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Abstract

As the interest in using policy-based approaches for

systems management grows, it is becoming increasingly

important to develop methods for performing analysis 

and refinement of policy specifications.  Although this is

an area that researchers have devoted some attention to,

none of the proposed solutions address the issue of

deriving implementable policies from high-level goals.  A 

key part of the solution to this problem is having the

ability to identify the operations, available on the

underlying system, which can achieve a given goal. 

This paper presents an approach by which a formal

representation of a system, based on the Event Calculus,

can be used in conjunction with abductive reasoning

techniques to derive the sequence of operations that will 

allow a given system to achieve a desired goal. 

Additionally it outlines how this technique might be used

for providing tool support and partial automation for

policy refinement.  Building on previous work on using

formal techniques for policy analysis, the approach

presented here applies a transformation of both policy

and system behaviour specifications into a formal 

notation that is based on Event Calculus. Finally, it

shows how the overall process could be used in

conjunction with UML modelling and illustrates this by 

means of an example.

1. Introduction 

Policy based approaches to network and systems

management are of particular importance because they 

allow the separation of the rules that govern the behaviour

of a system from the functionality provided by that

system.  This means that it is possible to adapt the

behaviour of a system without the need to recode

functionality, and changes can be applied without 

stopping the system.  Research into policy based systems

management has focussed on languages for specifying

policies and architectures for managing and deploying

policies in distributed environments.  However, whilst

there have been some promising developments in the area 

of policy analysis, policy refinement remains a much-

neglected research problem.

Policy refinement is the process of transforming a

high-level, abstract policy specification into a low-level,

concrete one. Moffett and Sloman [1], identify the main

objectives of a policy refinement process as:

Determine the resources that are needed to satisfy the 

requirements of the policy.

Translate high-level policies into operational policies

that the system can enforce. 

Verify that the lower level policies actually meet the

requirements specified by the high-level policy.

The first of these objectives involves mapping abstract

entities defined as part of a high-level policy to concrete

objects/devices that make up the underlying system.  The 

second specifies the need to ensure that any policies

derived by the refinement process be in terms of

operations that are supported by the underlying system.

The final objective requires that there be a process for 

incrementally decomposing abstract requirements into 

successively more concrete ones, ensuring that at each 

stage the decomposition is correct and consistent. 

Figure 1 presents an example scenario, originally

developed by Verma [2], where policy refinement might

be applied. Here, an enterprise network must implement

a Service Level Agreement (SLA) where one of the
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Figure 1: Example enterprise network

1

Proceedings of the Fifth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’04) 
0-7695-2141-X/04 $ 20.00 © 2004 IEEE 



clauses specifies that “WebServices Applications on the

eCommerce Server must receive Gold Quality of Service 

(QoS)”.  This requirement may be articulated as a policy

which states that “On demand, the network should be 

configured to provide Gold QoS to WebServices

applications on the eCommerce Server”.  Based on the 

objectives mentioned above, the policy refinement

process should transform this high-level policy into

lower-level policies that take into account:

1. The specific routers that need to be configured to

handle the traffic for “WebServices applications on 

the eCommerce Server”. 

2. The set of operations, supported by these routers that

will meet the objective of “Gold QoS for WebServices

Applications on the eCommerce Server”. 

And the overall process should meet the third objective

of ensuring that there is a means to verify that low-level

policies actually meet the requirement defined by the

high-level one.  This example illustrates that the policy

refinement problem is actually composed of two parts:

1. Refinement of abstract entities into concrete

objects/devices.

2. Refinement of high-level goals into operations,

supported by the concrete objects/devices, that when 

performed will achieve the high-level goal.

In order to solve these problems we need a formal

representation for objects, their behaviour and

organisation; a technique for refining high-level goals

into more concrete ones; and finally a means of inferring

the combination of operations that will achieve these

concrete goals. To this end we use the formalism

presented in [3] to model the behaviour and organisation

of the objects, together with the goal elaboration

technique developed by Darimont et al. [4], to refine

high-level goals into concrete ones.  However, the refined

goals cannot be directly used in policies without first

identifying the operations that will achieve them.  To

support this identification process, we introduce the

concept of a strategy, which is the mechanism by which a 

given system can achieve a particular goal, i.e., a strategy

is the relationship between the system description and the

goal. By having a formal specification of the latter two

types of information we can use abductive reasoning to

infer the strategy.

In keeping with our previous work [3], we propose

that the entire formalism be implemented in Event

Calculus [5] since this is a particularly suitable notation

for modelling the event-driven nature of the systems we 

are interested in; and also because this allows us to make

use of the mapping from the Ponder policy notation to

Event Calculus and the conflict detection techniques that

we have already developed.  We use the goal elaboration

technique presented in [4] because it provides the concept 

of domain-specific and domain-independent refinement

patterns, logically proven goal refinement templates that

can be easily reused.  We can use such patterns to capture 

the refinement of goals that are commonly encountered in

policy-based management, thus simplifying the

refinement process for the user. 

The paper is organised as follows.  Section 2 presents

background information on the techniques we are 

building on to develop our policy refinement solution.

Section 3 presents the policy refinement approach 

together with the details for the formal notation being

used; and Section 4 illustrates how the refinement

technique might be applied to the example described

above.  In Section 5 we discuss the solution, its strengths

and weaknesses; and in Section 6 we compare this work

with existing research in the field. Finally Section 7

presents some conclusions together with directions for 

future work. 

2. Background

2.1 Goal Elaboration 

The first component of the policy refinement process 

to be considered is a technique for refining high-level

goals, defined during the requirements gathering process,

into concrete low-level policies.  Figure 2 shows how the

requirements of a system might be refined from high-

level goals into implementable classes/modules. The 

decomposition of a goal can be either conjunctive (i.e.

only by achieving all the sub-goals can we consider that

the higher-level goal is achieved) or disjunctive (i.e. by

achieving any one of the sub-goals we can consider the

higher-level goal is achieved).

Note the two distinct phases of the refinement process. 

The first phase is one of goal refinement where the focus 

is on translating abstract goals into operationalised goals.

An operationalised goal is one that has been assigned to

specific agent whose capabilities enable the system to

satisfy that goal.  These goals are often referred to as the

System Requirements.  Taking the example presented

previously, this process would transform the SLA 

requirement of providing gold QoS for a particular class

of traffic into a set of goals that define the configuration

changes that must be applied to the routers in the

network.  The second phase of the refinement process

takes these system requirements and maps them to

specific modules/operations that can be implemented

within the context of the system architecture.  This phase 

could be considered to be architectural or system design.

In our example, this would involve identifying the

operations to be invoked on the routers to achieve the

desired goal.
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In the above scheme, each high-level goal is refined

into sub-goals, forming a goal refinement hierarchy where 

the dependencies between the goals at the different levels

of refinement are based on the form of goal

decomposition used (AND/OR).  Additionally there can

be dependencies between goals in different hierarchies.

The process of refinement will involve following a 

particular path down the hierarchy, at each stage verifying 

the feasibility of achieving the higher-level goal in terms

of the lower-level ones. If it is discovered that the goal

cannot be achieved, it is necessary to elaborate the

information at the higher-level such that suitable lower-

level goals can be derived.

Work done by Darimont et al. [4], proposes a formal

technique for elaborating goals grounded in Temporal

Logic.  Called KAOS, this approach represents each goal 

as a Temporal Logic rule and then makes use of 

refinement patterns to decompose these goals into a set of

sub-goals that logically entail the original goal.

Additionally, this technique makes use of obstacles

(negated goals) which are then elaborated and resolved to 

provide new goals.  This process results in a set of refined 

goals, and the identification of objects and operations that

might operationalise them.  The final stage of the

procedure is to assign each of the refined goals to a 

specific object/operation such that the final system will

meet the original requirements. Whilst the KAOS 

approach does not provide any automated support for the

goal refinement process, it does define a library of

domain-specific and domain-independent refinement

patterns that have been logically proved. 

A domain-independent goal refinement patterns uses 

properties of temporal logic operators to provide a proven 

relationship between a high level goal and a set of sub-

goals.  For example, the transitivity property of the  R

(R will eventually be true) operator provides the

following simple domain-independent goal refinement

pattern:

(P =>  R, R =>  Q)  P =>  Q 

 If P is true then eventually R is true, AND 

 If R is true then eventually Q is true, THEN 

 If P is true then eventually Q is true. 

In our example scenario, a domain-specific pattern 

might be one that describes the sub-goals required to

guarantee QoS for a class of application traffic. The user

could then refine the goal instance “provide Gold QoS to

WebServices applications on the eCommerce Server”, by

instantiating this pattern with the Gold class of service

and the appropriate application type. Once the user has

specified appropriate sub-goals based on the particular

pattern, the specification is checked for inconsistencies.

Policy-based systems use rules to govern their

behavioural choices whilst satisfying the goals of the

system.  Therefore a policy refinement technique must

provide a link between each goal and the underlying 

system behaviour in order to derive the different ways in

which the system can satisfy the goal.  This information

can then be encoded into policies that control the

behaviour of the system as needed.  Whilst we can use the

KAOS approach to refine abstract goals into lower-level 

ones, it does not provide a mechanism to connect the

goals with the behaviour description of the system.

Therefore, in this paper we show how the notation used 

by KAOS can be combined with state charts, Event 

Calculus and abductive reasoning to provide a practical

refinement technique.
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Figure 2: Goal refinement hierarchy

2.2 Event Calculus 

We propose to use Event Calculus (EC) as the

underlying formalism since it has well understood

semantics; supports all modes of logical reasoning,

including abduction; and the information we are 

interested in modelling involves events and temporal

relationships. Event Calculus is a formal language for 

representing and reasoning about dynamic systems.

Because the language supports a representation of time

that is independent of any events that might occur in the

system, it is a particularly useful way to specify a variety

of event-driven systems.  Since its initial presentation [4],

a number of variations of the Event Calculus have been 

presented in the literature [6].  In this work we use the

form presented in [7], consisting of (i) a set of time points

(that can be mapped to the non-negative integers); (ii) a 

set of properties that can vary over the lifetime of the

system, called fluents; and (iii) a set of event types. In

addition the language includes a number of base 

predicates, initiates, terminates, holdsAt, happens,

which are used to define some auxiliary predicates; and

domain independent axioms.  These are summarised in

Figure 3. 
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This is the classical form of the Event Calculus where 

theories are written using Horn clauses. The frame

problem is solved by circumscription, which allows the

completion of the predicates initiates, terminates and 

happens, leaving open the predicates holdsAt,

initiallyTrue and initiallyFalse. This approach 

allows the representation of partial domain knowledge

(e.g. the initial state of the system). Formulae derived by

the Event Calculus are in effect classically derived from

the circumscription of the EC representation. To provide

an implementation of such a calculus in Prolog, we use 

pos and neg functors. The semantics of the Prolog

implementation assumes the Close World Assumption

(CWA) and models are essentially Herbrand models

where predicates are appropriately completed. The use of

pos and neg functions on the fluents allows us to keep

open the interpretation of fluents being true/false, in the

same way as circumscription does in the classical 

representation. In this way we can guarantee that the 

implementation of our EC is sound and complete with

respect to the classical EC formalisation. The

correspondence between the classical EC with

circumscription and the logic program implementation

can be found in [6].

The Event Calculus supports deductive, inductive and 

abductive reasoning. Deduction uses the description of 

the system behaviour together with the history of events

occurring in the system to derive the fluents that will hold

at a particular point in time.  Induction aims to derive the

descriptions of the system behaviour from a given event

history and information about the fluents that hold at

different points of time.  However, the reasoning

technique that is of particular interest to our work is

abduction. Given the descriptions of the behaviour of the

system, abduction can be used to determine the sequence

of events that need to occur such that a given set of 

fluents will hold at a specified point in time.

3. Policy Refinement Approach 

As mentioned previously, the KAOS approach 

provides a technique for refining abstract goals into

lower-level ones.  However these low-level goals cannot

be directly used in refined policies.  To do this, it is

necessary to have a method for inferring the mechanism

by which the system can achieve a goal at a given 

abstraction level.

At a given level of abstraction there will be some

description of the system (SD) and the goals (G) to be

achieved by the system.   The relationship between the

system description and the goals is the Strategy (S), i.e.

the Strategy describes the mechanism by which the

system represented by SD achieves the goals denoted by

G.  Formally this would be stated as: 

(1) - SDX, SX  GX

   X is a label denoting the abstraction level.

So, in our approach, it is expected that the user would 

provide a representation of the system description, in

terms of the properties and behaviour of the components,

together with a definition of the goals that the system

must satisfy. The behaviour of the system is defined in

terms of the pre- and post-conditions of the operations

supported by the components, which the user can specify

using a high-level notation such as state charts.  Since the 

goals to be satisfied can be defined in terms of desired

system states, they can be specified in a notation similar

to that used to specify the post-conditions of the

operations.

Once the user has provided this information, it is first

necessary to transform it into a formal representation that

supports automated analysis.  Given the relationship

between the system description, strategy and goal defined

in (1) above we then use abduction to programmatically

infer the strategies that will achieve a particular goal

(Figure 4). Additionally, we can use the properties of the

goal decomposition approach described previously to

decompose the system description and strategies as

follows:

Base predicates:

initiates(A,B,T) event A initiates fluent B for all time > T. 

terminates(A,B,T) event A terminates fluent B for all time > T. 

happens(A,T) event A happens at time point T 

holdsAt(B,T) fluent B holds at time point T.

This predicate is useful when defining static 

    rules (e.g. state constraints)

initiallyTrue(B) fluent B is initially true. 

initiallyFalse(B) fluent B is initially false. 

G
X

G
X1

G
X2

GOAL REFINEMENT

ABDUCTION

KEY:

Component

Properties

Capabilities

Component

Properties

Capabilities Component

Properties

Capabilities

Component
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ABDUCTION

S2
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Figure 3: Event Calculus predicates and axioms 

Figure 4: Deriving strategies from goals
and system description 
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(2) -  GX1, GX2, ... , GXN  GX Goal Decomposition 

 (3) -  SDX1, SX1  GX1

        SDX2, SX2  GX2  ... 

        SDXN, SXN  GXN (from 1) 

This shows that if there is some combination of lower

level goals from which we can infer the original goal,

then for each of these sub-goals there must be a

corresponding strategy and system description

combination which will achieve it.  Therefore, provided

the goal decomposition is correct, intuitively the

combination of the lower level system descriptions should

allow inference of the abstract system description and 

similarly the combination of the lower level strategies

should allow inference of the abstract strategy.

As mentioned previously, the other component of the

refinement process is to refine abstract entities into

concrete objects/devices in the system.  For example, in 

the system illustrated in Figure 1, there might be an

abstract entity called “Network” that logically consists of

the  “Engineering Network”, “Core Network” etc., where 

each of these in turn consist of the routers and servers 

within them. We propose that a domain hierarchy be 

used to represent the relationships between the various

abstract entities and the low-level concrete objects [8].

Domains provide a means of grouping objects to

which policies apply and can be used to partition the

objects in large systems according to geographical 

boundaries, object type, responsibility and authority. 

Membership of a domain is explicit and not defined in

terms of a predicate on object attributes.  An advantage of 

specifying policy scope in terms of domains is that

objects can be added and removed from the domains to

which policies apply without having to change the

policies.  The formal representation of the domain

structure is as shown in [3].

In order to implement the approach outlined above, it 

is necessary to have a formal representation of the system

description; and the strategies and goals. However, for

the implementation to be usable, it would be ideal to be

able to model the systems in a high-level notation and 

translate this into Event Calculus for analysis purposes.

UML would be well suited for this purpose since it is

widely used and is supported by many commercial tools.

This rest of this section outlines how UML would

represent each of the types of information that need to be 

modelled together and describes how they can be 

translated into Event Calculus.  The formal language

being used is based on that described in [3], where in

addition to the base predicates and axioms of Event 

Calculus we make use of the function symbols shown in

Table 1. 

3.1 System Description 

The system description models the objects in the

system in terms of their behaviour.  The notation used to

formally model the behaviour of objects is identical to

that described in [3].  Using this notation, and building on 

the example used previously, it is possible to illustrate the

use of these rules for modelling system behaviour.  So, let

us say there is an object of type DiffServRouter in the

example system.  This type has attributes to hold the IP

interfaces and actions to configure various parameters of 

the router, which might be represented in UML as a class 

diagram.  The actions for the DiffServRouter type can be 

specified in a UML state chart representation as shown in

Figure 5. 

It is possible to transform this state chart into the Event

Calculus notation presented previously where the input

shown on each transition arrow is the action being 

performed.  For transition between different states, the 

current state values become the PostFalse fluents; any

actions associated with the transition and next state values

become the PostTrue fluents; and the current state values

become the PreConditions.  Self-transitions should not

specify the current state as PostFalse fluents. So 

following this scheme, the transition labelled (**) in

Figure 5 would be represented in the Event Calculus as 

follows:

Table 1: Function symbols.

Symbol Description

state(Obj, VO, Value) Represents the value of a variable of an object in the system. It can be
used in an initiallyTrue predicate to specify the initial state of the
system and also as part of rules that define the effect of actions. 

op(Obj, Action(VP)) Used to denote the operations specified in an action event (see below)

systemEvent(Event) Represents any event that is generated by the system at runtime. The
Event argument specified in this term can be any application specific 
predicate or function symbol.

doAction(ObjSubj, op(ObjTarg, Action(VP))) Represents the event of the action specified in the operation term 
being performed by the subject, ObjSubj, on the target object, 
ObjTarg.
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X
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<<reduces>> <<reduces>>

state(R, dscp, DSCP)

state(R, meterType, Meter)

state(R, meterType, Meter)

state(R, rateLimit, InRate)

state(R, meterType, Meter)

state(R, rateLimit, InRate)

state(R, overflow, OFPolicy)

state(R, schedulerType, Scheduler)

state(R, outRate, OutRate)

state(R, schedulerType, Scheduler)

R.setDSCP(DSCP)

R.setMeter(Meter)

R.setScheduler(Scheduler)

R.setOverflow(OFPolicy)
R.setOutRate(OutRate)

(**) R.setRateLimit(InRate)

Figure 6: UML representation of the 
AND-decomposition of a goal

initiates(
 doAction(_, op(diffServRouter,
                         setRateLimit(inRate))), 
 state(diffServRouter,rateLimit, inRate), T) 
 holdsAt(pos(state(diffServRouter,
                   meterType, Meter)), T). 

The above rule also shows how we make use of the

pos() function as described in Section 2.2.  Note that,

whilst we have shown the details of the Event Calculus

representation of the system organisation and behaviour

models, it is not necessary for the user to directly specify

anything in the formal notation. Instead they would use 

UML class diagrams, state charts together with a domain

model chart and the system will generate the Event

Calculus code required for the refinement procedure.

3.2 Goals 

A UML profile for modelling goals and goal

refinement patterns described in the KAOS approach has 

already been developed and is presented in [9].  Figure 6 

shows how an AND-decomposition of a goal would be 

represented in this notation.  The profile defines a number

of attributes for the <<goal>> stereotype, including one to

hold the temporal logic representation of the goal.

However, in order to support the formal analysis required

for validating the goal refinements, it is still necessary to

map the temporal logic formalism of KAOS into Event

Calculus and describe a mechanism for verifying the

correctness of a goal refinement.

The goal refinement patterns provided by KAOS make

use of some of the temporal logic operators described in

[10]:

X X holds in the current state 
 X, X will eventually hold 

 X, X held at some time in the past 

YW X, Y holds unless X holds 

The Event Calculus representation for each of these 

temporal operators is shown in Figure 7. 

The UML profile in [9] also describes a high-level

notation for representing these patterns, each of which 

can be mapped into a set of temporal logic formulas.

These can be used by our system to guide the user in

defining the sub-goals for a given goal and also to

validate the correctness of the sub-goals. For example,

applying the (P =>  R, R =>  Q)  P =>  Q pattern

would present the user with a template of the following

form:

 If P is true then eventually R is true, AND 
 If R is true then eventually Q is true. 

It would be up to the user to insert the appropriate

value for the missing goal, R.  The formal version of the

goals would then be mapped into Event Calculus and the

system would assert each of the sub-goals into the overall

formal specification and attempt to prove the following

properties of the refinement:

1. G1, G2, .. Gn  G (entailment): validated by

trying prove G after asserting all the sub-goals

2. i: ji Gj  G (minimality): validated by

checking the entailment property for each subset 

of the sub-goals.

Figure 5: UML state chart for DiffServRouter type

X -> T:     holdsAt(X, T)  T=now. 

 X -> T,T’:  holdsAt(X, T’)  T=now
                  T’>T. 

 X -> T,T’:  holdsAt(X, T’)  T=now
                  T’<T. 

 Y W X -> T:     holdsAt(Y, T) 
                    ¬holdsAt(X, T) 
                    T T’<T’’  T=now. 

Figure 7: Event Calculus representation
of temporal logic operators
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3. G1, G2, …, Gn  false (consistency): validated

by making sure that asserting the sub-goals does 

not nullify the entailment properties of any

existing goal refinements.

If it is not possible to show the entailment property for

the goal refinement, this indicates that either there is a

missing sub-goal or the wrong goal refinement pattern has 

been applied.

3.3 Strategies 

So far we have discussed the types of information that

must be specified by the user for the refinement

procedure to work.  However, strategies do not fall into

this category since they will be actually be derived by the

abductive analysis procedure used in the refinement

approach.  Therefore, it is expected that the formal

representation of a strategy is actually determined by the

representation of the system behaviour and goals defined

above.

As mentioned previously, a strategy describes the

mechanism by which the system can achieve a given goal 

and is therefore defined by a set of operations to be 

performed sequentially or in parallel.  Specifically, the

strategy is defined using a conjunction of 

happens(doAction(...), T) predicates having a 

relationship between the time values that corresponds to

the order in which the actions should be performed.  For 

example, a strategy that defines Obj1 performs

Obj2.Action1 and Obj2 perfoms Obj3.Action2 in parallel,

followed by Obj2 performing Obj3.Action3 would be 

represented in our formalism as: 

 happens(doAction(Obj1, op(Obj2, Action1)), T0),
 happens(doAction(Obj1, op(Obj3, Action2)), T0),
 happens(doAction(Obj2, op(Obj3, Action3)), T1),
 T0<T1. 

In the interests of usability, it would be better if 

strategies are presented to the user in a high-level form.

So, given that strategies define a method invocation trace 

for achieving a given goal, we can represent them in

UML using a message sequence chart.  The UML model

for the example above is shown in Figure 8. 

A strategy is considered to be abstract if any of the

actions defined in it is a method defined as part of an

abstract entity.  High-level, abstract policies can be

defined using such strategies in the action clause.  If the

strategy is not abstract, it can be used in a concrete,

implementable policy.

4. Policy Refinement: An Example

In this section we describe how the formal

representation and approach presented in this paper can

be used to refine Service Level Agreement policies for

the example system shown in Figure 1. Figure 9a shows

the UML model for the objects in this system, including

the abstract entities, Network and Router.  The 

behavioural model is as shown in Figure 5. The high

level policy we wish to refine is stated as follows:

On demand the network should provide Gold quality of service to 

web services application traffic on the eCommerce server. 
Obj1 Obj2 Obj3

Action1

Action3

Action2

The goal we are interested in achieving is to provide

gold QoS for network traffic to a particular application on 

the eCommerce server. The goal hierarchy for reducing

this goal is shown in Figure 9b and the temporal logic

representation for some of these sub-goals is presented

below (tfc1 denotes the Traffic Class relevant to the

goal):

Figure 8: UML sequence chart for a strategy
 G1  - send(pkt, tfc1) qos(pkt,gold).

 G11 - send(pkt, tfc1) 
routed(pkt, R, tfc1).

 G12 - routed(pkt, R, tfc1)
detected(pkt, R, tfc1).

 G13 - detected(pkt, R, tfc1) 
configured(R, tfc1, gold). 

 G14 - configured(R, tfc1, gold) 
qos(pkt, gold). 

 G131 - detected(pkt, R, tfc1)
routerParmsKnown(R, gold, parms). 

 G132 - routerParmsKnown(R, gold, parms)
 parmsSet(R, gold, parms). 

 G133 - parmsSet(R, gold, parms)
 configured(R, tfc1, gold). 

At each level of goal reduction, we use abduction to 

determine the strategy that will achieve the sub-goals.

The absence of a strategy indicates that there is some

information missing in the system description at one of 
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the levels of abstraction.  For example, at the top level of 

this example, there is no abducible strategy for the goal

“G13 - Router Configured for Gold Qos”.  This can be 

addressed by extending the abstract Router object with a

method configureQoS(gold).  Similarly, the strategy for 

the lower level goal, “G132 - Set the router parameters”

can be achieved by defining the behaviour of the

setParms(…) method of the Router object appropriately.

Once these modifications have been made, the abduction

process will yield abstract strategies (since the operations

derived belong to abstract entities) for achieving each of 

the goals. In order to realise a concrete strategy, it is 

necessary to refine the goals further, into the lowest level

ones shown in Figure 9b. 

Now, attempting to abduce the lowest level goals

yields a set of concrete operations that configure the

DiffServRouter object in the appropriate way:

?- showStrategy([ 
    state(diffServRouter, dscp, Var_DSCP),
    state(diffServRouter, meter, Var_Meter), .. 
    state(diffServRouter, ofp, Var_OFP]). 

 1 - happens(doAction(_, diffServRouter,
setDSCP(Var_DSCP), 0),

2 - happens(doAction(_, diffServRouter,
setMeter(Var_Meter), 0),

      ... 
 6 - happens(doAction(_, diffServRouter,

setOverflow(Var_OFP), 2).

Having identified the actions required in the lower

level policy, all that remains is to refine the subject and

target entities.  In the original high-level policy we can

identify the target entity as “the network”.  For the policy

we are refining, we are only concerned with objects that

are of type DiffServRouter (since this is the only object

type in the policy’s action clause).  Therefore the refined 

target objects can be determined by traversing the domain

hierarchy and selecting the objects of type

DiffServRouter.

For ease of future specification, we can create a new

domain DiffServRouters, and assign each of these target 

objects as members.  Given there is no information about

the subject entity in the top-level policy, it requires the

user to apply some application specific knowledge to

identify the correct subject for the low-level policy as

DiffServConfigMgr. The event mentioned in the high-

level policy is “on Demand” and given that there is no 

information in the system description about how this

might be refined; it is up to the user to specify the lower

level event to be used by the policy as

adminRequest(Parms).  This yields the final low-level

policy as: 

 oblig /SLA/ConfigGoldQoS { 
   on       adminRequest(Parms); 
   subject  s = /PMA/DiffServeConfigMgr; 
   target   t = /DiffDServRouters/; 
   do       (t.setDSCP(Parms.DSCP) &&
             t.setMeter(Parms.Meter)) -> 
             ... 
             t.setOverflow(Parms.OFP); 
  } 
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5. Discussion

The approach described above provides a means of 

determining the strategy for achieving a particular goal,

and identifying the specific objects in the system that are 

required to execute the strategy.  However, there is no

mention of how to decide whether a particular strategy

should be specified as a policy, as opposed to directly

implementing as system functionality.  Using a policy

specification differs from a direct implementation in that

a policy controls the required functionality rather than

implementing it directly.  Therefore policies provide a 

great deal of flexibility in situations where there a several

alternative strategies for achieving a goal, and it would be 

useful to dynamically switch between these strategies

depending on the run-time state of the system. For

instance, in the example scenario outlined above, the 

Gold QoS requirement might be met by either configuring

the DiffServRouters in the manner described, or by

dropping packets belonging to other applications. In this

situation, two alternative low-level policies could be

defined such that the strategy most appropriate for a given

situation is used.

The exact circumstance in which a strategy should be

encoded as a policy, rather than system functionality, will 

depend on the particular application domain. So, whilst

there is no obvious way to automate this decision, we 

propose the following guidelines to determine the

situations in which a policy-based implementation would

be appropriate:

1. If the goal refinement process results in a

disjunction of sub-goals (i.e. the high-level goal

can be achieved by one of an OR-decomposed set

of sub-goals), the strategies derived for each of 

the sub-goals could be encoded as policies.

2. If the system supports multiple strategies for

achieving a given goal, each of these strategies 

could be encoded in a separate policy.

3. If a strategy has parameter values that the user is 

interested in changing at a future point in time,

implementing such a strategy in a policy will

provide the necessary flexibility to do this.

These guidelines should apply to all types of

application. Additionally there may be application-

specific guidelines that further guide the user in their

decision to apply policies.

The policy refinement process described in this paper 

is built on a systematic, formal approach to refining goals

thus ensuring that the strategies derived actually meet the

requirements of the high-level policy.  Also, the

derivation of these strategies makes use of a description

of the system, which means the policies derived are

enforceable by the system. Using domain hierarchies to 

model the relationships between abstract entities and

concrete objects, together with type information, allows

the system to identify the objects that may be required to

execute the strategies.  These features illustrate how this

solution satisfies the principal objectives of a policy

refinement process identified in [1].  Additionally, by

implementing the process using a formal representation it

is possible to automate parts of the refinement process. 

Automation of the technique presented here requires a 

tool that allows the user to specify the system behaviour

and goal information in UML and then translates this

representation into Event Calculus for analysis.  Also, the

results of the analysis should be presented in an easy to

understand form.  To achieve this, we envisage the final

tool solution will integrate a UML editor, such as 

ArgoUML, with a Prolog system implementing an 

abductive reasoning engine.  For the latter part of the

solution, we will use the A-System with SICStus Prolog

[11].  This latter part of the architecture has already been

used to develop the policy analysis approach presented

previously [5]. It is expected that this refinement and 

analysis tool will be integrated with a policy management

system such as the Ponder Toolkit [8]. Development of

an integrated refinement and analysis toolkit will form the

core of our future work. 

An important consideration when developing any

formal technique is to ensure that the implementation is 

decidable and computationally feasible.  In the Prolog

implementation of the example, we have been able to

ensure this by limiting ourselves to stratified logic

programs.  This permits a constrained use of recursion

and negation while disallowing those combinations that

lead to undecidable programs [12]. It is anticipated that

we can remain within the realms of stratified logic

programs for most applications of our technique. This

would be advantageous since there are numerous studies

that identify stratified logic as a class of first order logic

that supports logic programs that are decidable [13, 14].

Moreover, such programs are decidable in polynomial

time [14, 15].  A more detailed analysis of the

computational complexity and expressive power of 

stratified logic can be found in [14].

One limitation of the work presented is that it does not

provide a means of deriving the parameter values required

by the operations to achieve a particular goal.  Such a 

capability would be particularly useful when refining

network management policies, where for example there

might be a requirement that the network configure itself

to provide optimal bandwidth utilisation by calculating

the appropriate values for parameters like the input rate of

the DiffServ meters.  As part of our ongoing research, we 

plan to investigate the possibility of integrating constraint
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logic programming techniques to provide such 

capabilities.  Another limitation is that at present we treat 

all the goals together, only accounting for whether their

decomposition is based on the AND/OR connective.

However, there may be situations where it is necessary to

account for an explicit temporal ordering of the goals

when performing refinement.  Whilst this may be easily 

handled by making use of the time information provided

by the Event Calculus representation, the implications

must be fully considered and this requires further

investigation.

6. Related Work

Work by Kelly [17], introduces the idea of annotating

a goal refinement hierarchy with strategies for 

representing safety cases.  However, in the context of

safety case representation the strategies document the

justification for the lower-level goals achieving the high-

level goal.  In contrast, the goal refinement approach used

in this paper uses logical proofs to justify the validity of

the goal decomposition and strategies are used to

represent the mechanism by which the system can achieve 

a given goal.  Therefore strategies provide the

relationship between the system architecture and the 

goals.

In the wider software engineering context, there is a 

body of work on the synthesis of reactive systems [18], 

which aims to derive the system behaviour description

based on temporal formulae that describe the output of 

the system.  This is quite different from the approach

presented in this paper, since our objective is to simply

identify the sequences of actions, from the given system

description, that will achieve a particular goal.

There are few examples of practical approaches for 

policy refinement.  One such example is described in

work done at Hewlett-Packard Laboratories, which

outlines a policy-authoring environment that provides a 

policy wizard tool, called POWER, for refining policies

[19]. Here, a domain expert first develops a set of policy

templates, expressed as Prolog programs, and the policy

authoring tools have an integrated inference engine that

interprets these programs to guide the user through the

refinement process.  A major limitation of this approach

is the absence of any analysis capabilities to evaluate the

consistency of the refined policies.  Also, the POWER

approach depends on the domain expert having a detailed

understanding of the entire system to develop a usable

policy template. The refinement approach outlined in this

paper avoids these problems by not only incorporating a 

complete analysis technique but also supporting abductive

reasoning for deriving the action sequences required to

achieve a goal. 

7. Conclusions 

In this paper we have presented an approach to policy

refinement that allows the inference of the low-level

actions that satisfy a high-level goal by making use of

existing techniques in goal-based requirements

elaboration and the Event Calculus.  We have ensured the

usability of the approach by showing how the user can

specify the system using UML and how this specification

can be translated into the formal representation for

analysis. We have shown how the approach provides

automation support for the refinement process when 

given a specification of the system behaviour and the

goals to be satisfied.  In order to relate the system

behaviour specification with the goals, we introduce the

concept of strategies and show how these can be used in

the specification of policies.

There is ongoing work to investigate how the

presented formalism can be extended to support the

identification of the events and constraints to be included

in the low-level policies. However, the immediate focus

of our future work is to develop adequate tool support

that uses the technique described here together with the

analysis approach presented previously [3] to provide a 

comprehensive environment for policy specification.

Additionally we will be investigating the use of the

technique described here for refining and analysing traffic

management policies for network QoS management.  The 

areas of further investigation identified in the discussion

will also be addressed as part of this work.
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