
Open Research Online
The Open University’s repository of research publications
and other research outputs

Security Requirements Engineering: A Framework for
Representation and Analysis
Journal Item

How to cite:

Haley, Charles B.; Laney, Robin; Moffett, Jonathan D. and Nuseibeh, Bashar (2008). Security Requirements
Engineering: A Framework for Representation and Analysis. IEEE Transactions on Software Engineering, 34(1) pp.
133–153.

For guidance on citations see FAQs.

c© 2008 IEEE

Version: [not recorded]

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1109/TSE.2007.70754

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://dx.doi.org/doi:10.1109/TSE.2007.70754
http://oro.open.ac.uk/policies.html

Security Requirements Engineering:
A Framework for Representation and Analysis

Charles B. Haley, Robin Laney, Jonathan D. Moffett, Member, IEEE, and

Bashar Nuseibeh, Member, IEEE Computer Society

Abstract—This paper presents a framework for security requirements elicitation and analysis. The framework is based on constructing

a context for the system, representing security requirements as constraints, and developing satisfaction arguments for the security

requirements. The system context is described using a problem-oriented notation, then is validated against the security requirements

through construction of a satisfaction argument. The satisfaction argument consists of two parts: a formal argument that the system

can meet its security requirements and a structured informal argument supporting the assumptions expressed in the formal argument.

The construction of the satisfaction argument may fail, revealing either that the security requirement cannot be satisfied in the context

or that the context does not contain sufficient information to develop the argument. In this case, designers and architects are asked to

provide additional design information to resolve the problems. We evaluate the framework by applying it to a security requirements

analysis within an air traffic control technology evaluation project.

Index Terms—Requirements engineering, security engineering, security requirements, argumentation.

Ç

1 INTRODUCTION

IN recent years, reports of software security failures have
become commonplace. Statistics from the Software

Engineering Institute’s CERT Coordination Center, a center
of Internet security expertise, show that the number of
reported application vulnerabilities rose from 171 in 1995 to
5,990 in 2005 [12]. One source of security problems is not
considering the security requirements of the complete
system. For example, CardSystems Solutions exposed
details of some 40 million credit cards by storing historical
transaction history data where hackers could get to it [21];
the data became part of their system but was not part of
their security planning. The resulting loss has not been
disclosed, but is in excess of several million dollars [24].
Another source is not considering security in the applica-
tion itself; dictionary password and PIN attacks with no
“multiple failure” lockout come to mind. These examples
suggest that improving software-based system security
would have a significant financial impact.

This paper explores how to determine adequate security
requirements for a system. By adequate security requirements,
we mean requirements that, if respected, lead to a system’s
security goals being satisfied and by system we mean the
software and, in addition, people who use the software, and
equipment around the software (computers, printers, etc.).
Adequate general requirements have been shown to have a
very positive impact on the acceptance of a project’s
deliverable: For examples see the Standish Group’s Chaos

reports [72], [73], [74], and the introduction to [55].
Although the empirical evidence is not yet unequivocal, it
appears that adequate security requirements will have as
positive an impact on system security as adequate general
requirements have on system success [55].

We claim that adequate security requirements must
satisfy three criteria. The first criterion is definition: One
must know what security requirements are. The second is
assumptions: Security requirements must take into consid-
eration an analyst’s implicit or explicit assumption that an
object in the system will behave as expected. The third is
satisfaction: One must be able to determine whether the
security requirements satisfy the security goals and whether
the system satisfies the security requirements. We propose
three contributions to assist with developing security
requirements that satisfy these criteria. The first is a
practical definition of security requirements, with yes/no
satisfaction criteria within a system context. The second is
an explicit role for assumptions, concentrating on their
place in security requirements satisfaction arguments. The
third is the use of formal and informal structured argu-
ments to validate that a system can satisfy its security
requirements. These three contributions are incorporated
into our security requirements framework, facilitating the
elicitation, validation, and verification of security require-
ments and other artifacts.

This paper extends and unifies our previous work:
extends by reporting of the results of an application of our
framework and unifies by showing how our earlier
contributions can be applied together coherently and
effectively. The security requirements framework was
published in [57] and further refined in [35]. Trust
assumptions are described in [32], [36]. Threat descriptions,
which we use for our threat modeling, were introduced in
[31]. Our work on security satisfaction arguments has been
published in [33], [34].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008 133

. The authors are with the Department of Computing, Centre for Research in
Computing, The Open University, Walton Hall, Milton Keynes, MK7
6AA, UK. E-mail: {c.b.haley, r.c.laney, j.moffett, b.nuseibeh}@open.ac.uk.

Manuscript received 5 Nov. 2006; revised 6 July 2007; accepted 4 Sept. 2007;
published online 1 Oct. 2007.
Recommended for acceptance by A. Wolf.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0249-1106.
Digital Object Identifier no. 10.1109/TSE.2007.70754.

0098-5589/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

The remainder of this paper is structured as follows:
Section 2 presents background and motivation, further
exploring the three criteria presented above. Section 3
introduces our framework and our two-part satisfaction
arguments. Section 4 shows how the arguments are used
within our framework. Section 5 presents the application of
our framework in an air traffic control technology evalua-
tion project, while Section 6 discusses lessons learned
during that project. Section 7 reviews related work and
Section 8 concludes.

2 BACKGROUND AND MOTIVATION

We claimed above that adequate security requirements
must satisfy three criteria, definition, assumptions, and
satisfaction, and that the contributions presented in this
paper assist with producing security requirements that
satisfy these criteria. We explore these criteria in this
section, providing background and motivation for our
contributions.

2.1 Criterion One—Definition of Security
Requirements

Security needs arise when stakeholders establish that some
resource involved in a system, be it tangible (e.g., cash) or
intangible (e.g., information or reputation), is of value to the
organization. Such resources are called assets [14], [38] and
the stakeholders naturally wish to protect themselves from
any harm involving these assets. Security goals express this
desire, describing the involved asset(s) and the harm to be
prevented. The difficulty then is to determine, from these
security goals, clear security requirements that respond to
the needs of a system.

2.1.1 Security Requirements as Nonfunctional

Requirements (NFRs)

Security requirements have traditionally been considered to
be “nonfunctional” or “quality” requirements ([15], [23],
[27], [30], and many others). Like other quality require-
ments (e.g., performance, usability, cost to run), they do not
have simple yes/no satisfaction criteria. Instead, one must
somehow determine whether a quality requirement has been
satisficed (satisfied well enough) [60]. This is difficult for
quality requirements in general and security requirements
present additional challenges. First, once one descends from
the very general and obvious statements (e.g., “the system
should provide confidentiality”), people generally think
about and express security requirements in terms of “bad
things” to be prevented. Unfortunately, verifying that
something is prevented entails proving a negative: that
there are no counterexamples. It is very difficult, if not
impossible, to measure negative properties. Second, for
security requirements, the tolerance on “satisfied enough”
is small, often zero; stakeholders want security requirement
satisfaction to be very close to yes/no. Third, the amount of
time and money that stakeholders might be willing to
dedicate to satisfying a security requirement can depend on
the likelihood and impact of a security failure; one cannot
justify a large expense to protect something of low value.
One must be able to connect specific development and

operational expense to the requirements being satisfied in
order to determine cost/benefit information.

Security requirements that express what is to happen in a
given situation, as opposed to what is not ever to happen in
any situation, would facilitate their analysis. Such require-
ments would have binary satisfaction criteria, either
behaving appropriately in the given situation or not, and
one can have test criteria to determine what “appropriately”
means. The cost of ensuring behavior in a given situation is
easier to measure than the cost of ensuring something never
happens, facilitating cost/benefit analysis.

2.1.2 Security Requirements and Context

System context can have a profound effect on security goals
and security requirements. As indicated earlier, in this
paper, the word system represents more than the software.
We include the environment the software runs within: the
people who will use, maintain, and depend on the system;
the physical environment the system is to exist within; the
operating environment the software runs within; and any
systems, computer-based and otherwise, already in place.
Security requirements can vary, depending on the system
context. To illustrate, consider some software used by an
executive on her desktop computer. The software might not
have any intrinsic need for security; a spreadsheet would be
a good example. Even though the spreadsheet program
may have no intrinsic security goals associated with it, the
information the executive manipulates may be confidential,
creating a maintain confidentiality security goal for the
system comprised of the computer, the office, the spread-
sheet program, the executive, and the confidential data. The
security goal arises because of how the spreadsheet is used,
which is a property of the context within which the
program resides. When the system components {computer,
office, spreadsheet program, executive} are considered
alone, no confidentiality security goal arises. The goal arises
only when {confidential data} is added.

Continuing the example, one might consider satisfying
the confidentiality goal by adding a locking office door to
the system, something completely divorced from the soft-
ware. Alternatively, one might decide that the spreadsheet
program should satisfy the goal, perhaps by adding
authentication and encryption. However, these solutions
are inadequate if the executive is in an office that is not
soundproofed and either a) she uses a program that reads
the information aloud, permitting an attacker to listen
without being seen, or b) if the attacker can hear and decode
the keystrokes typed on her keyboard [82].

2.2 Criterion Two—Incorporation of Assumptions
about Behavior

When considering system behavior, the analyst must decide
which parts of the world to consider as part of the problem
and therefore to include in the analysis. An extreme view is
that every atom in the universe is part of every problem
and, therefore, the analysis must consider everything made
of atoms. As this is clearly impractical, the analyst must
choose a subset of domains (real-world elements) that s/he
considers relevant [41], [42]. By so choosing, the analyst
defines the system context.

134 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

When considering security, one factor influencing an

analyst’s choice about whether or not a domain is relevant

is the analyst’s set of trust assumptions [79], [80]. Trust

assumptions are explicit or implicit choices to trust a

domain to behave as expected and can have a significant

impact on the security of a system. For example, most

analysts would not consider the compiler a security risk and

would not include it in a security analysis. In his 1983

Turing award acceptance lecture [76], Ken Thompson

demonstrated that this assumption might not be justified

by showing how a compiler could be a Trojan horse,

introducing trapdoors into applications. Viega et al. [79]

claim that “application providers often assume that their

code will execute in a non-hostile environment” and then

show how this assumption leads to security breaches. Their

example shows “secrets” hidden in code, where the secrets

can be easily exposed through examination of the execu-

table file. The Thompson and Viega et al. examples

illustrate how implicit trust of some domains in the

environment can introduce unknown amounts of risk into

the system. Viega et al. go as far as to say that “without

recognizing all the entities and their trust relationships in a

software system during the requirements phase of a project,

that project is doomed from the start” [79].

2.3 Criterion Three—Satisfaction of Security
Requirements

If one goes to the trouble to produce security requirements

for a system, it is reasonable to ask whether the system can

satisfy the requirements. The more rigorous the process

used to establish satisfaction, the more confidence one can

have that the system will be secure. The strongest process is

a proof. A weaker alternative to a proof is an argument. A

high-quality argument engenders confidence that the

requirements will be satisfied. The weaker the argument,

the more faith one must have that the result will be

acceptable.
No analysis of security requirement satisfaction can

include every possible domain that could be a part of the

system. Every proof or argument will include trust

assumptions, at minimum that the domains not considered

will do no harm, and establishment of satisfaction depends

upon the validity of these trust assumptions. Rigorous

proofs of validity of trust assumptions are hard to come by

because malice and accident must be taken into account.

Instead of proving that a trust assumption is valid, one can

instead produce arguments that the trust assumption should

be considered valid. The argument must be sufficiently

convincing, using properties of the system and domains

as evidence.
Trust assumption validity arguments are, in effect,

subarguments of the proof or argument that security

requirements are satisfied and their quality directly affects

the validity of the containing argument. The subarguments

should be an explicit part of establishing satisfaction of

security requirements.

3 A FRAMEWORK FOR SECURITY REQUIREMENTS

ENGINEERING

We propose a security requirements engineering framework
to facilitate production of security requirements satisfying
the three criteria presented above. In the framework:

. Security goals and security requirements aim to
protect assets from harm.

. Primary security goals are operationalized into
primary security requirements, which take the form
of constraints on the functional requirements suffi-
cient to protect the assets from identified harms.
Primary security requirements are, consequently,
preventative.

. Feasibility, trade-off, and conflict analyses [67, p. 81]
may lead to the addition of secondary security goals,
which result in additional functional and/or sec-
ondary security requirements. Secondary security
goals and requirements may call for detective or
preventative measures, a possibility further dis-
cussed below.

. Security satisfaction arguments show that the system
can respect the security requirements. These argu-
ments expose and take trust assumptions into
account.

The framework assists with understanding the place of
security requirements within the development of an
individual application, along with the relationships be-
tween the security requirements and other artifacts pro-
duced during development.

3.1 Definition of Security Goals

The security community has enumerated some general
security concerns: confidentiality, integrity, and availability
(labeling them CIA and, more recently, adding another A for
accountability [64]). By enumerating the assets in a system,
then postulating actions that would violate these security
concerns for the assets, one can construct descriptions of
possible threats on assets. For example, one can erase (the
action) customer records (the asset) of a company to cause loss of
revenue (the harm). One set of security goals is determined by
listing these threats on assets, then preventing (or avoiding) the
action(s) on the asset(s) that realizes the threat.

More security goals can be found by combining manage-
ment control principles and organization security policies.
Management control principles include “standard” security
principles such as least privilege and separation of duties [64];
these are checked against assets to determine their applic-
ability. An organization may already have done the analysis
and published policies that apply to assets in a system. The
security goal is a statement that the policies and/or principles
be applied where appropriate in the system.

Note that stakeholders may have conflicting security
goals. The set of relevant security goals may be mutually
inconsistent and inconsistencies will need to be resolved
during the goal analysis process before a set of consistent
requirements can be reached.

Knowing the goals of attackers could be useful when
determining security goals for the system, for example
when enumerating assets or quantifying harm. However,

HALEY ET AL.: SECURITY REQUIREMENTS ENGINEERING: A FRAMEWORK FOR REPRESENTATION AND ANALYSIS 135

the goals of the system owner and other legitimate
stakeholders are not directly related to the goals of attackers
because security is not necessarily a zero sum game like
football (soccer in the US). In football, the goals won by an
attacker are exactly the goals lost by the defender. Security
is different; there is not necessarily a relationship between
the losses incurred by the asset owner and the gains of the
attacker. For example, Robert Morris unleashed the Internet
Worm [71], causing millions of dollars of damage, appar-
ently as an experiment without serious malicious intent.
The positive value to Morris was much less than the loss
incurred by the attacked sites.

The consequences of security not being a zero sum game
are twofold: The first is that the evaluation of possible harm
to an asset can generally be carried out without reference to
particular attackers; one need only determine that harm can
be incurred. The second is that the goals of attackers cannot
be used alone to arrive at the goals of a defender to prevent
harm, i.e., the system’s security goals; further consideration
is necessary to determine whether and what harm to the
system is incurred if the attacker satisfies his or her goals.

3.2 Definition of Security Requirements

We define security requirements as constraints on the
functions of the system, where these constraints operatio-
nalize one or more security goals. Security requirements
operationalize the security goals as follows:

. They are constraints on the system’s functional
requirements, rather than being themselves func-
tional requirements.

. They express the system’s security goals in opera-
tional terms, precise enough to be given to a
designer/architect. Security requirements, like func-
tional requirements, are prescriptive, providing a
specification (behavior in terms of phenomena) to
achieve the desired effect.

3.3 From Security Goals to Security Requirements

We propose an iterative hierarchy of security goals and
security requirements. The first iteration produces primary
goals and requirements that are [directly] derived from the
business goals and functional requirements. Further itera-
tions produce secondary security goals and requirements.
They are added for one or both of the following reasons: to
enable construction of an acceptable satisfaction argument
for the satisfaction of primary security requirements (see
Section 4) or to permit an acceptable feasible realization of the
primary security requirements.

The term feasible realization takes into consideration
technical feasibility, cost/benefit plus risk, and stakeholder
trade-offs [67]. It may be that no practical way exists to
respect a constraint and thus prevent the harm. Perhaps
stakeholders do not agree on the goals or requirements.
Risk analysis may indicate that the cost of respecting a
security requirement is excessive, in which case the analyst
may decide to detect violation after the fact and then
recover from and/or repair the breach. Consider avail-
ability requirements; many such requirements do not
prevent loss of availability, but instead imply a recovery
capability.

Secondary security goals and security requirements are
not secondary in terms of importance, but are secondary
because they exist to enable satisfaction, to an acceptable
level, of the security requirements from which they are
derived.

It is very important to note that secondary security goals
and requirements supersede the primary security require-
ments and can change the context and behavior of the
system. For example, choosing to use attack detection
instead of prevention implies that the primary security
requirement will not be completely satisfied as the attack
will not be prevented. The choice means that the secondary
goals and associated security requirements are considered
suitably equivalent to the primary security requirements; they
“cover” and “replace,” but do not delete them. Secondary
security goals can be satisfied by adding either or both of
secondary functional requirements and secondary security
requirements. Using an authentication mechanism is an
example of adding both; the mechanism must be added
(function), then used in a secondary security requirement (a
constraint). An example of satisfying a secondary security
goal by adding function is addition of management
capabilities for detecting breaches.

3.4 Development Artifacts and Dependencies

All system development processes have recognizable stages
that produce artifacts that are successively closer represen-
tations of a working system. These representations are core
artifacts. They are ordered in the abstraction hierarchy
shown in Fig. 1, progressing from the most abstract to the
final concrete working system. At early stages, core artifacts
are typically documents, models, or prototypes. The final
core artifact is the working system itself, consisting of a
combination of physical and software items.

Support artifacts are artifacts that help to develop,
analyze, or justify the design of a core artifact. They may
include formal analysis, informal argument, calculation,
example or counterexample, etc. They are byproducts of
processes whose aim is to help produce verified and valid
core artifacts.

Two sets of core artifacts are of most interest in this
paper. On the mainstream requirements engineering side,
one finds descriptions of goals, functional requirements,
and the system context/architecture (in the large). On the
security engineering side, one finds assets, control princi-
ples, and security goals and requirements.

Dependencies between Artifacts. There are dependencies in
the hierarchy. For example, an operationalized requirement
is dependent upon a higher-level goal from which it has
been derived because alteration of the goal may cause
alteration of the requirement. We call this kind of
dependency hierarchical dependency.

There is also a reverse kind of dependency: feasibility. If it
proves impossible to implement a system that sufficiently
satisfies its goals or requirements, then the goals or
requirements must be changed. The higher-level artifact is
dependent on the feasibility of the artifacts below it in the
hierarchy.

These dependency relationships have an important
implication for the structure of development processes. If
an artifact is dependent upon the implementation of

136 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

another artifact for its feasibility, then, if the implementa-

tion is not feasible, there must be an iteration path in the

process back to the ancestor from its descendant.

3.5 Activities in the Framework

An ordered set of activities for moving from functional

goals to satisfaction arguments is shown in Fig. 2. Boxes in

the figure represent activities that produce artifacts.

Typically, a box in the figure has two exits, one for success

and one for failure. Failure can be one of two kinds. The

first is that it is not feasible to create a consistent set of the

artifacts to be constructed by that activity. The second is

that validation of the artifacts against a higher level, for

example, validation of security requirements against secur-

ity goals, shows that they fail to meet their aims. Iteration

may cascade upward if the problem cannot be resolved at

the preceding step.

There are four general stages in the activity diagram.

Although one could describe these stages in terms of the

artifacts that are produced, along with the ordering between

them, it is clearer to describe them as activities that are to be

incorporated into the development process. The activities are

1. identify functional requirements,
2. identify security goals,
3. identify security requirements, and
4. construct satisfaction arguments.

We discuss each in turn below.

3.5.1 Stage 1: Identify Functional Requirements

The only requirement the framework places upon this stage

of the development process is that a representation of the

system context be produced. (See Section 3.5.3 for more

detail on the context.) How the requirements engineer gets

to this point is left open.

HALEY ET AL.: SECURITY REQUIREMENTS ENGINEERING: A FRAMEWORK FOR REPRESENTATION AND ANALYSIS 137

Fig. 1. Security requirements core artifacts (class diagram).

3.5.2 Stage 2: Identify Security Goals

There are three general steps required to identify the
security goals: identify candidate assets, select the manage-
ment principles to apply, and then determine the security
goals. The result is a set of security goals which are
validated by ensuring that the business goals remain
satisfied.

The first iteration through this step results in the
generation of primary security goals. Subsequent iterations
result in secondary security goals, which are traceable,
perhaps through multiple levels and through security
requirements, to the original, primary, security goal(s).

Identify candidate assets. The goal of this step is to find
all of the resources in the system context that might have
value. In general, assets consist of all of the information
resources stored in or accessed by the system-to-be and any
tangible resources such as the computers themselves. Assets
can be composed of other assets; backup tapes would be a
good example.

Select management principles. The functions that the
system is to provide must be compared to the management

principles that the organization wishes to apply. These

principles might include separation of duties, separation of

function, required audit trails, least privilege (both need to

know and need to do), Chinese wall, data protection, no

outside connections, and no removable media (not intended

to be an exhaustive list). The organization might have

already done a harm/risk analysis and developed organi-

zation-wide security policies for asset types. Which global

policies to apply within the system under consideration

must be identified and fed into the next step.
Determine security goals. When developing security

goals, one must determine whether a harm analysis must be

done for the assets. If the analysis has been done elsewhere

(e.g., organization-wide policies) and if the assets are

covered by the policies, then a list of security goals is

generated by applying the management principles to the

assets and business goals of the system. The result is a set of

achieve goals with forms similar to “achieve Separation of

Duties when paying invoices” or “audit all uses of account

information.”

138 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

Fig. 2. Process activity diagram.

If the analysis done elsewhere is not considered suffi-
cient, one should do a harm analysis. In general, harm is
caused by the negation of the security concerns described in
Section 3.1: confidentiality, integrity, availability, and account-
ability. One asks questions of the form “what harm could
come to [insert asset here] from an action violating [insert
concern here]?” Answers to these questions are threat
descriptions [31], which are represented as tuples of the
form {action, asset, harm}. Security goals are constructed by
specifying that the action(s) on the asset(s) listed in threat
descriptions be prevented.

The goals identified from the two analyses (if both are
done) must be combined and checked to ensure that they
are consistent.

3.5.3 Stage 3: Identify Security Requirements

Recall that we define security requirements as constraints
on functional requirements that are needed to satisfy
applicable security goals. To determine the constraints, we
must determine which security goals apply to which
functional requirements, which means we must know
which assets are implicated in fulfilling a particular
functional requirement. We use Jackson’s problem dia-
grams [42] for this purpose; these diagrams describe the
system context. We do not attempt to identify a particular
problem class (problem frame), but instead describe the
domains, their interconnections, shared phenomena, and
requirements in a system problem diagram.

A simple example of such a constraint is The system
shall provide Personnel Information only to members of
Human Resources Dept. The constraint (“only to . . . ”) is
attached to the function (“provide Personnel Information”);
it makes sense only in the context of such a function. One
might also impose temporal constraints, e.g., The system
shall provide Personnel Information only during normal office
hours, or a complex constraint on traces produced by the
Chinese Wall Security Policy, [7]:

The system shall provide information about an organization
only to any person who has not previously accessed
information about a competitor organization.

Once a set of security requirements has been developed,
one must validate that the security requirements satisfy the
security goals. This would be done using satisfaction
arguments appropriate to the level of formality used to
describe the goals. Given that goals are often written in
plain text, the arguments could have a form similar to our
inner arguments (see Section 3.5.4). How these arguments
are expressed is left open to the designer of the process to be
used and are not defined within our framework.

In the same fashion as security goals, the first iteration
through this step results in primary security require-
ments. Subsequent iterations generate secondary security
requirements.

3.5.4 Stage 4: Verification of the System

It is important to verify that the security requirements are
satisfied by the system as described by the context. We
propose two-part satisfaction arguments for this verification
step: to convince a reader that a system can satisfy the
security requirements laid upon it. The first part, the outer

argument, consists of a formal argument to prove that the
instance of the system under examination satisfies its
security requirements, with two important assumptions:
that the context is correct and that the implementation will
not introduce any conflicting behavior. We recognize that
both of these assumptions are very strong and often untrue
in practice. Verification that the system can satisfy the
requirements cannot ensure the truth of the assumptions,
but it does ensure a sound structure for the system that is
potentially secure.

The second part, the inner argument, consists of struc-
tured informal arguments to support the assumptions about
system composition and behavior made in the formal
argument. Satisfaction arguments assist with identifying
security-relevant system properties and determining how
inconsistent and implausible assumptions about them affect
the security of a system. These security requirement
satisfaction arguments are presented in more detail in
Section 4.

3.6 Iteration

One reason that an analyst may fail to construct a
convincing satisfaction argument is that there is not enough
information available to justify an assumption. For example,
to justify a claim that users are authenticated, there must be
some phenomena exchanged between the user and the rest
of the system. The choice of phenomena and behavior is a
design decision that may have a significant impact on the
system architecture and context. For example, it is possible
that architectural choices may have already been made and
are being imposed. For these reasons, the framework
assumes that the process includes Twin Peaks iterations
[63], concurrent and incremental elaboration of require-
ments and design. Designers add detail into the system
context so claims can be justified. These iterations move
from stage four to stages one and two.

The details added during an iteration may well require
new functions, thus functional requirements. Consider a
system where, to satisfy a confidentiality requirement,
designers choose authentication and authorization. Further
assume the choice of a retinal-scanning authentication
technique. Appropriate domains and behavior are added
to the context to describe how authentication takes place
from the point of view of the user (in problem space).
However, one cannot necessarily stop at the addition of
domains and phenomena. The authentication system may
need to be managed. New assets may have been added to
the system: for example, the retina description information.
New domains have been added: for example, the admin-
istrators. The process would then restart in stage 1 with a
reanalysis of the functional requirements so that the
consequences of the new goal are understood. New assets
(e.g., the authentication data) would be found in stage 2 and
then new security goals to protect the assets and new
security requirements to constrain functional operations
wherever the new asset appears would be added.

Another possibility is that an iteration will establish that
there is no feasible way to satisfy the security require-
ment(s). In this case, the designers and the stakeholders
must come to an agreement on some acceptable alternative,
such as a weaker constraint, attack detection, and/or attack

HALEY ET AL.: SECURITY REQUIREMENTS ENGINEERING: A FRAMEWORK FOR REPRESENTATION AND ANALYSIS 139

recovery. Appropriate secondary security goals are added,
probably resulting in new secondary security requirements.
The resulting secondary security goals and requirements
“cover” the ones that were not feasible. Satisfying the new
secondary goals and requirements is considered to satisfy
the original security goals and requirements. Clearly, the
“secondariness” of any functional goals added must be
remembered. If the hierarchically superior (“more pri-
mary”) security requirement is changed, then the secondary
security goals may need changing.

Last, it is possible that no feasible way to satisfy a
security requirement exists and no agreement can be
reached on alternatives. In this case, one must return to
the original business and quality goals of the application,
modifying the initial conditions to change the assets
implicated in the system or the security goals of the system.
Alternatively, one might decide that it is infeasible to build
the system.

4 SECURITY REQUIREMENT SATISFACTION

ARGUMENTS

Our security requirements satisfaction arguments are in two
parts: a formal outer argument that is first constructed based
on the behavior specification for the system and informal
structured inner arguments constructed to support the outer
argument. The outer arguments, expressed in a formal
logic, are built from claims about the world. These claims
are assumptions that go beyond the basic provisos: that the
context is correct and that the implementation does not
introduce conflicting behavior. Inner arguments, expressed
in structured natural language, support the assumptions
made in the outer arguments.

4.1 The Outer Argument

The formal outer argument uses claims about system
behavior (interplay of phenomena or behavior specification)
to demonstrate that the security requirement (the con-
straint) is satisfied in a system that conforms to the behavior
specification. It is expressed using a chosen logic, where the
premises are formed from domain behavior properties and
the conclusion is the satisfaction of the security require-
ment. Because the practitioners with whom we worked
were more comfortable with propositional clauses (see
Section 5), we use propositional logic in this paper. As a
result, the outer argument is a proof that

(domain behavior premises) ‘ (security requirement(s))

where ‘ is the syntactic turnstile. The expression A ‘ B
means B can be proved from A.

4.2 The Inner Arguments

The inner argument is a set of informal arguments that
support the claims used in the outer argument. We propose
a form of argument inspired by the work of Toulmin [77],
one of the first to try to formalize a structure for arguments.
Toulmin-style arguments are well suited for our purpose
since they facilitate the capture of relationships between
domain properties (grounds in the formal argument), the
assumptions that eventually support these grounds, and
reasons why the argument may not be valid.

Toulmin et al. [78] describe arguments as consisting of

six parts, and propose a diagrammatic form for their

arguments, shown in Fig. 3. The six parts are:

1. A claim: The end point of an argument, or what one
wishes to convince the world of.

2. Grounds: Underlying support for an argument, e.g.,
evidence, facts, common knowledge, etc.

3. Warrants: Connecting and establishing relevancy
between the grounds and the claim. A warrant
explains how the grounds relate to the claim, but not
the validity of the grounds.

4. Backing: Establishing that the warrants are them-
selves trustworthy. These are, in effect, grounds for
believing the warrants.

5. Modal qualifiers: Indicating the reliability or strength
of the connections from grounds and warrants to
claims. Example: A cold front is passing (grounds).
Cold fronts normally precede clearing weather
(warrant). So, chances are (modal qualifier) the
weather will clear (claim).

6. Rebuttals: Describing what might invalidate any of
the grounds, warrants, or backing, thus invalidating
the support for the claim.

Newman and Marshall show in [61] that the “pure”

Toulmin form suffers because the fundamental recursive

nature of the argument is obscured. Grounds, warrants, and

backing may need to be argued, making them claims. We

agree and extend Toulmin arguments to make explicit the

recursive properties of arguments and the relationships

between grounds, warrants, and claims, while keeping the

basic connections between the components.
At some point, the argument recursion must stop. These

“leaf” arguments will depend on unsupported grounds,

which we call trust assumptions [32], [36]. Trust assumptions

are statements about the behavior or properties of the world

the system lives within, made in order to satisfy a security

requirement and assumed to be true.
We use a simple language to represent the structure of

these extended Toulmin arguments (see [33] for the formal

grammar). This language captures the essence of Toulmin

arguments while facilitating recursion and subarguments.

4.3 Satisfaction Arguments Example

A simple human resources application is used in this

section to illustrate our uses of argumentation. Fig. 4 shows

the initial problem diagram for this application. There are

140 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

Fig. 3. Toulmin arguments.

two phenomena of interest, shown using the naming
convention of “sending domain!message”: the user’s
request for personnel information (U!persNumber) and the
information returned by the request (M!persData). We
assume one security goal: The data is to be kept
confidential. One security requirement (constraint) has been
derived from this goal: The data must only be provided to
HR staff. An informal argument that this requirement
satisfies the security goal is: Confidentiality of personnel
data implies that people in general cannot be allowed access
to this information, but HR staff can be relied upon to
maintain its confidentiality. Therefore, a constraint that
permits HR staff, but nobody else, to access it will satisfy
the security goal. In terms of phenomena, the security
requirement is M!persData must occur only when U!pers
Number is input by a member of the HR staff.

4.3.1 The Outer Argument

Starting with the HR problem shown in Fig. 4, we first
attempt to construct a proof that M!persData occurs only
when U!persNumber is input by a member of the HR staff
or, more formally, that M!persData ‘ (User 2 HR).

There are two domains in the problem: the domain
“users” and the machine (which contains the data). To
construct the proof, we must first express the behavior of
the system more formally. To do so, we use a notation based
on the causal logic described in [56]. In this logic, the
behavior of the domains in Fig. 4, expressed in terms of the
phenomena, is:

U!persNum shall cause M!persData

A major problem is immediately exposed. Given what
we see in the behavior description, there is no way to
connect the system’s behavior to the security requirement,
as membership in the Users domain is not made apparent to
the machine. No proof can be constructed. We need help
from system architects, who can propose (at least) three
design choices:

1. Introduce some physical restriction, such as a door
guard, to ensure that the membership of “users” is
restricted to HR staff. Doing so would permit
construction of the following proof:

H is defined as User 2 HR (always true because of the

physical restriction)

D is defined as phenomenon HR!persData

D ! H (if info is displayed, then user 2 HR because H is

always true)

D (info is displayed)

H (therefore user 2 HR)

2. Introduce phenomena into the system permitting
authentication and authorization of a “user.”

3. Introduce a trust assumption (TA) stating that we
assert that the membership of “users” is limited to HR
staff. Choosing this option would be dubious at best.

We choose option 2 and the resulting problem diagram is
shown in Fig. 5. The user must supply some credentials along
with the request for information. These credentials are passed
to some external authentication and authorization engine,
which answers yes or no. If the answer is yes, then the
machine responds to the user with the data; otherwise, the
data is refused. The new behavior specification is:

1. U!persNumber(#, credentials, userID) shall cause

M!validate(UserID, credentials)

2. if isValid(userID, credentials)

M!Validate(userID, credentials)

shall cause CS!YES

else

M!validate(userID, credentials)

shall cause CS!NO

3. CS!YES shall cause M!persData

4. CS!NO shall cause M!NO

The value returned by isValid() is determined by the
contents of the Credentials Store.

We must now construct the satisfaction argument for the
new “Users” domain. We begin with the outer argument,
first defining the symbols to be used. These are shown in
the following table.

HALEY ET AL.: SECURITY REQUIREMENTS ENGINEERING: A FRAMEWORK FOR REPRESENTATION AND ANALYSIS 141

Fig. 4. HR data retrieval problem.
Fig. 5. New HR staff problem diagram.

The following propositional logic premises are derived
from the behavioral specification. These premises are the
grounds used in the formal argument and, if necessary, will
be supported by informal arguments.

As the requirement is that we display information only to a
member of HR, we include D as a premise and H as the
conclusion. Thus, we want to show (P1, P2, P3, P4, D ‘ H).
A proof is shown in Fig. 6.

4.3.2 The Inner Arguments

Each of the rules used in the outer argument should be
examined critically. We begin with the premises P1, P3, and
P4. These are probably not controversial because one can
say that they are part of the specification of the system to be
implemented. The arguments thus consist of one trust
assumption, as shown in the following utterance in our
argument language:

let G1 = “system is correctly implemented”;

given grounds G1 thus claim P1.

given grounds G1 thus claim P3.

given grounds G1 thus claim P4.

Premise P2 is more complex. It is making a claim about
the behavior membership of the domain “Users” by saying
that if a person has valid credentials, then that person must
be a member of HR. An argument for this claim is shown in
Fig. 7. This argument incorporates three trust assumptions:
G2, G3, and G4.

The three rebuttals in the argument require some
consideration. Remember that rebuttals express conditions
under which the argument does not hold. If the rebuttals
remain in the argument, they create implicit trust assump-
tions saying that the conditions expressed in the rebuttals
will not occur, which may be acceptable. Alternatively, one
could construct an argument against a rebuttal. We will do
that for R1 in the next section.

4.4 Removing Rebuttals by Adding Function

Just as one might be required to modify the problem in order
to be able to construct the outer argument, at times the most
straightforward way to remove a rebuttal might be to add
functionality to a system. The additional functionality would

permit adding new grounds or warrants to mitigate the
conditions that permit the rebuttal.

As an example, consider R1: HR member is dishonest.
One could mitigate this risk by increasing the probability
that an unusual use of the employee’s credentials would be
detected, thus raising the probability that the misuse would
be detected. To this end, we add two functional require-
ments to the system:

. All uses of HR credentials are logged

. Any use of HR credentials from a location outside
the HR department is immediately signaled by
e-mail to the HR director.

The functional requirements would be used as grounds in
an argument against the rebuttal R1, shown in Fig. 8. C2 is
next added as a mitigating proposition to the rebuttal in
argument 1 (R1: “HR member is dishonest” mitigated by C2).
Note that C2 might also mitigate R2 (a successful social
engineering attack) by revealing unauthorized uses of
credentials.

5 APPLICATION OF THE FRAMEWORK

We applied our framework in the “CRISTAL UK” project
[81], a research initiative managed by NATS (formerly
National Air Traffic Services) for the EUROCONTROL
CASCADE Program. This air traffic control project is
charged with “determining the role of ’passive surveillance’
in NATS future surveillance system[s]” [81] where radar is
used currently, such as in and around the airspace at busy
airports.

Air Traffic Control is responsible for the safe and
efficient movement of aircraft through a given airspace.
Air traffic controllers use various surveillance technologies
to try to keep the risk low by maintaining safe horizontal
and vertical distances (separation) between aircraft. Active
technologies do not require cooperation of the aircraft.

142 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

Fig. 6. Proof that the security requirement is satisfied. Fig. 7. Argument 1: for premise P2.

Fig. 8. Argument against rebuttal R1.

Passive technologies require the aircraft to broadcast
information actively. The passive surveillance method
under consideration by the CRISTAL project is ADS-B
(Automatic Dependent Surveillance-Broadcast), where sa-
tellite navigation technology on board the aircraft deter-
mines where the aircraft is in three dimensions, then

broadcasts that position. For more background information,
see Appendix A.

5.1 The Security Requirements Analysis

The project asks whether ADS-B position reports can (or
should) be considered to be a primary position source. We
analyze the security implications of this position using our
framework by stepping through the activities in Fig. 2. The

sections below are numbered using iteration.stage, where
“stage” comes from Fig. 2. For example, the second stage of
the first iteration will be numbered 1.2.

5.2 The First Iteration

During this first iteration, we establish the context for the
system, the functional requirements, and the primary

security goals and requirements.
Step 1.1—Identify Functional Requirements. In this

stage of the activity diagram, we identify the functional
goal(s) of the system under analysis, describe the context,
and identify the functional requirement(s). This task is
dramatically simplified because working ADS-B equipment
is being supplied by project partners and the initial

functional goal was given. That functional goal was:

FG1: Provide safe and efficient air traffic management.

Given the above goal and project’s remit, the functional
requirement can be summarized by:

FR1: Provide positions of aircraft.

The only task remaining is to determine the context, which
is shown in Fig. 9.

Step 1.2—Identify Security Goals. This step is charged
with determining the assets involved directly or indirectly
with the system, the harm that the assets can suffer, and,
finally, the security goals to avoid those harms.

The direct assets found from the context are GPS

receivers and signals, aircraft, positions of the aircraft
(broadcast), ground receivers, and the ATC system (includ-
ing people). The indirect assets are the aircrafts’ contents
(passengers, etc.), items in the ATC area (e.g., infrastructure,

buildings, possibly the airport), and the aircraft owner’s
business (reputation, profitability, etc.).

Using this list of assets, we can (with the help of the
project’s domain experts) determine the potential harm and

then the threat descriptions [31], expressed as violation of

general security goal on asset can cause harm. The threat
descriptions are:

. General goal: confidentiality:

T1: {publicizing, airplanes’ position, facilitating attack in air}

T2: {publicizing, airplanes’ position, lost of trade secrets}

The stakeholders made the decision that threats T1 and T2
are outside of the project’s remit.

. General goal: integrity:

T3: {� correct, airplanes’ position, lost property due to

collision or crash}

T4: {� correct, airplanes’ position, lost revenue due to

increased separation}

T5: {� correct, airplanes’ position, lost revenue due to lost

confidence}

. General goal: availability:

T6: {� available, airplanes’ position, lost property due to

collision/crash}

T7: {� available, airplanes’ position, lost revenue due to

increased separation}

T8: {� available, airplanes’ position, lost revenue due to lost

confidence}

The security goals are determined by avoiding the action in
the threat descriptions. Given these threat descriptions, the
security goals are:

SG1: Have correct positions (avoids T3, T4, and T5)

SG2: Report positions on a timely basis (avoids T6, T7, T8)

Step 1.3—Identify Security Requirements. In this step,
we determine the constraints to place on the functional
requirement FR1: Provide positions of airplanes. We do this

by composing the security goals and the functional require-
ment, resulting in a constrained functional requirement.

The composition produces two security requirements
(constraints). The first is:

SR1 [FR1: Provide positions of aircraft]: positions shall be
accurate.

The NATS requirement for accuracy is that the aircraft

be within 300 meters of its reported position at the time
the position is received. However, ADS-B can poten-
tially improve on that by an order of magnitude and
the consequences of this must be studied. SR1 oper-

ationalizes SG1.
The second constraint is:

SR2 [FR1: Provide positions of airplanes]: positions shall be
timely.

The NATS requirement for timeliness is that a new position
be received within 4 to 6 seconds of the last position report,

HALEY ET AL.: SECURITY REQUIREMENTS ENGINEERING: A FRAMEWORK FOR REPRESENTATION AND ANALYSIS 143

Fig. 9. System context—iteration one.

or of the aircraft entering controlled airspace. SR2 oper-
ationalizes SG2. Fig. 10 shows the context with the
constraints.

Step 1.4—Satisfaction Arguments. We begin by con-
structing the formal outer argument. The steps are
1) annotate the context with the phenomena exchanged
between domains, 2) develop a behavioral specification for
the system in terms of the phenomena, and then 3) use the
phenomena and behavioral specification in a proof that, if
they are complete, the system can satisfy the security
requirements.

The Phenomena. Fig. 10 shows the phenomena ex-
changed within the system and used in the behavior
specification. The phenomena are:

AP!RECV: The airplane receives GPS broadcasts.

AP!XMIT: The airplane transmits its position.
R!SEND: The receiver sends the received position to the

machine.

M!POSREPORT: The machine sends the position to the

ATC system.

ATC!HASPOS: The ATC confirms that it has the aircraft’s

position.

The Behavior Specification. The behavioral specification
is built using a variant of the causal logic described in [56]
and used in Section 4. For this project’s ATC system, the
behavioral specification is:

AP!RECV shall cause AP!XMIT

AP!XMIT shall cause R!SEND

R!SEND shall cause M!POSREPORT

M!POSREPORT shall cause ATC!HASPOS

We recognize that reception of GPS signals by the aircraft
will not actually cause the aircraft to transmit position
reports, but instead enables them. We chose to accept this
slight misstatement instead of adding a clock to the context
and changing to a temporal logic. As a consequence,
AP!RECV shall cause AP!XMIT embeds the assumption
that it repeats often enough to satisfy the NATS require-
ment. We also assume that each processing step in the
system will complete in an appropriate amount of time,
again to avoid changing to a temporal logic.

The Outer (Formal) Argument. There is now enough
information to construct the outer argument, a proof that
the system can respect the security requirements. We want
to prove that

AP!RECV ‘ ATC!HASPOS

If we can prove this, then we have proved that the system
can satisfy both SR1 (accuracy) and SR2 (timeliness), given
the following assumptions: 1) The context is correct and the
implementation introduces no conflicting behavior (the
provisos found in Section 3.5.4), and 2) the temporal
properties assumed above are not significant. Some of these
assumptions will be challenged when we build the inner
arguments. A proof is shown in Fig. 11.

The Inner Arguments. The premises and assumptions of
the outer argument comprise a set of assumptions that must
hold for the system to be secure. The purpose of the inner
arguments is to challenge these assumptions in order to
establish whether they hold in the real world. In our case,
Steps 1 through 5 in Fig. 11 are the assumptions to be
challenged.

As explained in Section 4.2, we chose to represent
arguments in our framework in a text form because this
form handles complex grounds-to-claim graphs and recur-
sion in the arguments more naturally. The argument for the
initial premise AP!RECV ! AP!XMIT in this form is:

Given grounds

Received GPS positions are accurate (AP!RECV &

assumptions)
Warranted by

Calculations are accurate (assumption)

Thus claim

Airplanes transmit accurate positions (AP!XMIT)

[Rebutted by . . .]

One of our first lessons learned was that, although it is easy
to understand the text representation of an argument when
the argument is simple, understanding by project members
becomes more difficult as the arguments become more
complex. As such, we changed to a modified form of the
argument diagrams Toulmin proposed. Fig. 12 shows the
argument in this form, along with the newly added
rebuttals. The text in parentheses (e.g., SR2) is the security
requirement that is violated if the rebuttal is true. Figs. 13,
14, 15, and 16 show the arguments for premises 2 through 4
(numbers of the lines in the proof) and for the assumption
(line 5).

There are 12 rebuttals in the arguments. The rebuttals fall
into three general categories: sabotage where equipment is
sabotaged to break it (R1.1, R1.2, R1.4, and R1.6 through

144 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

Fig. 10. Context with constrained requirement.

Fig. 11. The outer argument (proof).

R1.11), externally caused denial of service (R1.5 and R1.12),
and the intentional transmission of incorrect data (R1.3).
Each of these rebuttals should be evaluated to determine
whether it should be mitigated and, if so, how. If a rebuttal
is to be mitigated, then iteration is required. The project
assumed that R1.3 presented an unacceptable risk of
terrorism; aircraft believed to be following some track X
but really going somewhere else could do a great deal of
damage.

Note that rebuttals that are safety concerns are not
considered here. For example, the equivalent of “jamming”
can be caused by natural phenomena such as multipath and
electrical interference. We consider these to be “normal”
behavior and therefore to be considered during a safety
analysis.

5.3 The Second Iteration

In order to mitigate R1.3, we must find a way to know that
the position an aircraft transmits is the true position of the
aircraft. We are less concerned with detecting that an
aircraft transmitting a correct position is using the wrong
identity.

Multilateration can be used to determine the position of a
transmitter, computing the position by measuring the
difference in a transmission’s arrival time at multiple
receivers. We choose this approach and change the context
appropriately. The new context is shown in Fig. 17.

Stepping through the framework, we see that we do not
have any new functional requirements (we put aside
administration of the multilateration system). We do have
new assets, the multilateration computers, but they did not
add any new security goals. As such, our security
requirements did not change.

The behavior specification does have a significant
change. We must describe the behavior of the new multi-
lateration component in the context. The behavior specifica-
tion is now:

We now have a new premise in our proof, corresponding to
the new and altered components of the behavior specifica-
tion (marked by the box).

We learned another lesson at this point. It was easier to
describe the effects of the iteration using a graphical

“subargument” technique, rather than expressing the argu-

ments again. This technique applies the mitigation (M2.1)

directly to the rebuttal developed during the first iteration.

We use that technique here. Fig. 18 shows the resulting

argument and mitigation. The figure also shows the rebuttals

of the mitigation, described in the next paragraph.
The first rebuttal challenges the assumption that the

transmitter is actually in the airplane it says it is in, or is

even in an airplane. One could have a small airplane

accompanying a large one. The small airplane broadcasts

the position, which would permit the large airplane to

divert. Alternatively, one could have a series of transmitters

in cars pretending to be the airplane. The second rebuttal

challenges the assumption that there is a transmitter where

multilateration says it is. It is possible to use multiple

transmitters and vary the timing to create “virtual trans-

mitters” at any position [10]. The third rebuttal challenges

the assumption that the clocks in the receivers are

synchronized. It is possible to perturb the clock at particular

receivers, which would cause the position calculation to be

offset. More detail on this rebuttal would require looking at

specific multilateration time-synchronization solutions.

HALEY ET AL.: SECURITY REQUIREMENTS ENGINEERING: A FRAMEWORK FOR REPRESENTATION AND ANALYSIS 145

Fig. 12. Argument for AP!RECV ! AP!XMIT.

Fig. 13. Argument for AP!XMIT ! R!SEND.

Fig. 14. Argument for R!SEND ! M!POSREPORT.

Fig. 15. Argument for M!POSREPORT ! ATC!HASPOS.

Fig. 16. Argument for AP!RECV.

5.4 The Third Iteration

A third iteration is required to deal with rebuttals R2:1:�,
assuming that the risks are determined significant, which,
at first glance, they appear to be. For example, primary
radar mitigates all of them because it gives a reliable
indication that something really is at the position reported
and that there is not something elsewhere. R2.1.2 could
possibly be mitigated by using antennae that provide an
approximation of the “angle off of horizontal” of a
transmission. R2.1.3 can be mitigated by use of a secure
clock synchronization technology.

6 DISCUSSION

This section presents several issues arising from the
application of our framework.

6.1 The Logic Used for the Outer Argument

We used propositional logic in our example for simplicity and
because our partners were comfortable with propositional
clauses. As a side effect, in the example in Section 4 we hid
implicit assumptions that ought to be explicit, e.g., the UserID
is the same in I and V. For that example to be complete, claims
(trust assumptions) should have been added to the inner
argument to cover these assumptions. Using predicate logic
would have removed this difficulty. Using a temporal logic
would also have removed some difficulties described in
Section 5.2. We theorize that use of a more fine-grained logic
in the outer argument may lead to fewer trust assumptions in
the inner argument. On the other hand, more expressive
logics come at the expense of tractability of reasoning and of
potential decidability problems.

One problem we encountered during the CRISTAL
project concerned the outer argument. The outer argument
proves that if the assumptions are valid and if the behavior
specification is correct, and if there are no other behaviors, then
the system can be secure. It does not prove that a system will be
secure and, in fact, cannot do so. Given this distinction,
some people did not see the utility of outer arguments and
wanted to proceed directly to the inner arguments.
However, it is the outer argument that provides the
assumptions to be tested in the inner arguments, so
skipping this step is not appropriate. We need to find a
better way to motivate, capture, and represent the outer
arguments.

Note that motivating the need to test the assumptions
flowing from the outer arguments (the premises) did not
present a problem. People seemed to enjoy constructing the
inner arguments.

6.2 The Inner Argument Language

The project members were happier using a graphical
representation of the inner arguments, even though the
representation has less expressive power than text repre-
sentation. This, plus the desire to bypass the outer
arguments, led to us using the rebuttal, mitigation graphical
argument form. The graphical form is less expressive
because there are arguments that are not easy to express
in this form, such as when a mitigation requires a warrant
or covers several rebuttals. Tool support for converting
between the text and graphical forms and for “drawing”
summary arguments would be very helpful.

6.3 Constructing Inner Arguments

One question that arises is “how does the analyst find
rebuttals, grounds, and warrants?” We cannot propose a
recipe, but did find useful a method inspired by the how/
why questions used in goal-oriented requirements engi-
neering methods (e.g., KAOS [47]). Given a claim, the
analyst asks “why is this claim true?” and “what happens if
it is not true?” The analyst first chooses which claim to
argue and then use the “why” question to gather the
grounds that are pertinent to the claim along with the
warrants that connect the grounds to the claim.

It is interesting to note that, although domain knowledge
is certainly required, our project experience showed that
domain expertise could lead people not to question
assumptions because the experts assumed that something
behaves in manner X because that is how it has always
done. We found that having domain nonexperts in a project
helped; it seemed that someone from outside was more
likely to ask “why is that?” at odd times. Note that once the
questions were asked, we had no problem having lively and
productive discussions.

6.4 Iteration

The project confirmed that the iteration provided by the
framework is required, especially when considering mitiga-
tions. However, iteration requires careful management to

146 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

Fig. 17. Context diagram, iteration two.

Fig. 18. Arguments for the second iteration.

ensure that interactions are detected. The choice to use the
graphical notation, representing mitigations in the context
of their rebuttals, led to considering them one at a time
when they should be considered together as part of a
complete analysis. For example, it makes sense to consider
all of the jamming scenarios together (e.g., ADS-B jamming,
clock sync jamming, GPS jamming) instead of considering
them independently.

6.5 Problem versus Solution Space

A reasonable objection to our framework is that we are
designing the system in order to determine its require-
ments. To some extent, this is true; the domains included in
the system are being more finely described iteratively.
However, we argue that the part of the system being
constructed is the machine and we are not designing that. By
applying an iterative process that interleaves requirements
and design [63], we are specifying the environment (or
context) that the machine lives within. These specifications
include additional domains that need to exist (perhaps
inside the machine) and additional phenomena required to
make use of these domains.

We also found that security problems expand the system
context in unexpected ways. For example, cars and roads
are (usually) not considered part of an ATC problem until
considering whether they can be used to move transmitters
that create virtual positions for aircraft. Neither are GPS
satellite signals until GPS jammers are considered. The
challenge we faced was to expand the context as much as
necessary, but no more so.

7 RELATED WORK

In this section, we look at related work on how security
requirements are defined and represented, contrasting the
work to our own. In addition, we discuss related research
on safety requirements analysis, and on design rationale
and argument capture.

7.1 Security Requirements as Security Functions

It is common to express security requirements by describing
the security mechanisms to be used. For example, ISO 15408
[38], [39], [40], the ISO version of the Common Criteria [16],
[17], [18], provides examples of security requirements of the
general form “The ½. . .� Security Function (TSF) shall
explicitly deny access of subjects to objects based on the
[rules . . .]” [39, p. 48], where “rules” appear to be a
mechanism. Regarding encryption, one finds “The TSF shall
distribute cryptographic keys in accordance with a [speci-
fied cryptographic key distribution method] that meets the
following: [list of standards]” [39, p. 39]. Again, a mechan-
ism is being described. In addition, both examples say what
the function is to do, not why it is to do it.

The NIST Computer Security Handbook states that
“These [security] requirements can be expressed as technical
features (e.g., access controls), assurances (e.g., background
checks for system developers), or operational practices (e.g.,
awareness and training)” [62, p. 80], in effect defining
security requirements in terms of functions and practices.
Other security guides imply that recommendations such as

“Acquire Firewall Hardware and Software” (e.g., [2]) are
requirements.

Defining requirements in terms of function leaves out
key information: what objects need protecting and, more
importantly, why the objects need protecting. Although both
the ISO and NIST documents say that the underlying
reasons why objects are to be protected come from the
functionality of the system, they provide little guidance on
how to connect the functionality to the security needs.
Instead of describing when and why objects are to be
protected, they describe how the objects are to be protected.
Our framework provides the when and why, leaving the
how to the designers.

7.2 Security Requirements as NFRs

Kotonya and Sommerville [46], when discussing NFRs, in
which they include security, define them as “restrictions or
constraints” on system services; similar definitions can be
found in other text books. Rushby [68] appears to take a
similar view, stating “security requirements mostly concern
what must not happen”. Using the Tropos methodology,
Mouratidis et al. [58] state that “security constraints define
the system’s security requirements.”

Firesmith, in [26], [27], defines security requirements as
“a quality requirement that specifies a required amount of
security ½. . .� in terms of a system-specific criterion and a
minimum level ½. . .� that is necessary to meet one or more
security policies.” This appears to be a form of constraint,
an impression reinforced by an example he provides: “The
[application] shall protect the buyer-related data ½. . .� it
transmits from corruption ½. . .� due to unsophisticated
attack [when] ½. . .� Buyer Buys Item at Direct Sale [to a
level of] 99.99 percent.”

The problem with these definitions is their lack of
specificity and guidance for the designers. What “system
services” are being constrained? What is the constraint and
what effect will it have on the functionality of the system?
How does one validate some chosen constraint within the
system context to ensure that it accurately reflects the
stakeholders’ wishes? Referring to Firesmith’s example,
what is an “unsophisticated attack?” What does the
measure “99.99 percent” mean? Our framework avoids
these problems by expressing security requirements as
specific constraints on specific functions in the system.

7.3 Security Requirements from Privacy and Trust

Some researchers approach security from a privacy point of
view, asserting that if information “owned” by an agent is
kept private, then security goals will be met. De Landtsheer
and van Lamsweerde propose modeling which properties
agents, authorized or not, can know [22]. The Tropos
project, e.g., [29], takes a similar view, but extended to
include agents’ intentions and explicit trust delegation.
Breaux et al. [6] extract privacy rights and obligation
information from “policy documents” to assist with devel-
opment of security requirements.

These approaches work well for problems dominated by
privacy concerns. They are less effective when considering
vulnerabilities in a system context, primarily because they
are focused on early requirements [44] and do not develop a
model of the real-world system context. They are also less

HALEY ET AL.: SECURITY REQUIREMENTS ENGINEERING: A FRAMEWORK FOR REPRESENTATION AND ANALYSIS 147

effective in applications where privacy (c.f. confidentiality)
is not the dominate concern. The example in Section 5 is one
such case. Air traffic control is dominated by integrity and
availability concerns; high confidence is needed that air-
planes are where they say they are. We believe these
privacy-focused approaches to be complementary to our
approach and that they can be integrated into our frame-
work at stages 1 and 2. Integrating at stage 1 would inform
development of functional requirements. Integration at
stage 2 would generate privacy-focused security goals that
would be taken into account in the later stages and during
iteration.

7.4 Other Portrayals of Security Requirements

Many authors assume that security requirements are
identical to high-level security goals. Tettero et al. [75] are
explicit about this, defining security requirements as the
confidentiality, integrity, and availability of the entity for
which protection is needed. While this is a clear definition,
in some cases it may not result in precise enough
requirements. Consider an example in health care: Both
doctors and administrators would probably agree on the
importance of confidentiality, integrity, and availability of
the clinical information, but they could disagree on the
concrete security requirements that express those goals. The
requirements need to be more explicit about who can do
what when. Our framework provides this explicitness.

Some authors identify security requirements with secur-
ity policies. Devanbu and Stubblebine [23] define a security
requirement as “a manifestation of a high-level organiza-
tional policy into the detailed requirements of a specific
system. [. . . We] loosely (ab)use the term ’security policy’
½. . .� to refer to both ’policy’ and ’requirement’.” Anderson
[3] is less direct; he states that a security policy is “a
document that expresses ½. . .� what ½. . .� protection mechan-
isms are to achieve” and that “the process of developing a
security policy ½. . .� is the process of requirements engineer-
ing.” Redwine [67] reports that the “software system
security policy is part of software system requirements
placing constraints on system behavior.” The difficulty with
“security policies” is its chameleon-like meaning. The term
can be used for anything from a high-level aspiration to an
implementation. Therefore, without accompanying detailed
explanation, it is not satisfactory to define security require-
ments as security policies.

Lee et al. [51] point out the importance of considering
security requirements in the development life cycle, but do
not define them. Heitmeyer [37] shows how the Software
Cost Reduction method can be used to specify and analyze
security properties, without giving the criteria for distin-
guishing them from other system properties.

A number of papers have focused on security require-
ments by describing how they may be violated. For
example, McDermott and Fox [54], followed independently
by Sindre and Opdahl [70] and elaborated upon by
Alexander [1], describe abuse and misuse cases, extending
the use case paradigm to undesired behavior. Liu et al. [53]
describe a method of analyzing possible illicit use of a
system, but omit the important initial step of identifying the
security requirements of the system before attempting to
identify their violations. One could argue that Chivers and

Fletcher [14] fall into this camp with SeDAn, as they focus
on attackers and the paths they might take into a system.
The difficulty with these approaches is that they indicate
what a system is not to permit in specific situations, but not
in the general case.

Van Lamsweerde [48] describes a process by which
security goals are made precise and refined until reaching
security requirements. Antón and Earp [4] use the GBRAM
method to operationalize security goals for the generation
of security policies and requirements, but do not define
security requirements. Like the privacy-based approaches
discussed earlier, both of these can be integrated into our
framework at stages 1 and 2, informing the construction of
the system context and the generation of security require-
ments (constraints) within that context.

Mead et al. in the SQUARE methodology [55] describe
security requirements as being at the system level or the
software level. They do not define what requirements are,
beyond saying that “Requirements are concerned with what
the system should do.” They also introduce the notion of
“architectural constraints” that specify “how it should be
done,” leaving open how one distinguishes between a
constraint that a system use an existing authentication
system and a requirement that the system support
authentication in a given context. Our framework fits well
within SQUARE, providing a pathway from goals to
requirements and making the requirements (or constraints)
implied by the context clear.

7.5 Safety and Security

There is a very close relationship between security and
safety requirements. Both deal with system failures that
lead to harm. Both deal with analysis of the context to look
for evidence about how failures might occur. Both add
requirements to reduce the possibility of, or to mitigate the
effects of, these failures. However, they are not identical.
We and other authors consider one difference between
security and safety to be intention (e.g., [26], [43], [52]).
Safety concerns harm caused by accident, while security
concerns harm caused by an attacker. Security failures can
lead to safety concerns; consider placing a bomb on an
airliner. Equally, safety failures can lead to security
concerns; consider an accident involving a truck carrying
unencrypted backup tapes.

The use of intention as a discriminator is not universally
agreed. For example, [5] defines security as “the absence of
unauthorized access to, or handling of, system state.” The
paper discusses the role of intention, but does not give it
any particular emphasis. The SafSec methodology [49]
combines safety and security, without introducing inten-
tion. The ITSEC defines security as “the combination of
confidentiality, integrity and availability [of information]”
[69, p. 115], a view of security that does not include
intention.

Although we recognize that using intention as the
differentiator between safety and security is sometimes
uncomfortable, we feel that the distinction being made
between intention and accident is helpful. It assists with
setting bounds on both the context and the mitigations.
Consider the possibility of failure of some component in an
aircraft, potentially causing the aircraft to crash. Under our

148 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

definition, this is a safety problem and therefore not
considered in our analysis. However, if the component
could be provoked to fail, then we have a security problem:
preventing the (intentional) actions that could provoke the
failure.

7.6 Design Rationale and Argument Capture

Design rationale is principally concerned with capturing
how one arrived at a decision, alternate decisions, or the
parameters that went into making the decision [50]. For
example, Buckingham Shum [8] focuses on how rationale
(argument) is visualized, especially in collaborative envir-
onments. Potts and Bruns [65] and, later, Burge and Brown
[9] discuss capturing how decisions were made, which
decisions were rejected, and the reasons behind these
actions. Mylopoulos et al. [59] present a way to formally
represent knowledge that was captured in some way,
without focusing on the outcome of any decisions. Ramesh
and Dhar [66] describe a system for “capturing history in
the upstream part of the life cycle.” Fischer et al. [28]
suggest that the explicit process of argumentation can itself
feed into and benefit design. Finkelstein and Fuks [25]
suggest that the development of specifications by multiple
stakeholders who hold disparate views may be achieved
through an explicit dialogue that captures speech acts, such
as assertions, questions, denials, challenges, etc. The
representation of the dialogue is then a rationale for the
specifications constructed. The common element in all of
the above work is the capture over time of the thoughts and
reasons behind decisions. Whether the decisions satisfy the
needs is not the primary question.

Our goal for our security satisfaction arguments was to
convince a reader that the security requirements can be
satisfied and that nothing was omitted that could result in
the requirements not being satisfied. The goal was not to
capture how a decision was made. Our position is not
unique. Kelly took a similar position with regard to safety
arguments [45]. Argumentation goals serve a similar function
in the NFR Framework, supporting (or not) refinements of
goals [60]. Of course, we are not saying that there is no use
in having a trace of what led to the final arguments; the
history will certainly be useful if the arguments fail to
convince or if the situation changes.

8 CONCLUSIONS

This paper has presented a framework for security require-
ments engineering where

1. asset and security goal analysis are done in the
business context of the system,

2. the effects of security requirements on the functional
requirements are understood,

3. design constraints are taken into account, and
4. the correctness of security requirements is estab-

lished through the use of satisfaction arguments.

As noted in the introduction, there are three contribu-
tions in this paper. The first is definition: a coherent
definition of what security requirements are. The second
is explicit recognition of the importance of context: the
world within which the system and the potential attackers

exist. The third is a structure for satisfaction arguments for
validating whether the system can satisfy the security
requirements. We have shown how satisfaction arguments
facilitate showing that a system can meet its security
requirements. The structure behind the arguments assists
in finding system-level vulnerabilities. By first requiring the
construction of the formal argument based on domain
properties, one discovers which domain properties are
critical for security. Constructing the informal argument
showing that these domain properties can be trusted helps
point the analyst toward vulnerabilities; the rebuttal is an
important part of this process. Vulnerabilities found in this
way are removed through either modification of the
problem, addition of security functional requirements, or
addition of trust assumptions that explain why the
vulnerability can be discounted.

Recalling our experience with NATS, we had two goals
for the project: to gain experience with the application of
our framework to validate its utility and to discover
security requirements in our chosen problem domain. As
we used the framework to produce security requirements,
rebuttals, and mitigations that had not previously been
considered, we consider that we succeeded with both goals.

One area that we are actively looking at is tool support
for capturing the arguments. One approach we are
considering is “compiling” the abstract syntax tree built
by the parser, decorating the tree with appropriate semantic
information and symbol table references. We are also
looking at a tool constructed around problem context
diagrams by experimenting with adapting the argument
capture tool Compendium [19] for describing and navigat-
ing through IBIS-style arguments [20].

Another area for future work is risk analysis and partial
satisfaction. Our plan is to add multivalued indications of
risk and satisfaction to security requirements (via the inner
arguments). After defining an arithmetic for comparing and
combining risk and satisfaction values, we would compute
an overall risk and satisfaction level for the system.

It seems that there might be a close correspondence
between the “defense in depth” principle and completing
different outer arguments that depend on different domain
properties. We wish to investigate this idea in more detail.

Two particular future work items deserve mention. Our
work with NATS showed the need for more tool support for
representing outer arguments and we are adding this task
to our near-term future work list. The effort also showed the
need for work on better enabling construction and under-
standing of the outer (formal) arguments by people who do
not normally use formality, which is a longer-term research
question.

APPENDIX A

ACTIVE AND PASSIVE AIR TRAFFIC CONTROL

SURVEILLANCE

Air Traffic Control is responsible for the safe and efficient
movement of aircraft through a given airspace. Unfortu-
nately, “safe” and “efficient” are at odds with each other.
An empty airspace is a safe one—no loss of life or property
due to problems with aircraft is possible—but it is also a

HALEY ET AL.: SECURITY REQUIREMENTS ENGINEERING: A FRAMEWORK FOR REPRESENTATION AND ANALYSIS 149

very inefficient one. One increases efficiency by adding
aircraft into the airspace, which increases risk that an
accident (or an intentional act leading to loss) will occur. Air
traffic controllers try to keep the risk low by maintaining
safe horizontal and vertical distances (separation) between
aircraft. To do so, air traffic controllers must know the
identity and position of aircraft with a high degree of
accuracy, integrity, and assurance.

A.1 Separation

The most important job of an air traffic controller is to
maintain a safe separation between aircraft while ensuring
that the aircraft get to where they want to go. The minimum
separation between aircraft at a given time is dependent on
many factors, including speed of aircraft, surveillance
accuracy, ability to communicate with aircraft and between
controllers, redundancy of surveillance systems, and the
ability to spot and rectify mistakes.

Most of the factors are strongly influenced by how often
the controller is told where an aircraft actually is, as
opposed to where it is supposed to be. The more often
accurate positions are reported, the more accurate the
controller’s “picture” of the airspace is. The controller
determines aircrafts’ positions using active and passive
surveillance.

A.2 Active versus Passive Surveillance

Active surveillance describes a process to determine the
position of aircraft independently of where the aircraft
thinks it is. There are two systems in use: primary radar and
secondary radar. Primary radar operates by broadcasting
directional pulses and listening for pulses reflected off
aircraft. This system is independent because no help is
required from the aircraft to be “seen” by the radar. Primary
radar can only provide the position of the aircraft.
Secondary radar operates by using highly directional
transmissions of enquiries. Aircraft are expected to respond
to the query in a fixed time. The position of the aircraft is
determined from the position of the antenna and the time
required to hear a response from an aircraft. The response
can (and does) contain information, such as the aircraft’s
identity and its altitude. Where primary radar is considered
independent, secondary radar can be considered to be
“cooperative” surveillance.

As secondary radar depends upon the aircraft responding
to an enquiry, it will not “see” aircraft that do not respond.
Typically, primary and secondary radar antennae are
installed together on the same rotating mount and used
together to complement one another. If the primary radar
detects something that is not responding to secondary radar
enquiries, the air traffic controller can take appropriate action.

Passive surveillance consists of equipment that listens for
transmissions from aircraft and then computes the position
using that transmission; the surveillance system makes no
request of the aircraft for transmission. There are two
general techniques in use:

. The aircraft broadcasts its identity and position
information, which is used as is.

. The surveillance system uses a network of multiple
receivers and multilateration (intersection of the

hyperboloids described by the difference in arrival
time of the transmission at each receiver) to
determine the position of the transmitter.

The first technique is known as ADS-B (Automatic
Dependent Surveillance-Broadcast). This uses satellite
navigation technology on board the aircraft to determine
where the aircraft is and then to broadcast that position to
other users without the need for any pilot input or radar
interrogation. This technique depends upon the aircraft
knowing its accurate position. An aircraft that either
maliciously or through equipment failure reports an
incorrect position will be misplaced; the only sanity check
available is to check if a position report makes sense (is
credible). Receiving credible but erroneous information is a
key problem to be addressed.

While ADS-B can be used by ground users as a
replacement for traditional surveillance techniques like
radar, it is also seen as an enabling technology for new
methods of air traffic control. The broadcast of surveillance
data that can be received by all users, including other
aircraft, may permit tasks normally undertaken by a
controller to be delegated to the pilot. These ideas are
encompassed in the concept of Airborne Separation
Assistance Systems (ASAS) [13].

The second technique has similar characteristics to
secondary radar; the computation of the position depends
solely upon the timing of receipt of signals.

Neither secondary radar nor passive surveillance detect
noncooperating aircraft.

A.3 Increasing Use of Passive Surveillance

The use of passive surveillance has become more attractive
to Air Traffic Control Service Providers (ANSPs) in recent
years because aircraft are increasingly being equipped with
suitable avionics. In addition to the perceived operational
benefits of these technologies, there are potentially sig-
nificant cost savings in procurement and through-life
maintenance costs of these technologies over traditional
surveillance means. The open question, and the reason for
the existence of many projects, including CRISTAL UK, is
whether these benefits can be obtained with adequate safety
and security.

A.4 Using ADS-B to Achieve the Benefits

In order to obtain the majority of the benefits of passive
surveillance, there must be aircraft-based equipment avail-
able that reports the required information about the aircraft.
The ADS-B standard and complying equipment will meet
this need.

ADS-B-equipped aircraft broadcast information approxi-
mately once per second. These transmissions will include
information about the position and status of the aircraft.
The information is broadcast in various messages that
include airborne position, surface position, aircraft identi-
fication and type, airborne velocity, and aircraft operational
status messages [11]. This information is collected by ADS-B
receivers and then passed to air traffic control processing
systems to be displayed to the controller, either on existing
displays (preferred) or on some new display. The informa-
tion broadcast by an ADS-B system is derived both from the
avionic systems in the aircraft (e.g., air speed, barometric

150 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

altitude, aircraft status) and from satellite navigation

equipment (e.g., surface position, geometric altitude, and

ground speed). ADS-B messages are not “signed” in any

fashion; one cannot verify that a message actually comes

from the aircraft identified in the contents of the message.

ACKNOWLEDGMENTS

The financial support of the Leverhulme Trust, the Royal

Academy of Engineering, the European Union, and the

EPSRC is gratefully acknowledged.

REFERENCES

[1] I. Alexander, “Misuse Cases in Systems Engineering,” Computing
and Control Eng. J., vol. 14, no. 1, pp. 40-45, Feb. 2003.

[2] J.H. Allen, “CERT System and Network Security Practices,” Proc.
Fifth Nat’l Colloquium Information Systems Security Education, 2001.

[3] R. Anderson, Security Engineering: A Guide to Building Dependable
Distributed Systems, 2001.

[4] A.I. Antón and J.B. Earp, “Strategies for Developing Policies and
Requirements for Secure E-Commerce Systems,” E-Commerce
Security and Privacy, vol. 2, Advances In Information Security,
A.K. Ghosh, eds., pp. 29-46, Kluwer Academic, 2001.

[5] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic
Concepts and Taxonomy of Dependable and Secure Computing,”
IEEE Trans. Dependable and Secure Computing, vol. 1, no. 1, pp. 11-
33, Jan.-Mar. 2004.

[6] T.D. Breaux, M.W. Vail, and A.I. Antón, “Towards Regulatory
Compliance: Extracting Rights and Obligations to Align Require-
ments with Regulations,” Proc. 14th IEEE Int’l Requirements Eng.
Conf., pp. 46-55, 2006.

[7] D.F.C. Brewer and M.J. Nash, “The Chinese Wall Security Policy,”
Proc. 1989 IEEE Symp. Security and Privacy, pp. 206- 214, 1989.

[8] S.J. Buckingham Shum, “The Roots of Computer Supported
Argument Visualization,” Visualizing Argumentation: Software
Tools for Collaborative and Educational Sense-Making, P.A. Kirschner,
S.J. Buckingham Shum, and C.S. Carr, eds., pp. 3-24, Springer-
Verlag, 2003.

[9] J.E. Burge and D.C. Brown, “An Integrated Approach for Software
Design Checking Using Design Rationale,” Proc. First Int’l Conf.
Design Computing and Cognition, J.S. Gero, ed., pp. 557-576, 2004.

[10] S. Capkun and J.-P. Hubaux, “Securing Position and Distance
Verification in Wireless Networks,” Technical Report EPFL/IC/
200443, Swiss Federal Inst. of Technology Lausanne, May 2004.

[11] “Australian Technical Standard Order: Airborne Stand-Alone
Extended Squitter, Automatic Dependent Surveillance-Broadcast
(ADS-B), Transmit Only Equipment,” Australian Civil Aviation
Safety Authority, Standard ATSO-C1005, CASA, Dec. 2004.

[12] “CERT/CC Statistics 1988-2005,” Pittsburgh, CERT CC, http://
www.cert.org/stats/cert_stats.html, Feb. 2006.

[13] F. Cervo, “Airborne Separation Assistance Systems,” EUROCON-
TROL, 2005, Newsletter, http://www.eurocontrol.int/mil/public
/standard_page/newsletter0605art2.html, Sept. 2006.

[14] H. Chivers and M. Fletcher, “Applying Security Design Analysis
to a Service-Based System,” Software: Practice and Experience,
vol. 35, no. 9, pp. 873-897, 2005.

[15] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, Non-Functional
Requirements in Software Engineering. Kluwer Academic, 2000.

[16] Common Criteria Sponsoring Organizations, “Common Criteria
for Information Technology Security Evaluation Part 1: Introduc-
tion and General Model, Version 3.1 Rev 1,” Nat’l Inst. of
Standards and Technology CCMB-2006-09-001, Sept. 2006.

[17] Common Criteria Sponsoring Organizations, “Common Criteria
for Information Technology Security Evaluation Part 2: Security
Functional Components, Version 3.1 Rev 1,” Nat’l Inst. of
Standards and Technology CCMB-2006-09-002, Sept. 2006.

[18] Common Criteria Sponsoring Organizations, “Common Criteria
for Information Technology Security Evaluation Part 3: Security
Assurance Components, Version 3.1 Rev 1,” Nat’l Inst. Standards
and Technology CCMB-2006-09-003, Sept. 2006.

[19] “Compendium,” http://www.compendiuminstitute.org/, Com-
pendium Inst., 2005.

[20] J. Conklin, “Dialog Mapping: Reflections on an Industrial Strength
Case Study,” Visualizing Argumentation: Software Tools for Colla-
borative and Educational Sense-Making, P.A. Kirschner, S.J. Buck-
ingham Shum, and C.S. Carr, eds., pp. 117-136, Springer-Verlag,
2003.

[21] E. Dash, “Weakness in the Data Chain,” New York Times, 2005.
[22] R. De Landtsheer and A. van Lamsweerde, “Reasoning About

Confidentiality at Requirements Engineering Time,” Proc. 10th
European Software Eng. Conf. (ESEC-FSE’05) with 13th ACM
SIGSOFT Int’l Symp. Foundations of Software Eng., pp. 41-49, 2005.

[23] P. Devanbu and S. Stubblebine, “Software Engineering for
Security: A Roadmap,” The Future of Software Eng., A. Finkelstein,
ed., ACM Press, 2000.

[24] “Matter of CardSystems Solutions Inc.,” Washington, D.C.,
Federal Trade Commission, 2006.

[25] A. Finkelstein and H. Fuks, “Multiparty Specification,” Proc. Fifth
Int’l Workshop Software Specification and Design, pp. 185-195, 1989.

[26] D.G. Firesmith, “Common Concepts Underlying Safety, Security,
and Survivability Engineering,” Technical Report CMU/SEI-2003-
TN-033, Software Eng. Inst., Carnegie Mellon Univ., Dec. 2003.

[27] D.G. Firesmith, “Specifying Reusable Security Requirements,”
J. Object Technology, vol. 3, no. 1, pp. 61-75, Jan.-Feb. 2004.

[28] G. Fischer, A.C. Lemke, R. McCall, and A. Morch, “Making
Argumentation Serve Design,” Design Rationale Concepts, Techni-
ques, and Use, T. Moran and J. Carroll, eds., pp. 267-293, Lawrence
Erlbaum and Assoc., 1996.

[29] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone,
“Modeling Security Requirements through Ownership, Permis-
sion and Delegation,” Proc. 13th IEEE Int’l Conf. Requirements Eng.,
pp. 167-176, 2005.

[30] M. Glinz, “Rethinking the Notion of Non-Functional Require-
ments,” Proc. Third World Congress for Software Quality, vol. II,
pp. 55-64, 2005.

[31] C.B. Haley, R.C. Laney, and B. Nuseibeh, “Deriving Security
Requirements from Crosscutting Threat Descriptions,” Proc. Third
Int’l Conf. Aspect-Oriented Software Development, pp. 112-121, 2004.

[32] C.B. Haley, R.C. Laney, J.D. Moffett, and B. Nuseibeh, “The Effect
of Trust Assumptions on the Elaboration of Security Require-
ments,” Proc. 12th Int’l Requirements Eng. Conf., pp. 102-111, 2004.

[33] C.B. Haley, J.D. Moffett, R. Laney, and B. Nuseibeh, “Arguing
Security: Validating Security Requirements Using Structured
Argumentation,” Proc. Third Symp. Requirements Eng. for Informa-
tion Security with the 13th Int’l Requirements Eng. Conf., 2005.

[34] C.B. Haley, R.C. Laney, J.D. Moffett, and B. Nuseibeh, “Arguing
Satisfaction of Security Requirements,” Integrating Security and
Software Eng.: Advances and Future Vision, H. Mouratidis and
P. Giorgini, eds., pp. 16-43, Idea Group, 2006.

[35] C.B. Haley, J.D. Moffett, R. Laney, and B. Nuseibeh, “A Frame-
work for Security Requirements Engineering,” Proc. 2006 Software
Eng. for Secure Systems Workshop with the 28th Int’l Conf. Software
Eng., pp. 35-41, 2006.

[36] C.B. Haley, R.C. Laney, J.D. Moffett, and B. Nuseibeh, “Using
Trust Assumptions with Security Requirements,” Requirements
Eng. J., vol. 11, no. 2, pp. 138-151, Apr. 2006.

[37] C.L. Heitmeyer, “Applying “Practical” Formal Methods to the
Specification and Analysis of Security Properties,” Proc. Int’l
Workshop Information Assurance in Computer Networks: Methods,
Models, and Architectures for Network Computer Security, pp. 84-89,
2001.

[38] ISO/IEC, “Information Technology—Security Techniques—Eva-
luation Criteria for IT Security—Part 1: Introduction and General
Model,” ISO/IEC, Geneva, Switzerland, Int’l Standard 15408-1,
Dec. 1999.

[39] ISO/IEC, “Information Technology—Security Techniques—Eva-
luation Criteria for IT Security—Part 2: Security Functional
Requirements,” ISO/IEC, Geneva, Switzerland, Int’l Standard
15408-2, Dec. 1999.

[40] ISO/IEC, “Information Technology—Security Techniques—Eva-
luation Criteria for IT Security—Part 3: Security Assurance
Requirements,” ISO/IEC, Geneva, Switzerland, Int’l Standard
15408-3, Dec. 1999.

[41] M. Jackson, Software Requirements and Specifications. Addison
Wesley, 1995.

[42] M. Jackson, Problem Frames. Addison Wesley, 2001.
[43] E. Jonsson, “An Integrated Framework for Security and Depend-

ability,” Proc. 1998 Workshop New Security Paradigms, pp. 22-29,
1998.

HALEY ET AL.: SECURITY REQUIREMENTS ENGINEERING: A FRAMEWORK FOR REPRESENTATION AND ANALYSIS 151

[44] E. Kavakli, “Goal-Oriented Requirements Engineering: A Unify-
ing Framework,” Requirements Eng. J., vol. 6, no. 4, pp. 237-251,
Jan. 2002.

[45] T.P. Kelly, “Arguing Safety—A Systematic Approach to Safety
Case Management,” D.Phil dissertation, Univ. of York, 1999.

[46] G. Kotonya and I. Sommerville, Requirements Engineering: Processes
and Techniques. John Wiley and Sons, 1998.

[47] A. van Lamsweerde, “Goal-Oriented Requirements Engineering:
A Guided Tour,” Proc. Fifth IEEE Int’l Symp. Requirements Eng.,
pp. 249-263, 2001.

[48] A. van Lamsweerde, “Elaborating Security Requirements by
Construction of Intentional Anti-Models,” Proc.e 26th Int’l Conf.
Software Eng., pp. 148-157, 2004.

[49] S. Lautieri, D. Cooper, and D. Jackson, “SafSec: Commonalities
Between Safety and Security Assurance,” Constituents of Modern
System-Safety Thinking: Proc. 13th Safety-Critical Systems Symp.,
F. Redmill and T. Anderson, eds., pp. 65-78, 2005.

[50] J. Lee and K.-Y. Lai, “What’s in Design Rationale?” Human-
Computer Interaction, vol. 6, nos. 3-4, pp. 251-280, 1991.

[51] Y. Lee, J. Lee, and Z. Lee, “Integrating Software Lifecycle Process
Standards with Security Engineering,” Computers and Security,
vol. 21, no. 4, pp. 345-355, 2002.

[52] N.G. Leveson, “Software Safety: Why, What, and How,” ACM
Computing Surveys, vol. 18, no. 2, pp. 125-163, June 1986.

[53] L. Liu, E. Yu, and J. Mylopoulos, “Security and Privacy
Requirements Analysis within a Social Setting,” Proc. 11th IEEE
Int’l Requirements Eng. Conf., pp. 151-161, 2003.

[54] J. McDermott and C. Fox, “Using Abuse Case Models for Security
Requirements Analysis,” Proc. 15th Computer Security Applications
Conf., pp. 55-64, 1999.

[55] N.R. Mead, E.D. Hough, and T.R. Stehney II, “Security Quality
Requirements Engineering (SQUARE) Methodology,” CMU/SEI,
Technical Report CMU/SEI-2005-TR-009, ESC-TR-2005-009, Nov.
2005.

[56] J.D. Moffett, J.G. Hall, A. Coombes, and J.A. McDermid, “A Model
for a Causal Logic for Requirements Engineering,” Requirements
Eng., vol. 1, no. 1, pp. 27-46, Mar. 1996.

[57] J.D. Moffett, C.B. Haley, and B. Nuseibeh, “Core Security
Requirements Artefacts,” Technical Report 2004/23, Dept. of
Computing, The Open Univ., June 2004.

[58] H. Mouratidis, P. Giorgini, and G. Manson, “Integrating Security
and Systems Engineering: Towards the Modelling of Secure
Information Systems,” Proc. 15th Conf. Advanced Information
Systems Eng., pp. 63-78, 2003.

[59] J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis, “Telos:
Representing Knowledge about Information Systems,” ACM
Trans. Information Systems, vol. 8, no. 4, pp. 325-362, Oct. 1990.

[60] J. Mylopoulos, L. Chung, and B. Nixon, “Representing and Using
Nonfunctional Requirements: A Process-Oriented Approach,”
IEEE Trans. Software Eng., vol. 18, no. 6, pp. 483-497, June 1992.

[61] S.E. Newman and C.C. Marshall, “Pushing Toulmin Too Far:
Learning from an Argument Representation Scheme,” Technical
Report SSL-92-45, Xerox PARC, 1991.

[62] NIST, An Introduction to Computer Security: The NIST Handbook,
Nat’l Inst. of Standards and Technology (NIST), special publica-
tion SP 800-12, Oct. 1995.

[63] B. Nuseibeh, “Weaving Together Requirements and Architec-
tures,” Computer, vol. 34, no. 3, pp. 115-117, Mar. 2001.

[64] C.P. Pfleeger and S.L. Pfleeger, Security in Computing. Prentice
Hall, 2002.

[65] C. Potts and G. Bruns, “Recording the Reasons for Design
Decisions,” Proc. 10th Int’l Conf. Software Eng., pp. 418-427, 1988.

[66] B. Ramesh and V. Dhar, “Supporting Systems Development by
Capturing Deliberations during Requirements Engineering,” IEEE
Trans. Software Eng., vol. 18, no. 6, pp. 498-510, June 1992.

[67] “Software Assurance: A Guide to the Common Body of Knowl-
edge to Produce, Acquire, and Sustain Secure Software,” version
1.05.245, S.T. Redwine Jr., ed., Dept. of Homeland Security, Aug.
2006.

[68] J. Rushby, “Security Requirements Specifications: How and
What,” Proc. Symp. Requirements Eng. for Information Security, 2001.

[69] Senior Officials Group-Information Systems Security, “Informa-
tion Technology Security Evaluation Criteria (ITSEC),” version 1.2,
Dept. of Trade and Industry, June 1991.

[70] G. Sindre and A.L. Opdahl, “Eliciting Security Requirements by
Misuse Cases,” Proc. 37th Int’l Conf. Technology of Object-Oriented
Languages and Systems, pp. 120-131, 2000.

[71] E.H. Spafford, “The Internet Worm Program: An Analysis,” ACM
SIGCOMM Computer Comm. Rev., vol. 19, no. 1, pp. 17-57, Jan.
1989.

[72] “The Chaos Report,” research report, Standish Group, 1995.
[73] “Chaos: A Recipe for Success,” research report, Standish Group,

1999.
[74] “Extreme Chaos,” research report, Standish Group, 2001.
[75] O. Tettero, D.J. Out, H.M. Franken, and J. Schot, “Information

Security Embedded in the Design of Telematics Systems,”
Computers and Security, vol. 16, no. 2, pp. 145-164, 1997.

[76] K. Thompson, “Reflections on Trusting Trust,” Comm. ACM,
vol. 27, no. 8, pp. 761-763, Aug. 1984.

[77] S.E. Toulmin, The Uses of Argument. Cambridge Univ. Press, 1958.
[78] S.E. Toulmin, R.D. Rieke, and A. Janik, An Introduction to

Reasoning. Macmillan, 1979.
[79] J. Viega, T. Kohno, and B. Potter, “Trust (and Mistrust) in Secure

Applications,” Comm. ACM, vol. 44, no. 2, pp. 31-36, Feb. 2001.
[80] J. Viega and G. McGraw, Building Secure Software: How to Avoid

Security Problems the Right Way. Addison Wesley, 2002.
[81] M. Watson, UK ADS-B in a Radar Environment, EUROCONTROL,

2006, presentation slides, http://www.eurocontrol.int/cascade/
gallery/content/public/documents/Presentations/Session
%202%20-%20Trials%20and%20Implementations/Watson%20-
%20UK%20ADS-B%20in%20a%20radar%20environment.pdf,
2007.

[82] L. Zhuang, F. Zhou, and J.D. Tygar, “Keyboard Acoustic
Emanations Revisited,” Proc. 12th ACM Conf. Computer and Comm.
Security, pp. 373-382, 2005.

Charles B. Haley received the PhD degree in
security requirements from the Open Univer-
sity and the MS and BA degrees from the
University of California at Berkeley. He is a
lecturer in the Department of Computing at the
Open University. Before reentering the aca-
demic community in 1999, he worked for 25
years in the software industry at companies
including Bell Laboratories, Rational Software,
Bell Northern Research, and Sun Microsys-

tems, holding positions ranging from software engineer to director of
development. He joined the Open University in 2003, where his research
is in the representation of security requirements and their validation
through formal and informal argumentation.

Robin Laney received the First Class Honours BSc degree in
microcomputers and applications from Westfield College, University of
London, and the PhD degree in computing from King’s College,
University of London. He is a senior lecturer in the Department of
Computing at the Open University. His research interests include
requirements engineering, flexible approaches to software architecture,
and music computing. His research mission is to focus on activities that
bridge the gap between theoretical advances and the experience and
problems of working software practitioners, in both directions. He has
industrial experience as a software engineer working on programming
language technology and graphics.

152 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

Jonathan D. Moffett received the bachelor’s
degree in mathematics and theoretical physics
in 1961 from Trinity College, Cambridge, and the
PhD degree in computing in 1990 from Imperial
College, University of London. He is a visiting
senior research fellow in the Department of
Computing at the Open University, and was a
senior lecturer in the Computer Science Depart-
ment at the University of York, England, until his
retirement. He acted as Advanced MSc Course

Organiser there from 1994-2001. He was a member of the Distributed
Systems Engineering Group at Imperial College, London, from 1986-
1992. His previous experience has been as a systems consultant on
large commercial systems, including acting as computer controls and
security adviser at Esso Europe Inc. and as a consultant to one of the
London Clearing Banks, for whom he wrote their computer security
standards. He is a Chartered Engineer, a fellow of the Association of
Certified Accountants, a member of the British Computer Society, and a
member of the IEEE.

Bashar Nuseibeh received the MSc and PhD
degrees in software engineering from Imperial
College, London, and the First Class Honours
BSc degree in computer systems engineering
from the University of Sussex, United Kingdom.
He is a professor and director of Research in
Computing at the Open University (OU) and a
visiting professor at Imperial College, London,
and the National Institute of Informatics, Japan.
Previously, he was a reader at Imperial College,

London, and head of its Software Engineering Laboratory. His research
interests are in software requirements engineering and design, software
process modeling and technology, and technology transfer. He has
published more than 100 refereed papers and consulted widely with
industry, working with organizations such as the UK National Air Traffic
Services (NATS), Texas Instruments, Praxis Critical Systems, Philips
Research Labs, and NASA. He has also served as principal investigator
on a number of research projects on software engineering, security
engineering, and learning technologies. He is editor-in-chief of the
Automated Software Engineering Journal and an associate editor of the
IEEE Transactions on Software Engineering, the Requirements En-
gineering Journal, and a number of other international journals. He was
a founder and first chairman of the BCS Requirements Engineering
Specialist Group (1994-2004) and is currently chair of IFIP Working
Group 2.9 (Software Requirements Engineering) and chair of the
Steering Committee of the International Conference on Software
Engineering (ICSE). He has served as program chair of major
conferences in his field, including ASE ’98, RE ’01, and ICSE ’05. He
received a Philip Leverhulme Prize (2002), an ICSE “Most Influential
Paper” award (2003), a “Best Application Paper” award from the 18th
International Conference on Logic Programming (ICLP ’02), and a
number of other best paper and service awards. He held a Senior
Research Fellowship of the Royal Academy of Engineering and The
Leverhulme Trust between 2005-2007. He is a fellow of the British
Computer Society (FBCS) and the Institution of Engineering and
Technology (FIET), a Chartered Engineer (C.Eng.), and a member of
the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

HALEY ET AL.: SECURITY REQUIREMENTS ENGINEERING: A FRAMEWORK FOR REPRESENTATION AND ANALYSIS 153

