
Open Research Online
The Open University’s repository of research publications
and other research outputs

Requirements-driven design of autonomic application
software
Conference or Workshop Item
How to cite:

Lapouchnian, Alexei; Yu, Yijun; Liaskos, Sotirios and Mylopoulos, John (2006). Requirements-driven design of
autonomic application software. In: 16th IBM Centre for Advanced Studies Conference, 16-19 Oct 2006, Toronto,
Canada.

For guidance on citations see FAQs.

c© [not recorded]

Version: [not recorded]

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1145/1188966.1188976

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82904944?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://dx.doi.org/doi:10.1145/1188966.1188976
http://oro.open.ac.uk/policies.html

1

Requirements-Driven Design of Autonomic
Application Software

Alexei Lapouchnian, Yijun Yu, Sotirios Liaskos, John Mylopoulos

Department of Computer Science, University of Toronto

{alexei, yijun, liaskos, jm}@cs.toronto.edu

Abstract

Autonomic computing systems reduce software
maintenance costs and management complexity
by taking on the responsibility for their configura-
tion, optimization, healing, and protection. These
tasks are accomplished by switching at runtime to
a different system behaviour – the one that is
more efficient, more secure, more stable, etc. –
while still fulfilling the main purpose of the sys-
tem. Thus, identifying the objectives of the sys-
tem, analyzing alternative ways of how these
objectives can be met, and designing a system that
supports all or some of these alternative behav-
iours is a promising way to develop autonomic
systems. This paper proposes the use of require-
ments goal models as a foundation for such soft-
ware development process and demonstrates this
on an example.

1 Introduction
As management complexity and maintenance cost
of software systems keep spiraling upward, Auto-
nomic Computing (AC) [6][11] promises to move
most of this complexity from humans to the soft-
ware itself and to reduce software maintenance
costs, thereby drastically reducing the dominant
cost factor in the software lifecycle. This reduc-
tion is expected to come about because autonomic
software can self-configure at runtime to match
changing operating environments; it can self-

Copyright © 2006 Alexei Lapouchnian, Yijun Yu,
Sotirios Liaskos, John Mylopoulos. Permission to copy
is hereby granted provided the original copyright notice
is reproduced in copies made.

optimize to tune its performance or other software
qualities; it can self-heal instead of crashing when
its operating environment turns out to be inconsis-
tent with its built-in design assumptions; and it
can self-protect itself from malicious attacks.

There are three basic ways to make a system
autonomic. The first is to design it so that it sup-
ports a space of possible behaviours. These are
realized through an isomorphic space of possible
system configurations. To make such designs pos-
sible, we need concepts for characterizing large
spaces of alternative behaviours/configurations.
Goal models in requirements engineering [1] and
feature models in software product line design [5]
offer such concepts. For example, the possible
behaviours of an autonomic meeting scheduling
system might be characterized by a goal model
that indicates all possible ways of achieving the
goal “Schedule Meeting.” The second way of
building an autonomic system is to endow it with
planning capabilities and possibly social skills so
that it can delegate tasks to external software
components (agents), thereby augmenting its own
capabilities [15]. Evolutionary approaches to
autonomic systems [14], such as those found in
biology, constitute a third way of building auto-
nomic software. We only explore the first way in
this paper.

The purpose of this paper is to show that re-
quirements goal models can be used as a founda-
tion for designing software that supports a space
of behaviours, all delivering the same function,
and that is able to select at runtime the best behav-
iour based on the current context. The advantages
of this approach include the support for traceabil-
ity of software design to requirements as well as
for the exploration of alternatives and for their
analysis with respect to quality concerns of stake-
holders. We also sketch an autonomic systems

2

architecture that can be derived from these goal
models. We then illustrate how self-configuration
and self-optimization behaviour can be achieved
in our approach and how properly enriched goal
models can serve as sources of knowledge for
these activities.

The rest of the paper is structured as follows.
We introduce goal-oriented requirements engi-
neering – the foundation of our approach – in Sec-
tion 2. There, we also discuss the use of goal
models for capturing and analyzing alternatives as
well as outline how design-level views can be
created from goal models. In Section 3 we discuss
the use of goal models for the design of Auto-
nomic Computing systems, while Section 4 pre-
sents our approach in detail. Discussion and
conclusion are in Sections 5 and 6 respectively.

2 Background

In this section, we introduce goal-oriented re-
quirements engineering as well as some relevant
work on using goal models for customizing and
configuring software.

2.1 Goal-Oriented Require-
ments Engineering

A major breakthrough of the past decade in
(Software) Requirements Engineering is the de-
velopment of a framework for capturing and ana-
lyzing stakeholder intentions to generate
functional and non-functional (hereafter quality)
requirements [1][12][17]. In essence, this work
has extended upstream the software development
process by adding a new phase (early require-
ments analysis) that is also supported by engineer-
ing concepts, tools and techniques, like its
downstream cousins. The fundamental concepts
used to drive the new form of analysis are those of
goal and actor. For example, a stakeholder goal
for a library information system may be “Fulfill
Every Book Request”. This goal may be decom-
posed in different ways. One might consist of
ensuring book availability by limiting the borrow-
ing period and also by notifying users who re-
quested a book that the book is available. This
decomposition may lead (through intermediate
steps) to functional requirements such as “Remind
Borrower” and “Notify User”. A different decom-
position of the initial goal, however, may involve
buying a book whenever a request can’t be ful-

filled1. Obviously, there are in general many ways
to fulfill a stakeholder goal. Analyzing the space
of alternatives makes the process of generating
functional and quality requirements more system-
atic in the sense that the designer is exploring an
explicitly represented space of alternatives. It also
makes it more rational in that the designer can
point to an explicit evaluation of these alternatives
in terms of stakeholder criteria to justify his
choice. An authoritative account of Goal-Oriented
Requirements Engineering (GORE) can be found
in [16].

At the very heart of this new phase of Soft-
ware Engineering are goal models that represent
stakeholder intentions and their refinements using
formally defined relationships. Functional stake-
holder goals are modeled in terms of hard goals
(or simply goals, when there is no ambiguity). For
example, “Schedule Meeting” and “Fulfill Every
Book Request” are functional goals that are either
fulfilled (satisfied) or not fulfilled (denied). Other
stakeholder goals are qualitative and are hard to
define formally. For instance, “Have Productive
Meeting” and “Have Satisfied Library Users” are
qualitative goals and they are modeled in terms of
softgoals. A softgoal by its very nature doesn’t
have a clear-cut criterion for its fulfillment, and
may be fully or partially satisfied or denied.

Figure 1: A goal model showing interdependen-

cies among goals and qualities.

Goals and/or softgoals may be related through
AND/OR relationships that have the obvious se-

1 Admittedly not a very practical one!

3

mantics that AND-decomposed subgoals must all
be attained for their parent goal to be achieved
and at least one OR-decomposed subgoal needs to
be achieved for achieving its parent goal. In addi-
tion, goals/softgoals can be related to softgoals
through help (+), hurt (–), make (++), or break (--)
relationships. This simple language is sufficient
for modeling and analyzing goals during early
requirements, covering both functional and qual-
ity requirements, which in this framework are
treated as first-class citizens.

To illustrate what goal models are, and what
they can do for the design of autonomic software,
let’s suppose that the task is to design a system
that supports the scheduling of meetings (Figure
1). Clearly, several stakeholders here (managers,
engineers, admin staff, etc.) share the goal
“Schedule Meeting”, which can be AND-
decomposed into “Collect Timetables” and
“Choose Schedules”. Each of the subgoals has
two alternative solutions: it can either be done
“By Person” (“Manually”) or “By System”
(“Automatically”). A system can collect a timeta-
ble “From Agents” for each potential meeting
participant (e.g., from his secretary) or directly
from participants (“From Users”); the latter goal
is further AND-decomposed into “Send Request”
and “Receive Response” (regarding timetables).

Quality attributes are represented as softgoals
(cloudy shapes in the figure). For our example,
four top-level desired qualities are “Minimal
(scheduling) Effort”, “Good Quality Schedule”,
“Minimal Disturbance” and “Accurate (timetable)
Constraints”. These can be decomposed into sub-
softgoals. For example, “Minimal Effort” can be
fulfilled by minimizing “Collection Effort” and
“(human) Matching Effort”. Similarly, “Good
Quality Schedule” is fulfilled by having “Minimal
Conflicts” and “Good Participation”. Clearly,
collecting timetables manually is a tedious task.
Thus, it hurts the softgoal “(minimize) Collection
Effort”. As shown in Figure 1, such partial contri-
butions are explicitly expressed in the goal model.
In order not to clutter the figure, we don’t
show all partial contributions. For instance, when
timetables are collected by a person, they tend to
be more accurate. Thus, there should be a positive
contribution from the “By Person” goal to the
“Minimal Conflicts” softgoal.

In all, the goal model of Figure 1 shows six
alternative ways for fulfilling the goal “Schedule
Meeting”. It is easy to verify that generally the
number of alternatives represented by a typical

goal model depends exponentially on the number
of OR decompositions (labelled as variation
points “VP1” through “VP3” in Figure 1) present
in the goal model (assuming a “normalized” goal
model where AND and OR decompositions are
interleaved). As such, goal models make it possi-
ble to capture during requirements analysis – in
stakeholder-oriented terms – all the different ways
of fulfilling top-level goals. A systematic ap-
proach for thoroughly analyzing the variability in
the problem domain with the help of high-
variability goal models is discussed in [10]. The
paper proposes a taxonomy of variability con-
cerns as well as the method for making sure these
concerns are properly addressed during the goal
model elicitation process. Now, if one were de-
signing an autonomic software system, it would
make sense to ensure that the system is designed
to accommodate most/all ways of fulfilling top-
level goals (i.e., delivering the desired functional-
ity), rather than just some.

Another feature of goal models is that alter-
natives can be ranked with respect to the qualities
modeled in the figure. Assigning to the system the
responsibility for collecting timetables and gener-
ating a schedule is in general less time-consuming
(for people), but results more often in sub-optimal
schedules, since the system doesn’t take into ac-
count personal/political/social considerations. So,
the model of Figure 1 represents a space of alter-
native behaviours that can lead to the fulfillment
of top-level goals, and also captures how these
alternatives stack up with respect to desired stake-
holder qualities.

2.2 Reasoning with Goal Models
While goal models are a useful notation for mod-
eling and communicating requirements, we are
interested in the automated analysis of these mod-
els. To this end, Sebastiani et al. [13] present a
sound and complete satisfaction label propagation
algorithm that given a goal model with a number
of alternative ways to satisfy its goals and a num-
ber of softgoals representing important quality
concerns, can be used to find the alternative that
achieves the top-level goal of the model while
addressing these quality constraints. For instance,
one can specify (see Figure 1) that the goal
“Schedule Meeting” has to be achieved together
with the non-functional constraint “Minimal Ef-
fort”. The algorithm will determine that the alter-
native where the collection of timetables from

4

users and the selection of the meeting schedule
are done automatically is the best option.

Additionally, given a goal model with a set of
labels (i.e., satisfied, partially satisfied, etc.), the
algorithm in [3] propagates these labels up to-
wards the root goals using the semantics of
AND/OR decompositions and contribution links.
Thus, this algorithm can be used to determine
how the satisfaction/denial of lower-level goals
affects the satisfaction of higher-level ones. For
example, the failure of the goal “Choose Sched-
ule” in Figure 1 will deny the satisfaction of the
goal “Schedule Meeting” even if its sibling goal
“Collect Timetables” is satisfied.

2.3 Goal Model-based Customi-
zation and Configuration

There has been interest in trying to apply goal
models in practice to configure and customize
complex software systems. In [4], goal models
were used in the context of “personal software”
(e.g., an email system) specifically to capture al-
ternative ways of achieving user goals as a basis
for creating highly customizable systems that can
be fine-tuned for each particular user. The Goals-
Skills-Preferences approach for ranking alterna-
tives is also presented in [4]. The approach takes
into consideration the user’s preferences (the de-
sired quality attributes) as well as the user’s
physical and mental skills to find the best option
for achieving the user’s goals. This is done by
comparing the skills profile of the user to the
skills requirements of various system configura-
tion alternatives. For example, for the user who
has difficulty using the computer keyboard, the
configurator system will reject the alternatives
that require typing in favour of voice input.

In a generic version of the above approach,
capabilities of the system’s environment (e.g., the
budget the customer allocated for the project or
the current hardware/software environment in a
customer organization) are used to prune the
space of alternatives for achieving goals by re-
moving infeasible ones, while preferences will be
used to rank the remaining alternatives.

Goal models can also be used for configuring
complex software systems based on high-level
user goals and quality concerns [9][19]. Liaskos et.
al [9] propose a systematic way of eliciting goal
models that appropriately explain the intentions
behind existing systems. In [19], Yu et. al show
how such models can be used to automatically

configure relevant aspects of a complex system
without accessing its source code. A configurator
system that accepts a goal model and a user pref-
erence profile (in XML) and outputs a configura-
tion for the target system is presented. The tool
can have a GUI front-end and was used to config-
ure Mozilla Firefox and Eclipse IDE.

2.4 From Goal Models to High-
Variability Software Designs

We use goal models to represent variability in the
way high-level stakeholder objectives can be met
by the system-to-be together with its environment.
Thus, goal models capture variability in the prob-
lem domain. However, properly augmented goal
models can be used to create models that repre-
sent variability in the solution domain. We use
textual annotations to add the necessary details to
goal models. For example, the sequence annota-
tion (“;”) can be added to the appropriate AND
goal decomposition to indicate that the subgoals
are to be achieved in sequence from left to right.
Sequence annotations are useful to model data
dependencies or precedence constraints among
subgoals. For instance, it is easy to see that the
goal “Collect Timetables” must be achieved be-
fore achieving the goal “Choose Schedule” (see
Figure 1). The absence of any dependency among
subgoals in an AND decomposition can be indi-
cated by a concurrency (“||”) annotation. It is im-
portant to note that the above-mentioned
annotations capture properties of the problem
domain in more detail and are not used to capture
design choices, so they are requirements-level
annotations. However, annotations that can be
applied to OR decompositions are usually more
solution-oriented and indicate how (e.g., in paral-
lel to save time or in sequence to conserve re-
sources) the alternatives are to be attempted. We
do not use this kind of annotations in this paper.
Conditional annotations can also be added to
specify that certain goals are to be achieved only
under some specific circumstances. Lapouchnian
and Lespérance [8] discuss more types of annota-
tions. The choice of annotations to be used with
goal models is influenced by the kinds of analysis
or model transformations that one would like to
carry out on goal models.

In [18], we described how one can gradually
enrich basic goal models with appropriate infor-
mation and produce the several types of models
that preserve the variability captured in the goal

5

models. Among the models produced are feature
models and statecharts. These can serve as a start-
ing point in the development of a design for a
software system that can deliver the desired func-
tionality in multiple ways.

Figure 2: A fragment of the statechart generated

from the goal model in Figure 1.

For example, to generate an initial statechart view
(Figure 2) that models the behavioural variability
of the system-to-be, for each goal the software
system is responsible for a state that represents
that goal being achieved by the system is intro-
duced. We use super-/substates for organizing the
states into a hierarchy that is isomorphic to the
goal hierarchy from the source goal model. The
generation of statecharts is based on a set of pat-
terns that take into account goal decompositions
and the temporal annotations that were used to
enrich the original goal models. Here, the behav-
iour of the system depends on the selected process
alternative in the corresponding goal model. Note
that the conditions on some state transitions refer
to the choices made for the variation points of the
goal model (e.g., “VP1 = 2”). These conditions
make sure that the choices in the goal model are
reflected in the system behaviour. So, the variabil-
ity of the goal model is preserved in the statechart.
Note also, that in this approach, the selection of
alternative system behaviours is externalized and
should be handled by a specialized component
(e.g., the configurator system as in [19]).

Thus, having a goal model representing the
requirements for the system-to-be and the appro-
priate process-level enrichments, it is possible to
generate initial design views that preserve the
variability in the way the system-to-be can meet
its objectives.

Overall, the approach of [18] is systematic
and requirements-driven. It allows for the gradual
increase of the level of detail of the goal models

through the use of annotations. This process maps
requirements goal models into solution domain
models that can either be utilized as high-level
design specifications or used to generate other,
more elaborate design-level models of the system.
In this approach, requirements traceability is sup-
ported through the tight mapping between nota-
tions.

Alternatively, a script can be generated from
a goal model (e.g., as done in [8] for agent-based
systems) that can be used for integra-
tion/orchestration of components designed to
achieve leaf-level goals. In this case, the variabil-
ity will be preserved in the script rather than im-
plemented by the components of the system.

3 Towards Goal-Driven
Autonomic Computing

In this section, we describe how goal models can
be helpful in designing autonomic application
software, outline the architecture for AC systems
that can be easily derived from goal models, and
describe our requirements-driven approach for
developing autonomic systems

3.1 The Role of Goal Models
The building blocks of autonomic computing are
architectural components called Autonomic Ele-
ments (AEs). An autonomic element is responsi-
ble for providing resources, delivering services,
etc. Its behaviour and its relationships with other
AEs are “driven by goals that its designer embed-
ded in it” [6]. An AE typically consists of an auto-
nomic manager and a set of managed elements,
such as resources, components, etc. The manager
must be able to monitor and control the managed
elements.

An autonomic element manages itself to de-
liver its service in the best possible way. In order
to achieve this, its autonomic manager must be
armed with tools for monitoring its managed ele-
ments and the environment, for analyzing the col-
lected data to determine whether the AE is
performing as expected, for planning a new
course of action if a problem is detected, and for
executing these plans by, for example, tuning the
parameters of its managed elements. Most impor-
tantly, these activities require the knowledge
about the goal of the autonomic element, the con-

6

figurations and capabilities of its managed ele-
ments, the environment of the AE, etc.

We believe that goal models can be useful in
the design of autonomic computing systems in
several ways. First, goal models are used to cap-
ture and refine requirements for autonomic sys-
tems. A goal model provides the starting point for
the development of such a system by analyzing
the environment for the system-to-be and by iden-
tifying the problems that exist in this environment
as well as the needs that the system under devel-
opment has to address. Thus, requirements goal
models can be used as a baseline for validating
software systems.

Second, goal models provide a means to rep-
resent many ways in which the objectives of the
system can be met and analyze/rank these alterna-
tives with respect to stakeholder quality concerns
and other constraints, as described above. This
allows for exploration and analysis of alternative
system behaviours at design time, which leads to
more predictable and trusted autonomic systems.
It also means that if the alternatives that are ini-
tially delivered with the system perform well,
there is no need for complex social interactions
among autonomic elements (e.g., as implied in [6],
where AEs are viewed as socially-capable intelli-
gent agents). Of course, not all alternatives can be
identified at design time. In an open and dynamic
environment, new and better alternatives may
present themselves and some of the identified and
implemented alternatives may become impractical.
Thus, in certain situations, new alternatives will
have to be discovered and implemented by the
system at runtime. However, the process of dis-
covery, analysis, and implementation of new al-
ternatives at runtime is complex and error-prone.
By exploring the space of alternative process
specifications at design time, we are minimizing
the need for that difficult task.

Third, goal models provide the traceability
mechanism from AC system designs to stake-
holder requirements. When a change in stake-
holder requirements is detected at runtime (e.g.,
by using the approach in [2]), goal models can be
used to re-evaluate the system behaviour alterna-
tives with respect to the new requirements and to
determine if system reconfiguration is needed. For
instance, if a change in stakeholder requirements
affected a particular goal in the model, it is easy
to see how this goal is decomposed and which
components/autonomic elements implementing
the goal are in turn affected. By analyzing the

goal model, it is also easy to identify how a fail-
ure to achieve some particular goal affects the
overall objective of the system. At the same time,
high-variability goal models can be used to visu-
alize the currently selected system configuration
along with its alternatives and to communicate
suggested configuration changes to users in high-
level terms.

Fourth, goal models provide a unifying inten-
tional view of the system by relating goals as-
signed to individual autonomic elements to high-
level system objectives and quality concerns.
These high-level objectives or quality concerns
serve as the common knowledge shared among
the autonomic computing elements to achieve the
global system optimization. This way, the system
can avoid the pitfalls of missing the globally op-
timal configuration due to only relying on local
optimizations.

3.2 A Hierarchical Autonomic
Architecture

We now outline the architecture for autonomic
software systems that can be derived from high-
variability requirements goal models. We envision
a hierarchy of autonomic elements that is struc-
turally similar to the goal hierarchy of the corre-
sponding goal model. Here, leaf-level goals are to
be achieved by the components of the system-to-
be, by legacy systems, or by humans. Higher-level
goals are used to aggregate the lower-level ones
all the way to the root goal. Additional informa-
tion such as softgoal contributions and annota-
tions is used to determine the best configuration
of the system for achieving its main goal.

In the most straightforward case, a single
autonomic element is responsible for the whole
system. Thus, it is associated with the whole goal
model and is said to achieve the root goal of the
model. This has certain advantages in that all of
the analysis, monitoring, etc. is done in one place,
which can be helpful in achieving globally opti-
mal performance. However, there are also poten-
tial problems with this approach. A single AE can
make the system quite inflexible, hard to maintain,
as well as make it impossible to reuse any part of
the system.

In the other extreme case, each goal in the
goal model can be associated with an autonomic
element whose purpose is the achievement of that
goal. The managed elements of the leaf-level
autonomic elements (which correspond to leaf-

7

Figure 3: The Check Email example.

level goals) are then the actual components, re-
sources, etc. Leaf-level AEs can tune and opti-
mize these resources to deliver their objective in
the best way. On the other hand, higher-level
autonomic elements are not directly associated
with the actual components, but are used to or-
chestrate the lower-level elements. The root auto-
nomic element represents the whole software
system. Thus, an AE corresponds to any subtree
of the goal model. This approach has an advan-
tage that the global high-variability design space
is partitioned into autonomic elements with lower
variability, thereby facilitating management and
administration tasks. Also, this will improve
maintainability of the system. Finally, there is the
middle ground where a goal model is partitioned
among a set of AEs, each of which is responsible
not for a single goal, but for a goal subtree.

Figure 4: A hierarchical composition of AEs.

It remains to be seen which strategy is the best for
partitioning a goal model among autonomic ele-
ments. The size of the model is an important fac-
tor here.

A fragment of a properly enriched goal model will
serve as the core of each AE’s knowledge. For
example, Figure 4 presents an AE, whose objec-
tive is to achieve the goal G. It has a fragment of
the goal model showing the decomposition of this
goal. Here, the goal G is AND-decomposed into
G1 and G2, which means that the goal model
identified only one way to achieve G. The man-
aged elements of the AE in Figure 4 are them-
selves autonomic elements that achieve the goals
G1 and G2. They have different fragments of the
goal model assigned to them. For example, the
AE achieving the goal G2 knows that to attain
that goal it must either achieve G3 or G4 (the
relevant softgoals are not shown). These goals can
be in turn handled by lower-level AEs (also not
shown).

Because of the hierarchy of AEs, it is possi-
ble to propagate high-level concerns from the root
AE down to the leaf-level elements, thus making
sure that the system achieves its objectives and
addresses the quality concerns of its stakeholders.
Note that each autonomic element retains the
freedom to achieve its goal in the best way it can
provided that it satisfies the constraints passed to
it by the higher-level AE and/or the user.

3.3 An Illustrative Example
Before we describe our approach in detail, let us
introduce a subset of a case study we did to evalu-
ate it (see Figure 3). In the next sections we will
be referring to parts of this example to illustrate
the steps of the process. The example is a system
designed to be used with Mozilla Thunderbird

8

email client to periodically download email from
a corporate email server, thus “Check Corporate
Email” is its goal. First, the system needs to con-
nect to the secure corporate intranet, which can be
achieved by either connecting to it directly
(through the office network), by using the virtual
private network (VPN) connection, or by using a
secure dial-up provider. All three ways are con-
sidered secure (note the contributions to the “Se-
cure Access” softgoal), but have different costs.
Rectangular shapes in the model show how leaf-
level goals are implemented. For example, the
achievement of “Through VPN” goal is delegated
to an existing VPN dialer component. Then, the
system configures Thunderbird to use the best
email server available by selecting among the
three available corporate servers. This is done by
automatically changing the configuration file of
Thunderbird (specifically, the parameter
mail.server.corp.realhostname). Also,
depending on whether the user prefers not to be
disturbed or, conversely, prefers to be very re-
sponsive, the system configures Thunderbird to
display a visual alert, play a sound, or do nothing
when new mail arrives. After that, the system
invokes Thunderbird and later disconnects from
the intranet to reduce connection costs. As you
can see, the example system delivers its function-
ality by integrating and appropriately configuring
existing components.

4 The Approach
In our approach for the development of autonomic
software, we take high-variability requirements-
level goal models as a starting point. They are
used to capture the needs for the new system, both
functional and non-functional and the alternatives
that exist in the problem domain for meeting those
needs, as well as to do the initial analysis of the
alternatives with respect to the important quality
criteria modeled as softgoals.

A lot of research in the Autonomic Comput-
ing area is currently devoted to methods and tech-
niques for developing AC managers that handle
IT resources shared among applications. These
resources are usually various kinds of servers that
can be dynamically allocated to applications that
require them. So, the job of these AC managers is
to optimize the use of their resources, to protect
them, etc. Therefore, they operate in fairly re-
stricted environments (e.g., data centres) and their
decisions are implemented in terms of a relatively

small set of actions that are available in these do-
mains. This makes the AC managers quite generic
(i.e., middleware-like). Moreover, most of the
activities of these managers are hidden from the
applications since they are quite low-level and
thus do not affect these applications in a profound
way. All of these characteristics make the field of
resource allocation and provisioning ripe for
automation.

We, on the other hand, believe that resource
allocation/provisioning is just one of the areas that
can benefit from autonomic computing ideas and
that these ideas can be applied to systems other
than AC managers – specifically, to applications
themselves. Therefore, our approach is meant to
be used to introduce autonomic behaviour into the
application software, thus making it more flexible
and robust in achieving its goals.

There are a number of ways in which auto-
nomic application software differs from auto-
nomic middleware. First, the autonomic
functionality is application-specific, not generic.
Second, the changes in the autonomic application
behaviour are usually visible to and have direct
effect on the user and thus might require his ex-
plicit approval and his trust. Third, the autonomic
behaviour of an application system is highly in-
fluenced by the preferences and priorities of its
users.

The above discussion suggests that auto-
nomic application software requires special de-
velopment methodologies that address its unique
characteristics. Thus, the approach presented here
that is rooted in software requirements engineer-
ing and provides a way to explicitly model and
analyze alternative behaviours and how they af-
fect user quality concerns seems a promising way
for building autonomic application software.

In this approach, users (perhaps, non-
technical) can be in the loop by approving the
software changes proposed by the autonomic sys-
tem as well as by driving them by the means of,
for example, shifting priorities from one non-
functional concern to another. As noted before,
the approach leads to more predictable and trusted
systems and thus can be used for developing mis-
sion-critical systems with autonomic behaviour
where changes in the system’s behaviour might
have to be approved by an appropriate person
before they are enacted. Goal models can help
with such user interaction since they explicitly
represent goal achievement alternatives as well as
are able to present them in high-level terms.

9

Since the approach relies on the manual elici-
tation of high-variability goal models, it may not
be suited for domains that need very large number
of goals. However, once the goal model is devel-
oped, the alternatives can be enumerated and ana-
lyzed automatically. For example, [4] shows that
even naïve algorithms can work reasonably well
on a goal model with 750 nodes and 106 alterna-
tives.

We now describe the main steps in the proc-
ess in more detail.

4.1 Developing Goal Models
The process starts by identifying the problem do-
main, together with the opportunities for its im-
provement. Specifically, we look at how the
introduction of a software system can improve the
situation in the domain. The i* notation [17] can
be used at this stage to model stakeholders in the
domain along with their needs. This early re-
quirements stage helps us in identifying the goals
that the system-to-be will have to achieve. Once
the goals of the system are clear, we use goal
models to capture and refine them using AND/OR
decompositions described in Section 2. The em-
phasis here is on modeling the variability in the
problem domain: we try to capture all the differ-
ent ways the system’s goals can be achieved in
that domain. The process for high-variability goal
model elicitation described in [10] can help with
this task. We refine the goals of the model until
we reach the ones that can easily be achieved
through developing a software component, dele-
gating the goal to an existing component, a legacy
or a COTS (Commercial Off-The-Shelf) system,
or a person. Also, as we can see in the Check
Email system, some goals can be achieved by
appropriately configuring COTS systems.

In our example in Figure 3, the goal of the
system is “Check Corporate Email”. This goal is
refined into subgoals with alternative refinements
(e.g., the way one can connect to the corporate
intranet) represented by OR decompositions. We
stopped the refinement once we identified the
goals that could be achieved by the existing
COTS systems such as Mozilla Thunderbird, a
VPN dialer, or by appropriately configuring the
COTS products used in the system.

Non-functional constraints are used for ana-
lyzing the alternatives and for selecting the best
option for the system’s behaviour. They are cap-
tured using softgoals in our goal models, so one of

the key activities during the elicitation of goal
models is to identify the quality constraints that
are important in the problem domain. In the
Check Email example, the softgoals include “Im-
prove Server Performance”, “Increase Respon-
siveness”, and “Minimize Disturbance”. Note that
the latter two have the generally opposite contri-
butions from the alternative ways of notifying the
user of new email messages: the goal “Do Not
Notify” breaks (--) the softgoal “Increase Respon-
siveness” while making (++) “Minimize Distur-
bance”. Thus, the selection of the best notification
alternative will depend on how the user prioritizes
among these quality constraints. A change in such
prioritization will trigger a reconfiguration of the
system.

While eliciting goal models, we also add the
necessary sequential and parallel annotations as
described in Section 2.4. For instance, in the
Check Email example, the goal of connecting to
the intranet must be achieved before the goal of
downloading mail. Similarly, the two aspects of
the email client configuration, namely the mail
server and the type of new email alert can be done
independently, thus the goal “Configure Email
Client” is used with the parallel annotation.

4.2 Adding Formal Details
While some GORE approaches (e.g., KAOS [1])
require formal specifications for all goals in goal
models, in our approach it is up to the user to de-
termine to what extent the model must be formal-
ized. This means that if automated planning is a
feature of the system, then all the goals will most
likely be formally specified. Otherwise, the sys-
tem specification can mostly remain informal. For
example, in Figure 3 we only specify precondi-
tions for goals as needed by using conditional
annotations if(condition). Specifically, in
Figure 3 the goal “Connect to Intranet” is OR-
decomposed into the goals “Direct” and “Through
VPN” referring to the ways one can connect to a
corporate intranet. The precondition for “Through
VPN” is Inter, which is a boolean variable that
is true whenever there is internet connectivity
(since you have to have the internet connection to
be able to use VPN). The precondition for the
direct intranet connection is the existing intranet
connectivity. Preconditions capture the domain
properties that must be true for alternatives to be
considered for selection. For instance, if the sys-
tem has only internet (but not intranet) connec-

10

tivity, then the “Direct” option is not available,
while the VPN and dial-up options are. When
multiple alternatives are available, quality criteria
(in this case, “Minimize Connection Cost” soft-
goal) will be used to select the best one.

Likewise, the two alternatives for the “Dis-
connect” goal, namely “Disconnect VPN” and
“Disconnect Phone”, have as preconditions the
VPN and dial-up connectivity respectively. Obvi-
ously, one can disconnect a dial-up connection
only if it has been previously established. Thus,
the boolean variable DialUp, a precondition for
“Disconnect Phone”, must capture the effect
(post-condition) of the goal “Secure Dial-Up”.
The same applies to the variable VPN and the goal
“Through VPN”. Therefore, when a VPN connec-
tion is established, it will be disconnected by
achieving the goal “Disconnect VPN”. The pre-
conditions create requirements for the monitoring
component of the system.

4.3 Specifying Softgoal Contri-
butions

In goal models, goals/softgoals can be related to
softgoals through help (+), hurt (–), etc. relation-
ships. They represent qualitative evaluations of
how particular alternatives affect the modeled
non-functional requirements. Many of these do
not change throughout the execution of the system.
For instance, in Figure 3, the goal “Do Not No-
tify” [of incoming messages] makes (++) the soft-
goal “Minimize Disturbance”, while the goal
[notify] “With Alert” hurts it. This captures the
understanding that any alert is a distraction. And
this is unlikely to change. On the other hand, there
are situations where one would like to model soft-
goal contributions not as constants, but as func-
tions. In the Check Email example, such softgoal
is “Improve Server Performance”. Suppose that
the chosen way to improve email server perform-
ance in the corporate system is to make email
clients connect to servers with the lowest current
workload. Since server workload, obviously, var-
ies, to pick the server with the lowest load we
must parameterize the contributions to the soft-
goal “Improve Server Performance” as, for exam-
ple, done in [9]. To preserve uniformity in treating
softgoals and thus to still allow the use of the pre-
viously mentioned goal reasoning algorithms, we
define the function f(srv) (where srv is the
name of the email server), which maps certain

server workload ranges into the already discussed
four contribution labels. Here, we assume that
maximum server load is 999 concurrent connec-
tions. The function is defined through the sensed
value load(srv), the current load on the server
srv.

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤<−−
≤<−
≤<+

≤++

=

999 800 if ,""
800 600 if ,""
600 300 if ,""

 003 if ,""

)(

load(srv)
load(srv)
load(srv)

load(srv)

srvf

Since softgoals represent quality concerns (non-
functional requirements), not all of them can be
automatically determined to be satisfied or not. It
is even harder is assign values to softgoals thus
turning them into quantitative entities. Still, many
softgoals can be metricized – assigned metrics
that approximate those concerns. The handling of
the goal “Improve Server Performance” above is
an example of metricizing a softgoal. Similarly, a
popular metric for reliability is mean time be-
tween failure is another example. There are many
examples of such well-understood metrics that
can be used to approximate profitability, reliabil-
ity, performance, etc. However, not all softgoals
can be metricized. For example, “Convenience” is
a highly subjective criterion.

In general, in order to metricize a softgoal
one needs to come up with a measurable function
approximating that softgoal. Additionally, based
on the usual four-valued system for softgoal con-
tribution we use in our goal models the range of
the function has to be partitioned into four sub-
ranges, each corresponding to the contribution
value from “--“ to “++” as done in the example
above.

4.4 Monitoring
For a system to exhibit autonomic behaviour, it
must be able to monitor its environment as well as
its own behaviour to detect changes, failures, etc.
Appropriately enriched goal models described in
the previous sections can help in determining
what information needs to be captured and ana-
lyzed by the system.

First of all, the system must be able to moni-
tor the achievement of its leaf-level goals. These
are the goals that are assigned to the system com-
ponents, or the environment of the system (i.e.,

11

legacy systems, humans, etc.) In Requirements
Engineering, the latter are viewed as the system’s
expectations of its environment and so an auto-
nomic system must monitor the achievement of
these goals in order to detect if the expectations
are still valid.

The monitoring can be done in various ways.
If a goal is assigned to a legacy system or a com-
ponent, it might be possible to query that sys-
tem/component to get the status of the goal.
Otherwise, sensors in the environment can be
used to determine if the goal has been achieved
without querying the involved component(s). For
instance, in the example in Figure 3, after a VPN
dialer has been invoked to achieve the goal [con-
nect to intranet] “Through VPN”, we used a sim-
ple sensor to determine if access to the internal
corporate network had been granted by ping-ing
a known intranet server.

The achievement status of non-leaf goals can
usually be deduced using the algorithm of [3] that
propagates the satisfaction values of leaf-level
goals up towards the root of the model. For exam-
ple, if the goal “Through VPN” is determined to
be achieved, then the goal “Connect to Intranet” is
achieved as well by the semantics of the OR de-
composition.

The environment of the system also needs to
be monitored to determine if preconditions for
goals are satisfied. In the Check Email example,
the goal [connect to intranet] “Through VPN”
requires internet connectivity. Again, a simple
ping-based sensor is used to determine that. The
boolean variable Inter used within a conditional
annotation applied to “Through VPN” is defined
with the help of this sensor. Frequently, a precon-
dition of one goal is the achievement of another.
For example, a VPN connection must exist before
one can disconnect it. So, the precondition for
“Disconnect VPN”, the boolean variable VPN, is,
in fact, the post-condition of “Through VPN”. It
can be tested as described above.

Since some non-functional requirements
(modeled as softgoals) can be metricized using
approximating functions, to calculate the values
for these functions, we need to capture the data
used in their definitions. For example, to evaluate
the satisfaction of the softgoal “Improve Server
Performance” (as defined in Section 4.3) the
Check Email system needs to monitor the current
server load value load(srv) for all email serv-
ers.

As already mentioned, many softgoals are too
high-level/subjective to be metricized. Thus, it is
not straightforward for the system to, for example,
automatically verify that a particular alternative’s
contribution to a softgoal is correctly captured in
the goal model (e.g., that an alternative, in fact,
contributes negatively to the softgoal “Conven-
ience”). In these cases, the system might want to
confirm with the user(s) that its current configura-
tion meets the users’ quality criteria.

4.5 Using COTS Systems
COTS or legacy systems can be given responsibil-
ity for achieving goals. This can be done in the
usual way through procedure calls, messages, etc.
However, another possibility for using legacy
software in autonomic systems is through goal-
driven configuration [9][19] where AEs will wrap
these systems making sure that their behaviour
conforms to the quality preferences of system’s
stakeholders. The use of Thunderbird in our
Check Email case study is an example of that.
Here, Thunderbird is being dynamically config-
ured to achieve the functional goal “Download
Mail” while meeting non-functional requirements
such as “Improve Server Performance”. This con-
figuration approach has limitations since it de-
pends on the richness of configuration options of
legacy systems. However, many complex systems
have vast possibilities for configuration yielding
thousands or millions of alternatives with very
different properties that can be utilized in our ap-
proach.

When applied to COTS/legacy systems, our
approach can be viewed as defining the infrastruc-
ture for flexible, yet predictable integration of
these systems to meet higher-level customer needs.

4.6 Goal Model-Based Auto-
nomic Behaviour

Given a goal model characterizing various ways
of achieving some root goal G, one can rank these
alternatives with respect to their satisfaction of the
partially ordered set of quality criteria represented
in the model by softgoals. For example, in the
Check Email case study, if the softgoal “Minimize
Disturbance” is of high priority, then any alterna-
tive that uses sound notification when new mail
arrives will be ranked lower than any alternative
that uses the display notification. Whenever the
system needs to switch from one configuration to

12

another, it tries to select the best new alternative
that achieves the objective of the system while
maximizing the achievement of the set of quality
constraints (softgoals).

4.6.1 Self-Configuration
In our approach, when the system is first deployed,
it is configured to execute the best alternative for
the given (initial) preferences over softgoals. It
should continue to execute the chosen alternative
until changes in the environment of the system or
changes in softgoal priorities invalidate it. If this
happens, the system should be reconfigured and
the new best alternative must be chosen. For ex-
ample, in Figure 3, the default means for estab-
lishing the intranet connection is the “Direct”
connection since it, unlike the other choices, has a
“make” (++) contribution to the softgoal “Mini-
mize Connection Cost”. Therefore, as the user of
the system keeps checking his email while being
connected in the office (the precondition Intra
always holds in this case), the “Direct” option will
remain selected. However, if the user tries to
check the corporate email from home using his
own internet provider, the monitoring component
will detect the internet, but not the intranet con-
nectivity. Therefore, the precondition for the “Di-
rect” option will not be satisfied and a
reconfiguration will be needed. In this case, both
of the remaining alternatives will be available
since their preconditions are satisfied. The auto-
nomic manager responsible for that part of the
system will then use the goal reasoning algorithm
of [13] to find an alternative that achieves the goal
“Connect to Intranet” while making the best con-
tribution to the softgoal “Minimize Connection
Cost”. That alternative adopts the goal “Through
VPN”. This is an example of software reconfigu-
ration based on a change in the environment of
the system.

A similar switch from one configuration to
another will happen due to the change in user pri-
orities regarding email notification (the softgoals
“Increase Responsiveness” and “Minimize Dis-
turbance”). These changes cannot be easily de-
tected as they are normally related to the user’s
mood, workload, etc. Thus, the user must be able
to notify the system about such changes proac-
tively, through the use of a GUI tool. In the case
study we used a simple tool (presented in [19])
that allowed users to set priorities over softgoals
for the system. Once the user’s input is received,

the best choice for “Notify User of New Mail”
based on the user’s new priorities is found as
above with the help of a reasoning algorithm.
Therefore, in our approach, both the user and the
system’s environment can cause self-
reconfiguration.

4.6.2 Self-Optimization
The email server configuration in Mozilla Thun-
derbird in our Check Email example is designed
to show how self-optimization can be done in our
approach (see Figure 3). When the system is first
deployed, the values load(srv1) through
load(srv3) are fetched using a simple monitor-
ing component querying the server status database.
The contribution values for the servers are then
calculated and the server with the lowest work-
load is chosen. During the subsequent runs of the
system new workload values are received and the
contributions to “Improve Server Performance”
are recalculated. If applicable, a different server is
chosen. Since the formula f produces only four
discrete values for the softgoal contributions, the
system will not be able to always select the server
with the lowest workload because the reasoning
algorithm will not be able to distinguish among
servers with relatively similar workloads and thus
the same contribution labels. A finer-grained ap-
proach is, of course, possible (e.g., one use nu-
merical softgoal contribution values).

4.6.3 Self-Healing
A failure of a software component, COTS/legacy
system, or human to achieve a goal delegated to
them forces the system to search for ways to heal
itself. Using one of the already mentioned goal
analysis algorithms [3], the system will propagate
the “denied” status of the failed leaf-level goal up
the goal model to determine which higher-level
goals will in turn be affected by this failure. This
failure propagation can be presented to the
user/administrator of the system to illustrate the
severity of the problem by showing the problem-
atic system parts. The “top-down” goal reasoning
algorithm [13] is then used to find a new system
configuration that satisfies the top-level goal of
the system and as many of the non-functional
requirements as possible.

We will now illustrate this using the example
in Figure 3. Obviously, a failure of any child of an
AND-decomposed goal will propagate to its par-
ent. So, in our Check Email example a failure to

13

establish an intranet connection automatically
denies the top-level goal “Check Corporate
Email”. In this case, the model has no alternative
capable of achieving the top goal.

On the other hand, all of the children of an
OR-decomposed goal must fail for it to be denied.
For example, in, if the goal [notify user of new
email] “With Sound” fails, then its parent goal
“Notify User of New Mail” can still be attained
since there exist other alternatives for its
achievement. From the two possibilities, “With
Alert” and “Do Not Notify”, and assuming that
the user prefers the softgoal “Increase Respon-
siveness”, the algorithm of [13] will select “With
Alert” as the new alternative contributes posi-
tively to that softgoal (unlike “Do Not Notify”).

5 Discussion
Kephart and Chess suggest that overall system
self-management results from the internal self-
management of its individual autonomic elements
[6]. Moreover, in their view, autonomic elements
are full-fledged intelligent agents that, when as-
signed individual goals, will use complex social
interactions to communicate, negotiate, form alli-
ances, etc. and ultimately deliver the objective of
an autonomic system. However, deriving a set of
goals and policies that, if embedded into individ-
ual autonomic elements, will guarantee certain
global system properties is nontrivial. Thus, there
needs to be a systematic way of capturing overall
system’s objectives, decomposing them into
lower-level goals, and assigning those goals to
AEs. This problem is not addressed in [6]. The
approach presented here is requirements-driven
and can be used to systematically derive goals for
individual AEs/agents given the overall goals of
the system.

Multiagent systems promise to provide a very
flexible, scalable and open platform for software
applications. However, the cost of introducing
agent infrastructures that rely on complex interac-
tion protocols, planning, etc. may outweigh their
benefits in the domains where, for example, well-
understood performance models already exist and
can be used for automated optimization of soft-
ware systems. At the same time, there are also
concerns that a fully agent-based solution may not
be acceptable in certain domains such as mission
critical systems, business support systems, etc.
where predictability, reliability and transparency
are of paramount importance. Similarly, trust can

be a major issue in the acceptance of AC systems.
We believe that while being less flexible, our
methodology provides the capability to analyze
important process alternatives thus increasing the
system’s predictability and transparency while
improving the users’ trust in it.

In [8], an agent-oriented requirements engi-
neering method is introduced that translates i*
models (which are a superset of the goal models
described here) into high-level formal agent speci-
fications that support formal representation of and
reasoning about goals and knowledge of agents.
That approach is similar to the one presented here
in the sense that it is requirements-driven and uses
a similar goal-oriented notation. However, the
method of [8] does not emphasize the variability
aspect of goal models as much as we do here.
Therefore, we view the two techniques as com-
plementary to each other. By allowing leaf-level
goals in our approach to be delegated to intelli-
gent software agents, we will help with the design
of systems that support a set of previously ana-
lyzed and trusted alternatives and do not require
complex multiagent infrastructures as long as one
of the identified alternatives can be applied. In
situations when no alternative is satisfactory, the
full capabilities of intelligent software agents such
as the ability to reason about their goals, to com-
municate with each other at a semantic level, to
dynamically form teams, etc. can be invoked. We
plan to work on such hybrid approach in the fu-
ture.

6 Conclusion
The essential characteristic of autonomic comput-
ing systems is their ability to change their behav-
iour automatically in case of failures, changing
environment conditions, etc. In this paper, we
outline an approach for designing autonomic
computing systems based on goal models that
represent all the ways that high-level functional
and non-functional stakeholder goals can be at-
tained. These goal models can be used as a foun-
dation for building software that supports a space
of behaviours for achieving its goals and that is
able to analyze these alternatives (with respect to
important quality and other criteria), its own state,
and its environment to determine which behaviour
is the most appropriate at any given moment. For
such systems, goal models provide an intentional
view unifying all the system components and
demonstrating how they must work together to

14

achieve the overall system objective. Goal models
also support requirements traceability thus allow-
ing for the easy identification of parts of the sys-
tem affected by changing requirements. When
properly enriched with relevant design-level in-
formation, goal models can provide the core ar-
chitectural, behavioural, etc. knowledge for
supporting self-management. Of course, an ap-
propriate monitoring framework as well as, per-
haps, learning mechanisms need to be introduced
to enable self-management. The use of our ap-
proach with intelligent software agents is also
possible.

The benefits of this method also include the
increase in predictability and transparency of sys-
tems as well as the users’ trust in them.

Presented here is a vision for the require-
ments-driven design of autonomic software. A lot
of work remains to be done to test the applicabil-
ity of this approach and its scalability (though
there is evidence that automated reasoning can be
done on very large goal models). Heuristics need
to be developed for decomposing the system into
a hierarchy of autonomic elements. A particularly
interesting research area is the integration of
agents into the approach. This way the system
will be able to come up with new alternatives for
meeting its objectives whenever the predefined
configurations fail. We are also working on larger
case studies, particular in the area of adaptive
business processes and patient care.

About the Authors

Alexei Lapouchnian is a Ph.D. candidate in the
Department of Computer Science at the Univer-
sity of Toronto. He received his M.Sc. from York
University. His research interests are in require-
ments engineering, business process modeling,
autonomic computing, and software agents.

Yijun Yu is a research associate in the De-
partment of Computer Science at the University
of Toronto. He holds a Ph.D. from Fudan Univer-
sity in China. He is interested in quality aspects of
software engineering, autonomic computing,
software reengineering, and software performance
tuning.

Sotirios Liaskos is a Ph.D. candidate in the
Department of Computer Science at the Univer-
sity of Toronto. He received his M.Sc. from the
University of Toronto. His main interest is in the
area of Goal-Oriented Requirements Engineering,

in particular in capturing and analyzing variability
in software requirements.

John Mylopoulos holds a Ph.D. from Prince-
ton University (1970) and is a professor of Com-
puter Science at the University of Toronto. His
research interests include requirements engineer-
ing, data semantics and knowledge management.

References

[1] A. Dardenne, A. van Lamsweerde and S.
Fickas. Goal-Directed Requirements Acqui-
sitions, Science of Computer Programming,
20:3-50, 1993.

[2] M. S. Feather, S. Fickas, A. Van
Lamsweerde, and C. Ponsard. Reconciling
system requirements and runtime behavior.
In Proc. 9th International Workshop on
Software Specification and Design, p. 50.
IEEE Computer Society, 1998.

[3] P. Giorgini, J. Mylopoulos, E. Nicchiarelli,
R. Sebastiani. Reasoning with Goal Models.
In Proc. 21st International Conference on
Conceptual Modeling (ER2002), Tampere,
Finland.

[4] B. Hui, S. Liaskos, and J. Mylopoulos. Re-
quirements Analysis for Customizable Soft-
ware: Goals-Skills-Preferences Framework.
In Proc. 11th IEEE International Require-
ments Engineering Conference (RE’03),
Monterrey, CA, pp. 117–126, September
2003.

[5] K. C. Kang, S. G. Cohen, J. A. Hess, W. E.
Novak, and A. S. Peterson. Feature-Oriented
Domain Analysis (FODA) feasibility study
(CMU/SEI-90-TR-21, ADA235785). Tech-
nical Report, SEI/CMU, 1990.

[6] J. Kephart and D. Chess. The vision of auto-
nomic computing, Computer, 36(1):41–50,
2003.

[7] A. Lapouchnian, S. Liaskos, J. Mylopoulos,
Y. Yu. Towards Requirements-Driven
Autonomic Systems Design. In Proc. ICSE
2005 Workshop on Design and Evolution of
Autonomic Application Software (DEAS
2005), St. Louis, Missouri, USA, May 21,
2005. ACM SIGSOFT Software Engineering
Notes 30(4), July 2005.

[8] A. Lapouchnian and Y. Lespérance. Model-
ing Mental States in Agent-Oriented Re-

15

quirements Engineering. In Proc. 18th Con-
ference on Advanced Information Systems
Engineering (CAiSE'06), Luxembourg, June
5-9, 2006.

[9] S. Liaskos, A. Lapouchnian, Y. Wang, Y.
Yu, S. Easterbrook. Configuring Common
Personal Software: a Requirements-Driven
Approach. In Proc. 13th IEEE International
Requirements Engineering Conference, Aug
29-Sep 2, 2005, Paris, France.

[10] S. Liaskos, A. Lapouchnian, Y. Yu, E. Yu, J.
Mylopoulos. On Goal-based Variability Ac-
quisition and Analysis. In Proc. 14th IEEE
International Requirements Engineering
Conference, Minneapolis, USA, Sep 11-15,
2006

[11] R. Murch. Autonomic Computing. Prentice
Hall, 2004.

[12] J. Mylopoulos, L. Chung, and B. Nixon.
Representing and using non-functional re-
quirements: a process-oriented approach,
IEEE Transactions on Software Engineer-
ing, 18(6):483–497, 1992.

[13] R. Sebastiani, P. Giorgini, J. Mylopoulos.
Simple and Minimum-Cost Satisfiability for
Goal Models. In Proc. CAiSE 2004, Riga,
Latvia.

[14] W. Spears, K. De Jong, T. Baeck, D. Fogel,
H. Garis. An Overview of Evolutionary
Computing. In Proc. European Conference
on Machine Learning, 1993.

[15] K. Sycara, M. Klusch, S. Widoff, and J. Lu.
Dynamic Service Matchmaking among
Agents in open Information Environments,
ACM SIGMOD Record, Special Issue on
Semantic Interoperability in Global Informa-
tion Systems, A. Ouksel, A. Sheth (Eds.),
28(1):47–53, 1999.

[16] A. van Lamsweerde. Requirements Engi-
neering in the Year 00: A Research Perspec-
tive. Proc. ICSE’00, Limerick, Ireland, June,
2000.

[17] E. Yu. Modeling Organizations for Informa-
tion Systems Requirements Engineering. In
Proc. 1st IEEE International Symposium on
Requirements Engineering, San Diego, CA,
1993, pp. 34-41.

[18] Y. Yu, J. Mylopoulos, A. Lapouchnian, S.
Liaskos, and J.C.S.P. Leite. From stake-
holder goals to high-variability software de-
signs. Technical Report CSRG-509,
University of Toronto, 2005. Available at:
ftp://ftp.cs.toronto.edu/csrg-technical-
reports/509/.

[19] Y. Yu, A. Lapouchnian, S. Liaskos, J. My-
lopoulos. Requirements-Driven Configura-
tion of Software Systems. In WCRE 2005
Workshop on Reverse Engineering to Re-
quirements (RETR'05), Pittsburgh, PA,
USA, November 7, 2005.

