
Open Research Online
The Open University’s repository of research publications
and other research outputs

What can we expect from program verification?
Journal Item

How to cite:

Jackson, Michael (2006). What can we expect from program verification? IEEE Computer, 39(10) pp. 65–71.

For guidance on citations see FAQs.

c© [not recorded]

Version: [not recorded]

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1109/MC.2006.363

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82904777?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://dx.doi.org/doi:10.1109/MC.2006.363
http://oro.open.ac.uk/policies.html

0018-9162/06/$20.00 © 2006 IEEE October 2006 65P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

C O V E R F E A T U R E

SOFTWARE SPECIFICATIONS
For the proposed Grand Challenge, a correct software

product is one that conforms to a formal specification.
Key questions concern a specification’s subject matter
and its scope. Edsger Dijkstra4 viewed a specification as
a logical firewall separating the correctness concern—
whether the program satisfies its formal specification—
from the pleasantness concern—whether the program
that satisfies the specification is one we’d like to have. In
a more earthy formulation, the separation is between
building the program right and building the right
program.

The reason for this separation is obvious. Designers
have engineered computers to form a domain for pro-
gram execution in which correct formal reasoning is
fully reliable. However, in many cases, the developer
must draw on knowledge of the specification subject
matter because the necessary reasoning goes beyond
purely programming concerns. If this subject matter is
abstract and mathematical—for example, computing
the convex hull of a set of points in 3-space—the
required knowledge concerns relevant mathematical
axioms and theorems. It’s thus no less formal than the
program itself and leaves the applicability of formal rea-
soning intact.

Program verification assumes a formal program specification. In software-intensive

systems, such specifications must depend on formalization of the natural, nonformal

problem world.This formalization is inevitably imperfect, and poses major difficulties of

structure and reasoning. Appropriate verification tools can help address these difficulties

and improve system reliability.

Michael Jackson
The Open University

I n 2003, Tony Hoare proposed a Grand Challenge to
develop a verifying compiler.1 The following year,
Jim Woodcock’s broader proposal for dependable
systems evolution recommended developing, in
addition to a verifying compiler, a repository of real-

istic examples of programs and program documenta-
tion that had been, or were intended to be, verified.2

Examples mentioned included the Dutch Waterkering
storm-surge barrier system, the Mondex smart-card sys-
tem for financial transactions, and selected Web services.

The understanding of verification as mathematical
proof that a program satisfies its formal specification
extends back to Alan Turing in the middle part of the
past century. Verification techniques could include both
checking a given program against specifications con-
tained in the text or provided in a separate document,
and correctness by construction, in which a systematic
and formal development procedure guarantees the
developed program’s correctness or facilitates its verifi-
cation in some way. The research roadmap that one
Grand Challenge project subcommittee recently pro-
duced illustrates the richness of the possible repertoire
of verification techniques.3 Reflecting this richness, the
more general term tools for program verification has
now replaced the term verifying compiler.

What Can We Expect from
Program Verification?

Naturam expellas furca tamen usque recurret.

You may drive out nature with a pitchfork, but she will always find a way back.

Horace, Epistles 1.10.24

66 Computer

By contrast, the question of whether developers are
building the right program—for example, whether they
need the convex hull or the smallest containing cube—
threatens formality by introducing informal concerns
that lie outside the world of mathematics. Even the
choice of an input format for the set of points whose
convex hull will be computed introduces an informal
element: Human considerations arise for which there is
no indisputably correct, provable answer.

Therefore, restricting the specifica-
tions against which programs are to
be verified seems desirable. Specifi-
cations must have abstract and for-
mal subject matter lying strictly
within the computer’s perimeter.

In a software-intensive system, nei-
ther the problem nor its subject mat-
ter is formal. The problem world—
the natural environment in which the
software will run—is a collection of
specific physical phenomena, including human beings and
their engineered and otherwise constructed artifacts. The
problem’s subject matter isn’t the abstract axioms and
theories we might adopt to understand and formalize the
environment properties and to state and solve the prob-
lem. Rather, it’s the specific real environment itself, in all
its buzzing, blooming confusion.

Maintaining the possibility of formally verified cor-
rect software in such a system requires two distinct
preparatory tasks. First, developers must formalize the
system requirement—that is, the effects the software
must bring about in the environment—along with rele-
vant environment properties. Also, they must use the
formalized requirement and environment properties to
derive a formal specification of the desired computer
behavior at its interface with the environment.

Satisfying the resulting formal specification is the cri-
terion for program correctness. Deriving the specification
is the engineers’ responsibility. This task concerns only
the environment and lies outside the firewall. The task
inside the firewall concerns only the software and the for-
mal specification, and is the computer scientists’ respon-
sibility. The fully formal nature of programming and
program verification remains intact inside the firewall.

FROM REQUIREMENTS TO SPECIFICATIONS
The nature of software-intensive systems’ requirements

makes it difficult to apply this tidy separation of respon-
sibilities. Often, developers might easily state a vague and
general requirement, such as: “Close the storm-surge bar-
rier only when dangerous tides and weather are expected
in 11 hours’ time (the time it takes for the barrier to open
or close),” or “Provide a convenient service that lets sub-
scribers make and receive telephone calls.” However,
unlike “Compute the convex hull,” developers might find
it impossible to formalize these requirements in detail.

Formalized requirements
In Herb Simon’s terminology,5 the requirements must

be satisficed rather than formally satisfied. Evolution of
real systems is often iterative. Successive putative solutions
to a partly undefined problem must be proposed, exam-
ined, and tried out. This process might continue indefi-
nitely through a succession of operational versions. In
established engineering branches, this iteration takes place
over years—more than 120, in the case of motor vehicles.

A formalized requirement is
always incomplete. Its current form
is implicitly defined positively at any
time by some approved properties
of the current solution and nega-
tively by some of its deprecated
properties. Software specifications
derived from systems requirements
unavoidably inherit this partial, ten-
tative, and implicit nature.

Restricting the specification
Even if a developer could formally state an adequate

system requirement, restricting the software specifica-
tion to the computer’s behavior at its interface with the
environment presents another obstacle. Such a restricted
specification would be unmanageably complex and
humanly unintelligible.

Consider, for example, the problem of developing a
control program for traffic lights at an intersection. For
the simplest crossroads, designating the two pairs of
lights as E-W and N-S might be enough. The road lay-
out and the general traffic rules are obvious. The
restricted formal program specification is immediately
intelligible: E-W and N-S green phases of stipulated
durations alternate; green never shows in both direc-
tions; every alternate phase is red in both directions for
a stipulated time; and there’s a stipulated protocol for
switching each light between red and green.

Developers can express this formal specification very
clearly in terms of the computer-environment interface.
But consider a complex intersection with many roads
meeting in an elaborate layout with several closely adja-
cent nodes; pedestrian crossings, signals, and request
buttons; and vehicle sensors embedded in the roads.

Now developers can’t grasp the specification of the
necessary control-program behavior without careful
descriptions of road layouts (including road widths and
filtering on turns); the positions and properties of lights,
crossings, and sensors; pedestrian and vehicle traffic den-
sity and traversal times; and the required scheme of safe
and efficient pedestrian and vehicle flow through the
intersection.

As Figure 1 shows, the “orderly safe traffic” system
requirement isn’t located at computer interfaces A1, A2,
and A3 with the light units, crossing buttons, and road
sensors. Instead, it’s deep in the environment at B1 and

The nature of software-

intensive systems’

requirements makes it difficult

to apply a tidy separation

of responsibilities.

October 2006 67

B2, with the pedestrians,
vehicles, and drivers.
Understanding and justi-
fying the desired program
behavior at A1, A2, and
A3 must penetrate simi-
larly deeply.

Such understanding re-
lies on properties of parts
of the world that are only
indirectly connected to
the computer, just as the
justification of a program
to compute the convex hull of a set of points relies on
mathematical properties of Euclidean space. This loca-
tion deep in the environment is typical of realistic soft-
ware-intensive systems. A profusion of seemingly
arbitrary complexities and anomalies and a paucity of
the reliable, tersely expressible regularities that charac-
terize abstract mathematical worlds are also typical.

Physical world descriptions
Fortunately, restricting the specification to the com-

puter interface isn’t only impractical, it’s also unneces-
sary. Although a physical and human environment is a
nonformal domain, the engineering task of developing
the system must rely—somewhat as in established
branches of engineering—on formalized descriptions of
the physical world and on reasoning about those
descriptions. It’s possible to bring these formalizations
and the associated reasoning within the program spec-
ification’s purview, and hence within the scope of some
formal verification tools and techniques.

Four-variable model. The four-variable model6 pro-
vides one approach to this goal. The computer is con-
sidered to be connected by sensors and actuators to the
environment, through which it monitors and controls
certain environment variables M and C. Relations NAT
and REQ state the given environment properties and
system requirements over those variables. Relations IN
and OUT state the properties of sensors and actuators,
which relate the environment variables to computer
interface variables I and O. The development goal is to
derive the relation SOF, which relates I and O.

Rely and guarantee. Another approach formalizes
the problem-world properties in terms of rely and guar-
antee conditions.7 Properties of each part of the world
can be guaranteed provided that certain conditions—
typically, some property of the behavior of another
part—are reliable. Such an approach can extend as far
as the program itself. Its specification is that it must
guarantee to satisfy the overall system requirements
while relying on certain properties and behaviors of the
environment.

Reality variables. A third approach introduces prob-
lem-world properties into the program text by adding

reality variables whose values represent problem-world
states.8 For program statements whose execution
involves direct interaction with the problem world,
developers write axioms characterizing the variables’
states before, during, and after statement execution. In
effect, this introduces the environment into the program
as a set of specification or ghost variables.

Approaches of this kind can bring a variety of relevant
formalizations within the scope of verification. In addition
to program texts and specifications, developers can use
formal descriptions of designs, development steps, given
properties of the environment, system requirements, and
relationships that should hold among them. All this is
already envisioned in a proposal for the repository of doc-
umentation2 and a discussion of research directions.3

Extending the range of verification inputs in this way,
to include formalizations of the problem and its envi-
ronment, considerably broadens the goal of verifying pro-
gram correctness with respect to a program specification.

SOFTWARE-INTENSIVE SYSTEMS
Broadening the range of verification inputs provides

more grist for the mill of formal tools and techniques.
Since the added material is itself formal, resulting from
formalization of its nonformal subject matter, develop-
ers can treat it the same way as formal program texts
and specifications, using all the formal and mechanized
reasoning tools. Effectively, developers use the tools to
check the program specification’s derivation from the
system requirements.

This wouldn’t merit extended consideration if it were
the only effect of extending the Grand Challenge scope
to software-intensive systems. But the effects are more
substantial. They provide notable challenges and oppor-
tunities arising from the characteristics of software-
intensive systems that distinguish them from systems
concerned either with abstract mathematical worlds or
the carefully formalized world of program execution—
as in the case of cache management, operating systems,
compilers, and file systems.

Of course, the distinction isn’t rigorous. A compiler
designer must consider how human users would under-
stand and be helped by particular diagnostic messages,

PedestriansLight
units

Lights
controller

Vehicles
and drivers

Road
layout

Crossing
buttons

Road
sensors

B1

B2

Orderly
safe traffic

A2

A1

A3

Figure 1. Orderly safe traffic. Requirements for a traffic system are located deep in the

environment.

68 Computer

and a file system must take explicit account of the pos-
sibility of disk error and failure. But the differences
remain large, and must be explicitly addressed.

Three distinctive characteristics of software-intensive
systems impinge most heavily on verification. First,
understanding and analyzing the systems and problems
they solve depends on particular forms of problem
decomposition and patterns of the resulting compo-
nents.

Second, the combination or composition of the com-
ponents in a realistic system is heterogeneous. It presents
the need for many particular forms of composition,
which justify specific support in a verification toolset.
More abstract forms of some of these combinations may
already be well known in theory and practice.

Third, the nonformal nature of the underlying reality
in the environment has an important effect on the role
of formal reasoning about it, and
suggests opportunities to help with
the consequent difficulties.

DECOMPOSITION AND
SUBPROBLEM COMPONENTS

Software-intensive systems exhibit
complexity that must be mastered by
decomposition. The absence of reg-
ularity in the problem environment
and the requirements is one source of this complexity.
For example, only weak generalizations can hold over
the whole set of traffic light units in the complex inter-
section system because each unit occupies a unique posi-
tion in the layout, with unique relationships to nearby
lights and crossings.

The rich structure of a software-intensive system is a
second source of complexity, in the sense that its func-
tionality combines many large subfunctions of different
kinds working together in many different ways. This
richness and heterogeneity increase with more demands
for multiple features and system interoperability.

Environment properties
We can regard specifying and implementing each sub-

function as a subproblem within the overall problem of
developing the system. Also, in a loose analogy with the
structure of an engineering product such as a motor
vehicle, we can regard the implemented subfunctions,
together with their relevant parts of the environment,
as components. Consider a control system intended to
provide safe elevator service in a hotel. Developers must
identify the environment properties the solution to the
elevator service subproblem needs—for example, the
causal chains that connect the motor’s polarity and on-
off switches to the car’s movement in the shaft, and con-
nect the car’s position in the shaft to the states of the
floor sensors. It’s impossible to provide elevator service
without relying on these properties.

Safety and other subproblems
But there’s also a safety subproblem that requires design-

ers to recognize the unreliability of these properties, how-
ever carefully they’re chosen and formalized. The power
might fail, the switch contact might fail, the motor might
burn out, the cable might snap, a floor sensor might stick.
There’s no bound to the failure possibilities.

The safety subproblem requires a separate compo-
nent. Environment properties that allow detection and
diagnosis of equipment faults are important for this
component. Running concurrently with elevator service,
safety oversees equipment functioning and executes
appropriate action when it detects a fault.

Another subproblem might provide a lobby display that
shows which floor the elevator cars are on and how many
floors each must visit before reaching the lobby. Another
subproblem might let the hotel manager change elevator

schedules to reflect new usage pat-
terns. Yet another might provide a
manual control regimen that an ele-
vator engineer can use during main-
tenance. A realistic system would
feature many such subproblems, each
with its own requirement, its own rel-
evant subset of the environment, and
its own software specification.

Problem decomposition
Problem decomposition can have many goals, depend-

ing on the system and its context. Achieving simplicity
in each subproblem, perhaps by applying a repertoire
of design heuristics, is one important aim. One such
heuristic restricts the subproblem requirement to a sin-
gle level of desirability. In the elevator example, sepa-
rating elevator service from safety avoids a requirement
of the form: “Provide service, but if that’s not possible,
ensure safety.”

The separation defers the combination of service and
safety to another development task, but for the com-
bining task the complexities of the separated subprob-
lems are hidden. Another heuristic demands a consistent
formalization of the environment. For example, the for-
malized environment properties needed for elevator ser-
vice are different from those for fault detection and
diagnosis.

A third heuristic might prohibit the presence of irrec-
oncilable periodicities within the same subproblem. In
a library management system, for example, this would
lead to separating subscription management from book-
borrowing management. Given suitable formalizations
of requirements and environment properties, designers
can use verification tools to check heuristics like these.

Known subproblem classes
Problem decomposition also aims to ensure that as

many subproblems as possible fall into known classes

Software-intensive

systems exhibit complexity

that must be mastered

by decomposition.

having known solutions. In software-intensive system
problems as elsewhere in engineering, mastering het-
erogeneity and complexity depends heavily on accumu-
lated specialized knowledge. In an illuminating book9

about engineering, W.G. Vincenti distinguishes normal
from radical design. According to Vincenti, in normal
design, “the engineer knows at the outset how the device
in question works, what are its customary features, and
that, if properly designed along such lines, it has a good
likelihood of accomplishing the desired task.”

In radical design, by contrast, “how the device should
be arranged or even how it works is largely unknown.
The designer has never seen such a device before and
has no presumption of success. The problem is to design
something that will function well enough to warrant fur-
ther development.”

The canons of normal design, established by long
experience for each known device
type, minimize the likelihood of
unwelcome surprises, contributing
hugely to dependability.

Device repertoire
Adapting Vincenti’s view to soft-

ware-intensive systems, we could
regard the subproblem solutions—
each with its software component,
requirement, and relevant subset of the problem world—
as devices. With increasing experience, we should be
able to develop a repertoire of known device types.10

Basic verification of each component individually
wouldn’t be very different in principle from verification
of any program against a specification containing a for-
malization of the environment. But it might have addi-
tional aspects.

We expect normal component design to conform to a
standard pattern of the software, its problem world, and
their interactions. Such patterns could be explicitly
named and described, just as object-oriented design pat-
terns have been, and a component’s conformity to its
pattern could be checked as part of the verification
process. For example, a pattern might stipulate that one
particular part of the subproblem’s environment be pas-
sive, in the sense that it never initiates events or state
changes but only responds to external stimuli. Designers
could check such a property against the pattern using a
tool that analyzes the environment formalization.

Initialization concern
Each pattern is associated with several concerns that

developers must address to avoid failures of known
kinds. For example, the initialization concern, well
known for program variables, is important in several
classes of software-intensive system components. When
the software execution begins, the relevant parts of the
environment must be in a compatible state.

If developers specify the software so that any possible
environment state is compatible, they’ve fully discharged
the initialization concern. But if a system component
relies on a stronger assumption about the environment
state—for example, if the elevator service module
assumes that the elevator is initially at a floor with the
motor off—then even if the environment formalization
asserts a compatible initial state, it’s still appropriate to
bring the matter to the developer’s attention.

The initial environment state is that which holds when
the subproblem software begins execution. It’s easy to
make assumptions about the initial state that aren’t jus-
tified in the problem world reality.

COMPOSITION OF COMPONENTS
Vincenti pointed out that radical design is called into

play not only for novel devices, but also more generally
for systems, which are large hetero-
geneous assemblages of devices and
other components and participants.
Of course, we can also regard
devices, even of known types, as
small systems. But for a device of a
known type, normal design specifi-
cally includes the composition of its
parts. In a system, by contrast, even
if all the component devices are of

known types, the novelty of their composition imposes
uncertainties. In addition to simple combinatorial explo-
sion, uncertainties arise from novel and unanticipated
forms of interaction.

Few problems with software-intensive systems fit com-
fortably into large, regular structures exhibiting archi-
tectural styles such as procedure hierarchy, pipe and filter,
or layers of abstraction. In an interesting illustration—
user control of a digital oscilloscope—researchers Mary
Shaw and David Garlan described the difficulties of fitting
the software design into one regular architectural style.11

System components’ heterogeneity and their complex
interactions make this task difficult. Designers can’t
understand component interactions solely in terms of
their software parts’ interactions within the program
execution. Components interact not only at their soft-
ware interfaces, but also indirectly by interacting with
common parts of the problem world.

Component relationships in the environment
The elevator service and safety subproblems, for

example, are related in a nontrivial way in the environ-
ment. They rely on different formalizations of the envi-
ronment. They are concerned with overlapping but
distinct subsets of the world. For example, only eleva-
tor service is concerned with the request buttons, and
only safety is concerned with the emergency brake.

They have different control relationships to certain
environment phenomena. Elevator service controls the

October 2006 69

When the software execution

begins, the relevant parts of

the environment must be

in a compatible state.

70 Computer

motor polarity, while safety only observes it. Their
requirements might come into conflict. For example, in
the event of a fault, safety requires the motor to shut
down, while service might require it to run. Their
requirements are related also by precedence, with safety
taking precedence over service.

Component software implementations are ordered
by criticality. The safety module must execute correctly
with maximal reliability, and must not depend in any
way on the service module. Some of these relationships
demand verification of the paths
between the software modules, and
others require verification of the
composition of their effects in the
environment.

Types of composition
Some component compositions

may be of well-known types such as
the interleaving between the writer
and readers of a shared environment part, or switching
between subproblems handling different system modes,
such as taxiing, takeoff, climbing, and cruising in an
avionics system.

In a switching composition, control of an environment
domain is handed over from one subproblem to another.
The relinquishing subproblem must leave the domain in
a state permitting handover, and the receiving subprob-
lem must receive it in a suitable initial state or be able to
put it into such a state.

In an interleaving composition, establishing atomic-
ity and mutual exclusion in the software isn’t enough.
Designers must also examine the effects in the environ-
ment. For example, interleaving the subproblem in
which the hotel manager edits the elevator-scheduling
priorities with the elevator-service subproblem that’s
governed by those priorities demands more than mutu-
ally exclusive access to the priorities’ data structure.
Designers also must determine whether editing should
always be permitted and when and how elevator service
will change over to the newer priorities.

Established software verification forms deal with struc-
tural innovations of modern programming languages,
such as encapsulation, inheritance, exceptions, and con-
currency. Similarly, verification should deal with struc-
tural patterns evolved specifically for software-intensive
systems. If an engineer could adopt a developed discipline
of such patterns, verification tools could recognize and
exploit them as readily as they’d recognize and exploit
inheritance or exception-handling in a Java program.

REASONING ABOUT THE ENVIRONMENT
Formalizations of environment properties and system

requirements are necessarily imperfect. First, definition
and interpretation of formal terms is unavoidably fuzzy.
Second, designers must approximate values of continuous

phenomena. Third, there can be no frame conditions, since
there’s no limit to the phenomena or properties that might
affect an assertion’s truth or falsity. And fourth, effects
that developers can ignore for each individual physical
property might play a critical role in their composition.

Finding potential inadequacies
This doesn’t affect pure logical reasoning on the basis

of these formalizations. However, developers can’t fully
rely on the results of such reasoning reinterpreted in the

environment. In reasoning about a
physical world, logic can show only
the presence of errors, never their
absence. Formal verification tools
can’t examine the reality of the prob-
lem world to check the truth of their
conclusions, but they might be able
to indicate particular potential inad-
equacies.

For example, if part of the envi-
ronment is formalized as having two distinct state com-
ponents, each with its own protocol for external control,
the verification tool might, by the rule of �–introduction,
deduce that any interleaving of the two protocols by exe-
cution of their corresponding software components will
produce correspondingly interleaved state changes.

The verification tool might apply this reasoning to a
machine tool with a longitudinal and a transverse
motion. But in reality, some particular interleaving might
cause the whole domain to reach an unanticipated and
impermissible combined state—for example, one in
which the power supply is overloaded because both
motors are being started simultaneously under full load.
In such a case, the tool could usefully point out that it
has relied on a specific assumption of compositionality
in computing the effects of program execution. It might
even identify and enumerate the combined states that,
according to some heuristic rule, will most likely be
problematic. The developer would respond by checking
that the state components are orthogonal, that none of
the enumerated combined states is impermissible, and
that the assumption of compositionality holds in reality.

Checking reasoning
If a program’s specification and supporting documents

include descriptions of formalized development steps,
developers could deploy the power of verification to
check the reasoning in those steps. One example is prob-
lem reduction12 or requirement progression.13 When a
problem requirement is deep in the world—in the sense
that it’s separated from the computer by more than one
problem-world domain, as it is in the complex traffic
lights problem—developers can often start establishing
a software specification by reasoning about the outer-
most domain to obtain a restated requirement expressed
only in terms of domains closer to the computer.

Formalizations of

environment properties

and system requirements

are necessarily imperfect.

A verification tool could check such reasoning steps
for logical correctness. Drawing an analogy with a pro-
gram-refinement step, or establishment of a lemma
needed for a proof, is attractive.

The need to handle new programming-language fea-
tures and constructs has long influenced development
of verification tools and techniques. In the other direc-
tion, our desire for verification has influenced language
development toward greater clarity and simplicity in
programming.3

The history of types in programming languages illus-
trates the symbiosis between enhanced languages and
verification methods very well. A similar symbiosis could
exist in a wider context. Although verification (as
opposed to testing) is concerned with the formal, it can
address formalizations of requirements and problem
worlds no less than formalizations of programs.

The availability of helpful verification tools could
drive development of languages for capturing and refin-
ing the concepts of problem structure and analysis.
Earlier work explored the concepts of problem struc-
ture and analysis mentioned here.10,14,15 Interaction
between such work and existing and future work on for-
mal verification could be fruitful.

M uch of what I’ve suggested is based on informal
considerations, some implying judgments about
the relative likelihood of different error classes

in system development. This informality isn’t alien to the
spirit of the Grand Challenge. Intuition about human
capacities is important, as it is for interactive theorem
provers, and we shouldn’t ignore it when applying veri-
fication to software-intensive systems.

Software verification is an attractive goal. Proponents
of the Grand Challenge envision a world in which com-
puter programs are always the most reliable component
of any system or device that contains them. Verification
tools and techniques can help make sure that the pro-
grammer builds the program right. They could also con-
tribute to building the right program. ■

Acknowledgments

I am very grateful to Anthony Hall, Jon Hall, Daniel
Jackson, Butler Lampson, Gary Leavens, Fred Schneider,
and Michel Sintzoff, whose generous comments on an
earlier version of this article helped clarify my thoughts.
Responsibility for the remaining deficiencies is, of
course, entirely mine.

References

1. T. Hoare, “The Verifying Compiler: A Grand Challenge for
Computing Research,” J. ACM, Jan. 2003, pp. 63-69.

2. J. Woodcock, “GC6: Dependable Systems Evolution,” Grand

Challenges in Computing Research, T. Hoare and R. Milner,
eds., British CS, 2004, pp. 25-28.

3. G.T. Leavens et al., Roadmap for Enhanced Languages and
Methods to Aid Verification, tech. report TR-06-21, Com-
puter Science Dept., Iowa State Univ., July 2006; ftp://ftp.cs.
iastate.edu/pub/techreports/TR06-21/TR.pdf.

4. E.W. Dijkstra, “On the Cruelty of Really Teaching Comput-
ing Science,” Comm. ACM, Dec. 1989, pp. 1398-1404.

5. H. Simon, Models of Bounded Rationality: Behavioral Eco-
nomics and Business Organization, MIT Press, 1982.

6. D.L. Parnas and Jan Madey, “Functional Documents for Com-
puter Systems,” Science of Computer Programming, Oct.
1995, pp. 41-61.

7. I.J. Hayes, M.A. Jackson, and C.B. Jones, “Determining the
Specification of a Control System from That of Its Environ-
ment,” Proc. FME 2003, Springer-Verlag, 2003, pp. 154-169.

8. K. Marzullo, F.B. Schneider, and N. Budhiraja, “Derivation
of Sequential, Real-Time Process-Control Programs,” Foun-
dations of Real-Time Computing: Formal Specifications and
Methods, A.M. van Tilborg and G. Koob, eds., Kluwer Aca-
demic Publishers, 1991, pp. 39-54.

9. W.G. Vincenti, What Engineers Know and How They Know
It: Analytical Studies from Aeronautical History, The Johns
Hopkins Univ. Press, 1993.

10. M. Jackson, “Problem Analysis and Structure,” Eng. Theo-
ries of Software Construction, T. Hoare, M. Broy, and R.
Steinbruggen, eds., Proc. NATO Summer School Marktober-
dorf, IOS Press, 2000, pp. 3-20.

11. M. Shaw and D. Garlan, Software Architecture: Perspectives
on an Emerging Discipline, Prentice-Hall, 1996, pp. 39-42.

12. L. Rapanotti, J. Hall, and M. Jackson, “Problem Transfor-
mations in Solving the Package Router Control Problem,”
tech. report TR2006/07, Open University, July 2006.

13. R. Seater and D. Jackson, “Requirement Progression in Prob-
lem Frames Applied to a Proton Therapy System,” Proc. 14th
IEEE Int’l Requirements Eng. Conf. (RE 06), forthcoming,
2006.

14. M. Jackson and P. Zave, “Deriving Specifications from
Requirements: An Example,” Proc. 17th Int’l Conf. Software
Eng. (ICSE 95), ACM and IEEE CS Press, 1995, pp. 15-24;
http://doi.ieeecomputersociety.org/10.1109/ICSE.1995.10007.

15. J.G. Hall and L. Rapanotti, “A Reference Model for Require-
ments Engineering,” Proc. 11th Int’l Conf. Requirements
Eng. (RE 03), IEEE CS Press, 2003, pp. 181-187; http://doi.
ieeecomputersociety.org/10.1109/ICRE.2003.1232749.

Michael Jackson has visiting research posts in the Depart-
ment of Computing at The Open University and at the
Department of Computing Science at the University of
Newcastle. His current research interests are problem analy-
sis and structure and the relationship between problems and
solutions. He received bachelor’s degrees in classics and
mathematics from Oxford and Cambridge universities. He
is a Fellow of the Royal Academy of Engineering. Contact
him at jacksonma@acm.org.

October 2006 71

