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Abstract. Dissipation is sometimes regarded as an inevitable and regrettable presence in the
real evolution of a quantum system. However, the effects may not always be malign, although
often non-intuitive and may even be beneficial. In this note we we display some of these effects
for N-level systems, where N = 2, 3, 4.

We start with an elementary introduction to dissipative effects on the Bloch Sphere, and its
interior, the Bloch Ball, for a two-level system. We describe explicitly the hamiltonian evolution
as well as the purely dissipative dynamics, in the latter case giving the t → ∞ limits of the
motion. This discussion enables us to provide an intuitive feeling for the measures of control-
reachable states. For the three-level case we discuss the impossibility of isolating a two-level
(qubit) subsystem; this is a Bohm-Aharonov type consequence of dissipation.

We finally exemplify the four-level case by giving constraints on the decay of two-qubit
entanglement.

Dedicatory: The seminal work of George Sudarshan and his collaborators some 30 years ago
has given us the framework for an analytic discussion of dissipative effects in quantum systems.
It gives us great pleasure to dedicate this paper to Professor Sudarshan on his 75th birthday.

1. Introduction

The basic equations which determine the evolution of a hamiltonian quantum system have been
well known since the ’20s. These may be written in the form of a differential equation for the
quantum state, the Schrödinger equation. The standard description of a quantum state suitable
for our discussion, which will involve open systems, is by means of a density matrix ρ, a positive
matrix of trace 1. In this context the state ρ(t) is said to satisfy the quantum Liouville equation,
with1

Local Form:

i
d

dt
ρ(t) = [H, ρ(t)] ≡ Hρ(t) − ρ(t)H (1.1)

1 we choose units in which h̄ = 1.
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where H is the total hamiltonian of the system. This may equivalently be written in the
Global Form:

ρ(t) = U(t)ρ0U(t)†, (1.2)

where U(t) is the time-evolution operator satisfying the Schrodinger equation

i
d

dt
U(t) = HU(t), U(0) = I, (1.3)

with I the identity operator. For a hamiltonian (non-dissipative) system one obtains a unitary
evolution of the state.

In the context of Quantum Control theory, which we shall briefly explore in Section(3.1), we
may assume that H ≡ H(f) depends on a set of control fields fm which are time-dependent:

H(f) = H0 +
M
∑

m=1

fm(t)Hm, (1.4)

where H0 is the internal hamiltonian and Hm is the interaction hamiltonian for the fields fm

for 1 ≤ m ≤ M . The advantage of the Liouville equation (1.1) over the unitary evolution
equation (1.2) is that it can easily be adapted for dissipative systems by adding a dissipation
(super-)operator LD[ρ(t)]:

iρ̇(t) = [H, ρ(t)] + iLD[ρ(t)]. (1.5)

In general, uncontrollable interactions of the system with its environment lead to two types of
dissipation: phase decoherence (dephasing) and population relaxation. The former occurs when
the interaction with the environment destroys the phase correlations between states, which leads
to changes in the off-diagonal elements of the density matrix:

ρ̇kn(t) = −i([H, ρ(t)])kn − Γknρkn(t) (1.6)

where Γkn (for k 6= n) is the dephasing rate between |k〉 and |n〉. The latter happens, for
instance, when a quantum particle in state |n〉 spontaneously emits a photon and moves to
another quantum state |k〉, which changes the populations according to

ρ̇nn(t) = −i([H, ρ(t)])nn +
∑

k 6=n

[γnkρkk(t) − γknρnn(t)] (1.7)

where γknρnn is the population loss for level |n〉 due to transitions |n〉 → |k〉, and γnkρkk

is the population gain caused by transitions |k〉 → |n〉. The population relaxation rate γkn

is determined by the lifetime of the state |n〉, and for multiple decay pathways, the relative
probability for the transition |n〉 → |k〉. Phase decoherence and population relaxation lead to a
dissipation superoperator (represented by an N2 × N2 matrix) whose non-zero elements are

(LD)[k;n],[k;n] = −Γkn k 6= n
(LD)[n;n],[k;k] = +γnk k 6= n
(LD)[n;n],[n;n] = −∑n 6=k γkn

(1.8)

where Γkn and γkn are positive numbers, with Γkn symmetric in its indices. We have here used
the convenient notation

[m;n] = (m − 1)N + n (1.9)

The N2×N2 matrix superoperator LD may be thought of as acting on the N2-vector r obtained
from ρ by

r[m;n] ≡ ρmn. (1.10)

The resulting vector equation is
ṙ = Lr = (LH + LD)r (1.11)

where LH is the anti-hermitian matrix derived from the hamiltonian H.
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2. Dissipation theory

The values of the relaxation and dephasing parameters may be determined by experiment, or
simply chosen to supply a model for the dissipation phenomenon. But they may not be chosen
arbitrarily; the condition of positivity2 for the state ρ imposes constraints on their values, as
does their deduction from rigorous theory.

2.1. Master evolution equations

The standard theory adopted for the discussion of dissipation has the following forms[2]:
Local Form

ρ̇(t) = −i[H, ρ(t)] +
1

2

∑

k

(

[Akρ(t), A†
k] + [Ak, ρ(t)A†

k]
)

(2.1)

where the Ak are (trace-zero) N × N matrices. It may be shown that the dissipation
superoperator LD arising from Eq. (2.1) has negative eigenvalues. Since the evolution dynamics
arises from exponentiation of LDt it follows that operators exp(LDt) in the theory will grow
without limit for arbitrary negative t. This means that the set of operator inverses is unbounded
and implies a semi-group character to the evolution. This is also implicit in the following global
description formalism[3]:
Global Form

ρ(t) =
∑

k

Wk(t)ρ0Wk(t)
†, (2.2)

with
∑

k

Wk(t)
†Wk(t) = I. (2.3)

Equation(2.2) and the condition Eq. (2.3) clearly guarantee both positivity and unit trace for
ρ(t).

Further, though less obviously, the global form also implies a semi-group description of the
evolution. For if we consider the set G whose elements are the sets {wk} satisfying Eq. (2.3),
then if g = {wk} and g′ = {w′

k} are two elements of G, then so too is gg′, where the product is
taken in the sense of set multiplication. Although closed under composition, the only elements of
G which possess inverses are the singleton sets {U}, where U is unitary; thus G is a semi-group.

2.2. Values of the dissipation parameters

To determine the constraints on the dissipation parameters we start with the Kossakowski,
Gorini and Sudarshan form of the super-operator

L[ρ(t)] = −i[H, ρ(t)] +
1

2

N2−1
∑

k,k′=1

akk′

(

[Vkρ(t), V †
k′ ] + [Vk, ρ(t)V †

k′ ]
)

(2.4)

where the Vk, k = 1, 2, . . . ,N2 − 1, are trace-zero, orthonormal operators with respect to the
trace inner product (A,B) = Tr(A†B) that together with VN2 = 1√

N
I form a basis for the

hermitian operators on the system’s Hilbert space. In this form the resulting evolution operator
will be completely positive if and only if the coefficient matrix a = (akk′) is positive. We note that
the Lindblad form (2.1) is essentially a diagonalization of (2.4) for positive coefficient matrices.

A convenient choice for the Vk is to define N2 − N off-diagonal matrices

V[m;n] = emn, m 6= n, m, n = 1, 2, . . . ,N. (2.5)

2 In fact, the theory that we adopt here implies the even more stringent constraint of complete positivity.
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as well as N − 1 diagonal matrices

V[m;m] =
1√

m + m2

(

m
∑

s=1

ess − mem+1,m+1

)

(2.6)

for m = 1, 2, . . . ,N − 1, where we use the index notation [m;n] ≡ (m − 1)N + n as before, and
emn is an N ×N matrix whose entries are zero except for a 1 in mth row, nth column position.
By comparing the resulting dissipation super-operator with equation (1.8), we can express the
relaxation and decoherence parameters in terms of the coefficients akk′ as detailed in [4].

3. Bloch Sphere and Bloch Ball

We now discuss the evolution of a two-level system (qubit). A useful geometric picture of this
simple system, for the pure state case, is by means of the Bloch sphere and, for a general two-level
(mixed) state, the Bloch ball.

3.1. Bloch Sphere and Bloch Ball: N=2

A normalized two-level pure state (qubit) is described by a complex 2-vector (α, β)T where
|α|2+|β|2 = 1. Since for a single qubit the overall phase is unimportant, we can set α = cos(θ/2),
β = e−iφ sin(θ/2) where α, β are two (real) angles, and the state may thus be represented by a
point

x = sin θ cos φ, y = sin θ sin φ, z = cos θ (3.1)

on the (Bloch) sphere [see Fig 1]. In terms of the density matrix description

ρ =

[

α
β

]

[

α∗ β∗] =

[

cos2(θ/2) e−iφ cos(θ/2) sin(θ/2)
eiφ cos(θ/2) sin(θ/2) sin2(θ/2)

]

(3.2)

and using the (unnormalized) Pauli matrices

τ0 =

[

1 0
0 1

]

, τ1 =

[

0 1
1 0

]

, τ2 =

[

0 −i
i 0

]

, τ3 =

[

1 0
0 −1

]

(3.3)

Eq. (3.1) may be succinctly expressed as

Rµ = Tr(τµρ) (µ = 0, 1, 2, 3) {R1, R2, R3} ≡ {x, y, z}. (3.4)

In this form the Bloch vector may be immediately extended to any 2-level state, pure or mixed,
by adopting the same definition of Eq. (3.4) for any state ρ. The length squared of the Bloch
Vector, using the definition 3.4, is given by Tr(ρ2) − 2 det ρ, and thus represents a point in the
Bloch Ball [Fig. (1)]. The zero vector is attained only for the maximally random mixed state
diag(1/2, 1/2).

3.2. Bloch Sphere and Bloch Ball: N > 2.
For the general, N -level, case the concept corresponding to the Bloch vector is the coherence

vector. We first define a basis for u(n), consisting of N2 hermitian matrices Fµ analogous to the
Pauli matrices Eq. (3.3) above as follows:

{Fµ : µ = 1 . . . N2}, Tr(FµFν) = δµ,ν (3.5)

We choose the Fµ to be trace-zero except FN2 = 1√
N

I where I is the identity matrix, and define

sµ = Tr(ρFµ). (3.6)
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Figure 1. Bloch ball. Pure states are located on the surface of the Bloch ball, mixed states
correspond to points in the interior.

Since the N2-th component sN2 = Tr(ρFN2) = 1/
√

N is constant, one generally considers

the N2 − 1-dimensional coherence vector s = (sk)
N2−1
k=1 , which is the equivalent of the usual 3-

dimensional Bloch vector in the N = 2 case, apart from the normalisation, which is traditionally
chosen to give the unit sphere for N = 2.

Since hamiltonian evolution as in Eq. (1.2) leaves Tr(ρ2) and sN2 = (1/N)Tr(ρ2), and

consequently the length of the vector s invariant, it corresponds to a rotation on SN2−2 (or
its interior).

3.3. Stable points

For evolution governed by dissipation alone—essentially this corresponds to LH = 0 in Eq. (1.11),
but see below—the Bloch vector traces a path in the Bloch Sphere ending on the z-axis. In the
case N = 2 the dissipation (super-)operator Eq. (1.8) is

LD =













−γ21 0 0 γ12

0 −Γ 0 0

0 0 −Γ 0

γ21 0 0 −γ12













(3.7)

where the non-negative elements Γ, γ12, γ21 must satisfy the well-known constraint

2Γ ≥ γ12 + γ21. (3.8)

The corresponding evolution equation
ṙ = LDr. (3.9)

has the solution
r(t) = exp(LDt)r(0) (3.10)

which corresponds to a value of the state ρ(t)





ρ11(γ12+γ21E)+γ12ρ22(1−E)
γ21+γ12

e−tΓ ρ12

e−tΓ ρ21
γ21ρ11(1−E)+ρ22(γ21+γ12E)

γ21+γ12



 (3.11)

where E = e−t(γ21+γ12). In the limit t → ∞ we have

ρ(∞) =

[

γ12/(γ12 + γ21) 0
0 γ21/(γ12 + γ21)

]

(3.12)
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which in general is a mixed state, unless one of γ12, γ21 is zero. Thus the limit point is (0, 0, z∞)
on the z-axis of the Bloch ball, where z∞ = (γ12 − γ21)/(γ12 + γ21).

Although we have described the purely dissipative dynamics as being defined by LH = 0,
in fact it is only the control terms which are absent from Eq. (1.4). The inclusion of H0 does
not alter the above conclusions, since [LH0

, LD] = 0 in our model (see Appendix B); and the
off-diagonal terms of Eq. (3.11) are simply multiplied by a phase factor e±2iǫt, where ǫ is the
energy level scale, which does not change the limit point.

In the general N -level case the matrix LD has a zero eigenvalue (see Appendix A), whose
eigenvector r(0) corresponds to a stable point, as well as a limit point, in the generalized Bloch
ball under purely dissipative evolution. This point is also stable under the action of H0. For
example, in the N = 3 case, this corresponds to a stable (limit) state ρ(∞)

1

N









γ13γ12 + γ13γ32 + γ23γ12 0 0

0 γ23γ31 + γ13γ21 + γ23γ21 0

0 0 γ12γ31 + γ32γ21 + γ32γ31









with

N = γ13γ12 + γ13γ32 + γ23γ12 + γ23γ31 + γ13γ21 + γ23γ21 + γ12γ31 + γ32γ21 + γ32γ31

These stable or limit states are in general mixed states; however they are pure states for
various zero values of the relaxation constants γnm; for example, in the N = 3 case above, when
γ12 = γ21 = 0 and γ31 = 0 or γ32 = 0 and 4 similar patterns.

Renyi entropy

A characterization of the entropy of a N -level state which fits in with the geometric picture
outlined above is the so-called Renyi entropy, defined for the state ρ by

ER = − logN Tr(ρ2), (3.13)

which takes the values 0 for a pure state, and 1 for the maximally random state ρ = I/N , where
I is the identity matrix.

For the 2-level dissipative limit of Eq. (3.12) above, we have

ER = − log2(γ12
2 + γ21

2)/(γ12 + γ21)
2 (3.14)

which attains its minimal value 0 for γ12 = 0 or γ21 = 0, in which case the stable state is pure,
and its maximal value 1 for γ12 = γ21 when the stable state is the maximally random state.
Similar results hold in the general case.

4. Measures of control-reachable sets

The motivation for the preceding discussion has been to give the reader an intuitive feeling for
the behaviour of a qubit under the action of a control hamiltonian in the presence of dissipation.
Our objective is to show that a combination of control hamiltonian and dissipative actions may
well provide a richer set of targets within the Bloch ball than would be otherwise available to
either hamiltonian control or dissipative processes alone. In summary, we observed:

• A purely hamiltonian action behaves as a rotation, and the evolution is restricted to the
surface of the Bloch sphere (for a pure state); or to the surface of a spherical shell within
the Bloch ball (for a proper mixed state).
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• For a purely dissipative process, the evolution traces out a path in the Bloch ball ending
on the z-axis.

The set of reachable states in the absence of control is the path traced out by the initial
state under the given fixed evolution, which has measure zero in RN2−1. If the system is subject
to controlled evolution governed by a control Hamiltonian of the form (1.4) with controls fm

bounded by ‖ fm ‖≤ F and {γk} is a fixed set of dissipation parameters, then the set of reachable
states in time t ≤ T is

{ R(γ, fm, t) :‖ fm ‖≤ F, t ≤ T} (4.1)

where R(γ, fm, t) is the state we can reach at time t given the controls fm and dissipation
parameters γ. When there is no dissipation, the union of the sets above is a subset of the sphere
whose radius is determined by the trace of the initial state, due to the constraint of unitary
evolution, and hence, the set of reachable states has Lebesgue measure zero in RN2−1; in other
words, even if the system is completely controllable, the set of states that are reachable from any
given initial state, has measure zero.

Thus, reachable sets of non-zero measure are only possible as a result of the combination of
hamiltonian and dissipative actions. For example, starting with a pure state on the Bloch sphere,
the reachable sets are sets of of states consisting of unions of portions of spherical shells within
the Bloch sphere. In general, these sets have a non-zero measure depending on the strength of
the control parameters in relation to the dissipation parameters.

To put these ideas in a slightly more formal context, let us consider the case N = 2. If µ is
the (Lebesgue) measure in R3 then taking µ(BlochBall) = 1 we have

Action Dynamical set Measure
µ(0, F, T ) = 0 No dissipation Bloch sphere zero
µ(γ, 0, T ) = 0 No control Path in Bloch ball zero
µ(γ, F, T ) > 0 Finite control and dissipation subset of Bloch ball non-zero
µ(γ,∞,∞) = 1 Infinite control, time Bloch ball 1

where T is the maximum time to reach the state, F the maximum field strength and γ are the
dissipation parameters. So even if we have no control over the dissipative processes, the total
set of states we can reach by applying control fields is greater.

This is one case where dissipative effects, if constructively exploited, may result in better
outcomes than those due to purely hamiltonian evolution.

5. N ≥ 3: Bohm-Aharonov type effects

What we mean by Bohm-Aharonov type effects in the title of this section, is a certain
‘impossibility of isolating’ quantum subsystems. We illustrate these effects by considering the
dissipative dynamics of a two-level subsystem embedded in a three-level system.

For simplicity, we consider the case of pure dissipation (no control) as discussed in Sec. 3.3.
Let us assume that we have a two-level subsystem, embedded in a three-level system, and subject
to population relaxation processes from level 2 to 1 and level 1 to 2 at the rates γ12 and γ21,
respectively. In the absence of other (known) relaxation processes involving the third state, one
may naively be tempted to take the evolution of the three-level system to be

ρ(t) =









ρ11(γ12+γ21E)+γ12ρ22(1−E)
γ21+γ12

e−tΓρ12 ρ13

e−tΓρ21
γ21ρ11(1−E)+ρ22(γ21+γ12E)

γ21+γ12
ρ23

ρ31 ρ32 ρ33









(5.1)

where the evolution in the (1, 2) subspace is given by Eq. (3.11), and the populations and
coherences involving the third state (which is not directly affected by either control or relaxation
processes), remain constant.
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Figure 2. Eigenvalues of Three-Level System assuming 3rd level isolated

However, it is clear by inspection that the above ’solution’ leads to a non-physical state
for t → ∞ unless ρ13 = ρ23 = 0, i.e., if there is any initial coherence between the (1, 2)
subspace and the third level then this coherence must decay, thus the third state experiences
the effect of population relaxation processes entirely restricted to the (1, 2) subspace. In fact,
one can show that not only must the decoherence rates Γ13, Γ23 be non-zero, but Γ13 ≥ γ12/2
and Γ23 ≥ γ12/2. Otherwise, the resulting dissipation superoperator governing the dynamics
will cease to be completely positive, and if there are initial coherences ρ13, ρ23 6= 0, then the
state ρ(t) in Eq. (5.1) will become non-physical, not only for t → ∞ but for all t > 0. For
example, Fig.(2), showing the eigenvalues of (5.1) as a function of time for the pure initial state
(1, 1, 1)T /

√
3 and γ21 = 0, γ12 = γ, Γ = 1

2γ, clearly shows that one of the eigenvalues is negative
for t > 0.

But population relaxation is not the only source of constraints on the decoherence rates for
N > 2. Even if there is no population relaxation at all, i.e., γkn = 0 for all k, n, and the system
experiences only pure dephasing, we cannot choose the decoherence rates Γkn arbitrarily. For
example, setting Γ12 6= 0 and Γ23 = Γ13 = 0 for our three-level system gives

ρ(t) =





ρ11 e−Γ12tρ12 ρ13

e−Γ12tρ21 ρ22 ρ23

ρ31 ρ32 ρ33



 . (5.2)

Choosing ρ(0) to be again the (projector onto the) pure state (1, 1, 1)T /
√

3, we again obtain a
density operator ρ(t) with negative eigenvalues for t > 0, as a simple calculation reveals. This
shows that additional constraints on the decoherence rates are necessary to ensure that the state
of the system remains physical. For N = 3 one can show that the pure dephasing rates must
satisfy the inequalities [4]

(
√

Γb −
√

Γc)
2 ≤ Γa ≤ (

√

Γb +
√

Γc)
2 (5.3)

where {a, b, c} is any permutation of {12, 13, 23}.

6. N ≥ 4: Decay of Entanglement

The results of the previous section also have implications for the decay of entanglement. An
entangled state of two qubits may be considered in the context of a 4-state system arising from
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Figure 3. Two-spin entanglement: Four Level System

two qubits as follows: Write the four states as

Ψ1 = |0〉|0〉, Ψ2 = |0〉|1〉
Ψ3 = |1〉|0〉, Ψ4 = |1〉|1〉

where |0〉 = | ↑〉, |1〉 = | ↓〉. States that are entangled include for example

Ψ1 + Ψ4 =
1√
2
(|0〉|0〉 + |1〉|1〉)

Ψ2 + Ψ3 =
1√
2
(|0〉|1〉 + |1〉|0〉) (6.1)

Each of the two states in Eq. (6.1) is maximally entangled. For this maximal measure
of entanglement to be maintained, the phase relation between the two components of each
state must remain unchanged. The entanglement will decay as a result of phase decoherence
between the components. Thus the rate of entanglement decay is governed by the phase
decoherence parameters Γ14(= Γ41) and Γ23(= Γ32). In the following we show that the rate
of entanglement decay is limited by the single qubit dephasing rates regardless of the precise
decoherence mechanisms. Our only basic assumption is that the decay processes satisfy the
dissipation equations Eq. (2.1) and Eq. (2.2), which form the basis of our discussion here.

For simplicity, we restrict ourselves here to the case where the T1 relaxation times are much
greater than the T2 decoherence times, and the contribution of population relaxation processes
to the decoherence rates is therefore negligible, which is the case for many systems under
investigation for quantum information processing applications, although similar results can be
obtained for the more general case as well.

Fig. (3) shows that the decay of entanglement is governed by Γ14 and Γ23, i.e. giving a total
entanglement decay rate of Γ14 + Γ23, while the other Γs involve single spin decay. Constraints
imposed by the standard evolution equation Eq. (2.1) impose the following inequalities on the
decoherence rates [4]:

|Γ12 + Γ34 − (Γ13 + Γ24)| ≤ Γ14 + Γ23 ≤ Γ12 + Γ13 + Γ24 + Γ34. (6.2)

Defining the average entanglement decoherence rate ΓEn by

ΓEn =
1

2
(Γ14 + Γ23) (6.3)
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and the average single-spin decoherence ΓSp by

ΓSp =
1

4
(Γ12 + Γ13 + Γ24 + Γ34) (6.4)

we obtain the result that the entanglement cannot decay faster on average than twice the single-
qubit decoherence rate.

7. Conclusions

We have looked at the effects of dissipation on an N -level quantum system, for the cases
N = 2, 3, 4. For the N = 2 case, we may avail of the geometric intuition supplied by the
Bloch Sphere, and its interior, the Bloch Ball. This allows us to surmise that the reachable
states under the joint effects of dissipation and an applied control hamiltonian are of non-zero
measure, unlike the case of either of these evolutions being applied separately.

When N = 3, specific examples reveal the impossibility of isolation of a two-level subsystem,
apart from certain initial states. Thus interaction with a populated third level leads to
decoherence effects in the subsystem.

The simplest case of an entangled example occurs for N = 4. Although decoherence will cause
the entanglement to degrade, complete positivity of the evolution induces universal constraints
on the decoherence rates, which lead to universal upper bounds on the rate of entanglement
decay in terms of the single qubit decoherence rates.
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Appendix A

We show that the dissipation super-operator LD has a zero eigenvalue.
Consider the following partial row sums R(α) of LD

R(α) =
∑

k=1...N

(LD)[k;k],α (α = 1 . . . N2).

Once again referring to Eq. (1.8) we see that the only non-vanishing contributions are

∑

k=1...N (n 6=k)

(LD)[k;k],[n;n] =
∑

n 6=k

γkn

and
(LD)[n;n],[n;n] = −

∑

n 6=k

γkn

whose sum is zero. Thus R(α) gives a vanishing row sum for each column α, and LD has
vanishing determinant, and thus a zero eigenvalue.
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Appendix B

We show that the dissipation super-operator LD commutes with a diagonal free-hamiltonian
super-operator LH0

.
We first recall the standard algebraic trick applied in evaluating Liouville equations (see, for

example [5]). The correspondence between ρ and r as given in Eq. (1.10) tells us, after some
manipulation of indices, that

ρ → r ⇒ AρB → A ⊗ B̃ r (7.1)

using the Kronecker product. Thus the super-operator corresponding to the hamiltonian term
in Eq. (1.5) is

H ⊗ I − I ⊗ H̃ (7.2)

and the corresponding super-operator for the diagonal matrix H0 = diag{h(1), . . . h(N)} is

(LH0
)[u;v],[r;s] = (h(u) − h(v))δurδvs (7.3)

using the notation of Eq. (1.9) for which

(A ⊗ B)[u;v],[r;s] = AurBvs. (7.4)

Therefore we have

[LD, LH0
][k;n],[r;s] = (h(k) − h(n) − h(r) + h(s))(LD)[k;n],[r;s]. (7.5)

Consulting Eq. (1.8) we note that all the non-zero elements of LD have vanishing coefficients in
Eq. (7.5); whence [LD, LH0

] = 0.
The results of Appendix A and Appendix B together tell us that there exists a stable vector

under the evolution determined by the joint action of the free hamiltonian LH0
and the dissipation

super-operator LD.
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