
Open Research Online
The Open University’s repository of research publications
and other research outputs

Representing parallelism in a control language designed
for young children
Book Section
How to cite:

Whalley, Peter (2006). Representing parallelism in a control language designed for young children. In: Grundy, John
and Howse, John eds. IEEE Symposium on Visual Languages and Human-Centric Computing. California: IEEE
Computer Society, pp. 173–176.

For guidance on citations see FAQs.

c© [not recorded]

Version: [not recorded]

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1109/VLHCC.2006.41

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Online

https://core.ac.uk/display/82904043?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://dx.doi.org/doi:10.1109/VLHCC.2006.41
http://oro.open.ac.uk/policies.html

Representing Parallelism in a Control Language Designed for Young
Children

Peter Whalley

KMi, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK

p.c.whalley@open.ac.uk

Abstract

Actor-lab was intended to make control problems
comprehensible to young children experiencing
programming for the first time, and to provide an
interface around which they could have learning
conversations. The design goal was to create an
expressive high-level control language that could
incorporate the WHEN DEMON metaphor within the
intrinsically parallel actor programming paradigm.
Information about the static relationship between the
objects in the system, the external dynamic events
and the internal message passing is provided by the
visualisation. The learner-centered evolution of
actor-lab is detailed in terms of how successfully it
both reflects the curriculum model of control and
also engenders a sense of agency within the system.

1. Introduction

Young children often find it difficult to
understand the relationship between the symbolic
control languages and the external micro-worlds of
the control technology topic, and consequently fail to
develop appropriate mental models of where the
'control' actually resides in the system. The actor-lab
interface, shown in Figure 1, was designed to resolve
this problem by providing a transparent
representation of the implicit input-process-output
(i-p-o) model of control. Students working with
actor-lab are also presented with the idea of viewing
the actions of their program in terms of a pattern of
messages between the actors. The dynamic
visualisation of message-flow, together with the
animation of the effect of meta-commands on object
states, were intended to engender a sense of agency
within the actor-lab system and support the
underlying message-passing metaphor of an event-
driven control language. For the control topic to
work successfully in the classroom students have to
be able to understand and comment on each other's
projects. Consequently the design objective of the
interface was that it should be able to function as a
dynamic representation of control programs that
young children could easily understand and have
conversations around. The learner-centered evolution

of actor-lab is detailed in terms of how successfully
it both reflects the curriculum model of control and
also engenders a sense of agency within the system.

2. Actor-lab

Parallelism, or 'multi-tasking', was identified by
Papert [1] as one of the most important aspects of
control programming as he made the transition from
the first screen based simulations of 'turtles' to real-
world devices that could move about and explore
their environment. He noticed that the tasks
undertaken by the children were having to be greatly
simplified because realistically complex problems
could not be represented in a natural way by the
procedural control languages. These unfortunately
still dominate the classroom. In the real world, events
can happen simultaneously and this creates
difficulties for these languages. In the context of the
control topic a simple example of parallelism would
be a program that caused a light to turn on and off
repeatedly, whilst at the same time being able to
respond to buttons being pressed to start and stop a
motor. Complex forms of parallelism reflect higher
level, goal-orientated behaviours, eg. for a buggy to
be able to follow a line, but turn round and return if
an obstacle is met.

Figure 1. The actor-lab interface

Visual Languages and Human-Centric Computing (VL-HCC'06)
0-7695-2586-5/06 $20.00 © 2006

Papert's solution to the problem of parallelism in
control was to attempt to incorporate the WHEN
DEMON metaphor from early models of parallel
computing into LOGO. A version of this metaphor
also forms the basis of the actor-lab control
language, modified to fit the terminology of the
event-driven Actor programming paradigm [2]. The
children's role as programmer is explained to them as
writing scripts for the actors, who will then carry out
their play/plan for them. The actors are prompted to
begin carrying out their scripts, which are made up
of messages, by either a message created by an
external input event or a message from another
process object; an actor or counting actor. The actors
in turn may send messages to output objects or to
other actors. The relationship of the different object
types is shown in Figure 2, and a simplified process
model of an actor in Figure 3. A copy of actor-lab
together with a detailed description of the language,
colour images and video clips of the system in
operation is available for downloading [3].

Figure 2. The object types in actor-lab

Adopting the Actor paradigm of asynchronous,
and intrinsically parallel, message passing avoids the
confusion found by Resnick [4] with MultiLogo as to
which actions are carried out concurrently and which
in sequence. It is made clear through examples that
all messages are sent off at the same time, unless
they are intentionally delayed by the program author.
This implementation of the serialisation process
appears counterintuitive to those with prior
experience of procedural languages but Resnick
found that it is the way that children expected objects
to be able to act, particularly objects introduced
within an anthropological metaphor. An important
change to the visual representation of the object
scripts was made mid-way through the
developmental testing, a shaded banding effect was
added to delineate groups of messages that are due to
be sent off at the same time. This effect can be seen
in Figure 4 but is even more apparent on a colour
display. It was found to have a significant effect in
reducing the number of errors made by children in
misperceiving the delays given to messages as being
cumulative rather than relative.

An essential aspect of the actor-lab visualisation
is its liveness [5], the user interface is always active
and reacting to both the micro-world and the user's
interactions. Opening an object to inspect or change
its script sets all outputs to an off state, but the
underlying monitoring processes remain active. Input
and output objects can still be tested, and most
importantly the trigger levels for the analogue inputs
can be set whilst viewing the same state animations
as when the script editor is closed. As in MultiLogo
[4], the actors are able to send and receive
prioritising meta-commands which in the case of
actor-lab direct them to either 'wake' and attend to
messages, to 'sleep' and ignore messages, or to
'forget' their scripts. Computational objects in OOP
languages can be considered metaphorically as
having both physical and social aspects. Their
physical properties can be used as concrete
metaphors to represent abstract notions like 'state'
and 'value', whilst their social properties can be
related to ideas of inter-object communication.
Following Travers [6], the general dynamic
visualisation of actor-lab was intended to give this
sense of agency to the whole system by the graphic
signaling of any changes to the programmable
internal states and by the consequent effect upon the
flow of messages between actors.

Figure 3. Functional model of an actor

Figure 4. Actor-lab scripting syntax

Visual Languages and Human-Centric Computing (VL-HCC'06)
0-7695-2586-5/06 $20.00 © 2006

3. Representing the control process

Resnick [4] and Mioduser [7] reported that young
children have difficulty relating the controlled
objects within the micro-world, the sensors and the
motors, to their representations within the command
level of the procedural control languages. Resnick
refers to this systematic pattern of misunderstandings
as 'object-oriented bugs' and Mioduser as
'misallocation of control function'. It is suggested
that these difficulties are a consequence of the
procedural languages not providing a clear
representation of the micro-world in relation to the
other parts of the control language. Green & Petre [8]
use the term 'the directness' of a programming
language to describe the closeness of the mapping
between the key aspects of the problem and
corresponding operations within the program, and
consequently one of the design goals of actor-lab
was to provide a transparent representation of the
general i-p-o model of the control technology topic.
The graphic interface of actor-lab was designed to
provide a static representation of the relationship
between the objects, and also to display dynamically
the pattern of events that occur as a program
operates. Static relationships are displayed as colour
coded message paths between the objects and also in
the way that the movement of the different types of
objects is constrained within defined spaces, as can
be seen in Figure 1.

Figure 5. State animation of process objects

The clear delineation of input and output objects
is designed to mirror the equivalent distinction made
between input and output connectors that is found on
most of the control units used to link computers to
micro-worlds. These are usually also arranged to
emphasise the underlying i-p-o model of control. As
each element in the controlled micro-world is added
they are independently named and tested by the
children. The objects then appear in the drop-down
menus of the script editor which effectively means
that they can now send and receive messages. This
process of object naming and testing is given
considerable emphasis by teachers in their
introductory sessions, and has become an important
step in overcoming the conceptual problems found
by Resnick and Mioduser. Iconic animation of the
input and output objects, and also the actors, gives an
indication of their current state in running programs;
as can be seen in Figure 5. The underlying i-p-o
model is dynamically reflected in the left-right flow
of messages across the interface, as input events
initiate a pattern of actor messages, eventually
followed by output events. It is easy for teachers to
emphasise this point in their introductory sessions,
and the children can be seen to make reference to it
when helping each other.

4. The message-passing metaphor

The debugging of control languages can be
difficult, particularly with those systems were no
indication of process state is provided once the
program has been downloaded to the control unit.
Brusilovsky [9] highlights the significance for the
understanding and debugging of a program of being
able to relate the internal operations of a program to
external processes. Where "— their basic functions
are carried out behind an opaque barrier — the
student develops an input-output orientated
understanding." The dynamic visualisation provided
by actor-lab was intended to emphasise the process
aspect of control and make the programs come to life
for the children. As well as representing the
communication between objects, it provides a
continuous presentation of the states of objects both
in the external micro-worlds and also within the
control program. Figures 6 shows the progressive
developments made in the representation of the
message-passing metaphor over four years of
developmental testing. Early attempts to provide a
visualisation of the pattern of messages were found
to be too complex and confusing for young children
and consequently the first trial versions of actor-lab
relied solely on icon-animation to indicate that
messages were being sent, as shown in Figure 6.
Debugging control tasks requires the user to
simultaneously attend to both the external micro-
world and the screen interface, and children acting in
a mentoring role often found that rapid sequential
events were difficult to point out. Animation of the

Visual Languages and Human-Centric Computing (VL-HCC'06)
0-7695-2586-5/06 $20.00 © 2006

message path by a brief cascade of coloured arrow
heads was added, but this still required students to
open up object scripts and refer to individual
messages before pointing out the subsequent
transient patterns as they took place.

Figure 6. Representations of message flow

The final evolution of the visualisation, a 'particle'
flowing along coloured message paths, was made
possible by allowing the flexible grouping of objects.
This substantially reduces the total display
complexity when a large number of objects are being
used, as can be seen in Figure 1, and yet individual
objects can still be 'pulled out' of a group for testing
if necessary. With the new display configuration,
mentors could now be seen to point at particular
message paths as part of their explanation before
triggering events in the external micro-world. It was
found that the timing of the particle transition was
quite critical, too fast and they are missed by the
children, too slow and they become confused with
messages being sent after a delay. Given the fairly
slow moving models used in control topics a time of
0.9 sec was eventually adopted, just slower than the
shortest commonly used program delay of one
second but long enough for the particles to be
noticed. To support the particle effect a further

modification was made in the last stages of testing,
the dimming of message paths from objects that had
not been accessed for some time. This serves to
emphasise the most recent changes in the debugging
cycle.

5. The interface as conversation piece

The role of visual representations in parallel
processing languages is usually to simplify the
programming task for sophisticated users by
reducing the complexity of the display of the many
processing events taking place. Actor-lab was
developed for the quite different purpose of
supporting the collaborative problem solving
processes of naive users in a situation where almost
the full complexity of their task can be presented.
Trial studies [10] using the mental models approach
of Mioduser [7] suggest that both the static and the
dynamic visual representations of the language were
successful, in that the concepts that they were
designed to present were now better understood by
the children. Further trials have also been made
employing a protocol analysis of the conversations of
Year 5 students using actor-lab in peer-learning
situations. These showed that the main goal of the
project had been achieved in that the visual
representations developed could successfully
support, and even become the focus of, well
structured peer-mentoring dialogues.

6. References

1. S. Papert (1980) Mindstorms: Children, computers and
powerful ideas. New York, Basic Books.
2. C. Hewit (1977) Viewing control structures as patterns
of passing messages. Journal of Artificial Intelligence. 8(3)
323-364.
3. P. Whalley (2004) Actor-lab . Web site, URL: http://
actor-lab.open.ac.uk
4. M. Resnick (1990) MultiLogo: A study of children and
concurrent programming. Interactive Learning
Environments 1(3) 153-170.
5. S.L.Tanimoto (1990) VIVA: A visual language for image
processing Journal of Visual Languages and Computing 1,
127-139.
6. M. D. Travers (1996) Programming with Agents: New
metaphors for thinking about computation. Unpublished
PhD Thesis, MIT.
7. D. Mioduser, R. L. Venezky, B. Gong (1996) Students'
perceptions and designs of simple control systems.
Computers in Human Behavior 12, 363-388.
8. T. R. G. Green and M. Petre (1996) Usability analysis of
visual programming environments: a 'cognitive
dimensions' framework. Journal of Visual Languages and
Computing 7, 131-174.
9. P. Brusilovsky (1997) Mini-languages: a way to learn
programming principles. Education and Information
Technologies 2, 65-83.
10. P. Whalley (2006) Modifying the metaphor in order to
improve understanding of control languages— the little-
person becomes a cast of actors. British Journal of
Educational Technology (in press).

Visual Languages and Human-Centric Computing (VL-HCC'06)
0-7695-2586-5/06 $20.00 © 2006

