
Open Research Online
The Open University’s repository of research publications
and other research outputs

Requirements-driven design and configuration
management of business processes
Book Section

How to cite:

Lapouchnian, Alexei; Yu, Yijun and Mylopoulos, John (2007). Requirements-driven design and configuration
management of business processes. In: ed. Business process management. Lecture Notes in Computer Science,
4714/2. Berlin: Springer.

For guidance on citations see FAQs.

c© [not recorded]

Version: [not recorded]

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1007/978-3-540-75183-018

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82906269?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://dx.doi.org/doi:10.1007/978-3-540-75183-0_18
http://oro.open.ac.uk/policies.html

Requirements-Driven Design and Configuration
Management of Business Processes

Alexei Lapouchnian1 Yijun Yu2 John Mylopoulos1

1 Department of Computer Science, University of Toronto,
Toronto, ON M5S 3G4, Canada

{alexei,jm}@cs.toronto.edu
2 Computing Department, The Open University,

Milton Keynes, MK7 6AA, U.K.
y.yu@open.ac.uk

Abstract. The success of a business process (BP) depends on whether it meets
its business goal as well as non-functional requirements associated with it. BP
specifications frequently need to accommodate changing business priorities,
varying client preferences, etc. However, since business process goals and pref-
erences are rarely captured explicitly in the dominant BP modeling approaches,
adapting business processes proves difficult. We propose a systematic require-
ments-driven approach for BP design and configuration management that uses
requirements goal models to capture alternative process configurations and pro-
vides the ability to tailor deployed processes to changing business priorities or
customer preferences (i.e., non-functional constraints) by configuring their cor-
responding goal models at the goal level. A set of design time and runtime tools
for configuring business processes implemented using WS-BPEL is provided,
allowing to easily change the behaviour of deployed BP instances at a high
level, based on business priorities and stakeholder preferences.

1 Introduction

At present, process orientation is a dominant paradigm for businesses. There are many
definitions of what a business process is, but in general a BP is seen as a collection of
activities that achieves some business purpose or objective aiming to create value for
customers. So, business processes specify ways to achieve business goals. Thus, it
seems to be natural for business process modeling methods to include facilities for
modeling these goals. However, relatively few approaches explicitly capture, refine
and analyze business goals (e.g., [9, 6]). Most leading BP modeling approaches cap-
ture processes at a workflow level, in terms of activities, flows, etc. (e.g., [20]).

Due to the need to accommodate changing business priorities as well as business
cases with varying characteristics (e.g., customers with different preferences), busi-
ness process specifications need to be flexible as well as capable of being configured
and reconfigured appropriately. Currently, techniques as diverse as business rules and
late modeling are used for changing BPs. However, these approaches are usually quite
low-level and the possible configurations are not explicitly evaluated with respect to
business goals and priorities. Thus, it is hard to select process alternatives with de-

sired non-functional characteristics. Additionally, most of these methods require ex-
tensive knowledge of the process and, possibly, the modeling notation to be effec-
tively applied thus making it difficult for non-technical users to configure BPs.

To alleviate the above difficulties, we are proposing a systematic business re-
quirements-driven method for configuration of high-variability business processes at
a high level, in terms of business priorities. In our approach, we start by employing
goal models to capture and refine business goals as well as to explore and analyze the
variability (the various ways these goals can be attained) in the business domain.
Quality attributes such as customer satisfaction serve as the selection criteria for
choosing among BP alternatives induced by the goal models. These high-variability
goal models are then used in a semi-automatic variability-preserving transformation
to generate customizable executable business processes (in our case study we use the
Business Process Execution Language (BPEL) [16]). Through the preserved traceabil-
ity links to goal models, the executable processes can be configured based on qualita-
tive preferences of stakeholders. Automated analysis of the models is used at design
time or at runtime to identify process alternatives that best match these preferences. A
GUI tool for capturing user preferences and a prototype runtime infrastructure are
also provided.

The rest of this paper is structured as follows. Section 2 provides some background
on goal models, and on how they can be used for software configuration and to cap-
ture and analyze variability. Section 3 describes our approach in detail. Discussion
and future work section follows, while Section 5 concludes the paper.

2 Goal Models and Preferences

In this section, we introduce goal models and the relevant work on using them for
software configuration.

A major breakthrough of the past decade in (software) Requirements Engineering
is the development of a framework for capturing and analyzing stakeholder intentions
to generate functional and non-functional (quality) requirements – Goal-Oriented RE
(GORE) [2, 3]. The main concept in GORE is the goal. For example, a stakeholder
goal for a library information system may be Fulfill Every Book Request. This goal
may be decomposed in different ways. One might consist of ensuring book availabil-
ity by limiting the borrowing period and also by notifying users who requested a book
that the book is available. This decomposition may lead (through intermediate steps)
to functional requirements such as Remind Borrower and Notify User. A different
decomposition of the initial goal, however, may involve buying a book whenever a
request cannot be fulfilled1. Obviously, there are in general many ways to fulfill a
goal. Analyzing the space of alternatives makes the process of generating functional
and quality requirements more systematic in the sense that the designer is exploring
an explicitly represented space of alternatives. It also makes it more rational in that
the designer can point to an explicit evaluation of these alternatives in terms of stake-

1 This is not, however, a very practical alternative.

holder criteria to justify his choice. An authoritative account of GORE can be found
in [21].

At the very heart of this new phase of Software Engineering are goal models that
represent stakeholder intentions and their refinements using formally defined relation-
ships. Functional goals are modeled in terms of hard goals (or simply goals, when
there is no ambiguity). For example, Supply Customer and Fulfill Every Book Request
are functional goals that are either fulfilled (satisfied) or not fulfilled (denied). Other
stakeholder goals are qualitative and are hard to define formally. For instance, Cus-
tomer Satisfaction and Have a Productive Meeting are qualitative goals and they are
modeled in terms of softgoals. A softgoal by its very nature doesn’t have a clear-cut
criterion for its fulfillment, and may be fully or partially satisfied or denied. Softgoals
can be satisficed – met to an acceptable degree.

VP1

–

Supply
Customer

AND
AND

AND

Get Order Verify Order Process
Order

AND

OROR

Check Stock
Add Order

Item

Order Out Of
Stock Item

Order From
Partner

Wholesaler
Order From

Retailer

Package
Order Ship and Bill

Bill Customer Ship Order

Ship Express Ship
Standard

Cost

Performance

Customer
Satisfaction

Customer Cost

AND

AND AND

OR OR

AND
AND

OR OR

+

+

–

+

–

+

–+

Get Order
Standard

Get Order
Standard &

Web

+
–

–

Order Item

AND AND

Add Product
To Order

AND

Receive Item

VP2

VP3

AND

Fig. 1. A goal model showing interdependencies among goals and qualities

Goals and/or softgoals may be related through AND/OR relationships that have the
obvious semantics that the AND-decomposed subgoals must all be attained for their
parent goal to be achieved and at least one OR-decomposed subgoal needs to be
achieved for achieving its parent goal. In addition, goals/softgoals can be related to
softgoals through help (+), hurt (–), make (++), or break (--) relationships (repre-
sented with the dotted line arrows in Fig. 1). These contribution links allow us to
qualitatively specify that there is evidence that certain goals/softgoals contribute posi-
tively or negatively to the satisficing of softgoals. Then, a softgoal is satisficed if
there is sufficient positive and little negative evidence for this claim. This simple
language is sufficient for modeling and analyzing goals during early requirements,
covering both functional and quality requirements, which in this framework are
treated as first-class citizens.

To illustrate what goal models are, let us look at a distribution company selling
goods to customers. We will use this example throughout the remainder of the paper
to demonstrate our approach. The company gets its products from wholesalers and

sells the goods to customers (see Fig. 1). It does not have any retail stores, so it re-
ceives orders though phone, fax, and, possibly, a web site and ships products using a
shipping company. The top-level goal here is Supply Customer, which is AND-
decomposed into a number of goals including Get Order, Process Order, and Ship and
Bill [order]. Some of the subgoals have alternative solutions. For example, to ship an
order, one can achieve either the Ship Express goal or the Ship Standard goal.

Quality attributes are represented as softgoals (cloudy shapes in the figure). In our
example, the four top-level desired qualities are Customer Satisfaction, [Minimize
distributor] Cost, [Minimize] Customer Cost, and Performance. Clearly, express
shipping is fast, but expensive, thus it helps the softgoal Performance while hurting
Customer Cost. Similarly, providing a web site for order submission (Get Order Stan-
dard & Web) may be more expensive for the distributor (thus the negative link to
Cost), but contributes positively to Customer Satisfaction. As shown in Fig. 1, such
partial contributions are explicitly expressed in the goal model. In all, the goal model
in Fig. 1 shows eight alternative ways for fulfilling the goal Supply Customer. It is
easy to verify that generally the number of alternatives represented by a typical goal
model depends exponentially on the number of OR decompositions (labelled as varia-
tion points “VP1” through “VP3” in Fig. 1) present in the goal model (assuming a
“normalized” goal model where AND and OR decompositions are interleaved). As
such, goal models make it possible to capture during requirements analysis – in stake-
holder-oriented terms – all the different ways of fulfilling top-level goals. A system-
atic approach for thoroughly analyzing the variability in the problem domain with the
help of high-variability goal models is discussed in [14]. The paper proposes a taxon-
omy of variability concerns as well as the method for making sure these concerns are
properly addressed during the goal model elicitation process. Now, if one were de-
signing a flexible, customizable implementation for a process, it would make sense to
ensure that the implementation is designed to accommodate most or all ways of ful-
filling top-level goals (i.e., delivering the desired functionality), rather than just some.

Another feature of goal models is that alternatives can be ranked with respect to the
qualities modeled in the figure by comparing their overall contributions to respective
softgoals. So, the model of Fig. 1 represents a space of alternative behaviours that can
lead to the fulfillment of top-level business goals, and also captures how these alterna-
tives stack up with respect to qualities desired by stakeholders .

Goal Model Enrichments. While the goal models as described above are a useful
tool in requirements elicitation and analysis, they lack precision and the level of detail
for a more thorough analysis of the problem domain that is required for the subse-
quent design phases. For example, it might be important to model data/resource de-
pendencies and the precedence constraints among subgoals in the problem domain.
Similarly, specifying inputs and outputs for the subgoals in the goal model (i.e., what
information and/or resources are required for the attainment of each goal and what
resources and/or information are produced when the goal is achieved) is necessary for
deriving precise system requirements. In general, a variety of enrichments can be used
with goal models. The choice for enrichments depends on the types of analyses or
model transformations that one would like to carry out on goal models.

We use textual annotations to add the necessary details to goal models. Most of the
annotations specify the details of control flow among the subgoals. For example, the
sequence annotation (“;”) can be added to AND goal decomposition to indicate that

all the subgoals are to be achieved in sequence from left to right. Sequence annota-
tions are useful to model data dependencies or precedence constraints among sub-
goals. The absence of any dependency among subgoals in an AND decomposition can
be indicated by the concurrency (“||”) annotation. Conditional annotations can also be
added to specify that certain goals are to be achieved only under some specific cir-
cumstances. Lapouchnian and Lespérance [10] discuss various annotations, including
loops, interrupts, etc.

It is important to note that the above-mentioned annotations capture properties of
the problem domain in more detail and are not used to capture design choices, so they
are requirements-level annotations.

Reasoning with Goal Models. While goal models are used for modeling and com-
municating requirements, we are also interested in the automated analysis of these
models. To this end, Sebastiani et al. [18] devised a sound and complete goal satisfac-
tion label propagation algorithm that given a goal model with a number of alternative
ways to satisfy its goals and a number of softgoals, can be used to find the alternative
that achieves the chosen subset of goals in the model while best addressing these
quality constraints (in order of their priority).

Goal Model-based Customization and Configuration. There has been interest in
applying goal models in practice to configure and customize complex software sys-
tems. In [4], goal models were used in the context of “personal software” (e.g., an
email system) specifically to capture alternative ways of achieving user goals as a
basis for creating highly customizable systems that can be fine-tuned for each particu-
lar user. The Goals-Skills-Preferences approach for ranking alternatives is also pro-
posed in [4]. The approach takes into consideration the user’s preferences (the desired
quality attributes) as well as the user’s physical and mental skills to find the best op-
tion for achieving the user’s goals. This is done by comparing the skills profile of the
user to the skills requirements of various system configuration choices. For example,
for the user who has difficulty using the computer keyboard, the configurator system
will reject the alternatives that require typing in favour of voice input.

Goal models can also be used for configuring complex software systems based on
high-level user goals and quality concerns. Liaskos et al. [13] propose a systematic
way of eliciting goal models that appropriately explain the intentions behind existing
systems. In [23], Yu et al. show how goal models can be used to automatically con-
figure relevant aspects of a complex system without accessing its source code.

3 The Approach

In this section, we describe our technique for business process modeling and configu-
ration. It is requirements-driven and is motivated by the lack of support in most cur-
rent BP modeling approaches for high-level, intentional configuration of business
processes. The approach involves the modeling and analysis (using quality criteria) of
alternative ways of achieving business goals with subsequent generation of executable
business processes that preserve the variability captured at a goal level. The assump-
tion behind this approach is that in the business domain where it is applied, the char-
acteristics of business cases demand tailored business process variants. Below, we

briefly outline the steps of the process and highlight the responsibilities of various
actors while the subsequent sections describe the process in detail:

Table 1. Overview of the process steps

 Responsible Role Description Artefact Produced
1 Business

Analyst (BA),
Business Users

Capture and refine the goals of the
business process with emphasis on
variability

High-Variability (HV)
Goal Model

2 BA, Require-
ments Engineer

Enrich the model with control flow and
I/O annotations

Annotated HV Goal
Model

3 BA Analyze BP alternatives, remove infea-
sible ones

Annotated HV Goal
Model

4 Automated Generate High-Variability BPEL speci-
fication from HV Goal Model

Initial HV BPEL
process

5 BPEL/Integration
Developer

Complete the HV BPEL process, select
partner Web Services, deploy process

Executable HV BPEL
process

6 Business Users Select prioritizations among available
quality criteria

BP Preferences, Con-
figured Goal Model

7 Automated Select the best BP configuration match-
ing user preferences BP Configuration

8 Automated Create BP instance with the selected
configuration, execute it

Configured BPEL
process

3.1 Business Process Design with Goal Models

Using goals for business process modeling is not a new idea. A number of different
goal modeling notations have been used for this [6, 9]. In addition, requirements goal
models have shown to be a convenient notation for the elicitation, modeling, and
analysis of variability in the context of software development, configuration, and
customization [13, 23]. In our approach, we use high-variability goal models to cap-
ture why a business process is needed – its purpose or goal – and the many different
ways how this goal can be attained. Business process alternatives implied by the mod-
els are then evaluated with respect to their quality (non-functional) attributes.

We continue to use the Supply Customer process from Fig. 1 in this section. We
have added some more details to it in Fig. 2 (note that the annotations are described in
Section 3.2). To model a BP in our approach we first identify its business goal (e.g.,
Supply Customer). This goal becomes the root of the goal model. It is then refined
using AND/OR decompositions until the resultant subgoals can be delegated to either
human actors or software services.

Let us walk through the Supply Customer process once again. First, customer or-
ders are received either through phone, fax, or the web. After verifying an order, the
distributor processes the order by checking if it has all the ordered goods in stock. If
so, each product is added to the order. If some item is not in stock, it is ordered from
either a wholesaler or a retailer. Ordering out of stock goods through the usual chan-
nel from a wholesaler is cheaper (positive contribution to Customer Cost), but re-
quires more time (negative contribution to Performance), while ordering the goods

from a nearby retailer to complete the order has the opposite contributions to these
softgoals. After an order is packaged, it is shipped (using either the express or the
standard shipping method) while the customer is sent a bill.

;

X

;

X

XX
X

if(verified)

for(AllItems)

if(InStock)if(NotInStock)

X ||

–

;

Supply
Customer

AND
ANDAND

Get Order Verify Order Process
Order

AND

OROR

Check Stock Add Order
Item

Add Product
To Order

Order Out Of
Stock Item

Order From
Partner

Wholesaler

Order From
Retailer

Package
Order Ship and Bill

Bill Customer Ship Order

Ship Express Ship
Standard

Cost

Performance

Customer
Satisfaction

Customer Cost

AND

AND AND

OR OR

AND
AND

OR OR

+

+

–

+

–
+

–

+

Get Order
Standard

Get Order
Standard &

Web

OR
OR OR

OR

OR

+
–

–

e(PhoneOrder)
e(PhoneOrder)

Get Phone
Order

Get Phone
Order

e(FaxOrder)

Get Fax
Order

e(WebOrder)

Get Web
Order

e(FaxOrder)

Get Fax
Order

Order Item

AND
AND

Add Product
To Order

AND

e(ReceiveItem)

Receive Item

OR OR

Fig. 2. A goal model for the “Supply Customer” business process

We are placing a special emphasis on business process variability since explicitly
representing the space of alternatives using goal models allows for a systematic
analysis and comparison of the various ways of achieving high-level business goals
(i.e., the various BP alternatives). Whenever there is a number of different ways to
achieve some business goal, the modeler uses OR decompositions to capture that fact.
Some of these alternatives contribute differently to the non-functional business con-
cerns such as Customer Satisfaction, [Minimize] Cost, etc. represented as softgoals in
the model. We describe how these quality criteria are used in selecting the appropriate
process configurations in Section 3.3.

3.2 Enriching Goal Models for BP Modeling

Since we are interested in the automated execution of business processes, we need
to capture more information about BPs than the basic goal models allow. A few anno-
tations are introduced for this purpose. Note that the annotations presented here are
not required to be formal. We use the following control flow annotations when em-
ploying goal models to represent business processes:

• Parallel (“||”) and sequence (“;”) annotations can be used with AND-
decomposed goals to specify whether or not their subgoals are to be achieved
in a temporal order. For example, billing customers and shipping goods is done
concurrently in the process.

• By default, in goal models, OR decompositions are inclusive. Exclusive OR
decompositions are marked with the “X” annotation. All of the OR decomposi-
tions in our example in Fig. 2 are exclusive.

• Conditions (“if(condition)”) indicate the necessary conditions for achieving
subgoals. For example, in Fig. 2 the goal Order Out Of Stock Product is
achieved only if the item is not already in stock.

• Loops (“while(condition)” or “for(setOfItems)”). For instance, the goal Add Or-
der Item must be achieved for all items in the order.

• Event handlers or interrupts (“e(Event)”). In Fig. 2, the arrival of customer or-
ders through fax, phone, or web is modeled by the events (e.g., e(PhoneOrder))
that trigger the achievement of the appropriate goals.

In addition to the above annotations, modeling of input/output parameters of goals is
also important for BP modeling. Identifying inputs and outputs during the analysis of
a business domain helps in determining resource requirements for achieving goals as
well as for the sequencing of the goals. The types of inputs and outputs can also be
specified. While optional, the input/output types can be used to generate detailed
specifications for messages and service interfaces in a BP implementation. For exam-
ple, Fig. 3 shows a parameterized fragment of the Supply Customer goal model. The
parameters are specified inside goal nodes and the output parameters are identified
with the star (“*”) symbol. Deliberating about which resources/data are required for
the attainment of a goal and which are produced when the goal is achieved can fre-
quently help to identify important process details that are easy to miss otherwise. For
instance, Fig. 3 adds the subgoal Pick Order Bin, which picks a location where ordered
items are physically stored before being packaged.

... ...

; for(AllItems)

Process
Order [Order]

Check Stock
[Order,

StockStatus*]

Add Order Item
[Item, Order, Bin]

AND AND

Pick Order Bin
[Order, Bin*]

AND

AND
...

Fig. 3. Adding goal parameters

3.3 Specifying Goal Model Configurations

In goal models, there exist OR decompositions where the selection of alternatives is
driven by data or events. For example, in Fig. 2 the OR decomposition of the goal Get
Order Standard is event-driven as the choice depends on the way the customer sub-
mits an order. Similarly, the choice for achieving the Add Order Item goal depends on
whether the item is in stock. However, there are other OR decompositions with alter-
natives, whose selection is not dependent on data/events. We call them preference-
driven OR decompositions, or variation points (the data-/event-driven OR decomposi-
tion are not considered VPs as they cannot be used to configure processes). In the
example in Fig. 2, these variation points are: Get Order, Order Item, and Ship Order.

From the point of view of the functionality of a business process, the achievement of
any of the alternative subgoals of these VPs is exactly the same. The difference is in
the way these choices contribute to the quality attributes of the process. These VPs
play a central role in our business process configuration approach as they allow the
selection of the best way to meet quality constraints of the stakeholders while deliver-
ing the required functionality of business processes. Thus, softgoals act as (possibly
conflicting, as seen in our example) selection criteria for choosing the right BP alter-
native based on the priorities (among softgoals) of process owners, customers, etc.

Supply

Customer

AND
ANDAND

Get Order Verify Order
Process
Order

AND

Get Order
Standard

OR
Check Stock Add Order

Item

Add Product
To Order

Order Out Of
Stock Item

Order From
Partner

Wholesaler

Package
Order Ship and Bill

Bill Customer Ship Order

Ship
Standard

Cost

Performance

Customer
Satisfaction

Customer Cost

AND

AND AND

AND AND

OR

ANDAND

OR

+

+

+ –

–

–

–

Supply
Customer

AND
AND

AND

Get Order

AND

Get Order
Standard &

Internet

OR

Order From
Retailer

Package
Order Ship and Bill

Bill Customer Ship Order

Ship Express

Cost

Performance
Customer

Satisfaction

Customer Cost

AND

OR

AND
AND

OR

–

+
–

+ +

A B

Order Item

AND AND ...

Verify Order
Process
Order

Check Stock Add Order
Item

Add Product
To Order

Order Out Of
Stock Item

AND AND

AND AND

Order Item

AND AND ...

Fig. 4. Two alternative goal model configurations

To illustrate the above discussion, Fig. 4 shows two alternative configurations of the
process Supply Customer. These configurations are the result of applying the top-
down goal reasoning algorithm of [18] to the model in Fig. 2. The checkmarks indi-
cate the highlighted (soft)goals, whose achievement we are interested in – the input to
the algorithm (another input is the relative ranking of the softgoals, which we assume
to be the same here). The first configuration (Fig. 4A) is where the Cost of running
the process for the distributor and Customer Cost are the top priorities. The high-
lighted VP decisions contribute positively to the selected softgoals. This configuration
includes, for instance, Ship Standard as it is cheaper. If, however, Customer Satisfac-
tion and process Performance are the top priorities, then the configuration changes to
the one in Fig. 4B. Thus, high-variability goal models provide a high-level view of
processes with the ability to (automatically) generate BP configurations based on
preferences of stakeholders expressed as prioritizations among quality criteria. These
features greatly simplify the task of configuring business processes by non-technical
users as these individuals can configure processes in terms of user-oriented abstract
qualitative notions such as customer satisfaction, etc.

It is easy to notice that in our example, the goal model can be configured by multi-
ple stakeholders, both from the point of view of the process owner (the distributor) by
prioritizing among the Cost and the Customer Satisfaction softgoals and from the
point of view of the customer by prioritizing among Customer Cost and Performance.
This allows the stakeholder that owns the process to partially configure it based on
that stakeholder’s own preferences (i.e., the binding some of the variation points)
while leaving other VPs unbound for the customers, partners, etc.

Note that the alternatives deemed not acceptable by the process owner (e.g., due to
being too costly) can be removed from goal models, thus reducing the BP variability
before the generation of executable BP models.

3.4 Generating Flexible Executable Business Processes

As we have just shown, goal models can be a useful tool for high-level configuration
of business processes based on stakeholder prioritization among quality criteria. The
above techniques can be used to develop, analyze, and configure BP models at design
time. However, we would also like to be able to use the high-variability goal models
as a starting point for the development of executable business processes that preserve
the variability found in the source goal models as well as for configuring these BPs
though the appropriate traceability links.

To this end, we have devised a method for using goal models to assist with the de-
velopment and configuration of high-variability (flexible) BPEL processes. Unlike
some workflow-level notations such as BPMN [20], our goal modeling notation is
highly structured, with goals organized in refinement hierarchies. This makes it possi-
ble to generate BPEL processes (albeit lacking some low-level details) that are easily
readable by humans and are structured after the respective goal models. The BPEL
code generation is semi-automatic and the generated code, while not immediately
executable and thus needing to be completed (mainly due to the fact that we do not
require conditions in annotations to be formalized), nevertheless provides valuable
help in producing an executable BP based on the source goal model. The code is to be
further developed by integration developers, who will also be selecting/designing
Web services to be used by the process.

if(c2)X||

;

if(c1)

G

G1 G2

G3

AND

G4

AND

AND

AND

G5 G6

OROR

<sequence name="G">
<flow name="G1" ... >

<invoke name="G3" ... />
<invoke name="G4" ... />

 </flow>
 <if name="G2">

<condition> [c1] </condition>
<invoke name="G5" ... />
<elseif>

 <condition> [c2] </condition>
 <invoke name="G6" ... />
</elseif>

 </if>
</sequence>

Fig. 5. Example of WS-BPEL 2.0 code generation

Since BPEL is a workflow-level language, only activities that are executed by human
actors or software systems (Web services) are represented in BPEL specifications. On
the other hand, using goal models, we start modeling from abstract high-level goals
and refine them into goals that can be assigned to humans or software. Thus, leaf-
level goals correspond to the actual work that is done within a BP, while higher-level
ones provide the rationale for why this work has to be done and how it relates to the
ultimate purpose of a process. Thus, non-leaf goals do not create basic BPEL activi-
ties, but since they are used to group lower-level goals based on their decomposition

types (AND/OR) and control flow annotations, they help in generating the corre-
sponding BPEL control flow constructs. We start BPEL generation from the root goal
and recursively traverse the goal tree until we reach leaf goals.

We now present some of the goal model to BPEL 1.1 or 2.02 mappings through the
example in Fig. 5, which shows a generic annotated goal model fragment. The root
goal G has a sequential AND refinement, so it corresponds to the sequence operator
in BPEL. G1 has a parallel AND refinement, so it maps to the flow construct. G2 has
a data-driven XOR refinement (note the annotations), so it generates the if-elseif
(BPEL 2.0) or the switch (BPEL 1.1) operator. Note that the conditions c1 and c2,
which are informal descriptions in the goal model, will be replaced with the appropri-
ate conditions by a BPEL developer. The leaf goals correspond to Web service invo-
cations. This is how enriched goal models are used to generate the overall structure of
a BPEL process.

While we abstract from some of the low-level BPEL details such as correlations,
with the information captured in the annotated goal models, we also generate the
following aspects of BPEL/WSDL specifications (we do not show the complete map-
ping due to the lack of space):

• We do an initial setup by defining the appropriate interface (portType), etc.
for the process. A special portType for invoking the process and providing it
with the (initial) configuration is also defined.

• An event-driven OR decomposition (e.g., Get Order Standard in Fig. 2) maps
into the pick activity with each alternative subgoal corresponding to an on-
Message event. Since each such event must match an operation exposed by the
process, an operation with the name of each subgoal is added to the portType
of the process. A message type for the received event is also added to the proc-
ess interface. A BPEL developer must define the message as the event annota-
tions specified at the requirements level usually lack the required message de-
tails. The activities that are executed for each onMessage event are the BPEL
mappings of the subtrees rooted at the subgoals in the decomposition.

• A conditional/loop annotation for a goal G is mapped to the appropriate BPEL
construct (e.g., if-elseif or switch, while, etc.) with the activity to be
executed being the result of mapping the goal model subtree rooted at G into
BPEL. The formal conditions currently have to be specified manually.

• Leaf-level goals map into Web service invocations. The information in the goal
model helps in defining the interface for the Web services invoked by the BP.
We define appropriate WSDL messages based on input/output parameters of
these goals. If data types are omitted from the goal model, they have to be sup-
plied by a developer.

• Softgoals are used as the evaluation criteria in the configuration process and
thus do not map into the resulting BPEL specification.

The main idea behind the generation of high-variability BPEL processes is the preser-
vation of BP variability captured in goal models. As we have shown above, data- and

2 While in our case study we generated BPEL 1.1 processes, WS-BPEL 2.0 [16] allows for

simpler, more natural mapping from annotated goal models.

event-driven variability is directly preserved through the appropriate mapping to
BPEL. Additionally, we need to preserve the preference-driven VPs in the executable
BPs since they are the main vehicle for process configuration based on stakeholder
preferences. In our approach, for each preference-driven VP we generate a BPEL
switch construct (or if-elseif if using BPEL 2.0) where each case (branch) corre-
sponds to an alternative subgoal (e.g., Ship Order in Fig. 2 will produce the cases for
Ship Express and Ship Standard). The condition in each case checks to see if the case
is the current choice for the VP by comparing the name of the alternative subgoal it
corresponds to (e.g., “Ship Express”) to the string extracted from the current BP con-
figuration (see the next section for details), thus ensuring the correct branch is taken.
The activities executed in each case are automatically generated and represent the
BPEL mapping of the alternative subgoals of the VP. A VP also gets a name from the
corresponding goal node (we assume that VP names are unique).

Fig. 6 shows our Eclipse-based goal modeling and analysis tool OpenOME [17]
being used to design business processes with both the goal model (right pane) and the
BPEL (left pane) visualizations.

Fig. 6. OpenOME being used to design a business process

3.5 Quality-Based Business Process Configuration

Once a High-Variability BPEL process is fully developed and deployed, its instances
can be configured by users through the prioritization among its associated quality
criteria. This task has two elements. First, we elicit user preferences and generate the
corresponding process configuration. Second, an instance of a BP has to be provided
with this configuration. Let us look at these two subtasks in more detail.

There are several ways to specify user preferences in our approach. First, users can
use OpenOME to specify which softgoals they want satisficed in a process and run a
top-down analysis algorithm (similar to what we did in Fig. 4). The result will be a
particular BP configuration that best suits the user. Another possibility is to use the
GUI tool (see Fig. 7) that simplifies the task even more by only exposing quality
attributes of a process and by allowing users to specify the partial ordering of the
attributes in terms of their importance (Rank) as well as their expected satisficing
level (with convenient sliders). Multiple profiles can be created for a particular BP
model – for varying market conditions, customers, etc. Behind the scenes, a prefer-
ence profile is converted into a goal model configuration (using the same goal reason-
ing algorithm of [18]). The tool can then create instances of processes with the desired
configuration.

Process Model ConfiguratorProcess Model Configurator

Model Help

Supply_Customer
Process Model

Cost_Performance
Profile

Profile

Cost

1

Rank

Customer Satisfaction

3

Rank

Launch Process Instance

Quality Attribute Preferences

min

min

max

max

Fig. 7. BP preference configuration tool

Another part of our prototype BP configuration toolset is the Configurator Web ser-
vice. This service implements a subset of the functionality of OpenOME, mainly the
top-down reasoning engine and a persistent knowledge base for storing process con-
figurations. It is designed to communicate these configurations to appropriate BP
instances at runtime. The main operations of the service are as follows:

• registerProcess is used to associate a unique processID parameter with
the endpoint of a deployed high-variability process (both are inputs).

• launchProcessInstance is be used by the GUI tool to create and run an in-
stance of a process. Inputs are processID and a goal model configuration. A
new instance of a BP identified by processID is created. It is given an in-
stanceID, which uniquely identifies the process instance together with its
configuration so that it is possible to evolve BP configurations independently.
The configuration is stored in a knowledge base. The configuration and the
instanceID are communicated to the BP instance.

• getConfiguration, which can be used by process instances to get their con-
figurations from the Configurator Web service. The input is an instanceID
and the output is the current configuration for that process instance. This opera-
tion can be used to get an updated configuration for a process instance.

The configuration provided to process instances is a list of variation points and the
name of the selected subgoal in each of them. Below is an example:

<FullConfig>
 <VPConfig>
 <VP> ShipOrder </VP>
 <Selection> ShipStandard </Selection>
 </VPConfig>

 …
</FullConfig>

Then, XPath [22] queries are used to extract the configuration. For example, the query
/FullConfig/VPConfig[VP="ShipOrder"]/Selection extracts the configura-
tion for the variation point ShipOrder. The result is matched with the appropriate case in
the switch construct corresponding to the variation point as described in the previous section.
Thus, the executing process becomes configured according to the user preferences specified in
terms of priorities among quality criteria associated with the business process.

4 Discussion and Future Work

Most popular BP modeling approaches such as BPMN [20] or EPCs [8] are work-
flow-level notations. They do not allow the analysis of process alternatives in terms of
high-level quality attributes or business goals and thus do not provide traceability of
BP alternatives to requirements. There are, however, BP modeling approaches that
explicitly capture and refine business goals (e.g., [6, 9]). Unlike our approach, these
notations do not model process variability or the effect of alternatives on quality at-
tributes. While some research has focused on variability in business process models
[19], our approach centers on capturing and analyzing variability at the requirements
level. Similarly, research on configurable BPEL processes (e.g., [5]) so far mostly
concentrated on low-level configurability that may not be visible to process users.

A number of approaches based on the Tropos framework [1] applied ideas from
requirements engineering and agent-oriented software engineering to BPEL process
design [7] and SOA architecture design [12]. Both these approaches give heuristics on
creating BPEL processes based on requirements models, but fall short from providing
semi-automatic generation procedures. Likewise, BP variability is not explored. Nev-
ertheless, we believe that agent-oriented modeling techniques of Tropos are useful for
BP modeling and analysis and are currently working on integrating them into our
approach. Similarly, we are looking at supporting context-based softgoal prioritization
where the preferences change depending on the characteristics of business cases. For
instance, in our Supply Customer example, the process owner may want to set Cus-
tomer Satisfaction to be the top priority for high-valued customers.

We are collaborating with a large BPM software vendor to use our method with
their workflow-level BP modeling and analysis notation and tools, thus allowing a
more gradual development of BPs first with goal models, then with a workflow-level
notation, and finally with BPEL while preserving the traceability among the notations,
specifically, among the variation points.

This approach is part of a larger effort for developing requirements-driven adaptive
business processes. To this end, we are working on implementing the support for the
dynamic reconfiguration of high-variability processes based on changing require-

ments, stakeholder preferences and data captured by a BP monitoring environment. In
terms of the approach presented here, dynamic process adaptation requires changes in
the way BP configurations are updated and propagated to process instances. For ex-
ample, one technique, which is currently implemented, is to push the updated configu-
ration to the process instance through a special callback operation.

The drawbacks of the approach presented here include the need to explicitly model
and analyze process alternatives as well as the fact that the qualitative analysis of
alternatives may be too imprecise and subjective. We are working on integrating
quantitative analysis of alternatives into our approach [11]. One of the elements of
this addition to the method is a more precise specification of process alternatives’
contributions to softgoals. Similarly, the softgoals themselves can be opertionalized
into measurable quantities. Another extension that we are working on is the introduc-
tion of hard constraints that will play a role similar to the role of skills in [4] – helping
to remove process alternatives that are incompatible with the characteristics of the
process participants. We are also developing better tool support for this approach and
working on improving the infrastructure and the generation of BPEL code as well as
on supporting the modeling and analysis of BP exceptions.

5 Conclusion

We have presented an approach for requirements-driven design and configuration of
business processes. Requirements goal models are used to capture and refine business
goals with the emphasis on identifying alternative ways of attaining them while (pos-
sibly conflicting) quality constraints are used to analyze and select appropriate proc-
ess alternatives. Goal model annotations for capturing process-relevant details are also
introduced. Then, given an annotated high-variability goal model, a variability-
preserving procedure generates a well-structured high-variability WS-BPEL specifi-
cation (with programmers needing to fill in details of data handling, to define condi-
tions and some other aspects of the process), which can be configured given high-
level user preferences. A prototype system for preference profile specification and BP
configuration is discussed.

The benefits of the approach include the fact that BPs can be automatically config-
ured in terms of criteria accessible to non-technical users, thus greatly simplifying
process configuration. The method helps in transitioning from business requirements
analysis to BP design and implementation by allowing to gradually increase the level
of detail in process models and by providing a semi-automated variability- and struc-
ture-preserving procedure for generation of executable business processes. The ap-
proach is also helping to maintain the processes’ traceability to requirements.

References

1. J. Castro, M. Kolp, J. Mylopoulos. Towards Requirements-Driven Information Systems
Engineering: The Tropos Project. Information Systems, 27(6):365-389, 2002.

2. A. Dardenne, A. van Lamsweerde and S. Fickas. Goal-Directed Requirements Acquisi-
tion, Science of Computer Programming, 20:3-50, 1993.

3. L. Chung, B. Nixon, E. Yu, J. Mylopoulos. Non-Functional Requirements in Software

Engineering. Kluwer, 2000.
4. B. Hui, S. Liaskos, and J. Mylopoulos. Requirements Analysis for Customizable Software:

Goals-Skills-Preferences Framework. Proc. International Requirements Engineering Con-
ference (RE’03), Monterrey, CA, September 2003.

5. D. Karastoyanova, F. Leymann, A. Buchmann. An approach to Parameterizing Web Ser-
vice Flows. Proc. International Conference on Service-Oriented Computing 2005, Am-
sterdam, The Netherlands, December 2005.

6. V. Kavakli, P. Loucopoulos. Goal-Driven Business Process Analysis Application in Elec-
tricity Deregulation. Information Systems, 24(3):187–207, 1999.

7. R. Kazhamiakin, M. Pistore, M. Roveri. A Framework for Integrating Business Processes
and Business Requirements. Proc. EDOC 2004, Monterey, USA, 2004.

8. G. Keller, M. Nuttgens, A.W. Scheer. Semantische Prozessmodellierung auf der Grund-
lage “Ereignisgesteuerter Prozessketten (EPK)”. Technical Report 89, Institut fur
Wirtschaftsinformatik Saarbrucken, Saarbrucken, Germany, 1992. (In German).

9. P. Kueng, P. Kawalek. Goal-Based Business Process Models: Creation and Evaluation.
Business Process Management Journal, 3(1):17-38, 1997.

10. A. Lapouchnian, Y. Lespérance. Modeling Mental States in Agent-Oriented Requirements
Engineering. Proc. International Conference on Advanced Information Systems Engineer-
ing (CAiSE'06), Luxembourg, June 5-9, 2006.

11. A. Lapouchnian, Y. Yu, S. Liaskos, J. Mylopoulos. Requirements-Driven Design of Auto-
nomic Application Software. Proc. International Conference on Computer Science and
Software Engineering CASCON 2006, Toronto, Canada, Oct 16-19, 2006.

12. D. Lau, J. Mylopoulos. Designing Web Services with Tropos. Proc. International Confer-
ence on Web Services (ICWS'04), San Diego, CA, USA, 2004.

13. S. Liaskos, A. Lapouchnian, Y. Wang, Y. Yu, S. Easterbrook. Configuring Common
Personal Software: a Requirements-Driven Approach. Proc. International Requirements
Engineering Conference (RE’05), Paris, France, Aug 29 - Sep 2, 2005.

14. S. Liaskos, A. Lapouchnian, Y. Yu, E. Yu, J. Mylopoulos. On Goal-based Variability
Acquisition and Analysis. Proc. International Requirements Engineering Conference
(RE'06), Minneapolis, USA, Sep 11-15, 2006.

15. J. Mylopoulos, L. Chung, and B. Nixon. Representing and Using Non-functional Re-
quirements: a Process-oriented Approach, IEEE Transactions on Software Engineering,
18(6):483–497, 1992

16. OASIS: Web Services Business Process Execution Language Version 2.0 Primer (Draft).
Available at: www.oasis-open.org/committees/documents.php?wg_abbrev=wsbpel, 2007.

17. OpenOME. Available at: www.cs.toronto.edu/km/openome/, 2007.
18. R. Sebastiani, P. Giorgini, J. Mylopoulos. Simple and minimum-cost satisfiability for goal

models. Proc. International Conference on Advanced Information Systems Engineering
(CAiSE 2004), Riga, Latvia, 2004.

19. A. Schnieders, F. Puhlmann. Variability Mechanisms in E-Business Process Families.
Proc. International Conference on Business Information Systems (BIS 2006), Klagenfurt,
Austria, 2006.

20. S. White. Business Process Modeling Notation (BPMN) Version 1.0. Business Process
Management Initiative, BPMI.org, May 2004.

21. A. van Lamsweerde. Requirements Engineering in the Year 00: A Research Perspective.
Proc. International Conference on Software Engineering (ICSE’00), Limerick, Ireland,
June, 2000.

22. World Wide Web Consortium: XML Path Language (XPath) 2.0 Recommendation.
Available at: www.w3.org/TR/2007/REC-xpath20-20070123/, 2007.

23. Y. Yu, A. Lapouchnian, S. Liaskos, J. Mylopoulos. Requirements-Driven Configuration of
Software Systems. Proc. WCRE 2005 Workshop on Reverse Engineering to Requirements
(RETR'05), Pittsburgh, PA, USA, November 7, 2005.

