus for the dynamic Bezier curve (DBC) model2 presented in this paper. 

DBC incorporates local information within the classical BC theory, by variably moving Bezier 

points to new parametrically determined locations between the BC point and CtrlPoly, with the 

optimal value of the shifting parameter (SP) being analytically determined for a prescribed 

admissible distortion, using the Lagrangian multiplier method. It is important to highlight the 

generality of the new model since judiciously selecting the SP value allows any curve bounded 

by the original BC and CtrlPoly inclusively to be synthesised. 

B-splines (BS), which are a generalisation of the BC [5] since quadratic BS are piecewise BC, 

have been efficaciously applied in the standard vertex-based operational-rate-distortion (ORD) 
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optimal shape coding framework [12]-[17]. QBC has also been successfully integrated into this 

framework [10], though applying a fixed SP value independently of a shape’s contour does not 

necessarily minimise distortion, with the corollary it fails to maximise the overall improvement in 

RD performance. To achieve this objective, a strategy for dynamically generating curves within 

the ORD framework is required. This paper presents a mechanism for seamlessly embedding 

DBC within the ORD shape coding framework together with determining the bound upon the 

widths of the corresponding variable admissible control point band (VCB) [12]. Choosing 

various SP values enables the generic DBC to not only synthesis the classical BC (no localised 

information), but also provide exactly the same distortion results as both the BS and QBC 

models. Concomitantly it retains fundamental properties of the original BC, with its performance 

as both a generic shape descriptor together with its application in the vertex-based ORD shape 

coding framework, being extensively analysed for a large number of arbitrary shapes. The 

qualitative and numerical evaluations of the DBC results confirm its consistent performance 

superiority over the original BC, BC variants and the two QBC models. 

The remainder of the paper is organised as follows: Section II presents a series of short 

overviews of core BC theory, the recently proposed pair of QBC models and the vertex-based 

ORD optimal shape coding framework respectively. Section III introduces the mathematical 

foundations of the new DBC paradigm, together with germane evidence it both retains the main 

BC properties, and can be seamlessly embedded into the ORD framework. Section IV provides a 

comprehensive empirical analysis of the improved RD performance of DBC, with some 

conclusions being drawn in Section V. 

 



II. RELATED WORK 

This section presents a brief review of the underlying theory behind the classical BC, popular 

variants and QBC, before the BS-based shape coding ORD framework is investigated.  

II A. Bezier Curve Theory and Variants 

The BC is a recursive linear weighted subdivision of the edges of a generated polygon starting 

with a set of points forming the initial (control) polygon and ending when the final point is 

generated for a particular weight u . The set of 1+N  starting points is referred to as the CP which 

governs the shape of the  degree BC, while the polygon connecting the CP is known as the 

CtrlPoly. The matrix form 

N

[5] of the BC for an ordered set of CP { }NpppP ,,, 10 K=  is defined 

as:  

 ( ) ( ) ,TNN PBezuPowup ⋅⋅=  10 ≤≤ u  (1) 

where ( )up  is the Bezier curve point for a particular u , ( )uPowN represents the power basis 

( )Nuuu,,1 ,,2 L  and the  term of matrix  is found from thij NBez ( ) j
i

i
Nij CC ⋅⋅− −1

u

ij =σ , where C  

denotes the combination function. u  is a parametric operator which defines the location of the 

curve point, with the number of curve points depending upon the number of u  values ( ′ ). 



    

Figure 1: A quadratic BC example to elucidate the existence of the gap. 

 

Figure 1 shows a quadratic BC produced using CP  and . The large gap between the 

BC approximation and its CtrlPoly represents a substantial shape distortion (error) caused by the 

fundamental BC limitation of considering only global CP information. If for a particular value 

, points  and 

10 , pp 2p

5.0=u A B  are generated by (1), then the inner area of BAp1Δ  is never reached and 

the final BC point C  will be generated along . AB

This inadequacy has spawned many variants of the classical BC including degree elevation, 

CBC and subdivision and refinement. Degree elevation [6] forms a curve with the number of CP 

increasing by one each pass. With the exception of the two endpoints, the CP must be 

recalculated every time, so the computational overhead correspondingly increases, while higher 

degree curves are always be more computationally intensive than lower-order curves. CBC [7] 

models a shape by dividing it into multiple segments, each of which is then defined by a simple 

BC. Their drawback is that the number of segments increases with shape complexity because the 

segment division process is not intuitive. This was the catalyst for the development of the 



subdivision and refinement techniques [7], where the BC is split in two [9] with a new CP set 

being calculated from the initial CP set for each part, so it is guaranteed closer to the curve and 

thereby lowers the overall distortion (gap). These algorithms increase the number of curve 

segments, with both subdivision and CBC doubling the number to incur a higher bit-rate 

encoding overhead, so while gap reduction is achieved, it is at the pyrrhic cost of a 

commensurately expanding number of CP. In contrast, QBC curves [10] reduce this gap without 

enlarging the number of CP, as will now be discussed. 

 

II B. The quasi-Bezier curve (QBC) models 

Both QBC models (QBC-n and QBC) are characterised by integrating localised information 

about the CP within the global BC, shifting original BC points towards the centre of gravity 

(CoG) of the area . Since the shift towards  is always by a fixed amount, while the 

gap is reduced compared with the original BC, there can still be a significant area (distortion) 

between QBC and the CtrlPoly, as visualised in the example in 

G BAp1Δ G

Figure 2, which reveals that 

though both QBC and QBC-n curves have narrowed the gap, a large distortion still remains.  

 

Figure 2: Illustration of the gap in QBC with the centre of gravity . G



 

Moreover, since SP is preset, the model has no facility to determine the optimal value of SP 

for an admissible distortion (gap size), as well as affording no trade-off mechanism between bit-

rate and distortion to enhance the RD performance for specific values of SP. This provided the 

principal motivation behind the development of the new DBC paradigm presented in Section III.  

II C. The Vertex-Based ORD Optimal Polynomial Shape Coding Framework 

A rigorous review of shape coding algorithms has been furnished in [13] with the conclusion that 

the classical vertex-based polynomial shape coding framework is optimal in an ORD sense. With 

both polygon- and quadratic BS- based shape encoding strategies being deployed, this finding has 

become the bedrock for several other shape coding algorithms [14]-[18], though by virtue of 

using higher order curves, the BS-based algorithms require a lower bit-rate than their polygon-

based counterparts, for the same experimental setup and test shapes. The general aim of all these 

algorithms is that for some prescribed distortion, a shape contour is optimally encoded in terms of 

the number of bits, via selecting a set of CP that incurs the lowest bit rate and vice versa. To 

define this mathematically, let boundary { }110 −=
BNb,,b,bB L  be an ordered set of points, where 

is the total number of boundary points. BN { }110 +=
SN,s,,ssS L

,1 , +− kkk sss

 is an ordered set of CP used to 

approximate , where  is the total number of quadratic curve segments. The  ( ) curve 

segment is then defined by three consecutive CP,  under the assumption that , 

where 

B SN thk 1≥k

1 FS ⊆

F  is the ordered set of vertices in the admissible control point band (ACB) around the 

shape boundary, which is the source of potential CP. Sohel et al [12] have extended the ACB 

concept to a dynamic VCB which enhances the performance of the ORD framework by 

exploiting the nexus between admissible distortion and shape curvature. As Figure 3 illustrates, 



the VCB is formed around the shape contour so CP are always selected from VCB points when 

encoding, and thus a closer approximation of the CtrlPoly would mean a better shape 

approximation.  

 

Figure 3: The variable admissible control point band (VCB) 

 
In addition, while the original framework [13] employs quadratic BS, the relationship between 

BC and BS means the former can replace the latter, with appropriate adjustments in the CP. For 

instance, from (1) the polynomial form of a quadratic BC  for the ordered CP set { } 

is given by: 

BCQ 210 ,, ppp

 ( )( ) ( ) ( ) 2
2

10
2

210 121,,, pupuupuupppQBC +−⋅⋅+−= , 10 ≤≤ u                     (2) 

Again, a quadratic BS segment  for the same CP set is defined as BSQ [5]: 

 ( )( ) ( ) ( ) 2
2

2
1

1
2

0
2

2
1

210 5.01,,, pupuupuupppQBS ⋅+++−+−⋅= , 10 ≤≤ u     (3) 

From (2) and (3):  

 ( )( ) ( )( )upQupppQ pppp
BCBS ,,,,,, 212210

2110 ++≡ , 10 ≤≤ u                           (4) 



This formalises how to represent a BC in BS format, and that a quadratic BS is in fact a 

piecewise BC, with its two end CP being the midpoints of the respective CtrlPoly edge of the BS, 

as shown in Figure 4. This implies with correct CP calculation, a BC can be equivalently used 

instead of BS, which crucially provides an avenue for embedding the proposed DBC model into 

the BS-based ORD optimal shape coding framework to improve overall RD performance. 

 

Figure 4: Graphical illustration of the relationship between BC and BS. 

 

The next section formally introduces the DBC model which reduces the gap (distortion) between 

the classical BC and its CtrlPoly, in addition to affording a flexible RD trade-off mechanism by 

selecting an optimal SP value. 

III. THE DYNAMIC BEZIER CURVE MODEL 

In this section, the theory underpinning DBC is firstly developed before by a series of formal 

proofs is presented verifying the core properties of the classical BC are upheld in the new 

representation. A short expose is then provided upon how DBC can be seamlessly integrated into 

the ORD optimal vertex-based shape coding framework to improve its RD performance.  

 



III A. The Dynamic Bezier Curve Model 

While QBC reduce the gap, they only reduce by a fixed limited amount. For a CP set { }, 

the BC produced a gap bounded by 

210 ,, ppp

102
1 pp  (assuming 2110 pppp ≥ ), where  represents the 

length of the straight line joining the two points, while the QBC and QBC-n can reduce this gap 

respectively by 1012
1 pp  and 106

1 pp  [10]. It becomes crucial to further reduce this gap and 

reduce by variable amount. DBC meets these requirements as follows:  

i) DBC permits a larger shift which potentially leads to lower distortions, since as 

Figure 2 confirms, even QBC-n [10] can generate sizeable errors. Since the VCB 

band is formed around a shape contour and the CP then selected from this band. 

These CP form the CtrlPoly and hence a lower distance between the CtrlPoly and 

approximating curve would mean a lower distortion in between the original and 

approximating shape. 

ii) As the SP value increases, DBC will tend towards exhibiting the shape of the 

CtrlPoly and so become a comparatively more localised curve, generating a 

correspondingly piecewise shape approximation.  

While the rationale for the QBC models was to shift a BC point towards a specific point G (the 

CoG of the triangular region in Figure 1), the DBC model moves the corresponding BC towards a 

specific CP edge. When a BC point is generated for a particular u , one CtrlPoly edge will be at a 

minimum distance from it, and this edge analytically exerts the maximum influence on that 

particular curve point. The DBC point is obtained by making a parametric shift of the BC point 

towards this particular edge in the direction of shortest distance. This can be mathematical 

explained as follows:  



 

Figure 5: An illustration of DBC formulation.  

In Figure 5, the generated BC point for a particular u  is ( )yx BCBC , , whose nearest CtrlPoly 

edge is with endpoints (  and )11, yx ( )22 , yx

)12, y

. The shortest distant point on the edge from the BC 

point is the intersection point  between this edge and the perpendicular line passing 

through the BC point and is given by: 

( 12x

 
( ) ( )

22
11

12
yx

yxxyyBCyBCxx
x yx

Δ+Δ

×Δ−×ΔΔ+×Δ+×ΔΔ
=    (5) 

and 
( ) ( )

22
11

12
yx

yxxyxBCyBCxy
y yx

Δ+Δ

×Δ−×ΔΔ−×Δ+×ΔΔ
=    (6) 

where  and . If  is the SP, i.e., 21 xxx −=Δ 21 yyy −=Δ m ( )mm −1:  is the shifting ratio at the 

curve point between ( )yx BCBC ,  and ( )12, y12x , the new DBC point ( )yx DBCDBC ,  can be 

calculated from:  

  and ( ) xx BCmxmDBC ×−+×= 112 ( ) yy BCmymDBC ×−+×= 112       (7) 

which is formalised in matrix form as: 
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2222
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                (8)  

and 

         (9) ( ) [ ] ( )[ ] 10;10,1 1212 ≤≤≤≤⎥
⎦

⎤
⎢
⎣

⎡
⋅−== um

BCBC
yx

mmDBCDBCDBC
uyxuyxu

As  lies in the range , DBC is bounded by the BC and CtrlPoly. When  there is 

no shifting so it is a classical BC approximation, while for 

m 10 ≤≤ m 0=m

1=m , the maximum shift means DBC 

becomes the CtrlPoly. The choice of SP thus plays an influential role on shape approximating 

performance, as for large  ( ), DBC approaches the CtrlPoly, as local dominates global CP 

information, resulting in small distortions, though the corresponding curves will increasingly lose 

smoothness. Conversely, when SP is small (

m ≈m 1

0≈m ), the curve possesses maximum smoothness 

though the distortion is nearly a maximum as global CP information prevails and DBC becomes 

analogous to the classical BC model. The value of SP consequently provides a flexible design 

trade-off parameter between distortion minimisation and the level of smoothness, so an effective 

strategy to optimise m for a given admissible distortion is mandated. 

III A 1. Optimising the shifting parameter 

To uphold the maximum admissible distance between the curve and CtrlPoly, in addition to 

preserving smoothness,  must be as small as possible, because increasing  compromises the 

curve smoothness. The Lagrangian optimisation method 

m m

[19] is applied to determine the optimal 

value of  for a maximum admissible distance ( ). If m admD ( )mI  and ( )mD  are respectively an 

identity function and the maximum distance between the curve and CtrlPoly at a particular , m



then for any 0≥λ , an unconstrained problem for the optimal solution  using the 

generalised Lagrangian multiplier 

( )λ*m

[19] can be formulated as: 

 [ ]
( ) ( )( )mDmI

m
×+

∈
λ

0.1,0
min  (10)  

 In accordance with the theory of Lagrangian multipliers, the optimal solution to this 

unconstrained problem is also the optimal solution to the constrained problem [14]:  

  subject to: [ ]
( )mI

m 0.1,0
min
∈

( ) admDmD ≤  (11)  

Since ( )( )λ*mD  is a non-increasing function of λ  [14], the bisection method [20] is used to find 

the optimal value of λ . Note, the admissible distance  is bounded by admD maxl≤ D ≤0 adm , 

where ⎣ ⎦ ⎡ ⎤
∞Δ

N N⋅
2

2/
2

2/
p=max N

l  with ∞

,L

Δ 2p  being the maximum of the  centred second 

difference of the coefficient sequence 

thi

Nipi ,0, = , with [21] proving the maximum distance 

between a BC and its CP is always .  maxl

The complete DBC process is summarised in Algorithm 1. 

 

 

 

 

 

 

 

 

 

 

 



Algorithm 1: The dynamic Bezier curve (DBC) model. 

Inputs: – maximum admissible distortion; the CP set. admD

Output: – the dynamic BC curve.  DBC

1. Calculate the optimal value of m  for an admissible admD ; 

2. For each values of u  

3.        Determine the Bezier point ( )yx BC ;  BC ,

4.        Determine the minimum distance edge ( )2211 ,,, yxyx  from ( )yx BC ; BC ,

5.              IF two consecutive edges tie for the minimum distance THEN 

6.                     Calculate ( )uDBC  by shifting towards the common CP of these edges using m ; 

7.              ELSE Calculate DBC point ( )uDBC  using (8) and (9);        

8. STOP. 

 

For the scenario where the distance of a BC point from two consecutive CtrlPoly edges is 

equal, the DBC point is obtained by shifting the BC point towards the common CP of those two 

edges, ( )yx pp , , as follows: 

   (12) ( ) [ ] ( )[ ]
uyx

yx
uyxu BCBC

pp
mmDBCDBCDBC

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅−== 1

As the foundations of the DBC framework are underpinned by classical BC theory, the core 

properties of BC are preserved as will now be formalised. 

III B. Properties of the DBC 

The following series of lemma examine key properties of the DBC model. 

 

 



Lemma 1 (Endpoint interpolation). DBC always passes through the first and last CP. 

Proof: Any BC interpolates its end points [5] for the starting ( 0=u ) and end ( ) CP, i.e., 1=u

( )yx BCBC ,  is  and  for ( 11, yx ) ( )22 , yx 0=u  and  1=u  respectively. For DBC, at both 0=u  and 

, from 1=u (8) and (9),  and xBCx xDBC = 12 = yBCDBC y y == 12 , so DBC always pass through the 

end CP. ● 

Lemma 2 (Convex hull property). DBC always lies within the convex hull of its CP. 

Proof: BC always lie within the convex hull of their CP [5], while the DBC points lie in the 

region between the CP and BC inclusive, so the DBC also lies within the convex hull of its CP. 

As discussed before, when , the DBC approaches the BC, while for  it is coincident 

with the BC, and for , DBC approaches the CP. For 

0→m 0=m

1→m 1=m , it coincides with the CtrlPoly 

when the number of u  values tends to ∞ . ● 

Lemma 3 (Affine invariance). DBC is invariant under affine transformations (translation, rotation 

and scaling). 

Proof: BC is affine invariant if the curve drawn with affine transformed CP is the same as the 

entire affine transformed curve with the same parameters [5]. According to the DBC definition, 

each DBC point is generated based on the BC point. Since the BC is affine invariant, for each BC 

point, the shortest distant edge and its distance are the same for any affine transformation, so the 

amount of shifting and the relative direction of shifting with respective to the CtrlPoly, will also 

be the same. Thus DBC is affine invariant. ● 

Lemma 4 (Computational complexity of DBC). For a given m, DBC has exactly the same 

computational complexity as the BC.    

Proof: Step 3 of Algorithm 1 calculates the BC points in ( )NO  time for each value of the control 

parameter . Step u 4 identifies the closest CtrlPoly edge from the BC point which also incurs 



( )NO  time, while Steps 5 to 7 generate the DBC point in ( )constantO

10

 time. Hence for any DBC 

point, the overall complexity is  provided  is known. In reality, the optimal value of m  is 

iteratively determined in Step 

( )NO m

1, so based upon Steps 3 to 7, the DBC computational overhead is 

conditional on the number of iterations. In this context, the number of u  values has a major 

impact on the computational cost in both BC and DBC models, with their overall complexity 

being , where  is the number of u values within ( NuO ⋅′ ) u′ ≤≤ u . ●  

III C. Embedding DBC into the ORD Optimal vertex-based shape coding framework 

Katsaggelos et al. [13] proposed the original framework for the ORD optimal vertex-based shape 

coding using BS and polygons, which has subsequently been deployed in [14], [15] and extended 

in [17], [12]. It has already been shown in Section IIB that a quadratic BC can be equivalently 

used instead of the BS, so to enhance the RD performance of the algorithms, a series of conjoint 

DBC curves are applied for shape approximation. As DBC possesses a similar endpoint 

interpolation property (Lemma 1) to the classical BC, to ensure all conjoint curves have some 

common CP, whenever two DBC curves join, curve points are managed in an analogous manner 

to (4). DBC can now be embedded into the BS-based framework as follows: 

 ( )( ) ( )( )up ,2 0pQppQ pp
BS ,,,, 121

10u ⎯→←p,0
p

2
1+

DBC 2
+

, 1≤≤ u       (13) 

where ⎯→←  indicates the right-hand-side curve will replace the left-hand-side curve. For a series 

curves using the CP set { }11 ,s,,s L0 −=
SNsS , the  curve segment is defined, within the range 

, as:  

thk

10 ≤≤ u

 ( ) ( )( ) ( )( )us kkk ss
k

s ,, 22
11 +++QDBCusQu k

k
s

kk ,,,1
−

− ⎯→= ss kk , 1+Q
kBS ←                (14) 



  

   

Figure 6: Illustration of a series of conjoint DBC curves within a quadratic BS framework. 

 

Figure 7: Plot showing the RD-m dynamics for the test shape (Stefan). 

 

As  has to be transmitted along with the encoded bit-stream, to ensure an efficient bit-rate, 

the SP impost must be minimised. This is achieved using a universal SP value in approximating 

m



DBC segments for a particular shape contour, rather than encoding a separate  for each 

segment. The value of  guides the RD characteristics of the encoder, as evidenced by the 

example in 

m

m

Figure 7 of the popular object shape Stefan. Two key observations may be drawn 

from this plot:  

i) For a given m , conventional RD characteristics are maintained, namely bit-rate is a 

non increasing function of distortion. 

ii) For a given distortion, the rate-m curves trace a convex parabola so the requisite bit-

rate reduces as m  increases up to a certain value, whereupon it commences increasing 

with m . This occurs especially at lower distortions because for large values of the 

shifting ratio m  ( 1≈m ), the DBC approximation eventually tends to a low-order 

polygonal approximation which inevitably incurs a higher bit-rate.  

 

Figure 8: Summary of DBC characteristics amongst , u  and gap (distortion) for a typical CP 
set. 

m

 



Figure 8 reveals the effect of the control parameter u  on the maximum gap size (distance), 

with it being largest in the vicinity of 5.0≈u

10

, and then narrowing on both the sides. It is 

emphasised that a particular u  value only represents a point on the curve, not the entire curve, so 

the maximum distance actually needs to be measured for every u  value of a curve, so the overall 

impact of  in reducing distortion is negligible. Moreover, this plot also shows the effect of  in 

reducing the gap for any particular u . For these reasons it is essential to iteratively determine the 

most appropriate value of  in the range

u m

m ≤≤ m  that optimises RD performance.  

For a given peak distortion :  maxD

 ( ) max|10,min DDmR =≤≤    (15) 

where R  is the required bit-rate and D  is the distortion. For a given bit-rate : maxR

 ( ) max|10,min RRmD =≤≤   (16) 

Asides from the influence of m , since original BS points are moved towards the CtrlPoly in the 

DBC model, there are substantial implications upon the VCB widths of each individual contour 

point. This is examined in the next section, together with an investigation into the corresponding 

bound on the width of the VCB.  

 

III C 1. Maximum bound for the VCB width     

It has been shown in [12] that for BS-based encoding, the width [ ]jW  of the ACB for each 

boundary point  is: jb

 [ ] [ ] [ ]jT
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                               (17) 



where δ  and ρ  are respectively the longest chord length of the boundary and the largest run-

length possible for the code employed. It has also been proven in [10] that the corresponding 

bounds for QBC and QBC-n are respectively:  
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and  [ ] [ ]( ) [ ]jT
jTT
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                   (19)  

       

Lemma 5 (Bound for the VCB width in DBC). For the quadratic DBC-based framework, for a SP 

value , the maximum bound of the VCB width is: m
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Proof: Figure 9(a) shows a uniform quadratic parametric curve (BC or DBC) for the ordered CP 

set , with  being the minimum distance of the mid CP  from the curve. It 

follows from 

{ 321 ',,' ppp } h 2p

[21] that for BC, { }3221 ','max2 pppph ≤ , where 32 'pp  is the length of edge 

. For DBC however, the curve point is generated by shifting the BC and so this distance is 

reduced. This minimum distance becomes greatest when the end CP pair  and  coincide and 

this is 

3'p2p

1p 3p

( ) 21'1
2
1 ppm ⋅− , i.e., { }3221 ','max

1
2 pppp

m
h

≤
−

. Thus, { }3211
4 pppp

m
h

≤ 2,max
−

. 



    
 (a)                                                                        (b) 

Figure 9: a) Distance between a quadratic BC or DBC curve and its CP, b) Maximal width of the 

admissible CP band calculation. 

 

In the example in Figure 9(b), three CP { }11 ,, +− kkk sss  are used to encode a shape segment 

that includes boundary point , which has an admissible distortion of . Assuming jb [ ]jT

11 +− ≥ kkkk ssss , the distance of the DBC curve from  is always ≤ks kk
m ss 14

1
−

− ⋅ . Let [ ]jα  denote 

the difference between the corresponding admissible distortion and width of the admissible CP 

band, i.e., [ ] [ ] [ ]jTjjW +=α , so:  

 [ ] kk
m ssj 14

1
−

− ⋅≤α   (21) 

The maximum length of  is: kk ss 1− maxmaxmaxmax ααδ ++++ TT = maxmax 22 αδ ++ T  where 

maxα  is the maximum value of [ ]jα .  

So  max1
4

maxmax 22 ααδ mT −≥++    (22)   

and  
( )( )

( )m
Tm

+
+−

≤
12

21 max
max

δ
α   (23)   



The corresponding [ ]jα  for boundary point  is given by, jb [ ] [ ] [ ]jjTTjm ααδα ++++≤− maxmax1
4 .  
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The encoding strategy adopted can limit the length of an edge since for example, the logarithmic 

code [14] can support a maximum length of 15=ρ , while using a 3-connected chain as the 

direction encoder, it is able to encode a maximum length of 2ρ  (through the diagonal) so: 

( )[ ]
4
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mj                 (25) 
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So the VCB-width bound is dependent upon m. When  is small,  is large and vice 

vers

m [ ]jW

a, while for 0=m , DBC has exactly the same bound as the BC/BS-based model in (17). 

Moreover, the bounds for both the QBC and QBC-n models are directly obtained from their SP 

values, 12
1=m  and 3

1=m  respectively, so corroborating the generality of the new DBC paradigm 

within th D fram rk. 

 

e OR ewo

With the theory underpinning the DBC model formalised, the next section presents a rigorous 

IV. EXPERIMENTAL RESULTS ANALYSIS 

experimental results analysis, to test its efficacy from both curve and shape representation, and 

boundary encoding standpoints. 



The performance of l BC and QBC from the 

on results  

 DBC is initially compared with the classica

perspective of curve representation by using some hypothetical CP sets, before analysing the 

results upon a series of popular test shapes from the perspective of both shape descriptor and 

DBC-based, ORD optimal shape encoding. To quantitatively evaluate the performance of DBC, 

the widely-used shape distortion measurement metrics [14] were employed. Class one distortion 

measures the peak distortion Dmax over the entire curve, while Class two distortion provides a 

measure of the mean-square (MS) distortion msD  of the shape approximation. The accurate 

distortion measurement technique [18] has been employed in all the experiments for distortion 

measurement purposes. 

IV A. Curve representati

 

Figure 10: BC and DBC for different admissible distortions on a Cartesian plot.  

The performance of the DBC model was firstly compared with the original BC from a curve 

representational perspective by maintaining different admissible distortions ( admD ) between the 

curve and the CtrlPoly, initially for a set of synthetic CP, prior to some real-world test shapes 



being analysed. The Cartesian coordinate plots in Figure 10 reveal, that as anticipated, for lower 

admissible distortions admD  (e.g., 3.0=admD ), the DBC lies closer to CtrlPoly, while for higher 

distortions ( 7.0=admD )  approx rve is closer to the classical BC. , the imating cu

 

Figure 11: The gap size (distortion) between a

 shows the distance b

pproximating curves and the CtrlPoly verse SP 

Figure 11 rves and CtrlPoly for a sample CP set. This 

co

for a sample CP set. 

etween the cu

nfirms the theory that the gap between the curve and CtrlPoly is constant for BC, QBC and 

QBC-n, with in the latter two models, the amount of shifting being constant. In contrast for DBC, 

this varies with the SP value, which is determined from the prescribed admissible distortion. The 

graph also illustrates the generalisation of the DBC paradigm, since when there is no shifting 

( 0=m ), DBC and BC are the same, while as theoretically proven in Lemma 2, as m  increases 

the gap narrows and closes to CtrlPoly as m  approaches unity. Moreover, from this plot by 



respectively choosing  and 0833.0=m 333.0=m , distortion levels of QBC and QBC-n models are 

directly obtainable.  

IV B.  Shape descriptor results 

 
                                       (a)                                    (b)    

 
              (c)                                                                            (d) 

Figure 12: Shape modelling for Arabic-character [1] by a) BC; b) QBC; c) QBC-n; d) DBC 

approximations. 

A series of experiments were performed to test the robustness of DBC as a shape descriptor 

compared with BC and QBC using the Arabic character from [1], which has strong localised 

information comprising very sharp peaks followed by sharp troughs over the entire shape. The 



respective results for BC, QBC, QBC-n and DBC are displayed in Figure 12(a), (b), (c) and (d). 

Although [1] produces an optimal set of CP in terms of minimum distortion for a BC 

representation, the perceptual results for DBC clearly reveal a better approximation compared to 

BC, QBC and QBC-n, for instances, as highlighted by the rectangles and ellipses in the 

respective figures. A similar judgement is quantitatively confirmed by Table 1, with the peak 

distortions produced respectively by BC, QBC, QBC-n and DBC being 1.45, 1.44, 1.2 and 1.0 

pixels.  

 
   (a)                                                                     (b) 

 
                                           (c) 

Figure 13: DBC, QBC-n, QBC and BC comparison for – a) degree elevation; b) composite 

curves; c) subdivision (legend Sub-Div C H means sub-division convex hull). 



A number of experiments were conducted to compare DBC with the Bezier variants. The first 

set was to compare with the degree elevation [6] technique. A hypothetical CP set for a quadratic 

BC was employed for which BC, QBC, QBC-n and DBC respectively yielded maximum 

distortions of 3.6, 3.3, 2.4 and 1.8 pixels and MS distortions of 4.5, 3.6, 1.9 and 1.01 pixels2. A 

new CP set for one degree elevation shown in Figure 13(a) was generated by degree elevation 

using the same CP set. It is visually apparent that the new control polygon is closer to DBC than 

both QBC-n and QBC, and the classical BC 

To test the effectiveness of DBC compared with the classical BC using a CBC approach, 

another experiment was conducted using the curve in Figure 13(b), which is intuitively divided 

into two segments. The corresponding control polygons, each defined by four CP are shown in 

Figure 13(b). The results reveal the control polygon for BC and both QBCs is further away than 

DBC. The plots in Figure 13(c) illustrate the potential of QBC-n and QBC using the midpoint 

subdivision algorithm [8]. Both curves were drawn using the resultant CP generated by Bezier 

subdivision and reveal that DBC qualitatively generated better curve approximations than BC and 

both QBC, using the same subdivided CP set. 

 

Table 1: Results summary obtained for shape description for the Arabic character. 

Class one distortion (pixel) Class two distortion (pixel2) 
DBC QBC-n QBC BC DBC QBC-n QBC BC 
1.0 1.2 1.44 1.45 0.224 0.23 0.34 0.34 

 

IV C. Comparison with BS-based ORD optimal shape coding framework 

As mentioned earlier, DBC has principally been developed to provide the variable rate-distortion 

through shifting in the bedrock of BC and QBC theories, the relationship in (4), subject to the 



appropriate CP adjustments, permit DBC to be embedded into a BS-based framework, in an 

analogous manner to QBC in [10]. Section IIIC delineated how quadratic DBC could be used 

within the BS-based ORD optimal shape coding algorithms, so some related experimental results 

are now presented. 

 
      (a) BS           (b) QBC   c) QBC-n                       (d) DBC 

Figure 14: Results for the left-hand kid in the 1st frame of the Kids sequence with 2max =T  and 

  (legends – solid line: Approximated boundary; dashed line: Original boundary; 

asterisk: CP).  

pixelT 1min =

This series of experiments concentrated upon the requisite bit-rate for a prescribed set of 

admissible distortion values. The respective results produced by the ORD algorithm with the 

different curves upon the first kid shape of the 1st frame of the Kids sequence, for a peak 

distortion bound of , are shown in pixelTT 1,2 minmax == Figure 14 (a)-(d). The subjective results 

in Figure 14 show the approximated shapes maintained the admissible distortions in all cases, and 

for DBC with , the approximating curves possessed similar smoothness to both the BS- 5.0=m



and QBC-based models. To vindicate the robust performance of DBC, the average bits and 

computational time requirements per frame were compared, for a number of standard test shape 

sequences of varying spatial and temporal resolutions, using different admissible distortion 

settings. These are summarised in Table 2, with the results clearly evincing DBC consistently 

provides the lowest bit rate, where the extra overhead incurred in encoding  has been included 

in all DBC bit-rates. The computational time results reveal DBC sustains comparable throughputs 

to all other approaches (BC, QBC and QBC-n), with the improvement over both QBC paradigms 

being due to the latter’s use of nested recursive calls [10]. Conversely, as DBC includes an 

iterative search algorithm to determine the optimal SP value, BS approximations generally afford 

a lower computational overhead, but it crucially requires a higher bit rate.  

m

 

Table 2: Average bit-rate (bits per frame) and computational time (minutes per frame) 
requirements for different video test sequences; and distortion limits (pixels), using different 
parametric curves within the dynamic ORD optimal shape coding framework. 
Test  
sequences ↓ 

Admissible distortion ↓ Bit-rate (bits), Computational time (minutes) 
DBC QBC-n QBC BS 

 
MissAmerica.qcif 
(100 frames) 

Tmax=1, Tmin=1 325,  3.00  331,  3.10 358,  3.10 360,  2.05   
Tmax=2, Tmin=1 289,  5.20 295,  5.25 308,  5.22 310,  4.00 
Tmax=2, Tmin=2 250,  6.05 262,  6.06 273,  6.06 275,  3.95 

 
Akiyo.qcif  
(300 frames) 
 

Tmax=1, Tmin=1 302,  3.00  310,  3.00 332,  3.00 335, 2.06  
Tmax=2, Tmin=1 268,  5.15 278,  5.16 290,  5.16  295,  4.08 
Tmax=2, Tmin=2 240,  5.96 251,  5.99 275,  5.99 277,  4.00 

 
Bream.qcif 
(300 frames) 

Tmax=1, Tmin=1 430,  4.50 435,  4.50 450,  4.50 465,  3.05 
Tmax=2, Tmin=1 350,  6.25 360,  6.26 400,  6.25  402,  4.50 
Tmax=2, Tmin=2 314,  7.20 325,  7.25 370,  7.23 375,  5.25 

 
Kids.sif 
(100 frames)  
 

Tmax=1, Tmin=1 1060,  15.02 1084,  15.10 1136,  15.10 1140,  12.00 
Tmax=2, Tmin=1 690,  19.00 708,  19.02 728,  19.02 730,  15.25 
Tmax=2, Tmin=2 600,  21.00 620,  21.20 628,  21.20 641,  18.52 

 
Stefan.sif 
(450 frames) 

Tmax=1, Tmin=1 445,  5.12  455,  5.15 475, 5.12 481,  3.25 
Tmax=2, Tmin=1 392,  7.05 405,  7.10 445,  7.07 446,  5.01 
Tmax=2, Tmin=2 352,  7.89 371,  8.00 415,  7.95 417,  5.42 

 



 

Figure 15: Comparative RD performances for different ORD algorithms using the MPEG-4 

 metric upon the Kids.sif test sequence. nD

To substantiate the performance of the DBC paradigm within the dynamic vertex-based ORD 

optimal shape coding framework, a final series of experiments was conducted using the MPEG-4 

shape distortion metric , which is defined as the percentile ratio of the number of erroneously 

represented pixels of an approximating shape to the total number of pixels in the original shape 

nD

[22]. Figure 15 displays the corresponding RD curves for BS, QBC, QBC-n and DBC-based 

algorithms for the Kids.sif sequence, which reveals how the DBC performance depends upon the 

SP, with for example, DBC( ) clearly producing superior results to DBC( ) due to the 

increased level of shifting. For DBC(0.2), the SP value is low and this reflected by the RD results 

being more akin to those of the QBC model (m=0.0833), while DBC(0.6) is the optimal bit-rate 

produced by the DBC framework. The RD curves also show that at higher distortions, DBC 

produced comparatively better results than QBC-n, with for example at , the 

6.0 2.0

=nD %326.1



respective bit-rate requirements for QBC-n and DBC being  and 475  bits. This improvement 

is as a direct consequence of the flexibility DBC affords in controlling the amount of shifting of 

BC points towards the CtrlPoly, in comparison to the BC and QBC-n models, where either no or 

a preset shift is applied.  

491

V. CONCLUSION 

While the Bezier curve (BC) is a well established tool for a wide range of applications, its 

principal drawback is that it does not consider localised shape information. This paper has 

focused upon bridging this hiatus by developing a flexible model that integrates variable local 

information into the classical BC framework, without increasing the number of control points. 

The theoretical foundations of the dynamic Bezier curve (DBC) have been presented together 

with a strategy to determine the optimal value of the shifting parameter and it has also been 

proven DBC retains the core properties of the BC. The qualitative and quantitative results using 

different control point sets and test shapes have endorsed the capacity DBC affords in terms of a 

consistently lower shape distortion performance compared with BC and the two Quasi-BC 

models, together with other recognized shape descriptor methodologies. DBC can be seamlessly 

integrated into all these descriptor strategies and the operational rate-distortion optimal vertex-

based shape coding framework to improve their shape approximating performance. This paper 

has also determined the theoretical bounds of the admissible control point band for DBC when it 

is embedded within the classical vertex-based shape coding framework. 
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