
Open Research Online
The Open University’s repository of research publications
and other research outputs

Generating under global constraints: the case of
scripted dialogue
Journal Item
How to cite:

Piwek, Paul and Van Deemter, Kees (2007). Generating under global constraints: the case of scripted dialogue.
Research on Language and Computation, 5(2) pp. 237–263.

For guidance on citations see FAQs.

c© [not recorded]

Version: [not recorded]

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1007/s11168-007-9029-z

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82905490?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://dx.doi.org/doi:10.1007/s11168-007-9029-z
http://oro.open.ac.uk/policies.html

Generating under Global Constraints:

the Case of Scripted Dialogue

Paul Piwek and Kees van Deemter

April 2007

Final Draft. The paper was published electronically 11
July 2007 by Springer in: Research on Language and

Computation, DOI: 10.1007/s11168-007-9029-z

Abstract

Recently, the view of Natural Language Generation (nlg) as a Con-
straint Satisfaction Problem (csp) has seen something of a revival. The
aim of this paper is to examine the issues that arise when nlg is viewed
as a csp, and to introduce a novel application of constraint-based nlg,
namely the Scripted Dialogue. Scripted Dialogue shares a number of cru-
cial features with discourse, which make it possible to control the global
properties of a computer-generated dialogue in the same way as those
of a generated discourse. We pay particular attention to the use of soft
constraints for enforcing global properties of text and dialogue. Because
there has been little research into the formal properties of soft constraints
in relation to generation, we start out with a theoretical exploration. We
argue that, when multiple constraints are involved, it is important to
define properly what is being optimised before proposing specific algo-
rithms, and we argue that such definitions are often lacking in csp-based
nlg. We show that it can be difficult (and sometimes even impossible) to
guarantee satisfaction of global constraints by following local strategies.
Based on these difficulties, we propose a novel approach to the genera-
tion of discourse and dialogue which combines csp solving with revision.
Scripted Dialogue is used to illustrate this approach, which is compared
with alternatives such as monitoring and estimation.

Keywords Natural Language Generation, Constraints, Scripted Dialogue

1 Introduction

Computational investigations into dialogue have typically focused on the com-
munication between the dialogue participants. There are, however, many situ-
ations in which a dialogue fulfills a rather different purpose: dialogues in the

1

theatre, on television (in drama, sitcoms, commercials, etc.) and on the radio
(in plays, commercials, etc.) are not primarily meant as vehicles for genuine
communication between the interlocutors, but intended for an audience (in the
theatre, in front of the tv). The purpose of these ‘scripted’ dialogues is pri-
marily to affect that audience, e.g., by entertaining it, teaching it something,1

making a point carefully, or conveying information within certain time limits.
Typically, it is the effect that the dialogue as a whole has on the audience that
counts. In short, when we look at dialogue from the perspective of an audience,
the global properties of the dialogue are paramount.

This paper explores the consequences of viewing a scripted dialogue as some-
thing to be generated computationally, under global constraints. We start by
sketching some of the ways in which global properties of generated text can
be managed (section 2), and how these ideas carry over to the generation of
scripted dialogue (section 3). At that point, it will have become clear that
global constraints on generated text can be difficult to manage. In order to
find the best perspective on this issue, section 4 will step back and examine
the distinction between local and global decisions more closely. We conclude
the section by discussing the problems posed by soft constraints. Having done
this, we apply the lessons of section 4 to the type of scripted dialogues that are
generated in the neca system (Krenn et al, 2002), proposing a novel approach
based on the management of soft constraints (section 5). We conclude with a
Discussion section (section 6).

2 Controlling global properties of generated text

A Natural Language Generation (nlg) system has to make a large number of
decisions concerning the way in which information is worded: aggregating infor-
mation into paragraphs and sentences, choosing one syntactic pattern instead
of another, deciding which words to use, and so on.2 Often, such decisions can
be made on the basis of local information. The choice between an active and a
passive sentence, for example, usually does not take other decisions (such as the
same choice involving another sentence) into account. In slightly more difficult
cases, the decisions of the generator can be based on decisions that have been
taken earlier. For example, the generator may inspect the linguistic context to
the left of the generated item for deciding between a proper name and a personal
pronoun. There are also decisions which require information about text spans
that have not yet been generated. This happens typically when the generated
text is subject to global constraints, that is informally, constraints on the text

1There is empirical evidence that learners benefit more from watching a dialogue, than
from being presented with the same material in the form of a monologue (by a tutor). See,
for example, Cox et al. (1999) and Craig et al. (2000).

2For a strong version of this claim, where generation is described as the problem of choosing
between alternative expressions, while understanding/interpretation is essentially a problem
of hypothesis management (i.e., trying to find the intended interpretation), see McDonald
(1987:643).

2

as a whole. For example, suppose the text is generated subject to constraints
on its length. Now, in order to decide whether it is necessary to use aggrega-
tion when generating some subspan (to stay below the maximum length), it is
necessary to know the length of the text outside of the current subspan. This
can lead to complications since at the point in time when the current span is
generated, the rest of the text might not yet be available for inspection.

A nonlinguistic example may be helpful. Compare the constraint that a party
has to fit into one’s living room. Suppose the room can contain ten visitors, and
ten invitations have gone out. Is it wise to send out another invitation? This
depends on how many of the invitations will be accepted. ‘Number of visitors’
is a global constraint on the party. It is affected by more than one decision, in
particular the host’s decision whether or not to invite a given person, and an
invitee’s decision whether or not to accept. Generation decisions can be very
similar.

One class of global nlg constraints involves the linguistic style of a text, as re-
gards its degree of formality, detail, partiality, and so on (Hovy 1988). Whether
a text can be regarded as moderately formal, for instance, depends on whether
formal words and patterns are chosen moderately often, which makes this a
quintessentially global constraint. Moreover, style constraints may contradict
each other. For example, if a text has to be impartial as well as informal then the
first of these constraints may be accommodated by choosing a passive construc-
tion, but the second would tend to be adversely affected by that same choice.
Hovy argues that these problems make top-down planning difficult because it
is hard to foresee what ‘fortuitous opportunities’ will arise during later stages
of nlg. Perhaps more contentiously, he argues that these problems necessitate
a monitoring approach, which keeps constant track of the degree to which a
given text span satisfies each of a number of constraints (e.g., low formality, low
partiality). After generating the first n sentences of the text, the remainder of
the text is generated in a way that takes the degrees of satisfaction for all the
style constraints into account, for example by favouring those constraints that
have been least-recently satisfied. Monitoring addresses global constraints in
an incremental fashion, which might make it a plausible model of spontaneous
speech. It may be likened to steering a ship: when the ship is going off course,
you adjust its direction. There is no guarantee that monitoring will result in a
happy outcome, but it is a computationally affordable approach to a difficult
problem.

Reiter (2000) discusses various ways in which the size of a generated text
may be controlled.3 We already saw that for certain generation decisions it
might be necessary to know the length of the remainder of the text. Based on
experiments with the stop system, Reiter finds that the size of a text is difficult

3Reiter assumes that one way to meet a size constraint is to express less information,
rather than to express the information more briefly. The difference with our perspective is
largely inconsequential, but we believe the issues can be discussed more easily if content is
left constant.

3

to estimate (i.e., predict) on the basis of an abstract document plan. He argues
that revision of texts, based on measuring the size of an actually generated text,
is the way to go: when the size measure indicates that the text is too large, the
least important message in the sentence plan is deleted and the text regenerated.
Revision has been claimed to be a good model of human writing (e.g., Hayes
and Flower 1986).

Given the usual pipelined architecture for natural language generation, in
which an initial semantic representation is converted, stepwise, into structures
that are closer and closer to the final linguistic surface form (e.g., Reiter 1994),
size is a particularly difficult kind of global constraint, since it applies to the
surface form of a text, and this is why Reiter and colleagues let revision wait
until a draft of the text has been generated and evaluated (i.e., after its size
has been measured). In other respects, it is relatively simple, because it is one-
dimensional and straightforward to define.

In this paper, we explore global constraints in the generation of scripted dia-
logue. The approach proposed was first introduced in Piwek & Van Deemter
(2002). While we shall be building on the ideas in our earlier Piwek & Van
Deemter (2002; 2003), the formal explorations in the first half of this paper will
allow us to discuss the issues much more precisely than before.

3 Controlling global decisions in scripted dia-

logue

In this section, we compare scripted dialogue generation with one of the most
widely used approaches to dialogue, the information state-based approach. We
focus our comparison on the scope for controlling global properties of dialogue.

3.1 The Information State approach

Firstly, let us consider the currently prevalent approach to generating dialogue.
The starting point is the use of two autonomous agents. Each of these agents is
associated with their own information state (e.g., Traum et al., 1999; Traum &
Larsson, 2003). The agent who holds the turn generates an utterance based on
its information state. This leads to an update of the information states of both
agents. Subsequently, whichever agent holds the turn in the new information
states, produces the next utterance. In most implemented systems, one of the
agents is a dialogue system and the other a human user; an approach akin to
this one has, however, also been used for dialogue simulations involving two or
more software agents (as pioneered by Power, 1979).

For our purposes, it is important to note that the agents only have access to
their own information state, and can only use this state to produce contributions.
This has repercussions for controlling global properties of dialogue. Estimation

becomes especially difficult if it involves a span that is to be generated by
the other agent. One agent has no access to the Information State of another

4

and will therefore find it more difficult to estimate what it is going to say.
Furthermore, estimating one’s own future utterances can become more difficult,
since they may depend on utterances by the other agents.

Revision is also much more limited if the information state approach is
strictly followed. Revision is only possible within a turn. The information
state approach assumes that turns are produced according to their chronological
ordering, and hence it is not possible to go back to a turn once it has been
completed.

3.2 The Dialogue Scripting approach

An alternative to the information state approach is the dialogue scripting ap-
proach. According to Piwek & Van Deemter (2002) the main characteristic of
this approach is that it involves the creation of a dialogue (script) by one single
agent, i.e., the script author. Thus, the production of the dialogue is seen as
analogous to single-author text generation.

The automated generation of scripted dialogue has been pioneered by André
et al. (2000), and has subsequently been explored in the neca and the Crags
projects (Isard et al., 2006). We follow André et al. (2000) in distinguishing
between the creation of the dialogue text, i.e., the script and the performance
of this script. Of course the information state approach also lends itself for such
a separation, but typically the authoring and performance functions are taken
care of by the same agent (one of the interlocutors) and take place at the same
time. In the scripting approach, the script for the entire dialogue is produced
first. The performance of this script takes place at a later time, typically by
actors who are different from the author.

There are at least two reasons why the scripting approach is better suited
to creating dialogues with certain global properties than information state ap-
proaches. Firstly, in the scripted dialogue approach the information and control
resides with one author. This makes estimation more reliable, assuming that it
is easier to predict one’s own actions than those of another agent. Secondly, the
scripting approach does not presuppose that the dialogue is created in the same
temporal order in which it is to be performed. Hence it is possible to revisit
spans of the dialogue and edit them.

In between traditional information state and scripted dialogue approaches,
hybrid approaches are possible. For instance, one might generate a dialogue
according to the information state approach, and then edit this draft with a
single author. The techniques described in the next section are presented in the
context of pure dialogue scripting but they remain largely valid for more hybrid
set-ups.

Despite the existence of hybrid approaches, it is important to keep in mind
the different perspectives from which information state and scripted dialogue
approaches arose: the information state approach focuses on the communica-
tion between the interlocutors in the dialogue, whereas the scripted dialogue
approach focuses on the communication between the script author and the read-
ers/audience of the dialogue; the communication between the interlocutors of

5

the scripted dialogue is only pretended communication.

3.3 Two Global Constraints on Dialogue

For concreteness, we focus on two global constraints. The first concerns the
length of a generated dialogue. Length constraints have been discussed in Re-
iter (2000) and the considerations discussed there mostly apply to dialogue as
well, though there are subtle differences. For Reiter, the problem was to fit
information on a fixed number of pages. For dialogue, there are several options
regarding the size measure. If the dialogue is to be presented on paper, the size
constraint is likely to be similar to that of Reiter. On the other hand, if the
dialogue is to be performed, the size is more likely to be calculated in terms of
the duration of the performance. For our purpose, this difference will, however,
be immaterial. Although we will use a specific size measure, nothing in our
approach rests on the specific nature of this measure.

The second constraint concerns the amount of emphasized information in a
dialogue. We will discuss this constraint in detail in section 5, where we explain
how dialogue lends itself for a specific type of emphasis marking. For now, let
us focus on the arguably simplest means of achieving emphasis, i.e., verbatim
repetition (see Hovy 1988; another means that will not be considered here is
the use prosody). For instance, compare ‘this is a very fast car’ with ‘this is a
very very fast car’, where in the second sentence ‘very’ is emphasized through
repetition. A side effect of this type of emphasis marking is that the overall
utterance size is increased. As a result, a constraint on emphasis (e.g., emphasize
as much as possible) interacts with a size constraint (e.g., keep your utterances
as short as possible). This moves the problem of constraints in generation away
from the setting discussed in Reiter, where only a single type of constraint was
taken into account. We will discuss alternative ways of combining multiple
constraints and identify an approach to multiple constraints that is specifically
suited for the aforementioned two constraints on dialogue.

4 Constraints in Generation: Motivation, Limi-

tations and Complications

Before we focus on specific constraints in dialogue generation, we shall look at
constraints in generation from a more abstract point of view. First, we briefly
motivate the constraint-based view of generation. Next, we show that even
simple global constraints can often not be solved using local decisions. Finally,
we lay out the various options that are available once multiple soft constraints
are used.

Constraint-based approaches are particularly attractive for generation for
a number of reasons. Firstly, a constraint-based approach liberates nlg from
the narrow view of mapping (from non-linguistic representations to expressions
in a natural language) as its primary concern. It acknowledges that faithful
expression of some input representation is only one of many requirements that

6

can be imposed on the output of an nlg system; in many settings it is not even
the most important one.4 One of the first to employ the idea that language
generation involves addressing multiple constraints at once is Appelt (1985).
Although he speaks of ‘goals’ rather than ‘constraints’, his ideas are suggestive
of a constraint-based approach:

“One must constantly bear in mind that language behavior is part
of a coherent plan and is directed toward satisfying the speaker’s
goals. Furthermore, sentences are not straightforward actions that
satisfy only a single goal. The utterances that people produce are
crafted with great sophistication to satisfy multiple goals at different
communicative levels.” (on pages 1–2 of Appelt, 1985)

Constraints enable a declarative approach to solving generation problems.
The main advantage of this is that one can separate a clear formulation of
optimal solutions to the generation problem from heuristics-based algorithms for
finding solutions. (We will return to this point at various places in this paper.)
Constraints are particularly well-suited for addressing problems that involve
interactions between information of different types, granularity and levels of
specification (see Langkilde-Geary, 2004).

4.1 Formalizing the notion of a constraint

The notion of a constraint can be formalized in many different ways. Here, we
broadly follow the conception of a (soft) constraint as put forward in Bistarelli et
al. (1997), Bistarelli et al. (2004), and Dubois et al. (1996), which – as pointed
out by Dubois et al. – is rooted in early work on constraint satisfaction in
computer vision (Waltz, 1975; Rosenfeld et al., 1976). The current formulation
provides us with a uniform characterization of hard and soft constraints. Later
in this paper, we make use of this when we formally examine local constraints
and construct proofs that apply to both soft and hard constraints.

The notion of constraint is defined as follows, given a universe E of objects
to which the constraint applies:

Constraint A constraint c for a universe E is a function from E to
a range S of satisfaction (or non-satisfaction) levels, i.e., c : E 7→ S.

Now hard constraints can be characterized as constraints for which there are
only two satisfaction levels, i.e., S = {1, 0} with 0 < 1. Usually (though not
always), 1 is ‘better’ than 0. Thus, a hard constraint returns 1 for objects
which satisfy it and 0 for objects which do not. A hard constraint allows only
these two alternatives: satisfied and not satisfied. In contrast, soft or flexible

4In the generation of poetry, for example, factors such as rhyme and alliteration can be
more important than faithful expression of content (see Manurung et al. 2000). In some
generation systems, even content determination can go beyond straightforward mapping of
information, when content itself is selected based on constraints (Van Deemter and Odijk
1997).

7

constraints may have more than two levels of satisfaction or non-satisfaction.
If levels of non-satisfaction – rather than satisfaction – are taken as basic (for
example, when 1 is ‘worse’ than 0), one often speaks of a cost function.

Two types of soft constraints can be distinguished: (1) the ones discussed
here, which have more than two degrees of (dis)satisfaction (see, e.g., Dubois
et al. 1996; Bistarelli et al. 1997); and (2) the ones which, while Boolean in
nature, are combined in such a way that they do not all have to be satisfied; for
example, one might legislate that a majority of constraints needs to be satisfied,
or constraints may be preferentially ordered with respect to each other, causing
some constraints to have ‘right of way’ over others. In Dubois et al. (1996), this
type of softness is modelled by attaching a priority degree to each constraint,
where the priority degree indicates to what extent it is imperative that the
constraint is satisfied. The two types of softness can be treated simultaneously
(as worked out in, e.g., Dubois et al., 1996); this is, however, beyond the scope
of the current paper.

Levels of satisfaction in the sense discussed here are also known as measures
of desirability, feasibility, importance or preference. Satisfaction levels can, for
example, be represented by {0, 1

2
, 1} with 0 < 1

2
< 1 and 1

2
representing partial

satisfaction. This is, however, only one among many other possible structures,
that include, for instance, the natural numbers with 0 as not satisfied and 1, 2, . . .

as increasing levels of satisfaction.
Given the notion of a constraint as defined above, we can now define the

notion of a Constraint Satisfaction Problem(csp):

Constraint Satisfaction Problem (csp) A csp consists of (1)
a constraint c, (2) a subset A of the universe E and (3) (optionally) a
threshold t ∈ S. A solution to a csp is an object e ∈ A with c(e) = s

such that no other object in A is assigned a higher satisfaction level
(or lower non-satisfaction level) by c than s, and s > t (or s < t if
we are dealing with non-satisfaction, i.e., if c is a cost function).5

Note that e does not need to be unique: a csp can have multiple solutions.
In our formulation of a csp, we deal with only a single constraint. Multiple
constraints are modelled as a single constraint that is formed from multiple
constraints using a combination operator (we discuss constraint combination in
detail in section 4.4).

In constraint-based nlg, the above-mentioned objects are usually spans of
text, while constraints can pertain to any aspect of such a span. Constraint-
based nlg is no monolithic entity: there is a variety of approaches and architec-
tures, each with its own advantages (Piwek & Van Deemter, 2006). In all these
cases, however, the generator can be viewed as a structured network of choices.

5In this definition, solutions are optimal in the sense that no other members of the universe
E are better than any of the solutions. Additionally, solutions need to meet the threshold,
provided that there is one. Alternatively, we could have stipulated that meeting the threshold
is by itself sufficient. This, however, assumes that there is a threshold. For many applications
of soft constraints in nlg, a threshold is not available; e.g., none of the 25 papers on constraint-
based nlg that are discussed in Piwek & Van Deemter (2006) uses thresholds.

8

4.2 A Generator as a network of choices

McDonald (1987:643) observes that generation is the task of choosing between
alternative expressions. This view also underlies Systemic Functional Grammar
(SFG), one of the most influential approaches to generation (see, e.g., Bate-
man, 1997). At the core of this approach is a very general formalism, the
and/or-graph, for mapping out the space of choices that need to be made dur-
ing generation. An and-node with the children a and b indicates that both the
decisions a and b need to be taken. An or-node with children a and b indicates
that a choice between a and b needs to be made. The formalism also allows
explicit formulation of dependencies between nodes: e.g., ‘if the choice for node
X is a, then the choice for node Y is b or b′’.

The network represents a paradigmatic grammar which lays out the permis-
sible combinations of expressive choices. A number of alternative approaches
have been proposed for making specific choices. Here we adopt the perspective
developed in the Penman text generation system (Mann, 1985). or-nodes are
associated with choosers which select an alternative from the set of available
alternatives. A chooser bases its decision on information obtained through a
number of inquiries, e.g., inquiries on aspects of the concepts that need to be
expressed and inquiries regarding the style or genre of the text to be generated.
Note that the division of labour between the network and the choosers nicely
separates grammar (syntactically correct ways of expressing oneself) from addi-
tional constraints (e.g., expressing a certain semantic content, or adhering to a
particular style or other global constraint). This division of labour is also present
in the Generative Grammar tradition, and may be traced back to Chomsky’s
separation of meaning from grammaticality, as illustrated by the grammati-
cally correct, but meaningless ‘colorless green ideas sleep furiously’ (Chomsky,
1957:15).

4.3 Local decisions and their limitations

In this section, we investigate the notion of a local decision and ask under what
circumstances a constraint can be enforced through taking local decisions.

4.3.1 Local decisions and local choosers

Following SFG, we view generation as involving choices that are represented
by the or-nodes in an and/or-graph. The daughters of each or-node can be
thought of as storing information about a separate, independent aspect of a
generated object (e.g., discourse or dialogue). In other words, each or-node
represents a decision problem and its daughters denote decision values. The
word ‘decision’ will sometimes denote a decision value, sometimes a decision
problem.

We write ‘u ∈ D1’ to say that u is a daughter/decision value of or-node/decision
problem D1. We write P (v, w1, w2, . . . , wn) to say that the combination of de-
cisions {v, w1, w2, . . . , wn} fulfills all the relevant constraints. (In many cases

9

there is only one constraint.) If we assume that a decision value bears its decision
problem on its sleeve then the order of P ’s arguments does not matter.

We now define a notion of locality, assuming that the complete set of all the
relevant decision problems involved in a given generation task is D,D1, . . . ,Dn,
where D is the decision of interest.

Definition: The decision D can be taken locally ⇔Def ∃u ∈ D

such that ∀w1, . . . , wn ∈ D1, . . . ,Dn, if ∃v ∈ D such that
P (v, w1, . . . , wn) then P (u,w1, . . . , wn).

Informally: The decision D can be taken locally if and only if there is a decision
value u for this decision problem such that regardless of all the other decisions
D1, . . . ,Dn, either these other decisions, let us call them, w1, . . . , wn, make it
impossible to fulfill the constraints (i.e., ¬∃v ∈ D such that P (v, w1, . . . , wn)),
or you can fulfill them while also making the decision u. If the decision D

can be taken locally then the success of the decision does not depend on the
D1, . . . ,Dn.

Note that the fact that a decision can be taken locally does not mean that
there necessarily exists a local chooser (i.e., an algorithm) for making this de-
cision, because some local decisions may be uncomputable. If, however, there
exists no local decision, then of course no local chooser can be constructed. In
what follows, we will mainly be interested in theorems concerning the existence
of a local decision. Algorithms will be discussed in section 5, where we focus on
decisions involving scripted dialogue.

4.3.2 Constraints that satisfy Monotonicity

Let us explore what kinds of global constraints can be solved with local deci-
sions, whilst continuing to focus on networks as generators of text (rather than
objects of a different kind). We begin by examining a simple class of networks,
which fulfill the following conditions: (P1) there are no dependencies between
decisions, i.e., there are no explicitly formulated dependencies, and (P2) no part
of the generated text is affected by more than one decision (or-node). In many
cases of interest, these conditions are, of course, not met. (Penman’s choosers,
for example, are notoriously dependent on each other.) For now, however, it
will be useful to make these simplifying assumptions. In section 5, where we
return to Scripted Dialogue, they will be abandoned.

Let S′ be a (possibly non-contiguous) substring of S, in which case we write
S′ ⊑ S. Suppose a soft constraint c assigns a preference to both S and its
substrings (for instance assigning a number in the interval [0, 1] to each sub-
string, with 0 standing for non-satisfaction and 1 for complete satisfaction of
the constraint). Then the following is a property that c might or might not
have:

Full Monotonicity of Satisfaction (FMoS) of constraint c: For all
conceivable strings S1 and S′

1
such that S′

1
⊑ S1, if we replace S′

1

with S′
2

to obtain S2 then:

10

(1) if c(S′
2
) < c(S′

1
), then c(S2) ≤ c(S1);

(2) if c(S′
2
) = c(S′

1
), then c(S2) = c(S1);

(3) if c(S′
2
) > c(S′

1
), then c(S2) ≥ c(S1).

FMoS is useful mainly for the following reason: If c satisfies FMoS then there
exist local decisions that guarantee that the degree to which c is satisfied is
maximised. Before stating and proving this theorem more precisely, some new
terminology will be useful. Given condition P2 and the fact that there are ex-
actly i or-nodes, the text region R which is to be generated (and which can
still take different textual forms!) can be divided into i non-overlapping regions
Ri, each of which is ‘filled’ by the decision Di alone. (Some regions of the text
may not be affected by any decisions, which means that their form is fixed.) We
write Si, S′

i, etc., for the different texts that may result from the decision Di,
so Si and S′

i are different ways in which the region Ri may pan out; similarly, S

and S′ are different ways in which the region R as a whole may take shape. By
letting c(Ri) denote the degree to which the region Ri satisfies the constraint c

given a certain way in which Ri is filled, we shall be able to speak conveniently
about maximising c(Ri) (i.e., choosing an Si such that c(Si) is maximal).

Theorem FMoS locality: Let R be a text region governed by the
decisions D1, . . . ,Dn while conditions P1 and P2 hold. Then if c

fulfils FMoS, the decisions D1, . . . ,Dn can be taken locally in such
a way that satisfaction of c(R) is maximised.

Proof: Suppose each decision Di is taken in such a way that c(Ri) is
maximised, and that the result of these decisions is the text S; then
FMoS guarantees that c(R) itself is also maximised. For suppose
there exists a text S′ such that c(S′) > c(S). S′ can only differ from
S as a result of different decisions for some of D1, . . . ,Dn. Given
FMoS, c(S′) > c(S) implies that there exists at least one i for which
c(S′

i) > c(Si), contradicting the assumption that each decision Di

is taken in such a way that c(Si) is maximised. If the number of
each Di’s decision-values is finite, and if there exists an algorithm
for calculating c(X) (for an arbitrary text span X) then there is
an algorithm for maximising each c(Ri), and hence there exists an
algorithm for maximising c(R). In other word, in that case, there
exist local choosers for maximising c(R).

4.3.3 Constraints that do not satisfy Monotonicity

Let us illustrate the abstract issues relating to local strategies using some ex-
tremely simple examples, which involve the generation of a sentence rather than
a dialogue (cf. section 5). As long as we stick to the conditions P1 and P2 above,
we shall use a simple notational convention whereby the subscript on a decision

11

indicates to which of the (non-overlapping) parts of the text the decision ap-
plies. One easy way of thinking about this is to imagine that D1 generates the
leftmost part of the text, after which D2 generates the part immediately to its
right, and so on. We write Di :== A1 | . . . | An to signify that the decision
(or-node) Di involves a choice between the alternatives A1, . . . , An. Consider:

Network N1

D1 :== The Porsche | The Ferraris

D2 :== is | are

D3 :== very | ǫ
D4 :== very | ǫ
D5 :== very | ǫ
D6 :== fast

Suppose this network is used to generate text that accurately expresses some
given semantic content. The chooser for D1 will need to make an inquiry about
this content in order to determine what type of car is discussed. Similarly,
the chooser for D2 will need to investigate whether we are dealing with one or
multiple objects.6 The third, fourth and fifth decision involve the amount of
emphasis. Now, let us assume that no specific value is provided for this (i.e.,
the degree of emphasis is not specified), and thus for each decision both very

and the empty string ǫ are available. However, let us also assume that a soft
constraint cS1 is in place, which values strings with more than 5 words more
highly than ones with 5 or fewer words. In particular, for strings s with 6 or
more words, we have cS1(s) = 1, whereas if there are fewer than 6 words, then
cS1 decreases with string length. This constraint obeys FMoS, and therefore
we can now apply local decisions for maximising cS1(Ri)to obtain a globally
optimal solution (see theorem FMoS locality): for D3 to D5 we chose very since
cS1(very) > cS1(ǫ). The resulting text (assuming an underlying semantics has
guided the other decisions) is The Porsche is very very very fast.

Although, in this paper the focus is on soft constraints, note that the local
chooser for the soft constraint also works for the corresponding hard constraint
cH1 such that cH1(x) = 1 if cS1(x) = 1 and else cH1(x) = 0. This hard constraint
can be paraphrased as the number of words is at least 6. In general, if a soft
constraint can be solved with local choosers, the corresponding hard constraint
can also be solved with those very same local choosers.

Let us now investigate the mirror image of this constraint, that is, the number of

6The validity of these choosers follows from the constraint that the input semantics should
be realised accurately. Note that such a constraint can be dealt with in the current framework.
(If we want to generate a string S whose semantics is characterised by some formula f , then
the totality of choices must lead to a string with the semantics f . In other words, we have
a hard constraint that the semantics of the generated string equals f .) In this paper, we
do not investigate how to enforce such semantic constraints in detail. Our main interest lies
with constraints that differentiate between realizations, regardless of whether the underlying
semantics is more or less the same. By using a declarative constraint-based approach, these
issues can be treated separately from each other.

12

words is at most 6. Again, we first set up a soft constraint cS2. This constraint
values strings with 6 or fewer words as 1, and strings with 7 or more words with
decreasing values. cH2 is obtained from cS2 in the same way as cH1 from cS1.
Unfortunately, this constraint does not satisfy FMoS, though it does satisfy a
‘partial’ variant of it:

Partial Monotonicity of Satisfaction (PMoS) For all conceivable strings
S1 and S′

1
such that S′

1
⊑ S1, if we replace S′

1
with S′

2
to obtain S2

then:
(1) if c(S′

2
) < c(S′

1
), then c(S2) ≤ c(S1);

(2) if c(S′
2
) > c(S′

1
), then c(S2) ≥ c(S1).

The cause of the asymmetry between cS1 and cS2 is that local choosers manip-
ulate ‘small’ substrings, and these have a different status in the two kinds of
constraints. Thus, local optimization does not work for cS2. There is, however,
an alternative chooser, based on the observation that degree of satisfaction asso-
ciated with a soft constraint fails to distinguish between different strings (e.g.,
a string of length 1 and one of length 0), each of which satisfy a constraint
completely (e.g., length is at most 6), but which can have different effects on a
larger string when they are embedded into it. In the case of the constraints of
interest, one can define a reasonable notion of ‘distance to non/partial- satis-
faction’ (dn) in terms of standard edit distance (ld, i.e., Levenshtein distance):
Given a constraint c and assuming that c(S) = 1, then dn(S) is the edit distance
ld(S, S′) between S and some S′ for which c(S′) 6= 1, and such that there is no
S′′ 6= S′ with c(S′′) 6= 1 such that ld(S, S′′) < ld(S, S′). Thus, dn(S) denotes
the smallest number of edit operations that will transform S into some S′ such
that c(S′) 6= 1.

For example, for cS2, strings of length 4 are closer to non-satisfaction than
those of length 3. Strings which satisfy cS2 have the following property in
addition to PMoS.

Monotonicity of Distance to Non-satisfaction (MoDNS): For all con-
ceivable strings S1 and S′

1
such that S′

1
⊑ S1, if we replace S′

1
with

S′
2

to obtain S2, and c(S′
1
) = c(S′

2
) = 1 then the following implica-

tions hold:
(1) If dn(S′

2
) < dn(S′

1
) then c(S2) ≤ c(S1);

(2) If dn(S′
2
) = dn(S′

1
) then c(S2) = c(S1).

A chooser for optimal satisfaction of constraints that obeys PMoS and MoDNS
is easily derived from this: based on PMoS we still maximise c, but now for
those strings x and y where c(x) = c(y), we also maximise dn (which according
to MoDNS, leads to an optimal value for c globally).

Wherever there are contrasting requirements (e.g., containing more than x

and fewer than y words, where x < y), being safer with respect to one of the two
means being less safe with respect to the other. This is illustrated by taking the
combination cS3(z) = min(cS1(z), cS2(z)) of cS1 and cS2. It can be paraphrased

13

as the number of words is as close as possible or equal to 6. The corresponding
hard constraint cH3 (the number of words is exactly 6) is another example.

Neither cS3 nor cH3 satisfies any of FMoS, PMoS and MoDNS, and conse-
quently there exist networks for which no local chooser can guarantee optimal
results. Note that this means that given a hard constraint, even if we can find a
corresponding soft constraint, that soft constraint is not guaranteed to be solv-
able with local choosers. This happens whenever, for any chooser for D, every
choice that it makes can be ‘spoilt’ by the chooser for another decision. The
following network is a simple case in point, in combination with a constraint
cH4 that says ‘the number of words is exactly 3’:

Network N2

D1 :== He | The man

D2 :== left | went away

Consider the chooser for D1 in this network, for example. If D1 chooses ‘He’
then this can lead to a sentence that fulfills the constraint, but only if D2 chooses
‘went away’; if D1 chooses ‘The man’ then this too can lead to a sentence that
fulfills the constraint, but only if D2 chooses ‘left’. (The wisdom of one choice
depends on what other choice is made.) Thus, there is no local decision for D1

that guarantees satisfaction of cH4.
So far, we have worked with networks that satisfy the properties P1 (there

are no dependencies) and P2 (each decision pertains to a single span of text).
Even for such simple networks, local choosers are not always available, as we
have seen. But if we abandon these properties, e.g., P2, then things get even
worse. Consider the following artificial example:

Network N3

D1 :== Choose a real number x between 0 and 1
D2 :== Choose two subsequent natural numbers (e.g., n and m).

Suppose the effect of these choices is to choose the n’th and m’th digit in the
decimal development of x (not counting the initial 0). For example, suppose
D1 chooses the number 0.53453534485463840463. Now if D2 chooses ‘first and
second’ (i.e., n = 1,m = 2) then the string 53 is generated; if D2 chooses ‘13th
and 19th’ then the string 66 is generated. Now suppose a hard constraint c

requires that the string should contain at least one occurrence of the digit 5.
Now the following hold:

1. The constraint c satisfies FMoS.

2. D1 can be decided locally. A safe choice is 0.5 . . . 5.

3. But D2 cannot be decided locally. Consider e.g. the decision D2 = ‘third
and fourth’. This is not a safe choice, for consider the decision D1 =
0.537432 . . . 2 (among many other possible choices). This decision can
fulfil c (e.g. if we decide D2= ‘second and third’), but not in combination
with D2 = ‘third and fourth’. All other choices for D2 are equally unsafe.

14

The point is simple but important: if several constraints conspire to determine
a particular part of the generated text (as is prohibited by condition P2) then
whether a given choice is optimal may depend on the others. Clearly, in such
situations, local choosers are of limited value. The same is true if choices interact
(as is prohibited by P1).

4.3.4 Strategies for enforcing non-local decisions

In light of this discussion, let us examine the different strategies that have been
proposed for dealing with non-local decisions:

1. Monitoring. Clearly, in some situations, monitoring is too weak a strategy.
Consider the network N4,

Network N4

D1 :== a | aa | aaa

D2 :== a | aa

with the constraint that the generated string contain exactly four characters.
Now suppose the generator starts with D1, choosing a. This represents a ‘false
start’: an error has been made that later decisions cannot repair. Monitoring
is a computationally affordable method that is sometimes not powerful enough
to guarantee that some perfectly satisfiable constraints are satisfied.

2. Estimation. Estimation is more powerful than monitoring, since it works
on the basis of (imperfect) predictions concerning decisions that may follow.
That estimation is sometimes too weak to fulfil a given constraint can be seen
if we consider network N5:

Network N5:
D1 :== a|aa|aaaaaa

D2 :== a|aaaaaaaaa,

while the constraint c specifies that the total number of characters is 7. If
estimation operates by counting the average number of characters that result
from the different alternatives for D2 then the prediction is that rewriting D2

will introduce 5 (average of 1 and 9) terminals. Estimation would suggest that
to arrive at a total of 7 terminals, as specified by c, D1 would need to choose
aa. If this is done, however, then the two available alternatives for D2 introduce
1 and 9 characters respectively, leading to a total of either 3 or 11 characters,
both of which are wide off the mark, whereas a choice by D1 for aaaaaa, and
then by D2 for a would have produced a total of exactly the seven required
terminals. Estimation strategies may of course use other methods (i.e., other
than using the average of all possible future rewritings), but as long as they do
not list all possibilities separately, estimation can cause a system to miss out on
a perfectly achievable solution.

3. Revision. Revision may be defined in different ways. Informally speaking,

15

we take it to mean that some or all rewritings are applied tentatively, the result
of which may be modified if they are in breach of a constraint. Revision can
be performed at the end of the generation process, or earlier. Also, revision
might take the shape of some simple changes to the generated structure (e.g.,
Inui et al. 1992) or it might replace generative decisions by alternative ones.
In this case, revision may even amount to full backtracking, which means that,
potentially, all decisions (at all points where decisions were taken) can be tried
out. When revision can examine all possible decisions, it becomes similar to a
full overgenerate-and-test approach, in which all possible decisions are carried
out and compared. Methods of this kind amount to an exhaustive search and
are therefore much stronger than monitoring and estimation. For these reasons,
they are a natural candidate for enforcing global constraints, which is why,
in section 5, we shall explore how revision can be applied to the problem of
enforcing global constraints in the generation of scripted dialogue. Before doing
this, we shall briefly examine what happens when soft constraints enter the
picture.

4.4 Combining Soft Constraints

So far, we have considered one example of multiple constraints (combining cH1

and cH2 and the corresponding cS1 and cS2). The constraint derived from
combining two hard constraints was simply the min operation (i.e., logical con-
junction): the value of a state under the combined constraint is 1 if and only if it
was 1 under both individual constraints. For combining the soft constraints cS1

and cS2 we also used min. In general, however, matters are less straightforward
when it comes to soft constraints, since these can be combined in different ways.
Once again, a simple abstract network will illustrate the point:

Network N6:
D1 :== a | aa | aaa

D2 :== b | bb

The following two soft constraints are in place:

CL. The length of the string should be as close as possible to 2.
CN. The number of a’s in the string should be as high as possible.

Variants of the first constraint have already been discussed in the context of
Reiter’s work (Reiter, 2000); an application of the second type of constraint will
be described in section 5.

Let us specify each of the soft constraints in a manner that will allow us
to illustrate what can happen if different constraints have been satisfied to a
limited degree. For CL, the maximum score should be returned when the length
of the string is 2. The function we create assigns 100(%) for string length 2. As
we move away from this ideal, the value decreases to 0 and for any strings with
length equal to 4 or more, we also obtain 0: for the interval [0,2] we use the
linear function f(x) = 50x, and for [2,4] we use f(x) = −50x+200. Finally, for

16

[4,∞) we use f(x) = 0. For CN, the maximum score is associated with strings
containing three occurrences of the character a, i.e., maximum of a’s which a
string generated by G4 can contain. The minimum score, that is 0, is returned
for strings that contain no a’s. For the interval [0,3] we use the linear function
f(x) = 100

3
x.

Table 1: Strings Generated by N6

string CL CN multiplication addition min
ab 100.00 33.33 3333.00 133.33 33.33

abb 50.00 33.33 1666.50 83.33 33.33
aab 50.00 66.66 3333.00 116.66 50.00

aabb 0.00 66.66 0.00 66.66 0.00
aaab 0.00 100.00 0.00 100.00 0.00

aaabb 0.00 100.00 0.00 100 .00

Table 1 lists the set of strings generated by N6 and shows the values for CL
and CN for each string, along with some different ways of combining these
values: multiplication, addition and minimum. For each of these operators, the
maximum value is different: for multiplication we have a tie between ab and
aab; for addition, ab is the winner; and for min, aab is the winner.

Where a plurality of soft constraints play a role, they can be balanced in
different ways. Which of these is best will depend on the setting in which the
constraints are applied: sometimes, for example, it may be better to maximise
one constraint at the cost of others, while in other situations a more even-
handed approach is preferable. Current practice in nlg is, however, often to
use one of these alternatives without further motivation or, even worse, simply
to implement some search strategy for finding a solution without specifying at
all which solutions it is intended to approximate.7 In our view, the best way
to design a generation system is to first specify what the optimal solutions are
and then to devise an algorithm for finding or approximating such solutions.
Too often, an algorithm is designed without a clear specification of what would
count as an optimal solution.8 In the remainder of this paper, we discuss these
issues in more detail by means of a concrete example of a generation system for
scripted dialogue.

7In Piwek and Van Deemter (2006), we survey 25 approaches to constraint-based NLG
of which 8 deal with multiple soft constraints. Of these only 3 discuss the motivation of
the combination operator that was used (in the survey, the following combination operations
were found: least satisfied precedence, weighted addition, multiplication and bidirectional
superoptimality).

8Of course the limitations of monitoring, estimation, and limited revision may sometimes
be outweighed by their computational advantages, especially when the number of rewriting
rules is large. In this paper, however, we will address two logically prior questions: What is an

ideal solution?, and How might such a solution be achieved algorithmically? See also section
5.1.2.3.

17

5 Scripted Dialogue Generation in neca

We describe here an implemented system called neca (Krenn et al., 2002), in
which our approach to dialogue scripting, and the use of global soft constraints
in particular, has been explored.

The neca system generates dialogue scripts that are performed by animated
characters. The ideas of this paper have been implemented in sicstus Prolog,
as a stand-alone variant of one of the two neca prototypes, called eShowroom,
which focusses on the generation of car sales dialogues. By taking a concrete
dialogue system as our point of departure we were able to try out our ideas
in an existing system that was not built with the problem of controlling global
properties in mind.

As we discussed in the introduction to this paper, scripted dialogue has
many different potential applications, including entertainment and education.
The eShowroom demonstrator is intended to both entertain and educate. It
was developed as the front-end to a car sales portal: users browse a database of
cars, select a car, select two characters and their attributes, and subsequently
view an automatically generated film of a dialogue between the characters about
the selected car. The dialogues are meant to be be entertaining (to to attract
visitors to the portal) as well as informative. The dialogues go beyond the recital
of technical information about the car: for the benefit of non-expert car buyers,
the dialogues link technical information with broad categories such as luxury,
friendliness for the environment, etc.

The eShowroom system has the following inputs:

• A database with facts about the selected car (maximum speed, horse
power, fuel consumption, etc.).

• A database which correlates facts with value dimensions such as ‘sporti-
ness’, ‘environmental-friendliness’, etc. (e.g., a high maximum speed is
good for ‘sportiness’, high gasoline consumption is bad for the environ-
ment).

• Information about the conversational characters (e.g., role and personal-
ity).

This input is processed in a pipeline that consists of:

1. A Dialogue Planner, which produces an abstract description of the dia-
logue (the dialogue plan).

2. A multi-modal generator which specifies linguistic and non-linguistic re-
alizations for the dialogue acts in the dialogue plan.

3. A Speech Synthesis Module, which adds information for Speech.

18

4. A Gesture Assignment Module, which controls the temporal coordination
of gestures and speech.

5. A Player, which plays the animated characters and the corresponding
speech sound files.

Each step in the pipeline adds information to the dialogue plan/script until fi-
nally a player can render it. A single xml-compliant representation language,
called neca Rich Representation Language (rrl), has been developed for rep-
resenting the Dialogue Script at its various stages of completion (see Piwek et
al., 2002). The following is a transcript of a dialogue fragment which the system
currently generates. (Note that this is only the text. The system actually pro-
duces spoken dialogue accompanied by gestures of the embodied agents which
perform the script):

Seller: Hello! How can I help?
Buyer: Can you tell me something about this car?
Seller: It is very comfortable.
Seller: It has leather seats.
Buyer: How much does it consume?
Seller: It consumes 8 liters per 60 miles.
Buyer: I see.
Etc.

Here, we focus on the representation of this dialogue after it has been processed
by the Dialogue Planning module. The rrl dialogue script consists of four
parts:

1. A representation of the initial common ground of the interlocu-
tors in terms of a discourse representation structures (drss; Kamp
& Reyle, 1993). This representation provides information for the
generation of referring expressions.

2. A representation of each of the participants of the dialogue. It
contains information on the name, sex, appearance, role (seller or
buyer), etc. of the characters.

3. A representation of the dialogue acts. Each act is associated with
attributes, some of which are optional, specifying its type, speaker,
addressees, semantic content (in terms of drss), what it is a reac-
tion to (in terms of conversation-analytical adjacency pairs) and the
emotions with which it is to be expressed.

4. The fourth component of the rrl representation of the dialogue
script records the temporal ordering of the dialogue acts.

19

5.1 Enforcing global constraints in scripted dialogue

Let us now examine how to adapt the system so that it can take global con-
straints into account. We have seen in section 3.2 that the dialogue scripting
approach is best suited for the control of global dialogue properties. The neca
system is based on dialogue scripting: each module in the pipeline operates as
a single author/editor who creates/elaborates the Dialogue Script. Within the
Dialogue Scripting approach various methods for controlling global properties
can be employed. Earlier on, we discussed various strategies that have been
employed in text generation. In this section, we limit our attention to a revision
approach.

Our reasons for using revision are as follows. Constraint Satisfaction as de-
fined in Van Hentenryck (1989) does not appear to be applicable, since it is
based on a set of variables whose values are optimized given a set of constraints.
In the situations discussed in the present paper, it is difficult to see how the
relevant variables could be assigned values directly, since they can only arise
indirectly.9 Secondly, revision will allow for a straightforward division of labour
between system developers.More generally, it has been argued that a single-pass
approach, as opposed to revision-based approaches, can complicate the design
and maintenance of a generation system (see Callaway & Lester 1997, Reiter
2000, Robin & McKeown 1996).10 A consequence of this is that revision of-
ten scales up better to new data (see Robin and McKeown 1996). Thirdly, as
explained in section 2, various authors have claimed that revision is a more
effective method for satisfying constraints (Reiter 2000, Robin and McKeown
1996). Fourthly, we favour revision over monitoring because the latter is tai-
lored to left-to-right processing, whereas the dialogue scripting approach is not
constrained in this way. Monitoring can, of course, only work well if the number
of decisions relating to each constraint is large, since this gives the system many
opportunities for ‘changing course’.

We add a new revision module to the system described in section 5, which will
operate immediately after the Dialogue Planner. Dialogue-oriented revisions
will take a dialogue plan as input, and deliver another possible dialogue plan
as output. A revised dialogue plan will express basically the same information
as the original dialogue plan, consistent with the traits and preferences of the
characters. The degree to which it satisfies other global constraints on the
dialogue might, however, differ from that of the original dialogue plan.

Our approach to revision differs from other approaches. Firstly, our revi-
sions are carried out on the abstract dialogue plan, before linguistic realization.
Although Callaway & Lester also carry out their revision operations on abstract

9Here one can think of variables like turn and emph (see section 5.1.1), where the problem
is that their values only arise as a result of generation decisions involving insert and aggr.
Note, however, that a clever encoding is sometimes possible. For instance, Power (2000),
in the context of text structuring, uses a csp solver to produce a partial description of the
solution which is then expanded by further structural rules.

10We could, for instance, have included the aggregation and insertion operations (see below)
directly in our dialogue manager, but this would have complicated the dialogue planner rules.

20

representations of sentences, these are obtained by first generating concrete sen-
tences and then abstracting again over irrelevant details. Instead of first fully
generating and then abstracting, we follow an approach of partial generation.
Secondly, Reiter and Callaway & Lester focus on a single type of constraint. In
this respect, our work is more similar to that of Hovy, where different, poten-
tially conflicting constraints are considered. To our knowledge, we are the first
to propose revision operations on dialogue structure as opposed to discourse or
sentence structure. Arguably, the different types of revision ought at some point
be addressed through one common approach.

5.1.1 Two global constraints and two revision operations for dia-

logue

To illustrate the issues, let us consider four possible global constraints on dia-
logue:

• (Turn) Number of turns in the dialog: maximal (max) or minimal (min)

• (Emph) Degree of Emphasis: maximal (max) or min (min)

For the moment, we keep the constraints as simple as possible and assume that
they can only take extreme values (max or min).

Furthermore, we introduce two revision operations on the output of the
dialogue planner: aggregation and insertion. In the definitions of the two oper-
ations we use the notion of an adjacency pair which is common in Conversation
Analysis. The idea is that the first and second part of the pair are connected by
the relation of conditional relevance (e.g., a pair consisting of a question and an
answer): ‘When one utterance (A) is conditionally relevant to another (S), then
the occurrence of S provides for the relevance of the occurrence of A’ (Schegloff,
1972:76).

Adjacency Pair Aggregation (Aggr)

Operation: Given the adjacency pairs A = (A1,A2) and B =
(B1,B2) in the input, create A + B = (A1+B1,A2+B2).

Preconditions: A and B are about the same value dimension,
and A2 and B2 entail answers that have the same polarity (i.e.,
for YES/NO questions both entail yes or both entail no).

Example: A = (Does it have airbags? Yes),
B = (Does it have ABS? Yes),
A + B = (Does it have airbags and ABS? Yes)

Comment: The shared value dimension is security.

Adjacency Pair Insertion (Insert)

Operation: Given adjacency pair A = (A1,A2) in the input, 1. cre-
ate adjacency pair B = (B1,B2) which is a clarificatory subdialogue

21

about the information exchanged in A and 2. insert B after A, re-
sulting in (AB) = (A1,A2)(B1,B2). 3. Remove the emphasis marker
on the information exchanged in A (see Precondition).

Precondition: The information exchanged in A is marked for em-
phasis.

Example: A = (Does it have leather seats? Yes). Assume that
comfort is positively correlated with having leather seats and that
the user has indicated that the customer prefers comfortable cars.
On the basis of this, the information exchanged in A is marked for
emphasis. The text after revision is: (AB) = Does it have leather
seats? Yes. Real leather? Yes, genuine leather seats.

Comment: This operation was inspired by examples, discussed in
Piwek & Van Deemter (2002), of how human authors of scripted
dialogue appear to use sub-dialogues for emphasis.

One might ask how we decide which operations are included in the conventional
topdown planner and which ones are deemed revision operations. To answer
this question, it will be useful to elaborate a bit on our underlying assumptions
about dialogue.

According to Clark (1996), dialogue acts belong to different ’tracks’ depend-
ing on how directly they contribute to the purpose of the dialogue. The acts on
track 1 contribute directly.

Meta-communication about the communication on track 1 takes place at
the level of track 2. This includes monitoring the success of the communication,
attempting to fix communication problems, etc. If the utterances on track 2
are omitted, the remaining dialogue script still makes sense (see Piwek & Van
Deemter, 2002), whereas removing utterances from track 1 does not have the
same effect.

1. Buyer: How much does the car cost?
2. Seller: 15.000 Euro.
3. Buyer: 15.000?
4. Seller: Yes, only 15.000.

The acts on track 1 of this dialogue (utterances 1. and 2.) make sense on their
own, whereas those on track 2 (3. and 4.) do not. For this reason, acts on track
1 are dealt with by the dialogue planner, while acts on track 2 are inserted at
the revision stage, by means of the operation Insert.

Aggr introduces a new type of aggregation, on the dialogue level. Aggrega-
tion operations are typically dealt with using revision: two or more structures
are merged/revised into one new structure. Our Aggr allows us to reorganize
the location of dialogue acts. It does not add or remove any dialogue acts,
though it can reduce the size of their realization. The precondition on Aggr,
which stipulates that only dialogue acts which deal with the same value dimen-

22

sion can be aggregated, guards against erratic reorganizations of the dialogue,
destroying smooth shifts from one topic (value dimension) to another.11

5.1.2 The revision problem and how to solve it

Let us now describe our revision problem. We have an initial dialogue plan dp1,
produced by the dialogue planner. Before it is passed on to the multi-modal
natural language generator we want to apply the revision operations Aggr and
Insert in such a way that the resulting dialogue plan dp2 optimally satisfies
the constraints for turn and emph. In total, there are four possible constraint
settings:

turn = max and emph = max.
turn = max and emph = min.
turn = min and emph = min.
turn = min and emph = max.

Sequential revision Before we look at pairs of constraints, let us start with
examining a single constraint, i.e, emph = max. For this constraint, a local
strategy, as defined in section 4.3.1, exists; we simply apply insert as often as
possible. In other words, whenever we need to make the decision whether to
insert or not, we choose for insert. By choosing for insert, we make a decision
which is locally optimal (it maximises emphasis locally), and, since emphasis for
the entire dialogue is obtained by summing of local emphasis, global emphasis
is also maximised. Note that the maximum number of inserts is determined
by how many bits of information in the dialogue are marked for emphasis.
The current strategy means that for each of the marked bits of information, a
subdialogue that emphasizes it is inserted.

When we introduce multiple constraints, the picture is less straightforward.
Let us assume that in addition to emph = max we also want to minimize the
number of turns, i.e., turn = min. We have seen that maximization of em-
phasis is associated with insert. Building on this, let us try a rather simplistic
approach to deal with the additional constraint that turn = min. We observe
that aggr brings down the number of turns, and therefore given turn = min,
we opt to apply aggr as often as possible. So our strategy could be to first
apply aggr as often as possible, and subsequently insert as often as possible.

This solution, however, overlooks the fact that the insert and aggr opera-
tions are not independent from each other. In particular, the insert operation
can create new opportunities for applying the aggr operation. This type of
problem can usually be finessed by finding an ‘optimal’ ordering between oper-
ations: if insertion precedes aggregation, both constraints of our example situa-
tion can be satisfied. Unfortunately, however, there is another type of problem
which cannot be finessed so easily.

11More generally, the generation of texts with smooth topic shifts can be seen as a constraint
satisfaction problem. See, for instance, Kibble & Power (2000).

23

So far, we have overlooked the fact that application of insert positively
affects the number of turns as well as the degree of emphasis, affecting the two
constraints turn = min and emph = max in opposite ways. In such a case it
is unclear what the best strategy is: the algorithm might either maximise the
number of insertions, trying to maximise emphasis, or minimise them, trying to
minimise the number of turns. To tackle problems of both kinds, an approach
is needed that is able to make trade-offs between conflicting constraints.

Stepping back: What is an optimal solution? Starting with an ad hoc
approach to our revision problem, we have run into serious problems. Most
importantly, we have not yet specified what would count as an optimal solution.
Therefore, it is difficult to judge how well the algorithm is actually doing. So, let
us take a different tack, and first try to specify what would count as an optimal
solution to the problem at hand. For this, we draw upon the framework which
we introduced in section 4, where we discussed alternatives ways of defining
what counts as an optimal solution given a set of soft and/or global constraints.
Firstly, we need to characterize the set of all candidate solutions. For current
purposes, this set consists of those plans that can be obtained by applying the
operations Insert and Aggr zero or more times, in any order, to the plan which
is produced by the dialogue planner. Let us call this call this set of candidate
dialogue plans DPcand. Members of DPcand can satisfy the turn and emph
constraints to different degrees. Each constraint C is given as a function from
DPcand to [0-100], which maps candidate solutions to the degree of satisfaction
of the solution:

• For turn = min, cturn=min returns 100% for the shortest plans and 0%
for the longest plans in DPcand. We assume that the function is linear
between these extremes.

• For turn = max, we construct cturn=max by interchanging the extremes
of dturn=min and adjusting satisfaction for the intermediate plans accord-
ingly.

• For emph = max, cemph=max returns 100% for the plans with the highest
number of emphasis subdialogues in DPcand and 0% for those with the
least number. The function is linear in between.

• For emph = min, we interchange the extremes of cemph=max and adjust
satisfaction for the intermediate plans accordingly.

Having set up each constraint as a function which returns the degree of sat-
isfaction for specific dialogue plans, we still need to say how the functions for
different constraints are combined. In section 4.4 we discussed three possible
combination operators (multiplication, addition and min) and argued that a spe-
cific operator should be selected on the basis of characteristics of the application
in question.

24

Let us elaborate on the intended application of our method. We assume that
a person (or program) selects a constraint setting (min or max) for emph and
turn. The person values each of the constraints equally and seeks a solution
that satisfies each of the resulting constraints as much as possible. In principle,
this informal idea can been made precise in a number of ways, while taking
certain general principles into account. Perhaps the best known such principle
is the idea that a solution must always fulfill Pareto Optimality. A pair of
degrees of satisfaction for the turn and emphasis constraints (〈ST , SE〉) is Pareto
Optimal if it is impossible to improve one of its elements without making the
other element worse off.

Pareto Optimality: A pair 〈ST , SE〉 ∈ DPcand is Pareto Optimal
iff it is impossible to find another pair 〈S′

T , S′
E〉 ∈ DPout such that:

(1) S′
T = ST and S′

E > SE or
(2) S′

E = SE and S′
T > ST or

(3) S′
E > SE and S′

T > ST .

Unfortunately, Pareto Optimality alone does not help us to identify a unique
solution: For example, if DPcand contains only two pairs: dp1 = 〈100, 10〉 and
dp2 = 〈50, 50〉 then both pairs are Pareto optimal. Making use of a number of
other axioms that any fair solution must obey, Nash (1950) argued that only one
arbitration plan counts as treating the two constraints evenhandedly. According
to the Nash arbitration plan, the optimal solution is simply the solution 〈ST , SE〉
with the highest value for ST × SE . For example, if DPcand contains only two
solutions with the pairs: dp1 = 〈100, 10〉 and dp2 = 〈50, 50〉, Nash arbitration
causes dp2 to win. Although other reasonable arbitration plans are conceivable,
Nash’s notion of fairness appears to be reasonable in the situations of interest
to us. 12

Searching for optimal solutions Ideally, one would like to guarantee that
an optimal solution is always found. The most straightforward way of guar-
anteeing this is to employ an overgenerate-and-test approach: simply generate
all possible dialogue plans (DPcand), then find the one with the highest score
(based on combining the satisfaction function for individual constraints through
multiplication). Such an approach is not limited to revision-based generation. It
could also have been applied if we had decided to keep hold of multiple solutions
in the generation process at any other stage in the generation process.

The overgenerate-and-test approach does have one major drawback: it is
computationally expensive. Take, for example, our application. Assume an ini-
tial dialogue plan consisting of a sequence of adjacency pairs. Some of these pairs
will lend themselves to aggregation. Let us denote each set of such adjacency
pairs with xi, and assume that there are k such sets, i.e., x1, . . . , xk. Addition-
ally, assume that n adjacency pairs have been marked for emphasis. Now the
lower bound on the number of candidate dialogue plans to be generated from
the initial dialogue plan is given by:

12For an empirical study of several arbitration plans in a another area, see Masthoff (2004).

25

(
∏k

i=1
B|xi|) × 2n

Here, B|xi| stands for the Bell number of the set xi with cardinality |xi|. It
returns the number of possible partitions of the set xi (i.e., ways to aggregate
members of xi). The formula 2n represents the number of possible ways that
the insert operation can deal with adjacency pairs that have been marked for
emphasis (e.g., if there is only one pair we have 21 = 2 ways: add a subdialogue
expressing emphasis or not).

The formula we give provides only a lower bound since application of re-
vision operators can introduce new opportunities for applying these operators
(e.g., if we insert multiple subdialogues these subdialogues themselves become
candidates for aggregation).

To get an impression of the running times incurred in situations typical for
the neca system,13 we have tested the overgenerate-and-test dialogue revision
module with eight different inputs that represent a random sample of six initial
dialogue plans (DP1 to DP6) that were generated with the eShowroom system,
and two initial dialogue plans (DP7 and DP8) with more extreme values (than
any of the dialogues produced by the eShowroom system).

The outcomes are given in Table 2, suggesting that, in situations of typical
size,‘overgenerate and test’ is usually quite feasible. Because we apply revisions
at the level of dialogue plans, the computation of the candidates themselves
is relatively cheap (e.g., it does not involve potentially expensive tactical and
surface generation).

In the long run, it might very well turn out that overgenerate-and-test is
not feasible, in particular when further constraints and corresponding revision
operators are considered. The point of this paper is, however, not to advocate
a particular algorithm for solving this problem. Rather, our aim was to argue
for two stages in the design of generation systems which address multiple con-
straints: 1. specification of optimal solutions independent of specific algorithms
and 2. construction of an algorithm for finding or approximating an optimal
solution. Once step (1) has been performed, an algorithm can often be found
for the problem at hand from the repository of existing search and optimization
algorithms.14

6 Discussion and Conclusions

We started this paper by introducing the notion of a fully generated scripted
dialogue, and explaining how it is often essential that certain global and soft

13Our dialogue revision module has been implemented in Sicstus 3.12.2. We ran the tests
on a Pentium M 1.8 MHz laptop.

14See Piwek & Van Deemter (2006) for an overview ranging from genetic algorithms (Mellish
et al. 1998, Manurung et al. 2000), generate-and-test (Callaway & Lester, 1997) and Lin-
ear Integer Programming (Marciniak & Strube, 2005), to static analysis (Paiva & Evans,
2004;2005). Particularly relevant here is the work of Germann et al. (2001) who explicitly
compare optimal algorithms for translation with fast algorithms and use the former to evaluate
the latter.

26

dp ap emph aggr cand gen cand gen sol gen time
DP1 3 1 2 4 1 0.0s
DP2 2 2 2 11 1 0.0s
DP3 4 4 2,2 121 6 0.1s
DP4 3 1 - 2 2 0.0s
DP5 5 4 2,2 121 6 0.11s
DP6 3 1 - 2 2 0.0s
DP7 6 5 2,2,2 484 7 6.81s
DP8 6 2 6 1198 2 3.866s

Table 2: Results of running our dialogue revision module on eight different
initial dialogue plans. In this table dp stands for Initial Dialogue Plan, ap
for the number of Adjacency Pairs in the Initial Dialogue Plan, emph for the
number of Adjacency Pairs that were marked for Emphasis, aggr cand for the
cardinality of the sets of adjacency pairs that lend themselves to aggregation,
gen cand for the total number of Candidate Dialogue Plans that the revision
module produced, gen sol for the number of solutions that were identified in
the set of all Candidates (with the constraints set to turn = min and emph =
max, and finally, gen time for the time it took the revision module to generate
all candidates and find the optimal solutions.

constraints on the generated dialogues be obeyed, in order that these dialogues
have the desired effect on an audience. The remainder of the paper has pro-
posed a specific way in which global soft constraints on scripted dialogues can
be formulated and enforced.

Soft constraints have often played an important role in Natural Language Gen-
eration but never, to the best of our knowledge, in connection with scripted
dialogue. Moreover, we believe that there is insufficient understanding of the
properties of soft constraints, particularly in connection with global properties
of the texts (or dialogues) generated. We have therefore devoted a substantial
part of this paper to a formal exploration of a number of issues in this area,
focusing on the question what types of constraints can be enforced using a local
strategy. This exploration is largely independent of the subject matter of the
constraints, and is as relevant to the generation of text as it is to the genera-
tion of scripted dialogue. The main outcome of the theoretical explorations in
section 4 is that it is difficult, and in some cases impossible, to guarantee the
satisfaction of global constraints by following simple ‘local’ strategies: in some
cases, global constraints really do necessitate the inspection of the generated
text (or dialogue) as a whole.

When multiple soft constraints are involved, one of the main problems is, of
course, to find a principled way in which to balance these constraints against
each other. Although there is a significant amount of work on constraints in
generation (see Piwek & Van Deemter, 2006, for a survey), detailed compar-
isons of alternative ways of combining soft constraints are typically missing, as

27

we have argued, and it is often unclear what motivates a particular approach to
constraints in nlg (see e.g. section 4.4).Taking our inspiration from the litera-
ture on decision and game theory – which is finding more and more applications
in many areas including linguistics (e.g. Rubinstein 2000) – we have argued that
combination strategies should be heavily dependent on the situation in which
the constraints are applied, but that it is possible to formulate some general
principles to narrow down the options.

Throughout the paper, we have emphasised that it is important that the de-
tails of how constraints interact are worked out before a concrete algorithm is
designed. This approach – which, once again, is applicable far beyond the gener-
ation of Scripted Dialogue – is helpful in two ways: it tells us what we would like
to achieve, and it helps us to identify the best optimization strategy. These and
other issues discussed in this paper are illustrated using a stand-alone extension
to the neca system, which generates dialogues between animated conversa-
tional agents, and where a revision approach is taken to search for a dialogue
that satisfies a set of constraints in the best possible way.

Acknowledgements We would like to thank the reviewers of Research on
Language and Computation, and Chris Mellish, Daniel Paiva Richard Power
and Graeme Ritchie for their helpful comments on earlier versions of this paper.
Needless to say tha any remaining erros are the sole responsibility of the authors.

References

Appelt, D.E. (1985). Planning English Sentences, Cambridge University
Press, Cambridge.

André, E., Rist, T., van Mulken, M., and S.Baldes (2000). The auto-
mated design of believable dialogues for animated presentation teams. In
J.Cassell, J.Sullivan, S.Prevost, and E.Churchill (Eds.), Embodied Conversa-
tional Agents, MIT Press, 220-255.

Bateman, J. (1997), ‘Sentence generation and systemic grammar: an intro-
duction’. Iwanami Lecture Series: Language Sciences, Iwanami Shoten Pub-
lishers, Tokyo.

Bistarelli, S. Montanari, U. & Rossi, F. (1997). ‘Semiring-based constraint
solving and optimization’. Journal of the ACM, 44(2), 201–236.

Bistarelli, S., Frühwirth, T., Marte, M. & Rossi, F. (2004). ‘Soft Constraint
Propagation and Solving in Constraint Handling Rules’, Computational In-
telligence, 20(2), 287–307.

Callaway, C. and J. Lester (1997). ‘Dynamically Improving Explanations: a
Revision-Based Approach to Explanation Generation’. In: Proceedings. of
IJCAI97 conference, Nagoya, Japan.

28

Chomsky, N. (1957). Syntactic Structures. Mouton, The Hague/Paris.

Clark, H. (1996). Using Language. Cambridge University Press, Cambridge.

Cox, R., McKendree, J. Tobin, R., Lee, J. and Mayes, T. (1999). Vicarious
learning from dialogue and discourse: A controlled comparison. Instructional
Science, 27, 431–458.

Craig, S., Gholson, B., Ventura, M., Graesser, A. and the Tutoring Research
Group (2000).Overhearing Dialogues and Monologues in Virtual Tutoring Ses-
sions: Effects on Questioning and Vicarious Learning. International Journal
of Artificial Intelligence in Education, 11, 242–253.

Dubois, D., Fargier, H. and Prade, H. (1996). ‘Possibility theory in constraint
satisfaction problems: Handling priority, preference and uncertainty’. Applied
Intelligence, 6, 287–309.

Germann,U., Jahr, M., Knight, K., Marcu, D. and Yamada, K. (2001). ‘Fast
Decoding and Optimal Decoding for Machine Translation’. Proceedings of
the 39th Conference of the Association for Computational Linguistics (ACL),
Toulouse, France, 228–235.

Hayes, J. and L. Flower (1986). ‘Writing research and the writer’. American
Psychologist 41, 1106–1113.

van Deemter, K. and Odijk, J. (1997). Context Modeling and the Generation
of Spoken Discourse. Speech Communication 21, 101–121.

van Hentenryck, P. (1989). Constraint Satisfaction in Logic Programming,
The MIT Press, Cambridge, Massachusetts.

Hovy, E. (1988). Generating Natural Language Under Pragmatic Constraints.
Lawrence Erlbaum Associates, Hillsdale, New Jersey.

Inui, K., Tokunaga, T. and Tanaka, H. (1992). ‘Text revision: A model and its
implementation’. In R. Dale et al. (eds.), Aspects of Automated Natural Lan-
guage Generation: Proceedings of the Sixth International Natural Language
Generation Workshop, pp. 215–230, Springer-Verlag, Berlin.

Isard, A., Brockmann, C. and Oberlander, J. (2006). ‘Individuality and Align-
ment in Generated Dialogues’. In: Proceedings of INLG 2006, the Interna-
tional Natural Language Generation Conference, July 2006, Sydney, Aus-
tralia.

Kamp, H. & Reyle, U. (1993). From Discourse to Logic: Introduction to
Modeltheoretic Semantics of Natural Language, Formal Logic and Discourse
Representation Theory. Kluwer Academic Publishers, Dordrecht.

Kibble, R. & R. Power (2000). ‘An integrated framework for text planning
and pronominalisation’. In: Proceedings of The First International Natural
Language Generation Conference (INLG’2000), 77–84.

29

Kibble, R. & R. Power (2004). ‘Optimizing Referential Coherence in Text
Generation’. Computational Linguistics, 30(4), 401–416.

Krenn B., H. Pirker, M. Grice, S. Baumann, P. Piwek, K. van Deemter,
M. Schröder, M. Klesen, E. Gstrein (2002). ‘Generation of multimodal dia-
logue for net environments’, in: Busemann S. (ed.), KONVENS 2002, DFKI,
Saarbrücken, Germany, 91–98.

Langkilde-Geary, I. (2004). ‘An Exploratory Application of Constraint Op-
timization in Mozart to Probabilistic Natural Language Processing’. Inter-
national Workshop on Constraint Solving and Language Processing – CSLP
2004, September, Roskilde University.

Mann, W. C. (1985). ‘An introduction to the Nigel text generation grammar’.
In: J. D. Benson & W. S. Greaves (eds.), Systemic Perspectives on Discourse:
Selected Theoretical Papers from the 9th. International Systemic Workshop,
Ablex Pub. Corp., Norwood, N.J., 84-95.

Manurung, H., Ritchie, G. and Thompson, H. (2000). ‘Towards a computa-
tional model of poetry generation’. In: G.A. Wiggins (ed.), Proceedings of the
AISB00 Symposium on Creative & Cultural Aspects and Applications of AI
& Cognitive Science, SSAISB, 79–86.

Marciniak, T. and Strube, M. (2005). ‘Discrete Optimization as an Alter-
native to Sequential Processing in nlg’. Proceedings of the 10th European
Workshop on Natural Language Generation (ENLG 2005), Aberdeen, UK.

Masthoff, J. (2004). ‘Group modeling: Selecting a sequence of television items
to suit a group of viewers’. User Modeling and User Adapted Interaction, 14,
37–85.

McDonald, D. (1987). ‘Natural-Language Generation’. In: S. Shapiro (ed.),
Encyclopedia of Artificial Intelligence, Volume 1. John Wiley and Sons, New
York.

Mellish, C., Knott, A., Oberlander, J. and O’Donnell, M. (1998). ‘Experi-
ments using stochastic search for text planning’. Proceedings of the Ninth In-
ternational Workshop on Natural Language Generation, Niagara-on-the-lake,
Ontario.

Nash, J. (1950). ‘The Bargaining Problem’. Econometrica, 18, 155–162.

Paiva, D. and Evans, R. (2004). ‘A framework for stylistically controlled gen-
eration’. In: A. Belz, R. Evans and P. Piwek (eds.), Natural Language Gen-
eration: Third International Conference (INLG 2004), LNCS 3123, Springer,
Berlin, 120–129.

Paiva, D. and Evans, R. (2005) ‘Empirically-based control of natural language
generation’, In: K. Knight, H.T. Ng and K. Oflazer (eds.), Proceedings of the
43rd Annual Meeting of the Association for Computational Linguistics (ACL
2005), Ann Arbor, USA, pp. 58-65.

30

Piwek, P. and K. van Deemter (2002). ‘Towards Automated Generation of
Scripted Dialogue: Some Time-Honoured Strategies’. In: Bos, J., M. Foster
and C. Matheson (Eds.), Proceedings of EDILOG: 6th workshop on the se-
mantics and pragmatics of dialogue, Edinburgh, September 4-6, 2002, pp. 141
- 148.

Piwek, P., B. Krenn, M. Schröder, M. Grice, S. Baumann and H. Pirker
(2002). ‘RRL: A Rich Representation Language for the Description of Agent
Behaviour in NECA’. In: Proceedings of the AAMAS workshop “Embodied
conversational agents - let’s specify and evaluate them!”, Bologna, Italy, 16
July 2002.

Piwek, P and van Deemter, K. (2003). ‘Dialogue as Discourse: Controlling
Global Properties of Scripted Dialogue’. In: AAAI Spring Symposium on Nat-
ural Language Generation in Spoken and Written Dialogue, AAAI Technical
Report SS-03-06. Menlo Park, California: AAAI Press, pp. 118 - 124.

Piwek, P. and van Deemter, K. (2006). ‘Constraint-based Natural Language
Generation: A Survey’. Technical Report 2006/03, Computing Department,
The Open University.

Power, R. (1979). ‘The Organization of Purposeful Dialogues’. Linguistics,
17, 107–152.

Power, R. (2000). ‘Planning texts by constraint satisfaction’. In Proceedings
of COLING 2000, pp. 642–648, Saarbrücken, Germany.

Reiter, E. (1994). ‘Has a consensus NL Generation architecture appeared,
and is it psycholinguistically plausible?’, In Proceedings of the Seventh Inter-
national Workhop on Natural Language Generation, pp. 95–105, Leiden, The
Netherlands.

Reiter, E. (2000). ‘Pipelines and Size Constraints’. Computational Linguistics.
26, 251–259.

Robin, J. & K. McKeown (1996). ‘Empirically Designing and Evaluating a
New Revision-Based Model for Summary Generation’, Artificial Intelligence.
85(1–2).

Rosenfeld, A., Hummel, R.A., & Zucker, S.W. (1976). ‘Scene labeling by
relaxation operations’, IEEE Trans. on Systems, Man and Cybernetics, 6,
420–433.

Rubinstein, A. (2000). Economics and Language, Cambridge University Press,
Cambridge.

Schegloff, E. (1972). ‘Notes on a Conversational Practice: Formulating Place’.
In: D. Sudnow (ed.), Studies in Social Interaction, The Free Press, New York,
75–119.

31

Traum, D. J. Bos, R. Cooper, S. Larsson, I. Lewin, C. Matheson, and M.
Poesio (1999). ‘A model of dialogue moves and information state revision’.
Trindi Project Deliverable D2.1, 1999.

Traum, D. and Larsson, S. (2003). ‘The Information State Approach to Di-
alogue Management’. In: J. van Kuppevelt & R.W. Smith (eds.), Current
and New Directions in Discourse and Dialogue, Kluwer Academic Publishers,
Dordrecht, 325–353.

Waltz, D. (1975). ‘Understanding line drawings of scenes with shadows’. In:
P.H. Winston (ed.), The Psychology of Computer Vision, McGraw-Hill, New
York, 19–92, 1975.

32

