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CLASSIFICATION OF REGULAR MAPS
OF NEGATIVE PRIME EULER CHARACTERISTIC

ANTONIO BREDA D’AZEVEDO, ROMAN NEDELA, AND JOZEF ŠIRÁŇ

Abstract. We give a classification of all regular maps on nonorientable sur-
faces with a negative odd prime Euler characteristic (equivalently, on nonori-
entable surfaces of genus p + 2 where p is an odd prime). A consequence of
our classification is that there are no regular maps on nonorientable surfaces
of genus p + 2 where p is a prime such that p ≡ 1 (mod 12) and p �= 13.

1. Introduction

A regular map is an embedding of a graph in a compact, connected surface,
such that the automorphism group of the embedding acts regularly on flags (edges
with a longitudinal and a transverse direction). If the surface is orientable and one
requires only the orientation-preserving automorphism group of the embedding to
be regular on arcs (edges with longitudinal direction), then the map is orientably
regular.

The ubiquitous five platonic solids are the most well-known examples of regular
maps. Nonspherical regular maps appeared in the form of stellated polyhedra
in the work of Kepler [24] as early as 1619. Origins of more current interest in
the study of regular maps go back to the late 19th century and were brought up
by two independent streams of research. In connection with Heawood’s work on
map colourings that eventually led to the rise of modern topological graph theory,
Heffter [18] constructed orientably regular embeddings of complete graphs of prime
order. On the other hand, certain three-valent regular maps on a surface of genus
three were studied by Klein [25] and Dyck [13] in connection with constructions of
automorphic functions on surfaces. In the beginning of the 20th century, regular
maps appeared as a form of a geometric representation of groups in Burnside’s
monograph [8]. The first systematic treatment of regular maps was due to Brahana
[6] and was later developed on the levels of both geometry and combinatorial group
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Unit “Matemática e Aplicações” for supporting this project.
The second author acknowledges support from the VEGA Grant No. 2/2060/22 and from the

APVT Grant No. 51-012502.
The third author was sponsored by the U.S.-Slovak Science and Technology Joint Fund under

Project Number 020/2001, and also in part by the VEGA Grant No. 1/9176/02 and the APVT
Grant No. 20-023302.

c©2004 American Mathematical Society

4175



4176 ANTONIO BREDA D’AZEVEDO, ROMAN NEDELA, AND JOZEF ŠIRÁŇ

theory by Coxeter and Moser [11]. Modern foundations of the theory of maps on
orientable surfaces can be found in Jones and Singerman [22]. An analogous theory
for maps on nonorientable surfaces was outlined by Bryant and Singerman [7].

Links between the theory of regular and orientably regular maps, group the-
ory, hyperbolic geometry, and complex functions have been known for more than
a century. In the orientable case they can be briefly summed up as follows. Auto-
morphism groups of orientably regular maps on surfaces of genus at least two are
quotients of hyperbolic triangle groups by torsion-free normal subgroups of finite
index. The same quotient construction can be used to endow maps with complex
structure and hyperbolic geometry from the Poincaré complex upper half-plane on
which the triangle groups act. An additional boost to the study of regular maps
was given lately by a part of Grothendieck’s programme [17] to investigate the ab-
solute Galois group by means of its action on maps. For more reading about these
exciting connections we recommend the survey papers by Jones [21] and by Jones
and Singerman [23].

In light of the above facts, classification of regular and orientably regular maps
is one of the important problems whose solution would be in the interest of (and
may find applications in) disciplines such as topological graph theory, group theory,
hyperbolic geometry, and the theory of Riemann surfaces. The problem has been
approached in three natural ways: classification by underlying graphs, by auto-
morphism groups, and by supporting surfaces. Since our focus is on classification
by surfaces we mention only the three most significant results in the first two ap-
proaches. An abstract characterization of graphs underlying regular and orientably
regular maps was given by Gardiner, Nedela, Širáň and Škoviera [15]. A classifi-
cation of orientably regular embeddings of complete graphs can be found in James
and Jones [20]. For maps with given group, Sah [29] gave a classification of all
orientably regular maps with automorphism groups isomorphic to PSL(2, q).

We now briefly survey regular maps on a fixed surface. The only surfaces sup-
porting infinitely many regular maps are a sphere, a projective plane, and a torus.
The infinitude in the first two cases is due to trivial maps whose underlying graphs
are cycles, dipoles, and semistars. In contrast, there is no regular map on a Klein
bottle. For the remaining cases it follows from the Hurwitz bound (see Tucker [31])
that the order of the automorphism group of a regular map on a surface of negative
Euler characteristic χ cannot exceed −84χ. This implies that the number of regular
maps on such surfaces is automatically finite. A strengthening of the above bound
to −8χ+16 for infinitely many χ follows from the work of Accola [1] or MacLachlan
[26].

Regular and orientably regular maps on orientable surfaces of genus at most
seven together with regular maps on nonorientable surfaces of genus at most eight
have been classified by the late 1980’s. This was an outcome of effort of a multitude
of authors over a considerable time span (see Brahana [6], Coxeter and Moser [11],
Sherk [30], Garbe [14], Bergau and Garbe [5] and the references therein). For genus
two or more the main method was relation-chasing, supported by certain combi-
natorial arguments. With the help of the low index subgroup algorithm applied to
certain finitely presented groups related to triangle groups, Conder and Dobcsányi
[9] recently gave a computer-assisted classification of all regular and orientably reg-
ular maps on orientable surfaces of genus at most 15 and a classification of all
regular maps on nonorientable surfaces of genus at most 30. Thus, complete lists
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of regular and orientably regular maps were available only for a finite number of
surfaces at the time of submission of this article.

A particularly interesting open question was whether there exist infinitely many
nonorientable surfaces supporting no regular map at all. Conder and Everitt [10]
constructed a variety of infinite families of regular maps on nonorientable surfaces,
covering about 75 percent of characteristics. On the other hand, Wilson and Breda
[33] proved that among all nonorientable surfaces of genus at most 52 only those of
genus 2, 3, 18, 24, 27, 39 and 48 do not support a regular map.

This paper represents a breakthrough in the nonorientable regular map classi-
fication problem. We derive a complete classification of all nonorientable regular
maps with negative odd prime Euler characteristic—or, equivalently, regular maps
on nonorientable surfaces of genus p + 2 where p is an odd prime. As a by-product
we also obtain an affirmative answer to the above question. To be able to state
our main result in a condensed form, for p ≡ −1 (mod 4) we denote by ν(p) the
number of pairs of coprime integers (j, l) such that j > l ≥ 3, both j and l are odd,
and (j − 1)(l − 1) = p + 1.

Theorem 1.1. Let p be an odd prime, p �= 3, 7, 13, and let Np+2 be a nonorientable
surface of Euler characteristic −p (and hence of genus p + 2).

(1) If p ≡ 1 (mod 12), then there is no regular map on Np+2.
(2) If p ≡ 5 (mod 12), then, up to isomorphism and duality, there is exactly

one regular map on Np+2.
(3) If p ≡ −5 (mod 12), then, up to isomorphism and duality, there are ν(p)

regular maps on Np+2.
(4) If p ≡ −1 (mod 12), then, up to isomorphism and duality, Np+2 supports

exactly ν(p) + 1 regular maps.

A more detailed statement of this result in group-theoretic language will appear
later as Theorem 2.2 in Section 2, preceded by essentials of the theory of regular
maps. In Section 3 we reduce the problem of classifying regular maps on nonori-
entable surfaces of Euler characteristic −p (p a prime) by proving that the orders
of the corresponding groups are severely limited if p ≥ 29. Using a powerful re-
sult of Gorenstein and Walter [16] that characterizes groups with dihedral Sylow
2-subgroups, in Sections 4 and 5 we further restrict the class of candidates for au-
tomorphism groups of our regular maps. Section 6 contains a proof of Theorem 2.2
and concluding remarks.

2. Regular maps and groups

A precise definition of a map requires introducing flags or their equivalents such
as oriented forms [32], or edges with longitudinal and transverse direction or blades
[7]. This in general requires discussing a number of degenerate cases. The objects
of our interest, however, are maps that are regular and on nonorientable surfaces.
For such maps, flags can be identified with (topological) triangles whose three
distinguished points are a vertex, the “center” of an edge incident with the vertex,
and the “center” of a face incident with both the vertex and the edge. Each face
bounded by an m-gon is thus subdivided into 2m flags.

It is well known that the automorphism group of a regular map can be generated
by three involutions x, y, z reflecting a fixed flag in its three sides and sending
it to the three incident flags. One may choose the notation in such a way that
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the compositions yz, zx, and xy are rotations of the map about the vertex, the
center of the face, and the center of the edge associated with the fixed flag. If k
and m are the vertex valence and the face length of M we say that M is of type
{m, k}. In such a case the automorphism group of M has a presentation of the
form Aut(M) = 〈x, y, z| x2 = y2 = z2 = (yz)k = (zx)m = (xy)2 = . . . = 1〉, where
dots indicate a possible presence of additional independent relators. We emphasize
that in all group presentations in this article, exponents will be assumed to be true
orders of the corresponding elements.

Motivated by the above, we define a (k, m, 2)-group to be any finite group G =
〈x, y, z〉 generated by an ordered triple (x, y, z) of involutions and presented in the
form

G = 〈x, y, z| x2 = y2 = z2 = (yz)k = (zx)m = (xy)2 = . . . = 1〉 .

It follows that (k, m, 2)-groups are finite torsion-free quotients of the extended
(k, m, 2)-triangle group [7]. We will say that two (k, m, 2)-groups G = 〈x, y, z〉
and G′ = 〈x′, y′, z′〉 are congruent if there is a group isomorphism from G onto G′

taking x to x′, y to y′, and z to z′.
Any (k, m, 2)-group G = 〈x, y, z〉 acts on a (unique) closed surface as the au-

tomorphism group of a regular map M = (G; x, y, z) of type {m, k}. Flags of M
are elements of G, and edges, vertices and faces of M are left cosets of the dihe-
dral subgroups 〈x, y〉, 〈y, z〉, and 〈z, x〉 of G, respectively. Mutual incidence of the
map elements is given by nonempty intersection, and G acts on M as a map auto-
morphism group by left multiplication. This, in principle, enables one to identify
regular maps of type {m, k} with (k, m, 2)-groups; a precise statement will be given
in Proposition 2.1.

Let G = 〈x, y, z〉 and G′ = 〈x′, y′, z′〉 be a pair of (k, m, 2)-groups and let M =
(G; x, y, z) and M ′ = (G′; x′, y′, z′) be the corresponding regular maps. Then, M
and M ′ are isomorphic if the groups G and G′ are congruent. Further, the maps
M and M ′ are dual of each other if there is a group isomorphism from G onto
G′ which sends x onto y′, y onto x′, and z onto z′. It is easy to see that these
definitions exactly correspond to the traditional concepts of map isomorphism and
map duality.

Let S be the supporting surface of a regular map M = (G; x, y, z) and let χ(S) be
the Euler characteristic of S. The Euler characteristics χ(G) of the (k, m, 2)-group
G = 〈x, y, z〉 and χ(M) of the map M are defined by χ(G) = χ(M) = χ(S). They
can be obtained from Euler’s formula by substituting |G|/2k, |G|/4, and |G|/2m
for the number of vertices, edges, and faces, respectively, giving χ(M) = χ(G) =
(1/k + 1/m − 1/2)|G|/2.

We have the following obvious but important consequence of the above consid-
erations.

Proposition 2.1. Regular maps on a surface of Euler characteristic χ ≤ 2 are,
up to isomorphism and duality, in a one-to-one correspondence with congruence
classes of (k, m, 2)-groups, k ≥ m, of Euler characteristic χ.

Given a (k, m, 2)-group G = 〈x, y, z〉, we will be using throughout the notation
r = yz and s = zx. The supporting surface S of the regular map M = (G; x, y, z) is
nonorientable if and only if G = 〈r, s〉. Note that if G has odd Euler characteristic
(which is going to be the case in this article), then S is automatically nonorientable.
Therefore we will also work with the reduced presentation G = 〈r, s| rk = sm =
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(rs)2 = . . . = 1〉. In general one should be aware of a loss of information when
“forgetting” about the original presentation of G in terms of x, y, z. The reason is
that there may be several nonequivalent ways to choose the involutions x, y, z such
that r = yz and s = zx, leading to noncongruent groups and hence nonisomorphic
regular maps whose automorphism groups have the same reduced presentation.
But our proofs will show that this will never be the case with the maps and groups
considered here.

We will use the standard notation Zn, Dn, PGL(2, q) and PSL(2, q) for a cyclic
group of order n, dihedral group of order 2n, and 2-dimensional projective general
and special linear group over GF (q), respectively. In addition we need to introduce
two special classes of groups. For any i ≥ 2 such that i ≡ −1 (mod 3) let Gi be the
(i + 4, 4, 2)-group of order 8(i + 4) with reduced presentation

Gi = 〈r, s| ri+4 = s4 = (rs)2 = sr3s−1r3 = 1〉 .

Further, for any pair of odd integers j ≥ 3 and l ≥ 3 let Gj,l be the (2j, 2l, 2)-group
of order 4jl with reduced presentation

Gj,l = 〈r, s| r2j = s2l = (rs)2 = (rs−1)2 = 1〉 .

We will show later in Section 5 that the groups Gi and Gj,l are abstractly isomorphic
to a product Zi+4 · D4 and to the direct product Dj × Dl, respectively. Actually,
both classes have appeared before. The groups Gi are encountered, for example, in
bounding the number of automorphisms of a compact Riemann surface [1, 26], while
both Gi and Gj,l have been used for constructions of regular maps on nonorientable
surfaces in [10]. The family Gi,j also appears in constructions of groups of every
strong symmetric genus [27].

The first class of groups will be of interest for us in the case when i = p is an
odd prime such that p ≡ −1 (mod 3). In the classification result below, the groups
Gp appear in parts (3) and (6). Among the groups Gj,l, we shall be interested in
the subclass with odd and coprime parameters j and l such that j > l ≥ 3 and
(j − 1)(l − 1) = p + 1, where p is a prime satisfying p ≡ −1 (mod 4) and p ≥ 7.
We recall that the number of such pairs (j, l) was denoted earlier by ν(p). The
corresponding ν(p) groups Gj,l will be referred to as groups associated with p; they
appear in parts (4) and (6) of our classification. Observe that for p ≡ −1 (mod 4)
and p ≥ 7 we always have ν(p) ≥ 1 because of the pair j = (p + 3)/2 and l = 3.

We are now ready to present the extended version of our main result, stated
in terms of (k, m, 2)-groups and their reduced presentations. The reason for using
group-theoretic language is twofold. First, all our proofs are purely group-theoretic.
Second, the translation back to regular maps is straightforward by Proposition 2.1.

Theorem 2.2. Let p be an odd prime and let n(p) be the number of pairwise non-
congruent (k, m, 2)-groups G = 〈x, y, z〉 = 〈r, s〉 of Euler characteristic −p such
that k ≥ m.

(1) If p ≡ 1 (mod 12) and p �= 13, then n(p) = 0.
(2) We have n(13) = 1, and the corresponding group is a (7, 3, 2)-group of order

1092 isomorphic to PSL(2, 13) with reduced presentation

〈r, s| r7 = s3 = (rs)2 = ((sr−2)4sr3)2 = 1〉 .

(3) If p ≡ 5 (mod 12), then n(p) = 1. The unique representative here is the
(p + 4, 4, 2)-group Gp.
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(4) If p ≡ 7 (mod 12) and p �= 7, then n(p) = ν(p) and the corresponding
groups are the (2j, 2l, 2)-groups Gj,l associated with p.

(5) We have n(7) = 3, where one of the groups is the (10, 6, 2)-group G5,3

and the other two groups are the (8, 3, 2)-groups of order 336 isomorphic to
PGL(2, 7) with reduced presentations

〈r, s| r8 = s3 = (rs)2 = (sr−2)4 = 1〉 and

〈r, s| r8 = s3 = (rs)2 = ((sr−2)2r−2)2 = 1〉.

(6) If p ≡ −1 (mod 12), then n(p) = ν(p)+ 1, the groups being the ν(p) groups
Gj,l associated with p, together with the group Gp.

(7) Finally, we have n(3) = 4, where one of the groups is the (6, 6, 2)-group
G3,3 and the other three groups are the (5, 4, 2)-group isomorphic to S5,
the (5, 5, 2)-group isomorphic to A5, and the (6, 4, 2)-group isomorphic to
(Z3 × Z3) � D4, with respective reduced presentations

〈r, s| r5 = s4 = (rs)2 = (r(rs−1)2)2 = 1〉 ,

〈r, s| r5 = s5 = (rs)2 = (r−1s)3 = 1〉 , and

〈r, s| r6 = s4 = (rs)2 = (r2s2)2 = 1〉.

For completeness we mention that for k ≥ m there are exactly eight non-
congruent (k, m, 2)-groups of Euler characteristic −2, six of which are automor-
phism groups of regular maps on orientable surfaces [9].

Having mentioned orientable surfaces, it is appropriate to comment on extend-
ability of methods of this paper to the orientable case, aiming at a classification
of regular maps of Euler characteristic −2p where p is a prime. Unfortunately,
in most of our results we use nonorientability in intrinsic ways. An exception is
Proposition 3.1 which could be carried over to orientable surfaces by handling the
(k, m, 2)-groups of Euler characteristic −2 that would arise in extending the proof.
Since there has been work in progress by Belolipetsky and Jones [2] towards clas-
sification of automorphism groups of Riemann surfaces of genus p + 1 for prime p,
we will not pursue this direction here.

3. Preliminary reduction results

Let G be a (k, m, 2)-group of Euler characteristic −p where p is an odd prime.
Since p = −χ(G) = (1/2 − 1/k − 1/m)|G|/2, it follows that 1/k + 1/m < 1/2; the
(k, m, 2)-groups satisfying this inequality will be called hyperbolic. Using λ(k, m) =
4km/(km − 2k − 2m) we see that the order of a hyperbolic (k, m, 2)-group G of
Euler characteristic −p is given by |G| = λ(k, m)p.

It is known that for positive integers k and m such that 1/k + 1/m < 1/2 we
have λ(k, m) ≤ 84, with equality if and only if {k, m} = {3, 7}. The next three
largest values of λ(k, m) are 48 for {k, m} = {3, 8}, 40 for {k, m} = {4, 5}, and 36
for {k, m} = {3, 9}. We note that the reciprocal of λ(k, m) for 1/k + 1/m < 1/2 is
proportional to the area of the fundamental region for the action of the extended
(k, m, 2)-triangle group as a group of isometries in a hyperbolic plane.

Since a computer assisted characterization of all (k, m, 2)-groups of (not neces-
sarily prime) Euler characteristic χ is known [9] for all χ ≥ −28, it is sufficient to
assume that p ≥ 29. We use this remark to derive a divisibility condition for the
denominator of λ(k, m).
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Proposition 3.1. Let G be a hyperbolic (k, m, 2)-group of Euler characteristic −p
where p is a prime. If p ≥ 29, then (km − 2k − 2m) = pt for a positive integer t
dividing 4km, and |G| = 4km/t.

Proof. Suppose that p does not divide km− 2k − 2m. Since |G| = λ(k, m)p we see
that λ(k, m) must be an integer, and as G contains the Klein four-group it follows
that 4|λ(k, m). We first claim that p2 is not a divisor of |G|. Indeed, in the opposite
case p would have to divide λ(k, m) and so p ≤ λ(k, m)/4 ≤ 21, a contradiction. In
particular, since (km− 2k− 2m)|G| = 4kmp and p2 does not divide |G|, p does not
divide k or m and the Sylow p-subgroups of G are isomorphic to Zp.

Suppose now that H � Zp is the unique Sylow p-subgroup of G. Then H is
normal in G, and since neither k nor m have p as a factor it follows that the
quotient group G/H is a (k, m, 2)-group again. From λ(k, m) = |G|/p = |G/H| =
−χ(G/H)λ(k, m) we see that χ(G/H) = −1. It is known, however, that there
are no (k, m, 2)-groups of Euler characteristic −1 (see e.g. [9]). Consequently, G
contains more than one Sylow p-subgroup.

By Sylow theorems, the number of Sylow p-subgroups in G is equal to np+1 for
some n ≥ 1 such that np+1 is a divisor of |G| = λ(k, m)p. This readily shows that
p2 < |G|, so p < λ(k, m), which implies that 29 ≤ p ≤ 83. But it is easy to check
that there are exactly four sets {k, m} with 4|λ(k, m) that satisfy the inequalities
29 ≤ p < λ(k, m), namely, the four sets listed before the statement of Proposition
3.1.

Out of these sets we can quickly eliminate {k, m} = {4, 5} with λ(4, 5) = 40 and
{k, m} = {3, 9} with λ(3, 9) = 36, since np + 1 divides neither 40p nor 36p for any
prime p ≥ 29 and any n ≥ 1. The only two possibilities for {k, m} = {3, 7} with
λ(3, 7) = 84 are p = 83 and p = 41, giving a potential of two (2, 3, 7)-groups of
orders 84 · 83 and 84 · 41. However, both can be excluded since by Sylow theorems
they contain a unique (and hence normal) cyclic Sylow 7-subgroup H, collapsing
in G/H the generator of G of order 7 and thus producing a quotient of too a small
order.

It remains to eliminate the case when {k, m} = {3, 8}, with λ(3, 8) = 48 and
p = 47. We may without loss of generality assume that G = 〈r, s| r3 = s8 =
(rs)2 = . . . = 1〉. There must be exactly 48 Sylow 47-subgroups in G, occupying
a total of 472 elements. This shows that elements of order 2i, 1 ≤ i ≤ 4, must
be between the remaining 47 elements. Consider the (dihedral) Sylow 2-subgroup
H = 〈s, z〉 � D8 of order 16 in G. If H �= g−1Hg for some g ∈ G of order 47, then
all the 47 conjugates of H by powers of g would be pairwise distinct, giving too
many elements of order a power of 2 in G. It follows that all the 472 elements of
order 47 normalize H, and hence H is normal in G. But then the quotient is easily
seen to collapse.

It follows that km − 2k − 2m = pt for a positive integer t. From |G| = λ(k, m)p
we then obtain |G| = 4km/t and so t must be a divisor of 4km. �

For any given prime p ≥ 29, Proposition 3.1 greatly restricts orders and param-
eters k, m of the possible (k, m, 2)-groups G of Euler characteristic −p: One has to
have |G| = 4km/t for some t such that km − 2k − 2m = tp. In the next series of
three lemmas we prove, besides a number of other facts, that t ∈ {1, 2, 4}.
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Lemma 3.2. Let G = 〈x, y, z〉 = 〈r, s〉 be a (k, m, 2)-group with k, m ≥ 3 and let
L = 〈y, z〉 ∩ 〈z, x〉. Then, L is isomorphic to Z2 × Z2 if and only if both k and m
are even and rk/2sm/2 ∈ 〈z〉; in all other cases L � Z2.

Proof. Since z ∈ L the group L contains a subgroup isomorphic to Z2. Assume
that 〈z〉 is a proper subgroup of L. Being a subgroup of both 〈r, z〉 and 〈s, z〉 the
group L must be dihedral. Let j be the smallest positive divisor of k such that
L = 〈rj , z〉. If rj is not an involution, then it must be in the cyclic subgroup of
〈s, z〉, that is, rj = sl for some l. But from G = 〈r, s〉 we see that the element
b = rj = sl is central in G; in particular, yby = b. On the other hand, conjugation
by y inverts b = rj = (yz)j , and so b = b−1, contrary to the fact that rj was
assumed to be noninvolutory. Since k, m ≥ 3, we have rα /∈ {y, z} for 1 ≤ α ≤ k−1
and sβ /∈ {x, z} for 1 ≤ β ≤ m−1. It follows that k must be even and L = 〈rk/2, z〉;
by the symmetry of the argument we also have m even and L = 〈sm/2, z〉. This
shows that rk/2sm/2 is either 1 or z, and hence is in 〈z〉. Conversely, if k and m
are even and rk/2sm/2 is in 〈z〉, then clearly L contains Z2 ×Z2. That L = Z2 ×Z2

follows from the beginning of the proof where it is shown that if rj is in L, then rj

is an involution. �

Lemma 3.3. Let G and L be as in Lemma 3.2. If |G| = km, then both k and
m are even, |L| = 4, and G = 〈y, z〉〈z, x〉. Moreover, G = 〈r〉〈s〉 if and only if
z = rk/2sm/2; otherwise rk/2 = sm/2.

Proof. For any two subgroups A, B of G let AB denote the set of all elements of
G that can be written as the product ab where a ∈ A and b ∈ B; in particular,
AB is not necessarily a subgroup of G. With the help of the well-known formula
|AB|.|A ∩ B| = |A|.|B| we obtain km = |G| ≥ |〈y, z〉〈z, x〉| = |〈y, z〉||〈z, x〉|/|L| =
4km/|L|. Combining with Lemma 3.2 it follows that |L| = 4 and that both k, m
are even. A similar computation shows that G = 〈r〉〈s〉 if and only if 〈r〉 ∩ 〈s〉 = 1.
By Lemma 3.2, this is equivalent to z = rk/2sm/2. The rest is obvious. �

Lemma 3.4. Let G and L be as in Lemma 3.2 and suppose that χ(G) = −p for
an odd prime p. If km − 2k − 2m = tp, then t ≤ |L|. In particular, t ∈ {1, 2, 4}.
Moreover:

(1) t = 4 if and only both k, m are even and (k/2, m/2) = 1, and this is also
equivalent to |L| = 4;

(2) t = 2 if and only if exactly one of k, m is even, with (k, m) = 1, and then
G = 〈r〉〈z, x〉 = 〈y, z〉〈s〉;

(3) t = 1 if and only if both k and m are odd and (k, m) = 1.
In addition, in the last two cases we have 〈r〉 ∩ 〈s〉 = 1.

Proof. We saw earlier that the assumption km−2k−2m = tp implies |G| = 4km/t.
By a computation as in the previous proof but with 4km/t in place of km we
obtain 4km/t = |G| ≥ |〈y, z〉〈z, x〉| = |〈y, z〉||〈z, x〉|/|L| = 4km/|L|, which shows
that t ≤ |L|. In particular, by Lemma 3.2 we have t ≤ 4, with t = 4 implying that
|L| = 4. Conversely, if |L| = 4, then, invoking Lemma 3.2 again, k and m must be
even, say, k = 2j and m = 2l. From t ≤ 4 and tp = km − 2k − 2m = 4jl − 4j − 4l
we see that t = 4, which gives (1). This also shows that t < 4 if and only if |L| = 2,
and therefore t �= 3. Parts (2) and (3) follow immediately from the equation
km − 2k − 2m = tp with help of calculations similar to the presented ones. �
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Let us emphasize that out of the above three auxiliary results, only the last one
depends on tying the parameters k, m with a prime p.

For any integer n let πn, the parity of n, be 1 or 2 according to whether n is odd
or even. We remark that in terms of parity the three parameters k, m and t from
Lemma 3.4 are related by t = πkπm.

We conclude with a few facts that will prove useful in the reduction techniques
appearing in the next two sections. First, observe that if k is odd and (k, m) = 1,
then the order of a (k, m, 2)-group G = 〈x, y, z〉 = 〈r, s〉 is divisible by 4km/πm.
Indeed, if m is odd, then |G| is divisible by 4 (which is the order of the Klein four-
subgroup 〈x, y〉) and by the two coprime odd orders k, m of the elements r, s. If
m is even, then |G| is divisible by the coprime orders k and 2m of the subgroups
〈r〉 � Zk and 〈s, x〉 � Dm.

Lemma 3.5. Let G = 〈x, y, z〉 = 〈r, s〉 be a (k, m, 2)-group where k is odd and
(k, m) = 1. Let K be a normal subgroup of G such that K ∩ 〈x, y〉 is trivial. Let κ
and µ be the orders of the elements rK and sK in G/K. Then:

(1) G/K is a (κ, µ, 2)-group. Moreover, if |G| = 4km/πm, then πµ = πm and
|G/K| = 4κµ/πµ with K = 〈rκ〉〈sµ〉.

(2) In addition, let K be abelian and of odd order. If m is even, then K is a
subgroup of 〈r〉; if m is odd, then K is trivial.

Proof. By the trivial intersection of K with 〈x, y〉 combined with the above obser-
vation, the order of G/K is divisible by 4κµ/πµ. Since the subgroups 〈r〉 and 〈s〉
intersect trivially, we have |K| ≥ |〈rκ〉||〈sµ〉| = (k/κ)(m/µ). From |G| = 4km/πm

it then follows that |G/K| = |G|/|K| ≤ 4κµ/πm and hence πµ = πm and |G/K| =
4κµ/πµ. This shows that equality must also hold in the above estimates. Therefore
K = 〈u〉〈v〉 where u = rκ and v = sµ, and (1) follows.

Now, assume that K is, in addition, abelian and of odd order. Since 〈u〉 and 〈v〉
intersect just trivially (Lemma 3.2), for the abelian group K we have K = 〈u〉×〈v〉.
Normality of K in G together with the fact that (κ, µ) = 1 imply that yvy = v−j for
a suitable j. Conjugating this equality by y we obtain j2 ≡ 1 (mod m/µ). Observe
that r−1vr = z(yvy)z = zv−jz = vj , and so r−2vr2 = r−1vjr = vj2

= v. It follows
that the elements v and r2 commute. The fact that r has odd order implies that
v commutes with r as well, which shows that j ≡ 1 (mod m/µ). Let y = w(r, s),
where w = w(r, s) is a word over the alphabet {r, s}. Note that w commutes with
v since both r and s do. But then, v−1 = yvy = w−1vw = v, which implies v2 = 1.
As |K| is odd and v ∈ K, this is possible only if v = 1 and so K = 〈u〉. If m is odd,
we may interchange the roles of r and s (and of k and m) in the above arguments
to conclude that K = 〈u〉 ∩ 〈v〉, which is the trivial group. This proves (2). �

4. Hyperbolic (k, m, 2)-groups with dihedral Sylow two-subgroups

Before we consider individual cases for t ∈ {1, 2, 4} we prove a statement that fur-
ther substantially restricts potential candidates for our groups. Let G = 〈x, y, z〉 =
〈r, s〉 be a hyperbolic (k, m, 2)-group, where k, m ≥ 3 are orders of r and s, respec-
tively. Throughout this section we will assume that k is odd.

Let |G| = 4km/πm, where πm is the parity of m introduced earlier. Let c be the
largest integer such that 2c divides |G|. If πm = 1, then c = 2 and 〈x, y〉 � Z2 ×Z2

is a Sylow 2-subgroup of G. If πm = 2, then 2c divides 2m, and since k is odd we



4184 ANTONIO BREDA D’AZEVEDO, ROMAN NEDELA, AND JOZEF ŠIRÁŇ

see that G has a dihedral Sylow 2-subgroup contained in 〈z, x〉. It follows that in
any case G has a dihedral Sylow 2-subgroup.

In what follows we will use the following deep result of Gorenstein and Walter
(see [16], Part I, Page 85, Theorem 1; for a simplified proof see [3, 4]): If G is
a group with a dihedral Sylow 2-subgroup and if O(G) is the (unique) maximal
normal subgroup of G of odd order, then G/O(G) is isomorphic to either

(a) a Sylow 2-subgroup of G, or
(b) the alternating group A7, or
(c) a subgroup of Aut(PSL(2, q)) containing PSL(2, q), q odd.
It is well known that Aut(PSL(2, q)), q an n-th power of an odd prime, is a

semidirect product of PGL(2, q) with a cyclic group of order n that comes from the
Galois action on the standard matrix representation of PGL(2, q). It follows that
any subgroup of Aut(PSL(2, q)) that contains PSL(2, q) has the form of a split
extension H�Zb, where H is either PSL(2, q) or PGL(2, q) and b is a divisor of
n. Let δ = 1/2 or δ = 1 according to whether H � PSL(2, q) or H � PGL(2, q),
and let ω1 and ω2 be the largest order and the second largest order of an element
in H�Zb. Combining the above facts with Dickson’s classification [12] of possible
orders of elements of PSL(2, q) and PGL(2, q) we conclude the following: If n ≥ 2,
then ω1 = δb(q + 1) and ω2 = δb(q − 1), and if n = 1, then ω1, ω2 ∈ {δ(q + 1), q}.

We are now in a position to prove a structural result about (k, m, 2)-groups with
dihedral Sylow 2-subgroups.

Proposition 4.1. Let G = 〈x, y, z〉 = 〈r, s〉 be a (k, m, 2)-group and let |G| =
4km/πm, where k, m ≥ 3, (k, m) = 1, and k is odd. Then G/O(G) is isomorphic
to S4 or A5 according to whether m is even or odd.

Proof. As we saw, G has a dihedral Sylow 2-subgroup. By the result of Gorenstein
and Walter [16], one of (a), (b), and (c) above holds for G/O(G). We first exclude
(a) and (b).

In the case (a) the subgroup O(G) is a normal 2-complement in G. It follows that
G is a semidirect product of O(G) and a Sylow subgroup S2 of G. In particular, the
element r of odd order k must be in O(G). Let s = gh with g ∈ O(G) and h ∈ S2

and let d be the order of h. Observe that d < |S2| since the Sylow 2-subgroup is
dihedral. But then, |〈r, s〉| ≤ |O(G)| · d < |O(G)||S2| = |G|, a contradiction. The
case (b) is easily excluded by observing that the order of A7 is much larger than
four times the product of orders of any two elements of A7. Therefore, for G/O(G)
we have the situation described in (c), and it remains to show that G/O(G) is
isomorphic to PGL(2, 3) � S4 or to PSL(2, 5) � A5 depending on the parity of m.

Keeping to the notation introduced before the statement of Proposition 4.1, we
have concluded from (c) that G/O(G) � H�Zb, where H is either PSL(2, q) or
PGL(2, q), q an n-th power of an odd prime, and b|n. Denoting the cosets of a
subgroup of G by bars above the corresponding elements, let κ and µ be the orders
of r̄ and s̄ in G/O(G) = 〈r̄〉〈z̄, x̄〉; clearly κ �= µ. Using part (1) of Lemma 3.5, for
n ≥ 2 we obtain δq(q2−1)b = |H�Zb| = |G/O(G)| = 4κµ/πµ ≤ 4δb(q+1)δb(q−1).
This implies that q ≤ 4δb ≤ 4n, which is absurd for any n-th power q of any odd
prime if n ≥ 2. For n = 1 we obtain δq(q2 − 1) = |H| = |G/O(G)| = 4κµ/πµ ≤
4δq(q + 1)/πm. If m is even, this gives a contradiction for all odd q ≥ 5 but is
feasible if q = 3 (for both values of δ); if m is odd, then we have a contradiction for
all odd q ≥ 7 but feasibility for q = 3 or q = 5.
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For even m it follows that G/O(G) is isomorphic to either PSL(2, 3) � A4 or
PGL(2, 3) � S4. The group A4, however, cannot be generated by three involutions
and hence G/O(G) � S4, as claimed. For odd m and q = 3 we have only the
groups PSL(2, 3) � A4 and PGL(2, 3) � S4 as candidates for G/O(G), neither
of which can be generated by two elements of coprime odd orders. Finally, if m
is odd and q = 5, then G/O(G) can only be isomorphic to PSL(2, 5) � A5 or to
PGL(2, 5) � S5. But the only two nontrivial coprime odd orders here are 3 and 5
and the corresponding permutations in S5 are even, showing that G/O(G) � A5 in
this case. �

5. Further reduction results

We begin by analyzing the individual cases t = 1, 2, and 4. Let us first point
out that the three values of t came out as a consequence of the parameters k and
m being tied with a prime number p by the equation km − 2k − 2m = tp. The
three reduction results below, however, are valid for any k and m as stated, with
no reference to any prime p.

If t = 1, then, by part (3) of Lemma 3.4, we have |G| = 4km with both k and
m odd, and (k, m) = 1. In this situation, Proposition 4.1 can be strengthened as
follows.

Proposition 5.1. Let G = 〈x, y, z〉 = 〈r, s〉 be a (k, m, 2)-group with |G| = 4km,
where k, m ≥ 3, both k and m are odd, and (k, m) = 1. Then G � A5.

Proof. Let G be a counterexample of the smallest order. From Proposition 4.1
it follows that G/O(G) � A5, and so |O(G)| ≥ 3. We first show that no non-
trivial proper subgroup of O(G) is normal in G. Indeed, if K was such a subgroup,
then, by part (1) of Lemma 3.5, the group G/K would satisfy the assumptions of
the theorem, and from 60 < |G/K| < |G| we would obtain a contradiction with
minimality of |G|.

Without loss of generality we may suppose that G/O(G) = 〈r̄, s̄| r̄5 = s̄3 =
(r̄s̄)2 = 1〉 � A5. Invoking part (1) of Lemma 3.5 again, we have O(G) = 〈r5〉〈s3〉,
a product of two cyclic groups. By Ito’s theorem [19], the commutator subgroup
K = [O(G), O(G)] is a proper characteristic subgroup of O(G), and so K is normal
in G. The observation in the preceding paragraph then implies that K = 1, that
is, O(G) is abelian. Since both k and m are odd, part (2) of Lemma 3.5 applied
to the subgroup O(G) shows that O(G) is trivial. This contradiction finishes the
proof. �

Let us now consider the situation when t = 2. By part (2) of Lemma 3.4 we
know that G = 〈r〉〈z, x〉 = 〈y, z〉〈s〉. From the same source it follows that exactly
one of k and m is even, and (k, m) = 1. Without loss of generality we may assume
that m is even.

Proposition 5.2. Let G = 〈x, y, z〉 = 〈r, s〉 be a hyperbolic (k, m, 2)-group such
that |G| = 2km where k is odd, m is even, and (k, m) = 1. Then, k = 3j with j
odd, m = 4, and G = 〈r〉〈z, x〉 � Zk · D4, with reduced presentation

〈r, s| rk = s4 = (rs)2 = sr3s−1r3 = 1〉 .

Proof. According to Proposition 4.1 we know that, without loss of generality,
G/O(G) = 〈r̄, s̄| r̄3 = s̄4 = (r̄s̄)2 = 1〉 � S4. Also, part (1) of Lemma 3.5 shows
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that O(G) = 〈r3〉〈s4〉. By induction on |G| we prove that s4 = 1, that is, m = 4.
Indeed, let G be a group as above such that 24 properly divides |G|. If O(G) is
abelian, then from s4 ∈ O(G) and from part (2) of Lemma 3.5 we deduce that
s4 = 1. In the case when O(G) s not abelian, then (by Ito’s theorem) the commu-
tator subgroup K of O(G) is abelian. By induction, in G/K we have (sK)4 = 1,
that is, s4 ∈ K. Being characteristic in O(G) the subgroup K is normal in G. In-
voking part (2) of Lemma 3.5 again and applying it to the abelian normal subgroup
K of odd order we conclude that s4 = 1. It follows that m = 4 as claimed, and
therefore O(G) = 〈r3〉. Moreover, since 〈z, x〉 � D4, from |G| = 2km = 8k we see
that G = 〈r〉〈z, x〉 � Zk · D4.

It remains to address the presentation of G. From 〈r3〉 = O(G) we see that
k = 3j for some odd j. By normality of O(G) in G we have xr3x = r3i (and hence
sr3s−1 = r−3i as well) for some i such that i2 ≡ 1 (mod j). Let x = w(r, s), where
w = w(r, s) is a word in r and s. If s occurs in w an odd number of times, then
r3i = xr3x = wr3w = r−3i since i2 ≡ 1 (mod j), which quickly contradicts the fact
that r has odd order. Therefore, s occurs in w an even number of times, and by
the same token we have r3i = xr3x = wr3w = r3, implying that i = 1. �

Finally, we are ready to deal with the case t = 4. Part (1) of Lemma 3.4 tells us
that we only need to consider k and m such that (k, m) ≤ 2.

Proposition 5.3. Let G = 〈x, y, z〉 = 〈r, s〉 be a hyperbolic (k, m, 2)-group with
|G| = km, where (k, m) ≤ 2. Then k and m are even, k/2 and m/2 are odd, and
G = 〈y, r2〉 × 〈x, s2〉 � Dk/2 × Dm/2 has reduced presentation

〈r, s| rk = sm = (rs)2 = (rs−1)2 = 1〉 .

Proof. Invoking Lemma 3.3 we see that |G| = km implies |L| = 4, with G =
〈y, z〉〈z, x〉. First, assume that G = 〈r〉〈s〉, which (by Lemma 3.3 again) implies
k = 2j, m = 2l, and z = rjsl.

By Ito’s theorem [19], the commutator subgroup G′ = [G, G] of G is abelian.
Note that both r2 = [y, z] and s2 = [z, x] are in G′. Clearly (j, l) = 1; we show that
both j and l are odd. Indeed, if, say, j is even, then l must be odd. Right multi-
plication of both sides of z = rjsl by s then gives x = rjsl+1 ∈ G′. In particular,
as both x and s2 belong to the abelian G′, we have xs2x = s2. But conjugation by
x obviously inverts s2, and so s2 = s−2 and hence l ≤ 2, a contradiction.

Having both j, l odd we see that rzs = rj+1sl+1 ∈ G′. Since rzs = yzx = ys =
rx is in the abelian subgroup G′, we have (ys)s2 = s2(ys) and (rx)r2 = r2(rx).
It follows that y commutes with s2 and x with r2. Since conjugation by y and x
inverts r2 and s2, respectively, we see that G is a direct product of the dihedral
subgroups 〈y, r2〉 � Dj and 〈x, s2〉 � Dl. The last relator in the presentation of
G is equivalent with y and x commuting with s2 and r2, respectively, and the
completeness of the presentation is easy to check.

To finish the proof we have to analyze the situation when |G| = km and G �=
〈r〉〈s〉. From Lemma 3.2 and Lemma 3.3 we see that in this case k = 2j, m = 2l,
and b = rj = sl is a central involution of G. Then, the quotient group G/〈b〉 of
order km/2 = 2jl where (j, l) = 1, has presentation r̄j = s̄l = (r̄s̄)2 = . . . = 1.
Observe that j, l ≥ 3; otherwise one of j, l would be equal to 2 and then the three
relations in the preceding presentation would define a dihedral group of order jl, a
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contradiction. Since (k, m) ≤ 2, both j and l cannot be even; say, j is odd. It can be
checked that b /∈ 〈x, y〉. Following part (1) of Lemma 3.5, G/〈b〉 is a (j, l, 2)-group,
and so its order 2jl is divisible by 4, showing that l is even. From Proposition 5.2
we then see that l = 4, j = 3i for some odd i, and

G/〈b〉 = 〈r̄, s̄| r̄3i = s̄4 = (r̄s̄)2 = s̄r̄3s−1r̄3 = 1〉 � Zj · D4.

Moreover, centrality of b in G and presentation of G/〈b〉 allows us to conclude that
the original group G must have had a full presentation of the form r6i = s8 =
(rs)2 = r3is4 = xr3xr−3r3α = 1 where α = 0 or α = i. This shows that, in
any case, 〈r6〉 is a normal subgroup of G of (odd) order i. The corresponding
quotient group G/〈r6〉 of order |G|/i = 48 then must be a (6, 8, 2)-group of Euler
characteristic χ(G/〈r6〉) = (1/6 + 1/8 − 1/2) · 24 = −5. But by the list of Conder
and Dobcsányi [9], no such group exists. �

6. Proof of the main result and remarks

With the help of results established in the previous section we are in a position
to prove our main result.

Proof of Theorem 2.2. Let G = 〈x, y, z〉 = 〈r, s〉 be a (k, m, 2)-group of character-
istic p, where p is an odd prime and k ≥ m. We know that such a group must be
hyperbolic. The part of the list of groups in the statement of Theorem 2.2 corre-
sponding to p ≤ 23 is extracted from the classification of (k, m, 2)-groups of Euler
characteristic at least −28, given in [9]. We may therefore assume that p ≥ 29.
By Proposition 3.1 and Lemma 3.4 we have km − 2k − 2m = tp and |G| = 4km/t,
where t ∈ {1, 2, 4}.

If t = 1, then we have km − 2k − 2m = p and hence both k and m are odd and
(k, m) = 1. By Proposition 5.1, up to isomorphism there is a unique such (k, m, 2)-
group of order 4km, namely, the (5, 3, 2)-group isomorphic to A5. But this group
has Euler characteristic 1, a contradiction.

Now let t = 2. From km − 2k − 2m = 2p it follows that exactly one of k, m is
odd and (k, m) = 1. Proposition 5.2 then shows that (up to isomorphism) we have
a unique (k, m, 2)-group G of order 2km here, with k = 3j for an odd j, and m = 4.
Invoking the equation km − 2k − 2m = 2p again we see that this is possible only
if p ≡ −1 (mod 3) and k = p + 4. Therefore, G is the (p + 4, 4, 2)-group Gp that
appears in parts (3) and (6) of Theorem 2.2.

In the last case when t = 4, from km − 2k − 2m = 4p we obtain (k, m) ≤ 2.
According to Proposition 5.3 we have k = 2j and m = 2l where j > l, both
j and l are odd, and (j, l) = 1. Then, km − 2k − 2m = 4p is equivalent with
(j − 1)(l − 1) = p + 1 and hence p ≡ −1 (mod 4). Further, by Proposition 5.3, for
each such pair (j, l) there is (up to isomorphism) a unique (2j, 2l, 2)-group of order
km = 4jl, namely, the group Gj,l. Recalling the function ν introduced in Section
2 we have a total of ν(p) noncongruent groups in this case, featuring in parts (4)
and (6) of Theorem 2.2.

Thus, for p ≥ 29, (k, m, 2)-groups of a negative prime Euler characteristic −p
exist if and only if p ≡ −1 (mod 3) or p ≡ −1 (mod 4). It follows that for primes
p ≥ 29 there are no (k, m, 2)-groups of Euler characteristic −p if p ≡ 1 (mod 12),
which is part (1) of Theorem 2.2. Parts (3), (4) and (6) of Theorem 2.2 for p ≥ 29
are immediate consequences of the foregoing analysis.
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Uniqueness of the (k, m, 2)-groups whose reduced presentations are given as in
Theorem 2.2 follows from our proof in Sections 4 and 5. An independent argument
can be given by observing that the centers of our groups are trivial and quoting
Theorem 7.7 from [28] that can be restated as follows: If a group

G = 〈r, s| rk = sm = (rs)2 = . . . = 1〉

has center of an odd order, then G has (up to congruence) a unique representation
as a (k, m, 2)-group. �

We conclude with a few remarks regarding the map-theoretic interpretation of
our main result. Since the automorphism group of a regular map acts transitively
on flags and also on directed edges, regular maps always have simple quotient maps,
such as a single semi-edge in a sphere or in a disc, depending on whether the map
is orientable or not. In general, regular quotient maps are obtained precisely by
dividing out by normal subgroups of the automorphism group; the smaller the
subgroups, the larger the quotients.

From the presentation of the group Gp for prime p ≡ −1 (mod 3) it is clear
that Gp contains a cyclic normal subgroup of order (p + 4)/3 generated by r3. The
quotient Gp/〈r3〉 � 〈r̄, s̄| r̄3 = s̄4 = (r̄s̄)2 = 1〉 is the automorphism group of a
regular embedding M of a complete graph of order four in a projective plane. It
follows that the regular maps corresponding to the groups Gp are cyclic normal
(p+4)/3-fold covers of M , with branch points of order (p+4)/3 at each of the four
vertices of M . An analogous statement can be made about the dual maps.

Similarly, for primes p ≡ −1 (mod 4) the groups Gj,l associated with p contain
a normal subgroup isomorphic to Zj × Zl generated by r2 and s2. The reduced
presentation 〈r̄, s̄| r̄2 = s̄2 = (r̄s̄)2 = 1〉 � Z2 × Z2 of the resulting quotient group
represents a regular projective-planar embedding M ′ of a loop with a single vertex.
We conclude that the ν(p) regular maps corresponding to the groups Gj,l are normal
Zj ×Zl-covers of M ′, with the two branch points being the vertex (of order j) and
the center of the single face (of order l). More statements of this type can be
generated by considering other normal subgroups of Gj,l.

Regular maps corresponding to the groups of Theorem 2.2 can be lifted from
nonorientable supporting surfaces Np+2 to their orientable double covers. Our
reduced presentations thus automatically give a classification of antipodal regular
maps on orientable surfaces of genus p + 1 for prime p. This may be beneficial
for possible future projects regarding classification of regular maps on orientable
surfaces. More details on antipodality can be found in [28].

Finally, we note that by [33] there are no regular maps on nonorientable surfaces
of Euler characteristic −16, −22, −25 and −46, which are values not covered by
part (1) of Theorem 2.2. The problem of determining all nonorientable surfaces
that do not support any regular map remains open.
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